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We consider intertwining relations of the augmented q-Onsager algebra introduced by Ito and Terwilliger, and obtain generic (diagonal) boundary K-operators in terms of the Cartan element of U q (sl 2 ). These K-operators solve reflection equations. Taking appropriate limits of these K-operators in Verma modules, we derive K-operators for Baxter Q-operators and corresponding reflection equations.

Introduction

In the context of quantum integrable systems with periodic boundary conditions, the Baxter Q-operator [START_REF] Baxter | Partition function of the eight-vertex lattice model[END_REF] is an important object. It contains the information about the eigenfunctions and Bethe roots of the Hamiltonian and transfer matrix that are studied within a Bethe ansatz approach. Importantly, a key ingredient in the construction of Baxter Q-operators are L-operators. In the context of the representation theory, the Loperators that are suitable for Baxter Q-operators are obtained as certain homomorphic 1 images of the universal R-matrix for a given quantum affine algebra. The auxiliary spaces of these L-operators are q-oscillator representations of one of the Borel subalgebras of the quantum affine algebra. This 'q-oscillator construction' of the Q-operators was proposed by Bazhanov, Lukyanov and Zamolodchikov [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory III. The Yang-Baxter Relation[END_REF], and developed by a number of authors (for example, [START_REF] Bazhanov | Integrable structure of W 3 Conformal Field Theory, Quantum Boussinesq Theory and Boundary Affine Toda Theory[END_REF][START_REF] Kulish | Superconformal field theory and SUSY N=1 KDV hierarchy II: The Q-operator[END_REF][START_REF] Bazhanov | Baxter's Q-operators for supersymmetric spin chains[END_REF][START_REF] Tsuboi | Asymptotic representations and q-oscillator solutions of the graded Yang-Baxter equation related to Baxter Q-operators[END_REF][START_REF] Boos | Exercises with the universal R-matrix[END_REF][START_REF] Khoroshkin | The universal R-matrix and factorization of the Loperators related to the Baxter Q-operators[END_REF] and references therein 1 ). It is known 2 (cf. [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory III. The Yang-Baxter Relation[END_REF][START_REF] Bazhanov | Integrable structure of W 3 Conformal Field Theory, Quantum Boussinesq Theory and Boundary Affine Toda Theory[END_REF]) that these q-oscillator representations of one of the Borel subalgebras are given as limits of representations of them (they are sometimes called 'asymptotic representations'). A systematic study of this from the point of view of the representation theory was done in [START_REF] Hernandez | Asymptotic representations and Drinfeld rational fractions[END_REF]. Thus, taking limits of representations of one of the Borel algebras is basically enough to derive the L-operators for Q-operators associated with integrable systems with periodic boundary condition. However, it is important to stress that these representations cannot be straightforwardly 3 extended to those of the whole quantum affine algebra. Instead, the extended representations could be interpreted [START_REF] Tsuboi | Asymptotic representations and q-oscillator solutions of the graded Yang-Baxter equation related to Baxter Q-operators[END_REF] as representations of contracted algebras of the original quantum affine algebra.

By analogy, for models with non-periodic integrable boundary conditions [START_REF] Sklyanin | Boundary conditions for integrable quantum systems[END_REF][START_REF] Mezincescu | Integrable open spin chains with nonsymmetric R-matrices[END_REF] the explicit construction of Baxter Q-operators is an interesting problem that deserves to be further studied [START_REF] Derkachov | Baxter Q-operator and Separation of Variables for the open SL(2, R) spin chain[END_REF][START_REF] Yang | Q-operator and T-Q relation from the fusion hierarchy[END_REF][START_REF] Frassek | Q-operators for the open Heisenberg spin chain[END_REF] 4 . From the algebraic point of view, for these models the relevant algebras are the reflection equation algebras and related coideal subalgebras of quantum affine algebras [START_REF] Molev | Coideal subalgebras in quantum affine algebras[END_REF]. Given a certain representation, integrable boundary conditions are classified according to solutions -the so-called K-matrices -to the reflection and dual reflection equations [START_REF] Sklyanin | Boundary conditions for integrable quantum systems[END_REF][START_REF] Mezincescu | Integrable open spin chains with nonsymmetric R-matrices[END_REF]. In order to construct Q-operators for those integrable models with boundaries, a crucial step is the construction of K-operators associated with q-oscillator representations.

