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Introduction

Finding the minimum (or maximum) of a given numerical function (called the objective function) defined over a compact subset of R d (the input space) is a fundamental problem with numerous applications such as in model fitting, machine learning or system design. In general, it requires many evaluations of the objective function over the input space. Each evaluation of the objective can be computationally expensive (for instance, in system design applications, numerical evaluation of the objective can require solving a partial differential equation discretized on a fine mesh), hence the need for optimization strategies that require as few evaluations as possible. To be efficient, these strategies rely on assumptions on the objective function and/or input space: convexity or Lipschitz continuity for instance.

In this paper, we will consider an exploration strategy of the input space based on the so-called Sobol global (or variance-based) sensitivity indices. These indices are defined in the following context: the d input parameters are supposed to be independent random variables of known probability distributions, so that the objective function (called the output function in this context) is a square-integrable random variable. For each set u of input parameters, we define the (closed) Sobol' index of u, which quantifies the fraction of the variance of the output function due to the variability of parameters in u. These indices are normalized to be in [0; 1], and parameter subsets whose index is close to one have larger "influence" on the output than subsets with indices close to zero.

Some output functions may depend on a large number of input parameters, however, computation of the Sobol indices can show that a function verifies a "sparsity-of-effects" principles: only a small number of them have a significative effect, or that some interactions of input parameters have small influences on the outputs (for instance, if the output function is a sum of d one-variable functions).

This paper proposes a way to take advantage of this principle to perform optimization. In the first section, we review the definition of Sobol indices and the base sequential optimization strategy; in the second section, we describe the proposed optimization algorithm; and, in the third section, we illustrate the behavior of this algorithm on a numerical test case.

Setup and assumptions 1.Goal

We denote by f : D ⊂ R d → R the objective function to be minimized. That is, we want to compute: min D f by using as few as possible evaluations of f . We assume that D = [-1; 1] d , and we suppose that:

• X = (X 1 , . . . , X d ) is a uniform random variable on D, • Y = f (X) is a square-integrable real random variable : Y ∈ L 2 (D),
• Y has unit variance: VarY = 1.

For n ∈ N * , our goal is to define a random sequence S n = (X 1 , X 2 , . . . , X n ) ∈ D n , such that:

• S n can be computed by evaluating f exactly n times,

• for each i = 2, . . . , n, X i+1 depends on X 1 , . . . , X i and f (X 1 ), . . . , f (X i ),

• we have that:

min 1≤i≤n f (X i ) ≈ min D f.

Base strategy

To compute a "minimizing" sequence S n = (X 1 , . . . , X n ), we take some subset F of functions D → R and we use the following algorithm:

• Inputs: n ∈ N, f and F.

• Initialization : choose X 1 uniformly on D;

• Iteration: for i = 2, . . . , n, repeat:

choose X i uniformly on:

D i = {x ∈ D s.t. ∃g ∈ F i , g(x) < min 1≤j<i f (X j )}
where:

F i = {g ∈ F, ∀1 ≤ j < i, g(X j ) = f (X j )}
The F accounts for "regularity" assumptions made on the objective function f . At each iteration of the algorithm, the F i set contains functions in F that are consistent with the evaluations of f made so far in the algorithm. We look for an input X i where evaluating f may improve our current minimum, that is, when there exist a function in F i returning a smaller value.

This strategy is used in [START_REF] Malherbe | Global optimization of lipschitz functions[END_REF] in the so-called "LIPO" algorithm, in the particular case where F is the set of the k-Lipschitz functions. This paper refers to [START_REF] Hanneke | Rates of convergence in active learning[END_REF] and [START_REF] Dasgupta | Two faces of active learning[END_REF] to call F i the active subset of consistent functions.

Sobol indices

For any subset u ⊂ {1, . . . , d} of size |u|, we denote by X u the vector:

X u = (X k , k ∈ u) ∈ [-1; 1] |u| .
Our minimization algorithm uses the strategy described in 1.2 with

F = {g ∈ L 2 ([-1, 1] d ) s.t.
Varg(X) = 1, and ∀u ∈ U, S u (g) ≤ s u } At each iteration, X i is drawn from uniform distribution on D i using a rejection sampling algorithm : we take a proposal x uniformly sampled on D, then the existence of g is checked by computing:

m(x) = min h∈F i h(x) (1) If m(x) < min 1≤j<i f (X j )
then x is accepted and used as X i . Else, x is rejected and a new x is drawn uniformly on D.

