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Abstract. An embedding of the Bannai–Ito algebra in the universal enveloping algebra of osp(1,2)

is provided. A connection with the characterization of the little −1 Jacobi polynomials is found in

the holomorphic realization of osp(1,2). An integral expression for the Bannai–Ito polynomials is

derived as a corollary.

1. Introduction

This paper exhibits a direct connection between the superalgebra osp(1,2) and the

Bannai–Ito algebra. It also offers an interpretation of the little −1 Jacobi polynomials

in this context and an integral formula for the Bannai–Ito polynomials.

The Bannai–Ito polynomials were identified in the classification [1] of orthogonal

polynomials with the Leonard duality property. They sit at the top of one the

hierarchies of orthogonal polynomials that can be obtained under a q → −1 limit of

the members of the Askey tableau and which are hence called −1 polynomials [5, 15].

The Bannai–Ito algebra [15] is a unital associative algebra with three generators that

encodes the bispectral properties of the polynomials with the same name.

http://arxiv.org/abs/1705.09737v1
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Since its introduction, the Bannai–Ito algebra has appeared in a number of

contexts and some of its ties to osp(1,2) have been uncovered. This algebra is in fact

the symmetry algebra of a superintegrable model with reflections on the 2-sphere [7]

and of the Dirac–Dunkl equation in three dimensions [3]; it appears in Dunkl harmonic

analysis on S2 [9] and is isomorphic to the degenerate (C∨
1

,C1) double affine Hecke

algebra [10]. The Bannai–Ito algebra also arises in the Racah problem for osp(1,2).

Indeed, its central extension is the centralizer of the coproduct embedding of osp(1,2) in

the three-fold direct product osp(1,2)⊗3 of this algebra with itself, with the intermediate

Casimir operators acting as the generators [6]. A different relation between the two

algebras (the Bannai–Ito one and osp(1,2)) will be presented in the following.

The −1 little Jacobi polynomials are orthogonal on [−1,1] and depend on two

parameters [16]. They are obtained as a q →−1 limit of the little q-Jacobi polynomials

and are eigenfunctions of a first order differential-difference operator of Dunkl type.

The Bannai-Ito algebra can be obtained by taking q → −1 in the Askey–

Wilson algebra AW(3), which describes the bispectral properties of the Askey–Wilson

polynomials [17]. It is known that AW(3) is identified with a fixed point subalgebra of

Uq(sl(2)) under a certain automorphism. [11]. In a similar spirit, the goal here is to

offer an embedding of the Bannai–Ito algebra in U (osp(1,2)), the universal envelopping

algebra of osp(1,2). This will then be exploited in the context of the holomorphic

realization. It will be found that in this realization one generator of the Bannai-Ito

algebra coincides with the differential-difference operator that is diagonalized by the

little −1 Jacobi polynomials. It will moreover be seen that a second generator results

from the tridiagonalization [4] of the former. This will allow to obtain the eigenfunctions

of this second generator.

As is generally understood from the theory of Leonard pairs [14], the connection

coefficients between two finite-dimensional representation bases constructed as

eigenfunctions of either one of the Bannai–Ito generators satisfy the three-term

recurrence relation of the Bannai–Ito polynomials. The model developed will hence

allow to provide an integral formula for the (finite) Bannai–Ito polynomials.

The outline is as follows. The embedding of the Bannai–Ito algebra in U (osp(1,2))

is given in Section 2. The holomorphic representation of osp(1,2) is considered in

Section 3 where the defining operator of the little −1 Jacobi polynomials and its

tridiagonalization will be seen to realize the Bannai–Ito generators. The integral

formula for the Bannai–Ito polynomials is obtained in Section 4. Section 5 comprises

concluding remarks.

2. Embedding the Bannai–Ito algebra in U (osp(1,2))

In this section, we present the formal embedding of the Bannai–Ito algebra in

U (osp(1,2)). The osp(1,2) superalgebra is generated by the elements A0, A± subject
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to the relations

[A0, A±]=±A±, {A+, A−}= 2A0,

where [x, y] = xy − yx and {x, y} = xy + yx stand for the commutator and the

anticommutator, respectively. We introduce the grade involution operator P satisfying

[A0,P]= 0, {A±,P}= 0, P2
= 1.