In the present paper, we focus on a class of K-operators associated with integrable models with diagonal boundary conditions and U q ( sl 2 ) R-matrix. In this case, the coideal subalgebras of U q ( sl 2 ) that are relevant in the analysis are related with the so-called augmented q-Onsager algebra [START_REF] Ito | The augmented tridiagonal algebra[END_REF] (see also [START_REF] Baseilhac | The half-infinite XXZ chain in Onsager's approach[END_REF]), and its contracted versions introduced in this paper. For certain homomorphic images of two different coideal subalgebras of U q ( sl 2 ), we determine the K-operators. Certain limits are then considered, from which K-operators for Q-operators of models with diagonal boundary conditions can be derived. In contrast to the periodic boundary conditions case, we have to deal with limits of representations of the whole U q ( sl 2 ) in the spirit of [START_REF] Tsuboi | Asymptotic representations and q-oscillator solutions of the graded Yang-Baxter equation related to Baxter Q-operators[END_REF] since the augmented q-Onsager algebra is realized by the generators of the whole U q ( sl 2 ) rather than one of the Borel subalgebras. The intertwining relations of our K-operators for Q-operators are no longer the ones for the augmented q-Onsager algebra but the ones for a contracted version of it.

The paper is organized as follows. In Section 2, we recall the definitions of the quan-tum algebra U q ( sl 2 ), U q (sl 2 ) and two q-oscillator algebras that will be needed for our purpose. L-operators and their limits are recalled in Section 3. In Section 4, we introduce the augmented q-Onsager algebra though generators and relations. Two different types of realizations of the augmented q-Onsager algebra are considered, namely as a right or left coideal subalgebra U q ( sl 2 ). The two corresponding intertwining relations are considered and solved, giving an explicit expression for K-operators. The reflection and dual reflection equations they satisfy are displayed. Certain limits of those K-operators are considered, that are required for the construction of Q-operators. The rational limit (q → 1) of these K-operators for Q-operators correspond to the K-operators found in [START_REF] Frassek | Q-operators for the open Heisenberg spin chain[END_REF]. In Appendices, we give some material that is needed for the main discussion. In Appendix A, to make the text self-contained we give a brief review on the universal R-matrix. In Appendix B, the contracted algebras associated with U q ( sl 2 ) and corresponding L-operators are reviewed. A universal form of the intertwining relations among L-operators for Q-operators is presented. In Appendix C, contractions of the augmented q-Onsager algebra are introduced and corresponding K-operators are described. In Appendices D,E,F, miscellaneous results are collected. In Appendix G, definitions of universal T-and Q-operators in terms K-operators text are explained. Throughout this paper, we will work on the general gradation of U q ( sl 2 ). This does not produce particularly new results since the L-operators in the general gradation can easily be obtained from the ones in a particular gradation by similarity transformation and rescaling of the spectral parameter. However, we expect that this may clarify some relations rather ambiguously treated in literatures.

Notation 1. In the text, q ∈ C is assumed not to be a root of unity. We introduce the q-commutator [X, Y ] q = XY -qY X. In particular, we denote [X, Y ] = [X, Y ] 1 . Also, we use the notation:

[n] q = (q nq -n )/(qq -1 ), (a; q) ∞ = ∞ j=0

(1aq j ).

Quantum algebras

In this section, basic definitions that will be used in the next sections are introduced. Successively, we recall the definitions of the quantum affine algebra U q ( sl 2 ), the quantum algebra U q (sl 2 ) and two q-oscillator algebras through generators and relations. Coproduct, automorphisms and certain finite dimensional representations are also displayed. We will follow the style of presentation in [START_REF] Khoroshkin | The universal R-matrix and factorization of the Loperators related to the Baxter Q-operators[END_REF].