In practice, we use a truncated L 2 orthonormal basis of normalized Legendre polynomials (up to degree D), and we solve the following optimization problem:

m(x) ≈ min (a k,v )∈ F i k∈N d ,v⊂{1,...,d} a k,v ψ k,v (x) (2) 
with:

F i =        (a k,v ) k∈N d ,v⊂{1,...,d} s.t.        a k,v = 0 ∀v ⊂ {1, . . . , d}, ∀k s.t. ∃ , k > D, k∈N d ,v⊂{1,...,d} a k,v ψ k,v (X j ) = f (X j ), ∀1 ≤ j < i, k∈N d ,u⊂{1,...,d},u =∅ a 2 k,u ≤ 1, k∈N d a 2 k,u ≤ s u , ∀u ∈ U       
This optimization problem has to be solved multiple times (for various x values), and is affected by the curse of dimensionality; however it is convex (as a quadratically-constrained linear program) and hence can be solved very efficiently without any new evaluation of the f function, e.g. by an interior point method (see [START_REF] Boyd | Convex optimization[END_REF] for instance). Hence, this algorithm is computationally interesting if f when sufficiently costly to evaluate.

Numerical illustrations

The minimization algorithm above has been implemented in R, using the CVXR [START_REF] Fu | CVXR: Disciplined Convex Optimization[END_REF] package with the ECOS solver. We have tested using the 3D Rosenbrock function over [-5; 5] 

3 : f (X 1 , X 2 , X 3 ) = 1 26000 2 m=1 100(X m+1 -X 2 m ) 2 + (1 -X m ) 2
(the 1 26000 being here to ensure that Varf ≤ 1).

We can notice that no interaction between X 1 and X 3 occurs. Instead of using a fixed number n of evaluations of f , we set a budget of N = 100 resolutions of the convex problem (2) and we report the number of evaluations of f . We use a maximal polynomial degree of D = 4.

We perform four experiments:

• experiment A : no constraint on the Sobol indices is taken • experiment C : constraints of experiment B, plus zero interaction between variables 1 and 3:

S {1,3} = S {1,2,3} = 0
• experiment D : only zero interaction between variables 1 and 3 (ie., the constraints of experiment C without those of experiment B).

For each experiment, we report:

• N eval the number of evaluations of f made ;

• m the computed approximation of min f .

The smaller is the better for these two numbers. and D) improves the results of the algorithm on both criteria (N eval and m), and that taking the absence of interaction between X 1 and X 3 improves further, by halving the necessary number of evaluations to f , while yielding a comparable estimate of min f .

  • experiment B : we take into account the first-order Sobol indices:S {1} ≤ 0.42, S {2} ≤ 0.46, S {3} ≤ 0.004as well as the total first-order Sobol indices:S {1} +S {1,2} +S {1,3} ≤ 0.47, S {2} +S {1,2} +S {2,3} ≤ 0.56, S {3} +S {1,3} +S {2,3} ≤ 0.06,Those six indices have been estimated using the Saltelli estimator sobolSalt of the R package sensitivity[START_REF] Iooss | sensitivity: Global Sensitivity Analysis of Model Outputs[END_REF].

  Results are given in the following table:

	Experiment N eval	m
	A	93	0.0089
	B	78	0.0052
	C	44	0.0006
	D	45	0.0049
	We can see that experiments taking Sobol indices into account (B, C

We recall (see for instance the decomposition lemma of [START_REF] Efron | The jackknife estimate of variance[END_REF]) that for any square integrable function g : [-1; 1] d → R there exists a unique decomposition:

where the g u (X u ) are pairwise orthogonal random variables of L 2 :

The Sobol index of g relative to the subset of input parameters u is defined by (see [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF][START_REF] Sobol | Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates[END_REF]):

) .

Sobol indices can be expressed from the expansion of g on a tensor L 2 orthonormal basis: let (ψ i ) i∈N be an orthonormal basis of L 2 ([-1, 1]) (with ψ 0 = √ 2). Then g can be expanded onto the tensorized basis:

where:

Suppose, to simplify, that Var(g(X)) = 1. Then we have:

Note that, in the case where the 1D basis (ψ i ) is formed by the Legendre polynomials (normalized to have unit variance) we get the expression of the Sobol indices using polynomial chaos expansion [START_REF] Crestaux | Polynomial chaos expansion for sensitivity analysis[END_REF]).

Proposed algorithm

Let's assume that some Sobol indices of f are known to satisfy:

where U is a set of subsets of {1, . . . , d} and {s u , ∀u ∈ U} are known reals in [0; 1].