The above relations serve to indicate that A± are odd generators and that A0 is an even

generator. The Casimir operator Q defined as

Q =
1

2
([A−, A+]−1)P = (A0 − A+A−−1/2)P, (1)

commutes with A0, A± and P, and generates the center of U (osp(1,2)).

Let µ2, µ3 and µ4 be real numbers and consider the operators K1,K2,K3 ∈

U (osp(1,2)) defined by the following expressions:

K1 = A+A0 −µ4 A+P + (µ2+µ3 +1/2)A+− A−+ (µ4 −Q)P −1/2,

K2 =−A+A0P − (µ2 +µ3 +1/2)A+P + A0P +µ4 A++µ3P,

K3 = A0P − A−P +µ2P,

(2)

where Q is the osp(1,2) Casimir element (1). The operators (2) obey the defining

relations of the Bannai–Ito algebra. Indeed, a direct calculation shows that

{K1,K2}= K3 +ω3, {K2,K3}= K1 +ω1, {K3,K1}= K2+ω2, (3)

where ω1, ω2, ω3 are the central elements with expressions

ω1 = 2(µ4Q+µ2µ3), ω2 = 2(µ3Q+µ2µ4), ω3 = 2(µ2Q+µ3µ4). (4)

It is verified that in the realization (2), the Casimir operator C of the Bannai–Ito

algebra, which reads

C = K2
1 +K2

2 +K2
3 , (5)

can be expressed as

C =Q2
+µ2

2 +µ2
3 +µ2

4 −1/4. (6)

The combinations (2) thus provide a formal embedding of the Bannai–Ito algebra (3) in

the universal envelopping algebra of osp(1,2). Since the structure constants ω1,ω2,ω3

in (4) depend on the Casimir operator Q of osp(1,2), it follows that (3) is in fact a central

extension of the Bannai-Ito algebra, where the central operator is Q.
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3. Holomorphic realization and little −1 Jacobi polynomials

In this section, we establish the connection between the embedding of the Bannai-

Ito algebra in U (osp(1,2)) detailed in the previous section and the little −1 Jacobi

polynomials using the holomorphic realization of osp(1,2). We also discuss the

relationship with tridiagonalization.

3.1. The holomorphic realization of osp(1,2)

In the holomorphic realization of osp(1,2), the generators A0, A± and the grade

involution are given by

A0(x)= x∂x + (µ1 +1/2), A+(x)= x, A−(x)= D
(µ1)
x , P(x)= Rx, (7)

where Rx f (x)= f (−x) is the reflection operator and where D
(µ)
x is the A1 Dunkl operator

D
(µ)
x = ∂x +

µ

x
(1−Rx). (8)

In the realization (7), the Casimir operator (1) acts as a multiple of the identity; more

specifically

Q f (x)=µ1 f (x). (9)

A natural basis for the irreducible representation underlying (7) is provided by the

monomials. Upon defining en(x)= xn, where n is a non-negative integer, one has

A0(x)en(x)= (n+µ1+1/2)en(x), A+(x)en(x)= en+1(x),

P(x)en(x)= (−1)nen(x), A−(x)en(x)= [n]µ1
en−1(x),

(10)

where

[n]µ = n+2µ(1− (−1)n),

are the µ-numbers.

3.2. Differential-Difference realization of Bannai–Ito generators

In light of the embedding (2) of the Bannai–Ito algebra in U (osp(1,2)), the holomorphic

realization (7) and the basis en(z) allow us to present an infinite-dimensional

representation of the Bannai–Ito algebra in which the generators are realized as

differential-difference operators. Let us denote by K1(x),K2(x),K3(x) the operators

obtained by combining (2) with (7). One has

K1(x)= (x2
−1)∂x + x(µ1 +µ2 +µ3 +1)−

µ1

x
(1−Rx)− (µ1 +µ4(x−1))Rx−1/2,

K2(x)= x(1− x)∂xRx − x(µ1 +µ2 +µ3 +1)Rx+ xµ4 + (µ1+µ3 +1/2)Rx,

K3(x)= (x−1)∂xRx +

(µ1

x
− (µ1 +µ2 +1/2)

)
(1−Rx)+ (µ1 +µ2 +1/2).