2.1 The quantum affine algebra U q ( sl 2 )

The quantum affine algebra U q ( sl 2 ) is a Hopf algebra generated by the generators e i , f i , h i , d, where i ∈ {0, 1}. For i, j ∈ {0, 1}, the defining relations of the algebra U q ( sl 2 ) are given by [h i , h j ] = 0, [h i , e j ] = a ij e j , [h i , f j ] = -a ij f j , (

[e i , f j ] = δ ij q h iq -h i qq -1 , (

[e i , [e i , [e i , e j ] q 2 ]]

q -2 = [f i , [f i , [f i , f j ] q -2 ]] q 2 = 0 i = j, (2.3) 
where (a ij ) 0≤i,j≤1 is the Cartan matrix

(a ij ) 0≤i,j≤1 = 2 -2 -2 2 .
The algebra has automorphisms σ and τ defined by

σ(e 0 ) = e 1 , σ(f 0 ) = f 1 , σ(h 0 ) = h 1 , σ(e 1 ) = e 0 , σ(f 1 ) = f 0 , σ(h 1 ) = h 0 . (2.4) and τ (e i ) = f i , τ (f i ) = e i , τ (h i ) = -h i , i = 0, 1. (2.5) 
We use the following co-product ∆ :

U q ( sl 2 ) → U q ( sl 2 ) ⊗ U q ( sl 2 ): ∆(e i ) = e i ⊗ 1 + q -h i ⊗ e i , ∆(f i ) = f i ⊗ q h i + 1 ⊗ f i , (2.6) ∆(h i ) = h i ⊗ 1 + 1 ⊗ h i .
We will also utilize an opposite co-product defined by

∆ ′ = p • ∆, p • (X ⊗ Y ) = Y ⊗ X, X, Y ∈ U q ( sl 2 ). (2.7)
The automorphisms (2.4) and (2.5) are related to the co-product as

(σ ⊗ σ) • ∆ = ∆ • σ, (τ ⊗ τ ) • ∆ = ∆ ′ • τ. (2.8) 
We always assume that the central element h 0 +h 1 is zero. Anti-pode, co-unit and grading element d are not explicitly used in this paper. The Borel subalgebra B + (resp. B -) is generated by e i , h i (resp. f i , h i ), where i ∈ {0, 1}. For complex numbers c i ∈ C which obey the relation

1 i=0 c i = 0, the transformation τ c 1 (h i ) = h i + c i , i = 0, 1, (2.9) 
gives the shift automorphism of B + (or of B -). Here we omit the unit element multiplied by the above complex numbers.

There exists a unique element [START_REF] Drinfeld | Hopf algebras and the quantum Yang-Baxter equations[END_REF][START_REF] Khoroshkin | The uniqueness theorem for the universal Rmatrix[END_REF] R in a completion of B + ⊗B -called the universal R-matrix which satisfies the following relations

∆ ′ (a) R = R ∆(a) for ∀ a ∈ U q ( sl 2 ) , (∆ ⊗ 1) R = R 13 R 23 , (2.10) (1 ⊗ ∆) R = R 13 R 12 where R 12 = R ⊗ 1, R 23 = 1 ⊗ R, R 13 = (p ⊗ 1) R 23 .
We will use the relation

(ξ h 1 ⊗ ξ h 1 )R = R(ξ h 1 ⊗ ξ h 1 ) for ξ ∈ C \ {0}, (2.11) 
which follows from the first relation in (2.10). The Yang-Baxter equation

R 12 R 13 R 23 = R 23 R 13 R 12 , (2.12) 
is a corollary of these relations (2.10). For R = R 21 = (p ⊗ 1)R 12 , the relations (2.10) become

∆(a) R = R ∆ ′ (a) for ∀ a ∈ U q ( sl 2 ) , (∆ ⊗ 1) R = R 23 R 13 , (2.13) 
(1 ⊗ ∆) R = R 12 R 13
One can also check that R -1 21 (resp. R -1 ) satisfies (2.10) (resp. (2.13)). The universal R-matrix can be written in the form

R = R q K , K = 1 2 h 1 ⊗ h 1 . (2.14) 
Here R is the reduced universal R-matrix, which is a series in e j ⊗ 1 and 1 ⊗ f j and does not contain Cartan elements. Thus the reduced universal R-matrix is unchanged under the shift automorphism τ c 1 of B + , see (2.9), while the prefactor K is shifted as

K → K + c 1 2 (1 ⊗ h 1 ). (2.15)
The universal R-matrix is invariant under σ ⊗ σ:

(σ ⊗ σ)R = R (2.16)
Then we will use the following relation, which follows from this:

(σ ⊗ 1)R = (1 ⊗ σ -1 )R.
(2.17)

2.2

The quantum algebra U q (sl 2 )

The algebra U q (sl 2 ) is generated by the elements E, F, H. The defining relations are

[H, E] = 2E, [H, F ] = -2F, [E, F ] = q H -q -H q -q -1 . (2.18)
The following elements are central in U q (sl 2 ):

C = F E + q H+1 + q -H-1 (q -q -1 ) 2 = EF + q H-1 + q -H+1 (q -q -1 ) 2 . (2.19)
Note that the following map gives an automorphism of the algebra.

