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Abstract
This paper describes the contribution of the closed-loop 
control of the motion platform (six degrees of freedom: 
longitudinal, lateral, and vertical displacements; pitch, 
roll, yaw) and motion platform’s three-dimensional (3D) 
displacement scale factor (SF) (0.2 and 1.0) on eye pupil 
diameter (PD) as an objective measure of driver cognitive 

load. Longitudinal, lateral, and vertical accelerations as well 
as longitudinal, lateral, and vertical positions from the center 
of gravity (CG) of the vehicle were registered through the 
driving simulation software SCANeRstudio® from OKTAL.

Closed-loop control decreases the driver mental load. 
This type of closed-loop control can be used to decrease the 
driver mental load.

1. �Introduction
Driving simulator is a sophisticated device that enables to put 
the driver in the loop, as in real time, in order to evaluate 
vehicle prototypes such as advanced driver 
assistance systems (ADAS) (electronic stability program (ESP), 
antilock braking system (ABS), adaptive cruise control (ACC), 
etc.) [1, 2, 3] and human factors [4, 5, 6, 7, 8, 9, 10, 11, 12]. Thus 
it has the effect of reducing the time and costs of proving ground 
tests and prototypes in the pre-development tests.

This article deals with the motion platform effect on 
driver’s cognitive load in a six-degrees-of-freedom dynamic 
driving simulator. Mental workload can be predicted by some 
methods, one of them is called “pupillometry,” where the 
metrics of the change of the pupil diameter (PD) is used to 
identify the subject’s cognitive load. In this paper, we explained 
how this methodology has been used in human machine inter-
action (HMI) studies [13]. Cognitive load is generally described 
as the association between the mental requests placed on a 
subject and the cognitive abilities of that person [14]. There 
are some techniques how mental load can be estimated. They 
can be divided into three groups: performance, subjective, 
and physiological measurements. Performance metrics try to 

predict how thoroughly the user performs a supplementary 
assignment. Subjective measurement consists of the estima-
tion of users’ self-report about their own workload by 
completing a questionnaire. Ultimately, a physiological 
measure is pursued which is related to the increase of mental 
pressure (i.e., pupillometry). In order to assess the mental load 
utilizing pupillometry, task-evoked pupillary response (TEPR) 
method can be used [15]. In accordance with this phenom-
enon, the subject’s pupil will widen as he/she comes across 
with a complicated assignment, while the pupil will constrict 
in diameter when the task is finished and the person does not 
experience any additional cognitive pressure. This broadly 
observed effect is used in estimating mental workload in 
human machine interaction.

The pupil size is not solely influenced by mental load but 
also by illumination. Therefore, if mental load is to be evalu-
ated, lighting conditions are required to be controlled [16].

Systems for recording eye motion have been available for 
about a century [17]. With the improvement of the technology, 
more effective eye tracking systems are being produced [18].

PD is generally measured by head-mounted eye tracking 
apparatus; however nowadays also remote-controlled eye 
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trackers are declared to be precise enough for PD measure-
ment [13]. Cognitive load estimation on tasks was accom-
plished in front of a computer screen equipped with eye 
tracking cameras [19]. Significant differences in PDs for 
different difficulty levels of duty were obtained [19].

Palinko et al. applied pupillometry method to predict 
mental load for driving simulator experiments by a remote 
eye tracker [20]. The cognitive load predictions based on the 
pupil size data and the driving experiments data were 
compared. The pupillary and driving performance measure-
ments indicate high relationships promising that remote eye 
tracking could ensure trustworthy driver cognitive pressure 
estimation, in particular for driving simulators [20].

However, the pupil size depends on both cognitive load 
and illumination conditions. In order to accurately estimate 
cognitive load, these two influences must be decoupled. A 
predictor of the pupil’s reaction to light and cognitive load 
was designed to estimate fluctuations in PD [21, 22].

The oculomotor behavioral changes were examined while 
subjects performed auditory and driving tasks [23]. Comparing 
with the subjects’ behavior in the driving-only task, results 
showed an increase in blink frequency during the combined 
driving and auditory task. Also during the dual task, the mean 
PD and horizontal vergence increased. No significant change 
in fixation frequency was found [23].