(11)
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From (11), one finds that K3(x) has the action

K3(x)en(x)=λnen(x)+νnen−1(x), (12)

where λn and νn are given by

λn = (−1)n(n+µ1 +µ2 +1/2), νn = (−1)n+1[n]µ1
. (13)

Similarly, K2(x) is seen to act bidiagonally as follows

K2(x)en(x)= κn+1en+1(x)+σnen(x), (14)

where

κn = (−1)n(n+µ1+µ2 +µ3 + (−1)nµ4), σn = (−1)n(n+µ1 +µ3+1/2). (15)

The third generator K1(x) acts in a three-diagonal fashion; one has

K1(x)en(x)= υn+1en+1(x)+ρnen(x)− ιnen−1(x) (16)

where the coefficients are given by

υn = n+µ1 +µ2 +µ3 + (−1)nµ4, ρn = (−1)n(µ4−µ1)−1/2, ιn =−[n]µ1
. (17)

We now proceed to construct the bases in which K2(x) and K3(x) are diagonal.

3.3. The K3 eigenbasis

The eigenfunctions of the operator K3(x) can be constructed straightforwardly by

solving the two-term recurrence relation that stems from the action (12) of K3(x) on the

monomial basis. However, it can be seen that K3(x) directly corresponds to the operator

known to be diagonalized by the little −1 Jacobi polynomials J
(α,β)
n (x) [16]. The (monic)

little −1 Jacobi polynomials are defined be the three-term recurrence relation

J
(α,β)

n+1
(x)+bn J

(α,β)
n (x)+unJ

(α,β)

n−1
(x)= xJ

(α,β)
n (x), (18)

with J
(α,β)

−1
(x)= 0 and J

(α,β)

0
(x)= 1 and where bn and un are given by

un =






n(n+α+β)

(2n+α+β)2
n even

(n+α)(n+β)

(2n+α+β)2
n odd

, bn = (−1)n (2n+1)α+αβ+α2+ (−1)nβ

(2n+α+β)(2n+α+β+2)
. (19)

In [16], it was shown that the little −1 Jacobi polynomials satisfy the eigenvalue

equation

LJ
(α,β)
n (x)= tnJ

(α,β)
n (x), tn =





−2n n is even

2(α+β+n+1) n is odd
,
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where L is the differential-difference operator

L = 2(1− x)∂xRx + (α+β+1−αx−1)(1−Rx). (20)

Upon comparing K3(x) given by (11) with (20), one observes that K3(x) is diagonalized

by the little −1 Jacobi polynomials with parameters α= 2µ1 and β= 2µ2. Upon defining

ψn(x)= J
(2µ1,2µ2)
n (x), (21)

one has the following eigenvalue relation

K3(x)ψn(x)=λnψn(x), (22)

where the eigenvalues λn are given by (13). It can easily be seen that K2(x) acts in

a tridiagonal fashion on the little −1 Jacobi basis. Indeed, upon denoting by X the

“multiplication by x” operator, a straightforward calculation shows that K2(x) can be

expressed as

K2(x)= τ1XK3(x)+τ2K3(x)X +τ3X +τ0, (23)

where

τ0 =−2µ1µ3, τ1 =µ3 −1/2, τ2 =µ3+1/2, τ3 =µ4.

Since the X operator acts in a three-diagonal fashion on J
(α,β)
n (x) in accordance to the

recurrence relation (18), one has

K2(x)ψn(x)= (τ1λn +τ2λn+1 +τ3)ψn+1(x)

+ ((τ1 +τ2)λnbn +τ3bn +τ0)ψn(x)+ (τ1λn +τ2λn−1 +τ3)unψn−1(x), (24)

where the coefficients un and bn are given by (19) with α= 2µ1 and β= 2µ2.

Remark 1. The expression (23) indicates that K2(x) can be obtained from K3(x) via

the tridiagonalization procedure. This procedure has been discussed in [4, 12]; it here

allows to straightforwardly construct the representation of the Bannai–Ito algebra in

the basis provided by the little −1 Jacobi polynomials.

3.4. The K2 eigenbasis

We now determine the eigenbasis associated to K2(x). We first observe that, in parallel

with (23), K3(x) can be expressed in terms of K2(x) as follows:

K3(x)=β1X−1K2(x)+β2K2(x)X−1
+β3X−1

+β0, (25)

where X−1 is the “multiplication by 1/x” operator and where

β0 =−2µ3µ4, β1 =µ3 −1/2, β2 =µ3 +1/2, β3 =µ1.
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In view of (25), we consider the change of variable y = 1/x. Under this transformation,

K2(x) takes the form

K2(y)= (1− y)∂yRy+

(
µ1 +µ3+1/2−

µ1+µ2 +µ3 +1

y

)
Ry+

µ4

y
.