ν : E → F, F → E, H → -H. (2.20)
We will also use an anti-automorphism defined by

t : E → q -H-1 F, F → Eq H+1 , H → H, (2.21) 
where (ab) t = b t a t holds for any a, b ∈ U q (sl 2 ). There is an evaluation map ev x : U q ( sl 2 ) → U q (sl 2 ):

e 0 → x s 0 F, f 0 → x -s 0 E, h 0 → -H, e 1 → x s 1 E, f 1 → x -s 1 F, h 1 → H, (2.22) 
where x ∈ C is a spectral parameter and s 0 , s 1 ∈ C. We set s = s 0 +s 1 . If we apply the similarity transformation ev x (a) → x

s 0 -s 1 4 H ev x (a)x -s 0 -s 1 4 H (resp. ev x (a) → x -s 1 2 H ev x (a)x s 1 2 H
) for a ∈ U q ( sl 2 ) and the rescaling of the spectral parameter x → x 2 s (resp. x → x 1 s ), we will obtain the principal gradation s 0 = s 1 = 1 (resp. the homogeneous gradation s 0 = 1, s 1 = 0). Let π + µ be the Verma module over U q (sl 2 ) with the highest weight µ. In a basis {v n |n ∈ Z ≥0 }, we have

Hv n = (µ -2n)v n , Ev n = [n] q [µ -n + 1] q v n-1 , F v n = v n+1 .
(2.23)

For µ ∈ Z ≥0 , the finite dimensional irreducible module π µ with the highest weight µ is given as quotient of Verma modules:

π + µ /π + -µ-2 ≃ π µ . (2.24) 
In particular,

π 1 (E) = E 12 , π 1 (F ) = E 21 and π 1 (H) = E 11 -E 22 gives the fundamental representation of U q (sl 2 )
, where E ij is a 2 × 2 matrix unit whose (k, l)-element is δ i,k δ j,l . In this case, (2.21) coincides with transposition of matrices.

Then the compositions π + µ (x) = π + µ • ev x and π µ (x) = π µ • ev x give evaluation representations of U q ( sl 2 ).

The q-oscillator algebras

We introduce two kinds of oscillator algebras Osc i (i = 1, 2). They are generated by the elements h i , e i , f i which obey the following relations:

[h 1 , h 1 ] = 0, [h 1 , e 1 ] = 2e 1 , [h 1 , f 1 ] = -2f 1 , f 1 e 1 = q 1 -q h 1 (q -q -1 ) 2 , e 1 f 1 = q 1 -q h 1 -2 (q -q -1 ) 2 , (2.25) [h 2 , h 2 ] = 0, [h 2 , e 2 ] = 2e 2 , [h 2 , f 2 ] = -2f 2 , f 2 e 2 = q -1 1 -q -h 2 (q -q -1 ) 2 , e 2 f 2 = q -1 1 -q -h 2 +2 (q -q -1 ) 2 , (2.26) 
Note that Osc 1 and Osc 2 can be swapped by the transformation q → q -1 . One can prove the following corollaries of (2.25) and (2.26):

[e 1 , f 1 ] = q h 1 q -q -1 , [e 2 , f 2 ] = - q -h 2 q -q -1 , (2.27) [e 1 , f 1 ] q -2 = 1 q -q -1 , [e 2 , f 2 ] q 2 = - 1 q -q -1 .
(2.28)

We will use anti-automorphisms of Osc i , which are analogues of (2.21), defined by

t : e i → q -h i -1 f i , f i → e i q h i +1 , h i → h i , (2.29) 
where (ab) t = b t a t holds for any a, b ∈ Osc i , i = 1, 2. Relations (2.27) are nothing but contractions 5 of the commutation relation (2.18). On the other hand, the relations (2.28) are conditions that central elements take constant values. The following limits of the generators of U q (sl 2 ) for the Verma module

6 π + µ lim q -µ →0 π + µ (H -µ) = h 1 , lim q -µ →0 π + µ (q -H-µ ) = 0, lim q -µ →0 π + µ (F q -s 0 µ s ) = f 1 , lim q -µ →0 π + µ (Eq -s 1 µ s ) = e 1 , (2.30) 
lim

q µ →0 π + µ (H -µ) = h 2 , lim q µ →0 π + µ (q H+µ ) = 0, lim q µ →0 π + µ (F q s 0 µ s ) = f 2 , lim q µ →0 π + µ (Eq s 1 µ s ) = e 2 , (2.31) 
realize the q-oscillator algebras Osc 1 and Osc 2 , respectively. Once these limits are taken in formulas, one may forget about the representations, and consider only algebraic relations defined in (2.25) or (2.26).