In another study, it was explored how illumination in 
various regions of the subject’s field of view influences the PD 
[24]. The results depicted that the further the light stimulus 
is from the optical axis of the eye, the smaller its reaction on 
the PD shall be [24].

Personal navigation devices (PNDs) were tested in experi-
ments conducted with a high-fidelity driving simulator. It was 
found that drivers using a navigation system with a graphical 
display indeed spent less time looking at the road compared 
to those using a navigation system with spoken directions 
only. Furthermore, glancing at the display was correlated with 
higher variance in driving performance measures [25, 26].

An approach for predicting effects of in-car interfaces by 
modeling behavior in a cognitive architecture was described. 
The proposed approach centers on integrating a user model 
for the interface with an existing driver model that accounts 
for basic aspects of driver behavior (i.e., steering and speed 
control). By running the integrated model and having it 
interact with the interface while driving, priori predictions of 
the effects of interface use on driver performance can be gener-
ated. The approach is explained by comparing four samples 
of dialing interfaces for an in-car, hands-free cellular phone. 
It also offers an experimental study that confirms the subjec-
tive and objective predictions of the model [27].

Gaze guidance has the potential to become a valuable 
driving assistance system. It was shown that complex gaze-
contingent stimuli can guide attention and reduce the number 
of accidents in a simple driving simulator. The analysis of the 
recorded gaze data revealed that the gaze-contingent cues indeed 
had a gaze-guiding effect, triggering a significant shift in gaze 
position toward the highlighted direction. This gaze shift was 
not accompanied by changes in driving behavior, suggesting 
that the cues do not interfere with the driving task itself [28].

The effects of mobile phone use on drivers’ attention and eye 
movements in a low-fidelity simulator were tested. The findings 

supported the “look-but-fail-to-see” phenomenon. It also revealed 
that increasing cognitive workload (through mobile phone use 
and/or increased traffic) decreases driving performance [29].

Blink duration (BD), with respect to blink rate (BR), is a 
more sensitive and reliable indicator of driver visual workload. 
Besides considering mean BD values, a detailed analysis 
revealed that the distribution of BD follows a Gaussian-like 
curve in normal driving conditions [30].

A method based on wavelet transform and neural 
networks on pupillometry for mental stress was discussed in 
[31] during a simulated driving task. Self-reports and PD data 
showed cognitive load influence, and also significant correla-
tions were obtained between these measures. The study 
inferred that PD signal is an objective metric for cognitive 
workload detection [31].

Usually, stress (cognitive load) and its measure are playing 
important roles in human machine interface domain such as 
driving simulators. Engineers, designers, and ergonomists try 
to predict the psychophysical situations of the users to adapt 
the environment they are contacting [32]. The main objective 
of this kind of adaptation is to improve whole system’s perfor-
mance [33, 34, 35]. Especially, it has been deduced that the pupil 
enlarges as a result of mental load and various origins of stress 
[15, 36, 37, 38, 39, 40, 56].

The use of fast Fourier transform (FFT) for pupil signal 
analysis in the frequency domain was introduced by [41]. 
Analyzing a signal is helpful to see whether significant changes 
occur within specific frequency bands. In order to identify 
low-frequency fatigue-associated pupillary movements, [41], 
evaluated the mean value of the amplitude spectrum for all 
the frequencies lower than and equal to 0.8 Hz.

It was revealed that the power spectral density (PSD) of 
pupil signals increases within specific band intervals 
(0.1-0.5 Hz and 1.6-3.5 Hz) as a function of cognitive load level 
[[42])]. PD signals were investigated by using the short-time 
Fourier transform (STFT), which enables to extract the 
frequency information keeping the time domain [43].

One promising technique for reducing data complexity in 
recorded signals is wavelet analysis [44, 45, 46]. It was proposed 
for the use of wavelet analysis for studying PD time series and 
related to the happening of high-frequency changes (i.e., higher 
than 50 Hz) to instances of cognitive pressure. A very few 
studies have applied wavelet transforms on PD signals [47], and 
PD oscillations were evaluated to estimate sleepiness levels [48].