Consider the gauge factor φǫ(y) defined as

φǫ(y)= yǫ|y|µ1+µ2+µ3−(−1)ǫµ4+1−ǫ,

where ǫ= 0 or 1. One has

φǫ(y)−1K2(y)φǫ(y)= (−1)ǫ
[
(1− y)∂yRy

+

(
(−1)ǫµ4

y
− ((−1)ǫµ4−µ2 −1/2)

)
(1−Ry)+ ((−1)ǫµ4 −µ2 −1/2)

]
. (26)

It is seen that (26) has the same form as K3(x). It follows that the eigenfunctions of

K2(x) have the expression

χn(x)=φǫ(1/x) J
(−2(−1)ǫµ4,2µ2)
n (1/x), (27)

and that the eigenvalue equation reads

K2(x)χn(x)=Ωnχn(x), (28)

with the eigenvalues Ωn given by

Ωn = (−1)ǫ(−1)n+1(n+µ2 + (−1)ǫ+1µ4 +1/2). (29)

3.5. Finite-dimensional reduction

As is clear from the action (14) of K2(x) on the monomial basis, the action of the Bannai–

Ito generators (11) does not preserve the space of polynomials of a given degree. A

finite-dimensional representation can however be obtained by imposing the appropriate

truncation condition on the parameters. Indeed, it is easily seen that if one takes

µ4 →µN = (−1)N(N +µ1 +µ2 +µ3 +1), N = 1,2, . . . (30)

then, the action of the Bannai–Ito generators preserves the (N +1)-dimensional vector

space spanned by the monomials {e0(x), . . . , eN (x)}. Upon imposing the truncation

condition (30), the formula (21) for the eigenfunctions ψn(x) of K3(x) as well as the

eigenvalue equation (22) remain valid. For the eigenfunctions χn(x) of K2(x) obtained

in (27), one must take ǫ= 0 in (27) and (28) when N is even, while taking ǫ= 1 in (27)

and (28) when N is odd. These choices guarantee that χn(x) is a polynomial of degree

less or equal to N. It is observed that when the truncation condition (30) is satisfied,

χn(x) is in fact of the form χn(x) = c0xN + c1xN−1 + ·· · + cnxN−n, as expected from the

lower-triangular shape of K2(x). We shall assume that (30) holds from now on.
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4. Bannai-Ito polynomials

In this Section, the Bannai–Ito polynomials are shown to arise as the interbasis

expansion coefficients between the eigenbases of K2(x) and K3(x). This leads to

an integral expression for the Bannai–Ito polynomials involving the little −1 Jacobi

polynomials.

4.1. A scalar product

Let P(x) and Q(x) be real polynomials in x; we introduce their scalar product denoted

by 〈P(x),Q(x)〉 and defined as

〈P(x),Q(x)〉 =

∫1

−1
ω(x)P(x)Q(x)dx,

where ω(x) is given by

ω(x)= |x|2µ1 (1− x2)µ2−1/2(1+ x).

Under this scalar product, the elements of the eigenbasis of K3(x), given by the little

−1 Jacobi polynomials, are orthogonal [16]. Indeed, one has

〈ψn(x),ψm(x)〉 = hnδnm, (31)

where the normalization coefficients hn have the expression

hn =
Γ(µ1 +1/2)Γ(µ2+1/2)

Γ(µ1+µ2 +1)

×
(⌊n/2⌋)!(µ1 +1/2)⌈n/2⌉(µ2 +1/2)⌈n/2⌉(µ1 +µ2 +1)⌊n/2⌋

(µ1+µ2 +1/2)2
n

, (32)

where (a)n stands for the Pochhammer symbol.

4.2. Interbasis expansion coefficients

We now consider the interbasis expansion coefficients between the eigenbases of K3(x)

and K2(x). These coefficients, which shall be denoted by Bn(k), are defined by the

following expansion of the K2(x) eigenfunction in a series of little −1 Jacobi polynomials

χk(x)=
N∑

n=0

Bn(k)ψn(x), (33)

In light of the orthogonality relation (31) satisfied by ψn(x), one can write

Bn(k)=
1

hn

〈χk(x),ψn(x)〉 =
1

hn

∫1

−1
ω(x)χk(x)ψn(x)dx. (34)

We recall that the coefficients Bn(k) also depend on the three parameters µ1, µ2, µ3,

as well as on µ4 = µN . In light of the truncation condition (30), the integral in (34) is

always well-defined provided that µi ≥ 0 for i = 1,2,3.
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It is clear that the coefficients Bn(k) satisfy a three-term recurrence relation.