L-operators and limits

In this section, we first recall the definition of the Lax operators which follows from the universal R-matrix. In the context of quantum integrable systems, it is known that certain limits (cf. [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory III. The Yang-Baxter Relation[END_REF][START_REF] Bazhanov | Integrable structure of W 3 Conformal Field Theory, Quantum Boussinesq Theory and Boundary Affine Toda Theory[END_REF]) of L-operators provide the basic ingredient for the construction of Baxter Q-operators associated with the Yang-Baxter algebra (see [START_REF] Boos | Hidden Grassmann Structure in the XXZ Model II: Creation Operators[END_REF][START_REF] Bazhanov | Baxter's Q-operators for supersymmetric spin chains[END_REF][START_REF] Boos | Exercises with the universal R-matrix[END_REF][START_REF] Tsuboi | Asymptotic representations and q-oscillator solutions of the graded Yang-Baxter equation related to Baxter Q-operators[END_REF] for examples of L-operators for Q-operators, and [START_REF] Bazhanov | A Shortcut to the Q-Operator[END_REF] for examples of the rational case). By analogy, here we consider different limits of L-operators that will be useful in the construction of 5 Contractions of a quantum algebra and its relation to a q-oscillator algebra was discussed in [START_REF] Chaichian | Quantum Lie Superalgebras and q-Oscillators[END_REF].

6 for (2.30): on the renormalized basis v ′ n = q -µs 0 n s v n ; for (2.31): on the renormalized basis v ′ n = q µs 0 n s v n Q-operators associated with the reflection equation algebra. Technically, we follow the presentation of [START_REF] Khoroshkin | The universal R-matrix and factorization of the Loperators related to the Baxter Q-operators[END_REF]. From now on we denote λ = qq -1 . We set

L(x) = q H 2 -q -1 x s q -H 2 λx s 0 F q -H 2 λx s 1 Eq H 2 q -H 2 -q -1 x s q H 2 , (3.1) 
L(x) = q H 2 -q -1 x -s q -H 2 λx -s 1 F q -H 2 λx -s 0 Eq H 2 q -H 2 -q -1 x -s q H 2 . (3.2)
These are images of the universal R-matrix (see Appendix A)

L(x/y) = L(x, y) = φ(x/y)(ev x ⊗ π 1 (y))R, (3.3) 
L(x/y) = L(x, y) = φ(y/x)(ev x ⊗ π 1 (y))R 21 , x, y ∈ C, (3.4) 
where the overall factor is defined by φ(x) = e -Λ(x s q -1 ) , Λ(x) =

∞ k=1 C k k(q k +q -k )
x k and (A.21). One can check

L(x)L(x) = L(x)L(x) = q -1 (λ 2 C -x s -x -s ), (3.5) 
g 2 L(xq 4 
s ) t 2 g -1 2 L(x) t 2 = g -1 1 L(xq 4 
s ) t 2 g 1 L(x) t 2 = = L(x) t 2 g 2 L(xq 4 
s ) t 2 g -1 2 = L(x) t 2 g -1 1 L(xq 4 
s ) t 2 g 1 = q(λ 2 C -q 2 x s -q -2 x -s ), (3.6) 
where

g 1 = g ⊗ 1, g = q (s 0 -s 1 )H s , g 2 = 1 ⊗ g, g = π 1 (g) = diag(q s 0 -s 1 s , q -s 0 -s 1 s
), and t 2 is the transposition in the second component of the tensor product. Evaluating the first space of these L-operators for the fundamental representation, we obtain R-matrices of the 6-vertex model.