In our study here, section 2 explains the proposed 
approach, section 3 describes the method, section 4 highlights 
the results and discussion, and finally section 5 gives a 
conclusion.

2. �Proposed Approach
In a driving simulator experiment the driver, as in a real-life 
condition, is integrated in the vehicle. It means that the driver 
is more like in fusion with his/her vehicle during the drive 
and especially in accordance with the slopes of the road. 
Because the driver controls the vehicle, he/she anticipates the 
movement of his/her vehicle and feels it as a part of his/her 
own body. So, his/her head tilts with the movement of the 
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vehicle in the slopes to feel the acceleration in accordance with 
the proprioceptive feedbacks of the whole system (body of the 
driver and vehicle).

If the driving simulator consists of a motion platform or 
it does not have a motion platform, it can affect the cognitive 
load accordingly, as well.

Comparatively, the driver on a driving simulator without 
a motion platform (static platform) anticipates the motion of 
his/her vehicle much less than the driver on a driving simu-
lator with a motion platform (dynamic platform).

For this reason, the static platform is supposed to cause 
more cognitive load than the dynamic platform. We used the 
PD in order to extract the mental load levels for both cases.

One of the main objectives of this research is to develop 
a method of quantitative estimation for cognitive load.

Practical/commercial applicability and usage of this study 
would be to improve HMI control flaws.

2.1. �Questions of Research
The proposed approach of this research is to compare the effect 
of motion platform on PD as an objective measure of the driver 
mental load.

Following the statement of the proposed scientific issues, 
the questions of research are the following ones:

•• How does the PD (driver cognitive load) differ
depending on the closed- or on the open-loop control of 
the platform for the same driving scenario with the same 
lighting conditions?

•• How does the PD (driver cognitive load) differ
depending on the hexapod platform travel factor for the 
same driving scenario with the same lighting conditions?

•• How do the three-dimensional (3D) positions and the 3D
accelerations of the vehicle center of gravity (CG) 
interact/correlate with the PD (driver cognitive load)?

3. �Method

3.1. �Protocol
Two conditions were driven by the same subjects (N = 28) for 
the specific scenario with the same illumination conditions on 
the driving simulator in real time. The subjects were asked to 
drive a specific driving scenario on the simulator as with static 
platform and with dynamic platform. The experiment protocol 
involved a driving situation on a country road scenario. Figure 
1 depicts the X-Y trajectory and the vehicle velocity profile, 
which were realized in the experiment phases. The whole exper-
imental phase was completed with a constant velocity of 60 
km/h in 120 s.

The experiment consists of comparing the PD data 
extracted from the eye tracking measurements under the two 
conditions: static platform and dynamic platform. These data 
were correlated to the 3D positions and the 3D accelerations 
of the vehicle CG.

3.2. �Material
This research work was realized under the dynamic as well as 
static operations of the Simulator Automobile of Arts et 
Métiers (SAAM) six-DOF dynamic driving simulator 
(Figure 2, Tables 1, and 2 [[8, 49]]). It operates on a Renault 
Twingo 2 cabin with the original control instruments (gas, 
brake pedals, steering wheel) with haptic feedback to the user. 
The visual system is realized by a 150° cylindrical view. With 
the driving cabin of the simulator, the multilevel measuring 
techniques are available: vehicle model and motion platform 
level dynamics real-time data acquisition via SCANeRstudio 
driving simulation software, vestibular level dynamics real-
time data acquisition via Xsens motion tracker, arm and neck 
muscle dynamics measurement via BIOPAC EMG 
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 FIGURE 1  Vehicle’s velocity and center of gravity (CG) X-Y trajectory during the experiment.
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(electromyography) device, and human’s center of pressure 
displacements measuring equipment Technoconcept to check 
postural stability [4, 5, 6, 7, 8, 50].