Indeed, upon applying K2(x) on (33), using the eigenvalue equation (28) and the action

(24) of K2(x) on ψn(x) and finally exploiting the linear independence of the little −1

Jacobi polynomials, one finds that Bn(k) obey

ΩkBn(k)= E(1)
n Bn+1(k)+E(2)

n Bn(k)+E(3)
n Bn−1(k), (35)

where the recurrence coefficients are given by

E(1)
n = (τ1λn+1 +τ2λn +τ3)un+1, E(2)

n = ((τ1 +τ2)λnbn +τ3bn +τ0),

E(3)
n = (τ1λn−1 +τ2λn +τ3).

(36)

One can write Bn(k)=B0(k)Pn(Ωk) with P0(Ωk)= 1 and

B0(k)=
1

h0

∫1

−1
ω(x)χk(x)ψ0(x)dx. (37)

It is clear from (35) that Pn(Ωk) are polynomials of degree n in Ωk. We introduce

the normalized polynomials P̂n(Ωk) = E
(1)
0

· · ·E
(1)
n−1

Pn(Ωk), which satisfy the normalized

recurrence relation

ΩkP̂n(Ωk)= P̂n+1(Ωk)+ rnP̂n+1(Ωk)+UnP̂n−1(Ωk), (38)

with coefficients

Un = E(3)
n E(1)

n−1
, rn = E(2)

n .

A direct calculation shows that the coefficients Un and rn can be expressed as follows

Un = An−1Cn, rn =µ1 +µ3 +1/2− An −Cn

where An and Cn are given by

An =






(n+2µ1+1)(n+µ1+µ2+µ3−µN+1)

2(n+µ1+µ2+1)
n even

(n+2µ1+2µ2+1)(n+µ1+µ2+µ3+µN+1)

2(n+µ1+µ2)
n odd

,

Cn =





−

n(n+µ1+µ2−µ3−µN )

2(n+µ1+µ2)
n even

−
(n+2µ2)(n+µ1+µ2−µ3+µN )

2(n+µ1+µ2)
n odd

.

(39)

The coefficients (39) correspond to those of the monic Bannai–Ito polynomials in the

parametrization associated to the Racah problem (with the permutation µ1 ↔ µ2); see

[6] for details on how to relate the present parametrization to the parametrization given

in [15]. It follows that the monic Bannai–Ito polynomials admit the integral expression

P̂n(Ωk)=
E

(1)
0

· · ·E
(1)
n−1

hnB0(k)

∫1

−1
ω(x) χk(x)ψn(x)dx, (40)

where E(1)
n is given by (36), hn by (32), B0(k) by (37), χk(x) and Ωk by (27) and (29), and

where ψn(x) is given by (21). In essence, (40) gives an expression for the Bannai–Ito

polynomials as an integral over the product of two little −1 Jacobi polynomials. This is

an analog of Koornwinder’s integral representation of the Wilson polynomials [13].
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5. Conclusion

In this paper, we have exhibited a direct connection between the Bannai–Ito algebra

and the superalgebra osp(1,2). We have provided an explicit embedding of the

Bannai–Ito algebra in U (osp(1,2)), and offered a new characterization of the little −1

Jacobi polynomials in the context of the holomorphic realization. We also highlighted

connections with the tridiagonalization approach to orthogonal polynomials. Finally,

we have given a new integral representation of the Bannai–Ito polynomials.

As already mentioned in the introduction, the Bannai–Ito algebra has also been

seen to arise as the algebra formed by the intermediate Casimir operators in the

addition of three osp(1,2) superalgebras [6]. It would be of interest to see if an explicit

correspondence relating this connection between the Bannai–Ito algebra and osp(1,2)

and the one identified here could be established in parallel to what was found in the

case of the Racah algebra [8]. Besides, it is known that the Askey–Wilson algebra can

be viewed as a homomorphic image of the q-Onsager algebra and that the Bannai–Ito

algebra is obtained from the former when q = −1. This suggests that the embedding

in U (osp(1,2)) could be viewed as a subalgebra of a q-Onsager algebra for q a root of

unity, see for instance [2]. This would certainly be worth exploring. We plan to look into

these two questions in the future.