R(x) = q 1 2 (π 1 ⊗ 1)L(x) =     q -q -1 x s 0 0 0 0 1 -x s λx s 1 0 0 λx s 0 1 -x s 0 0 0 0 q -q -1 x s     , (3.7) 
R(x) = q 1 2 (π 1 ⊗ 1)L(x) =     q -q -1 x -s 0 0 0 0 1 -x -s λx -s 0 0 0 λx -s 1 1 -x -s 0 0 0 0 q -q -1 x -s     , (3.8) 

L-operators for Q-operators

Applying the limits (2.30) and (2.31) to (3.1) and (3.2), we define four type of L-operators as 7 8 L (1) (x) = lim

q -µ →0 (π + µ ⊗ 1)L(xq -µ s )q -µ⊗π 1 (1)(h 1 ) 2 = q h 1 2 λx s 0 f 1 q -h 1 2 λx s 1 e 1 q h 1 2 q -h 1 2 -q -1 x s q h 1 2
, (3.10)

L (2) (x) = lim q µ →0 (π + µ ⊗ 1)L(xq µ s )q -µ⊗π 1 (1)(h 1 ) 2 = q h 2 2 -q -1 x s q -h 2 2 λx s 0 f 2 q -h 2 2 λx s 1 e 2 q h 2 2 q -h 2 2 , (3.11) 
L (1) (x) = lim q -µ →0 (π + µ ⊗ 1) q (s 0 -s 1 )µH 2s ⊗ 1 L(xq µ s ) q -(s 0 -s 1 )µH 2s ⊗ 1 q -µ⊗π 1 (1)(h 1 ) 2 = q h 1 2 λx -s 1 f 1 q -h 1 2 λx -s 0 e 1 q h 1 2 q -h 1 2 -q -1 x -s q h 1 2 , (3.12) 
L (2) (x) = lim q µ →0 (π + µ ⊗ 1) q (s 1 -s 0 )µH 2s ⊗ 1 L(xq -µ s ) q -(s 1 -s 0 )µH 2s ⊗ 1 q -µ⊗π 1 (1)(h 1 ) 2 = q h 2 2 -q -1 x -s q -h 2 2 λx -s 1 f 2 q -h 2 2 λx -s 0 e 2 q h 2 2 q -h 2 2 . (3.13) 
As mentioned above, the L-operators (3.10) and (3.11) are essential ingredients in the construction of Baxter Q-operators associated with the Yang-Baxter algebra. For instance, for a spin chain with periodic boundary conditions, the corresponding Q-operators are defined as trace over product of these L-operators:

Q (a) (x) = (Z (a) ) -1 (tr Wa ⊗1 ⊗L ) q αha L (a) 0L xξ -1 L • • • L (a) 02 xξ -1 1 L (a) 01 xξ -1 1 , a = 1, 2, (3.14) 
where ξ 1 , . . . , ξ L ∈ C \ {0} are inhomogeneities on the spectral parameter in the quantum space; α ∈ C; the trace is taken over the auxiliary space (a Fock space W a for Osc a denoted as 0). Here the normalization operator Z (a) is defined by

Z (a) = (π 1 (ξ 1 ) ⊗ • • • ⊗ π 1 (ξ L ))∆ ⊗(L-1) (tr Wa ⊗ 1)(1 ⊗ z) ha⊗1 , z = q α+ 1 2 h 1 .
(3.15) 7 The factor q -µ⊗π 1 (1)(h 1 ) 2 came from (2.15) for c 1 = -µ. 8 We could also use automorphisms of U q ( sl 2 ) or U q (sl 2 ) to derive various L-operators: for example,

L (2)′ (x) = lim q -µ →0 (π + µ • σ ⊗ 1)L(xq -µ s )q -µ⊗π 1 (1)(h 0 ) 2 = q -h 1 2 -q -1 x s q h 1 2 λx s0 e 1 q h 1 2 λf 1 x s1 q -h 1 2 q h 1 2 . (3.9)
This could be a substitute of (3.11) (cf. [START_REF] Boos | Exercises with the universal R-matrix[END_REF]). Instead of using automorphisms, we will use Chevalley like generators of the q-oscillator algebras and take various different limits of the L-operators (as already demonstrated in [START_REF] Khoroshkin | The universal R-matrix and factorization of the Loperators related to the Baxter Q-operators[END_REF]). A merit for this is that the resultant L-operators become just reductions of the original L-operators (for example, compare (3.1) with (3.10), (3.16) and (3.18)). This is also the case with the intertwining relations and the K-operators.