Figure 2 illustrates the SAAM moving-base driving simu-
lator. It could be operated as with static or dynamic platform 
by switching the “motion platform” module off and on, respec-
tively. As seen in the figure, in general there are three dynam-
ical systems of the SAAM driving simulator. They are vehicle 
dynamics, motion platform dynamics (motion system), 
human vestibular dynamics (proprioceptive system), neuro-
muscular dynamics (i.e., steering maneuvers), and eye 
tracking. By manipulating or controlling the vehicle dynamics 

that moves in the vision system and the motion platform 
dynamics via motion drive algorithms, their contributions on 
human vestibular dynamics and eye tracking (in our study 
here, PD as an objective metric of cognitive load) can 
be compared.

The motion cueing algorithm, which was a coupling of 
the two different algorithms (model reference adaptive control 
(MRAC) and linear quadratic regulator (LQR), seen in 
Figure 3) explained in [5, 6, 46, 50], was included in the 
SCANeRstudio® driving simulation software via dll plugin 
in order to accomplish the real-time driving experiments with 
the participations of the subjects.

3.3. �Measurements
PDs were measured to obtain the driver cognitive load levels 
in real time on the driving simulator at the same driven 
scenario for the dynamic platform and the static platform 
conditions seen in Figure 4 via using the SensoMotoric 
Instruments (SMI)® glasses [Sensomotoric [52]]. The 
sampling frequency for the data registration during the 
sensor measurements was 60 Hz. Figure 5 illustrates the cali-
bration pattern used for the experiments. A three-point-
based calibration pattern was chosen and applied in order to 
calibrate the SMI® eye tracking glasses [SensoMotoric [52]] 
before experiments with the driving simulator. The partici-
pant was asked to look at the points marked with 1, 2 and 3 
consecutively. Then the calibration process was accomplished 
for the experimental data acquisition.

Vehicle level (cabin) data registered by SCANeRstudio® 
software can be splitted as command data (steering wheel 
angle, steering wheel torque, gas pedal input, brake pedal 
input, etc.), motion platform level (translational and angular 
accelerations of the hexapod platform), vehicle level data 
(vehicle dynamics; engine; axle dynamics such as suspension 
and damping; axle kinematics such as camber angle, toe angle, 
and caster angle; etc.), frequential analysis of the motion 
platform and vehicle levels (by using FFT) [8].

Figure 6 shows the 3D accelerations of the vehicle CG 
during the real-time driving simulator experiments.

Figure 7 depicts the 3D positions of the vehicle CG during 
the real-time driving simulator experiments.

TABLE 1 Limits of each degree of freedom for the dynamic 
simulator [5, 8, 49, 51].

DOF Displacement Velocity Acceleration
Pitch ±22 deg ±30 deg/s ±500 deg/s2

Roll ±21 deg ±30 deg/s ±500 deg/s2

Yaw ±22 deg ±40 deg/s ±400 deg/s2

Heave ±0.18 m ±0.30 m/s ±0.5 g

Surge ±0.25 m ±0.5 m/s ±0.6 g

Sway ±0.25 m ±0.5 m/s ±0.6 g

TABLE 2 Classical motion cueing algorithm parameters 
[4, 8, 50, 51].

Symbol Longitudinal Lateral Roll Pitch Yaw
2nd order LP cutoff 
frequency (Hz)

0.3 0.7

2nd order LP 
damping factor

0.3 0.7

1st order LP time 
constant (s)

0.1 0.1 0.1

2nd order HP cutoff 
frequency (Hz)

0.5 0.5 2

2nd order HP 
damping factor

1 1 1

1st order HP time 
constant (s)

2 2 2

 FIGURE 2  Structure of the SAAM driving simulator.
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3.4. �Subjects
The experimental procedure was done to analyze the effect of 
the participants’ involvement level change (guided and 
unguided passengers and drivers) at the same motion cueing 
for the dynamic platform simulator. Twenty-eight subjects 
(N = 28, 25 males and 3 females) aged (mean, 32.21 years; SD, 
8.32 years) and with driving license experience (mean, 13.43 
years; SD, 8.11 years) (standard deviation (SD)) participated 
in experiments of these seven conditions. All the participants 
had normal or corrected to normal vision. Before the experi-
ments, they were asked to drive the same scenario to become 
accustomed with it.