Acknowledgments

PB, VXG and AZ acknowledge the hospitality of the CRM and LV that of the

Université de Tours where parts of the reported research has been realized. PB is

supported by C.N.R.S. VXG holds a postdoctoral fellowship from the Natural Science

and Engineering Research Council (NSERC) of Canada. LV is grateful to NSERC for

support through a discovery grant.

References

[1] E. Bannai and T. Ito. Algebraic Combinatorics I: Association Schemes. Benjamin & Cummings,

1984.

[2] P. Baseilhac, A. M. Gainutdinov, and T. T. Vu. Cyclic tridiagonal pairs, higher order Onsager

algebras and orthogonal polynomials. Lin. Alg. & Appl., 522:71–110, 2017.

[3] H. De Bie, V. X. Genest, and L. Vinet. A Dirac-Dunkl equation on S2 and the Bannai-Ito algebra.

Commun. Math. Phys., 344:447–464, 2016.

[4] V. X. Genest, M. Ismail, L. Vinet, and A. Zhedanov. Tridiagonalization of the hypergeometric

operator and the Racah-Wilson algebra. Proc. Amer. Math. Soc., 144:4441–4454, 2016.

[5] V. X. Genest, L. Vinet, and A. Zhedanov. Bispectrality of the complementary Bannai-Ito

polynomials. SIGMA Symmetry Integrability Geom. Methods Appl., 9:18–37, 2013.

[6] V. X. Genest, L. Vinet, and A. Zhedanov. The Bannai–Ito polynomials as Racah coefficients of the

sl−1(2) algebra. Proc. Amer. Math. Soc., 142:1545–1560, 2014.

[7] V. X. Genest, L. Vinet, and A. Zhedanov. The Bannai-Ito algebra and a superintegrable system with

reflections on the two-sphere. J. Phys. A: Math. Theor., 47:205202, 2014.



An embedding of the Bannai–Ito algebra in U (osp(1,2)) and −1 polynomials 11

[8] V. X. Genest, L. Vinet, and A. Zhedanov. The equitable racah algebra from three su(1,1) algebras.

J. Phys. A: Math. Theor., 47:025203, 2014.

[9] V. X. Genest, L. Vinet, and A. Zhedanov. A Laplace-Dunkl equation on S2 and the Bannai–Ito

algebra. Commun. Math. Phys., 336:243–259, 2015.

[10] V. X. Genest, L. Vinet, and A. Zhedanov. The non-symmetric Wilson polynomials are the Bannai–Ito

polynomials. Proc. Amer. Math. Soc., 144:5217–5226, 2016.

[11] Y. I. Granovskii and A. Zhedanov. Linear covariance algebra for SLq(2). J. Phys. A: Math. Gen.,

26:L357, 1993.

[12] M. Ismail and E. Koelink. Spectral properties of operators using tridiagonalisation. Anal. & Appl.,

10:327, 2012.

[13] T. H. Koornwinder. Special orthogonal polynomial systems mapped onto each other by the Fourier-

Jacobi transform, pages 174–183. Lecture Notes in Math. Springer, 1984.

[14] P. Terwilliger. Two linear transformations each tridiagonal with respect to an eigenbasis of the

other. Lin. Alg. & Appl., 330:149–203, 2001.

[15] S. Tsujimoto, L. Vinet, and A. Zhedanov. Dunkl shift operators and Bannai-Ito polynomials. Adv.

Math., 229:2123–2158, 2012.

[16] L. Vinet and A. Zhedanov. A ’missing’ family of classical orthogonal polynomials. J. Phys. A: Math.

Theor., 44:085201, 2011.

[17] A. S. Zhedanov. “Hidden symmetry” of Askey–Wilson polynomials. Theoretical and Mathematical

Physics, 89:1146–1157, 1991.


	1 Introduction
	2 Embedding the Bannai–Ito algebra in U(osp(1,2))
	3 Holomorphic realization and little -1 Jacobi polynomials
	3.1 The holomorphic realization of osp(1,2)
	3.2 Differential-Difference realization of Bannai–Ito generators
	3.3 The K3 eigenbasis
	3.4 The K2 eigenbasis
	3.5 Finite-dimensional reduction

	4 Bannai-Ito polynomials
	4.1 A scalar product
	4.2 Interbasis expansion coefficients

	5 Conclusion