In 

Ľ(1) (x) = lim q -µ →0 (π + µ ⊗ 1)q µ⊗π 1 (1)(h 1 ) 2 q (s 0 -s 1 )µH 2s ⊗ 1 L(xq µ s ) q -(s 0 -s 1 )µH 2s ⊗ 1 q -µ = q h 1 2 -q -1 x s q -h 1 2 λx s 0 f 1 q -h 1 2 λx s 1 e 1 q h 1 2 -q -1 x s q h 1 2 , (3.16) Ľ(1) (x) = lim q -µ →0 (π + µ ⊗ 1) q µ⊗π 1 (1)(h 1 ) 2 L(xq -µ s )q -µ = q h 1 2 -q -1 x -s q -h 1 2 λx -s 1 f 1 q -h 1 2 λx -s 0 e 1 q h 1 2 -q -1 x -s q h 1 2 , (3.17) Ľ(2) (x) = lim q µ →0 (π + µ ⊗ 1)q µ⊗π 1 (1)(h 1 ) 2 q (s 1 -s 0 )µH 2s ⊗ 1 L(xq -µ s ) q -(s 1 -s 0 )µH 2s ⊗ 1 q µ = -q -1 x s q -h 2 2 λx s 0 f 2 q -h 2 2 λx s 1 e 2 q h 2 2 q -h 2 2 -q -1 x s q h 2 2 , (3.18) 
Ľ(2) (x) = lim

q µ →0 (π + µ ⊗ 1) q µ⊗π 1 (1)(h 1 ) 2 L(xq µ s )q µ = -q -1 x -s q -h 2 2 λx -s 1 f 2 q -h 2 2 λx -s 0 e 2 q h 2 2 q -h 2 2 -q -1 x -s q h 2 2 . (3.19)
Then the limits of (3.5)-(3.6) are given by

L (1) (x) Ľ(1) (x) = Ľ(1) (x)L (1) (x) = q -1 (q -x -s ), (3.20) 
Ľ(1) (x)L (1) (x) = L (1) (x) Ľ(1) (x) = q -1 (q -x s ), (3.21) 
L (2) (x) Ľ(2) (x) = Ľ(2) (x)L (2) (x) = q -1 (q -1 -x -s ), (3.22) Ľ(2) (x)L (2) (x) = L (2) (x) Ľ(2) (x) = q -1 (q -1 -x s ), (3.23) 
g 2 L (1) (xq 4 
s ) t 2 g -1 2 Ľ(1) (x) t 2 = Ľ(1) (x) t 2 g 2 L (1) (xq 4 
s ) t 2 g -1 2 = q(q -q -2 x -s ), (3.24) 
g 2 Ľ(1) (xq 4 
s ) t 2 g -1 2 L (1) (x) t 2 = L (1) (x) t 2 g 2 Ľ(1) (xq 4 
s ) t 2 g -1 2 = q(q -q 2 x s ), (3.25) 
g 2 L (2) (xq 4 
s ) t 2 g -1 2 Ľ(2) (x) t 2 = Ľ(2) (x) t 2 g 2 L (2) (xq 4 
s ) t 2 g -1 2 = q(q -1 -q -2 x -s ), (3.26) 
g 2 Ľ(2) (xq 4 
s ) t 2 g -1 2 L (2) (x) t 2 = L (2) (x) t 2 g 2 Ľ(2) (xq 4 
s ) t 2 g -1 2 = q(q -1 -q 2 x s ), (3.27) 
where the following relations are used: lim

q -µ →0 π + µ (Cq -µ ) = e 1 f 1 + q h 1 -1 λ 2 = q λ 2 , (3.28) lim q µ →0 π + µ (Cq µ ) = e 2 f 2 + q -h 2 +1 λ 2 = q -1 λ 2 . (3.29)
These relations are among the conditions that are necessary to establish the commutativity of T-and Q-operators.