3.5. �Data Analysis
The contributions of the closed-loop motion platform control 
as well as the displacement scale factor (SF) of the motion 
platform in 3D on PD as an indicator of mental pressure were 
assessed. It was evaluated with respect to the correlation with 
the vehicle CG’s positions and accelerations in 3D in order to 
confirm which parameter has influence on cognitive load by 
using an eye tracking system sensor (Figure 5) and 
SCANeRstudio® software, respectively.

Two-tailed Mann-Whitney U test and the two-tailed 
Friedman test with a confidence interval of 95%, which are 
nonparametric hypothesis tests, were assigned to compare the 
differences of the participants’ PDs with the closed-loop 
control condition and with the different SF condition during 
the same driving scenario with same lighting conditions by 
using MATLAB Statistic Toolbox® [53]. Pearson’s correlation 
r with a confidence interval of 95% was used with the help of 
MATLAB Statistic Toolbox® [53] to test how the PD (cognitive 
pressure) is correlated to the positions and the accelerations 
of the vehicle’s CG in 3D. XLSTAT® was used for the two-
tailed Friedman test [54].

 FIGURE 3  Open-loop and closed-loop motion cueing algorithms.

 FIGURE 4  Eye movement data acquisition during the 
experiments.

 FIGURE 5  Calibration pattern for eye tracking.
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One-dimensional (1D) discrete wavelet transform (DWT) 
[55] was used as a method to avoid the noise that appears in 
the high-frequency part of the PD signal.

4. �Results and Discussions
We investigated the closed-loop motion platform control 
and the SF’s effects on driver’s mental load in a six-degrees-
of-freedom dynamic driving simulator. Mental workload was 

estimated by “pupillometry” method, where the metrics of 
the change of the PD is used to identify the subject’s cognitive 
load in real time. Because of this reason, cognitive load is 
frequently explained as the relationship between the mental 
requests placed on a subject and the cognitive abilities of that 
person [14]. Based on this method, the participant’s pupil will 
enlarge as he/she comes across with a complicated task, and 
then the pupil will constrict in diameter when the task is 
finished and the person does not experience any additional 
mental pressure. This broadly observed effect is used in esti-
mating mental workload in human machine interaction [15, 

0 20 40 60 80 100 120
-10

-5

0

5

Time (s)

Ve
hi

cl
e 

lo
ng

itu
di

na
l

 a
cc

el
er

at
io

n 
(m

/s
2 )

0 20 40 60 80 100 120
-4

-2

0

2

4

Time (s)

Ve
hi

cl
e 

la
te

ra
l

 a
cc

el
er

at
io

ns
 (m

/s
2 )

0 20 40 60 80 100 120
-0.2

-0.1

0

0.1

0.2

Time (s)

Ve
hi

cl
e 

ve
rt

ic
al

 
ac

ce
le

ra
tio

n 
(m

/s
2 )

 FIGURE 6  Vehicle’s center of gravity accelerations (longitudinal, lateral, and vertical).
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36, 37, 38, 39, 40, 56]. We also applied the novel method as of 
wavelet transform to decrease the data complexity for the 
registered signals [44, 45, 46] by removing the noise from the 
high-frequent part of the signal. In Figure 8, the PD change 
of the driver participants (N = 28) (in millimeters) who partic-
ipated in the driving simulator experiments was illustrated.

Classical algorithm refers to a kind of motion cueing 
algorithm for the driving simulator with a motion platform 
(dynamic driving simulator). In this type of motion cueing 
algorithm, the control algorithm is ensured as an open-loop 
control between motion platform and vehicle dynamics 

model. It is explained that there is no feedback from motion 
platform to vehicle dynamics model.

The red curve shows the classical algorithm, the blue 
curve indicates the MRAC algorithm, the green curve gives 
the LQR algorithm, and finally the black curve illustrates the 
MRAC+LQR (hybrid) algorithm.

Figure 9 depicts the SF effects in time domain for the MRAC, 
the LQR, and the MRAC+LQR algorithms. The blue curve repre-
sents the SF = 0.2, whereas the red curve shows the SF = 1.0.

Table 3 gives the results for the minimum, the maximum, 
the mean and the standard deviation for the PD in different 
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motion cueing algorithms. It can be deduced that the lowest 
PD was obtained with LQR algorithm, whereas the highest 
PD was found with the MRAC+LQR algorithm due to the 
data acquisition during the driving experiments from the 
subjects (N = 28). It can be yielded that when the task is 
complicated, the participants’ PDs enlarge.

Tables 4, 5, and 6 indicate the results obtained from the 
two-tailed Friedman test. It was revealed that the PD with the 

LQR+MRAC algorithm was very significantly larger (Q(28); p = 
0.045 < 0.05, p = 0.004 < 0.05, and p < 0.0001, respectively) than 
that with the LQR algorithm, with the MRAC algorithm, and 
with the classical algorithm during the specific driving scenario.

The two-tailed Mann-Whitney U test resulted that the 
higher motion platform displacement SF (SF = 1.0) ensured a 
significant lower PD (cognitive load) for the MRAC+LQR 
algorithm than the lower SF = 0.2 (p = 3.4051e−06). For the 
MRAC algorithm and for the LQR algorithm, the higher SF 
supplied nonsignificant higher PD as an objective measure 
for the cognitive pressure (p = 0.9466 > 0.05 and p = 0.1521 > 
0.05, respectively, seen in Table 7).

Pearson’s correlation tests showed that the LQR algo-
rithms with both SF = 0.2 and SF = 1.0 and the MRAC+LQR 
algorithm with SF = 1.0 were the least sensitive algorithms in 
terms of PD to the vehicle’s 3D positions (XCG, YCG, ZCG) as 
well as to the vehicle’s 3D accelerations (axCG, ayCG, azCG).

Table 8 summarizes the closed-loop motion platform 
control as well as the motion platform displacement SF on the 
PD, in order to have an objective measure of the mental load, 
by correlating the PD with the vehicle CG accelerations (ax_
CG, longitudinal acceleration of the vehicle CG; ay_CG, lateral 
acceleration of the vehicle CG; az_CG, vertical acceleration of 
the vehicle CG) as well as the vehicle CG positions (X_CG, 
longitudinal position of the vehicle CG; Y_CG, lateral position 
of the vehicle CG; Z_CG, vertical position of the vehicle CG).

It can be inferred that the vehicle CG positions in 3D were 
significantly negative correlated to the PD for the MRAC+LQR 
algorithm SF = 0.2 case (r = −0.3982 p = 0.0038, r = −0.4009 
p = 0.0036, and r = −0.3397 p = 0.0147 for the longitudinal, 
the lateral, and the vertical positions of the vehicle CG, 
respectively).

It is resulted that the lateral and the vertical positions of the 
vehicle CG were significantly correlated to the PD for the classical 

TABLE 3 Summary statistics for pupil diameters.

Pupil diameter (mm) Minimum Maximum Mean
Std. 
deviation

Classic algorithm  
(SF = 0.2)

1.683 4.222 3.181 0.418

MRAC algorithm  
(SF = 0.2)

1.808 4.243 3.155 0.456

LQR algorithm  
(SF = 0.2)

2.241 3.766 3.044 0.304

MRAC+ LQR 
algorithm (SF = 0.2)

1.676 4.724 3.495 0.503

TABLE 4 Table of pairwise differences for open-loop and 
closed-loop motion cueing algorithms.

Classic 
algorithm

MRAC 
algorithm

LQR 
algorithm

MRAC+LQR 
algorithm

Classic 
algorithm

0 0.196 0.667 −0.667

MRAC 
algorithm

−0.196 0 0.471 −0.863

LQR 
algorithm

−0.667 −0.471 0 −1.333

MRAC+LQR 
algorithm

0.667 0.863 1.333 0

Critical difference: 0.6568

TABLE 5 p-values of Friedman’s test.

Classic 
algorithm

MRAC 
algorithm

LQR 
algorithm

MRAC+LQR 
algorithm

Classic 
algorithm

1 0.869 0.045 0.045

MRAC 
algorithm

0.869 1 0.254 0.004

LQR algorithm 0.045 0.254 1 <0.0001
MRAC+LQR 
algorithm

0.045 0.004 <0.0001 1

TABLE 6 Significant differences.

Classic 
algorithm

MRAC 
algorithm

LQR 
algorithm

MRAC+LQR 
algorithm

Classic 
algorithm

No No Yes Yes

MRAC 
algorithm

No No No Yes

LQR algorithm Yes No No Yes
MRAC+LQR 
algorithm

Yes Yes Yes No

Bonferroni corrected significance level: 0.0083

TABLE 7 Comparison of pupil diameters due to scale factor (SF) with motion platform simulator.

Pupil diameters with 
motion platform scale 
factor: 0.2 and 1.0 (MRAC 
algorithm) (mean ± sd)

p-values 
from a two-
tailed U test

Pupil diameters with motion 
platform scale factor: 0.2 
and 1.0 (LQR algorithm) 
(mean ± sd)

p-values 
from a two-
tailed U test

Pupil diameters with motion 
platform scale factor: 0.2 
and 1.0 (MRAC+LQR 
algorithm) (mean ± sd)

p-values from a 
two-tailed U 
test

Pupil 
diameter  
(SF = 0.2)

3.1764 ± 0.4314 p = 0.9466 > 
0.05

Pupil 
diameter  
(SF = 0.2)

3.0440 ± 0.3039 p = 0.1521 > 
0.05

Pupil 
diameter  
(SF = 0.2)

3.4952 ± 0.5030 p = 3.4051e−06

Pupil 
diameter  
(SF = 1.0)

3.1836 ± 0.3755 Pupil 
diameter  
(SF = 1.0)

3.1323 ± 0.2893 Pupil 
diameter  
(SF = 1.0)

3.1476 ± 0.3645
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algorithm SF = 0.2 and for the MRAC algorithm SF = 1.0 cases 
(r = 0.3460 p = 0.0129, r = 0.3481 p = 0.0123 and r = 0.3165 p = 
0.0237, r = 0.2929 p = 0.0370 for the lateral and the vertical posi-
tions of the vehicle CG and for the classical algorithm SF = 0.2 
and for the MRAC algorithm SF = 1.0 cases, respectively).

It is revealed that the lateral position of the vehicle CG 
was significantly correlated to the PD for the MRAC algorithm 
SF = 0.2 case (r = 0.2774 p = 0.0448).

5. �Conclusion
The influence of the closed-loop motion platform (coupling 
effect: MRAC+LQR algorithm) and the motion platform 
displacement SF on the PD was dealt with as an objective 
measure of the mental load for the driving simulator during 
the same scenario with the same lighting conditions. 
Furthermore, the correlations between the PD and the vehicle 
CG accelerations and positions in 3D were investigated.

As only for the PD data evaluation, the MRAC+LQR 
ensured the highest PD than the LQR algorithm and the 
MRAC algorithm. The MRAC+LQR algorithm provided the 
lowest PD for SF = 1.0. Finally, the coupling effect with the 
MRAC+LQR algorithm (hybrid algorithm) supplied the least 
sensitive algorithm to the PD (cognitive load) for the same 
driving scenario and the lighting conditions.

To sum up, an ADAS device as being an HMI that can give 
warning as auditory or visual signals depending on the PDs’ of 
the drivers. These systems can be adapted to be tested within 
dynamic driving simulators. This could be via a camera recorder 
system that can register the eye movements in real time.

Definitions/Abbreviations
ADAS - Advanced driver assistance systems
MRAC - Model reference adaptive control
LQR - Linear quadratic regulator

HMI - Human machine interaction
SMI - SensoMotoric Instruments
TEPR - Task-evoked pupillary response
ABS - Antilock braking system
ESP - Electronic stability program
ACC - Adaptive cruise control
PND - Personal navigation device
BD - Blink duration
BR - Blink rate
FFT - Fast Fourier transform
PSD - Power spectral density
PD - Pupil diameter
STFT - Short-time Fourier transform
CG - Center of gravity
SAAM - Simulator Automobile of Arts et Métiers
DOF - Degree of freedom
EMG - Electromyography
LP - Low pass
HP - High pass
SD - Standard deviation
N - Number of subjects
3D - Three dimensional
1D - One dimensional
DWT - Discrete wavelet transform
SF - Scale factor
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