The intertwining relations for these L-operators have unusual form (cf. [START_REF] Tsuboi | Asymptotic representations and q-oscillator solutions of the graded Yang-Baxter equation related to Baxter Q-operators[END_REF]). For example, (3.10) satisfies 4 The augmented q-Onsager algebra

(h 1 ⊗ 1 + 1 ⊗ (E 11 -E 22 )) L (1) (x/y) = L (1) (x/y) (h 1 ⊗ 1 + 1 ⊗ (E 11 -E 22 )) , 1 ⊗ y s 0 E 21 + x s 0 f 1 ⊗ q E 11 -E 22 L (1) (x/y) = L (1) (x/y) x s 0 f 1 ⊗ 1 + q h 1 ⊗ y s 0 E 21 , 1 ⊗ y s 1 E 12 + x s 1 e 1 ⊗ q -E 11 +E 22 L (1) (x/y) = L (1) (x/y) x s 1 e 1 ⊗ 1 + q -h 1 ⊗ y s 1 E 12 , x -s 0 e 1 ⊗ 1 L (1) (x/y) = L (1) (x/y) x -s 0 e 1 ⊗ q -E 11 +E 22 + 1 ⊗ y -s 0 E 12 , q h 1 ⊗ y -s 1 E 21 + x -s 1 f 1 ⊗ 1 L (1) (x/y) = L (1) (x/y) x -s 1 f 1 ⊗ q E 11 -E 22 . ( 3 
In this section, we first recall the definition of the augmented q-Onsager algebra [START_REF] Ito | The augmented tridiagonal algebra[END_REF][START_REF] Baseilhac | The half-infinite XXZ chain in Onsager's approach[END_REF] through generators and relations. Realizations of the augmented q-Onsager algebra as either right or left coideal subalgebras of U q ( sl 2 ) are then introduced, and co-actions maps are given. Correspondingly, two different intertwiners of the augmented q-Onsager algebra are constructed explicitly. They solve a reflection equation and dual reflection in U q (sl 2 ) ⊗ U q (sl 2 ). Under the specialization π 1 , known results are recovered. The augmented q-Onsager algebra -denoted below O aug q -is generated by four generators K 0 , K 1 , Z 1 , Z1 subject to the defining relations [START_REF] Baseilhac | The half-infinite XXZ chain in Onsager's approach[END_REF]:

[K 0 , K 1 ] = 0 , K 0 Z 1 = q -2 Z 1 K 0 , K 0 Z1 = q 2 Z1 K 0 , K 1 Z 1 = q 2 Z 1 K 1 , K 1 Z1 = q -2 Z1 K 1 , Z 1 , Z 1 , Z 1 , Z1 q 2 q -2 = ρ diag Z 1 ( K 1 K 1 -K 0 K 0 )Z 1 , Z1 , Z1 , Z1 , Z 1 q 2 q -2 = ρ diag Z1 (K 0 K 0 -K 1 K 1 ) Z1 (4.1)
with

ρ diag = (q 3 -q -3 )(q 2 -q -2 ) 3 q -q -1 . (4.2)
This algebra can be embedded into U q ( sl 2 ). Below, we will introduce two different realizations of the algebra O aug q . They are related each other via the automorphism (2.5) of U q ( sl 2 ).

The first realization

In this subsection, the augmented q-Onsager algebra is realized as a right coidal subalgebra of U q ( sl 2 ). According to the coaction map, an intertwiner K(x) is explicitly constructed.

4.1.1 Right coideal subalgebra of U q ( sl 2 ) and the intertwiner K(x)

A realization of the augmented q-Onsager algebra O aug q , as a right coideal subalgebra of U q ( sl 2 ) is known [START_REF] Baseilhac | The half-infinite XXZ chain in Onsager's approach[END_REF]. Let ǫ ± be non-zero scalars. It is given by9 :

K 0 = ǫ + q -h 0 , K 1 = ǫ -q -h 1 , Z 1 = (q 2 -q -2 ) ǫ -qf 1 q -h 1 + ǫ + e 0 , Z1 = (q 2 -q -2 ) ǫ -e 1 + ǫ + qf 0 q -h 0 . (4.3)
Note that the automorphism (2.4) of U q ( sl 2 ) also gives the automorphism of O aug q , σ :

K 0 → K 1 , K 1 → K 0 , Z 1 → Z1 , Z1 → Z 1 , (4.4) 
under the condition σ(ǫ ± ) = ǫ ∓ . The co-action map ∆ :

O aug q → O aug q ⊗ U q ( sl 2
) that is compatible with the relations (4.1) corresponds to the restriction of the co-product (2.6) of U q ( sl 2 ) to O aug q under the realization (4.3).It is such that:

∆(K 0 ) = K 0 ⊗ q -h 0 , ∆(K 1 ) = K 1 ⊗ q -h 1 , ∆(Z 1 ) = Z 1 ⊗ 1 + (q 2 -q -2 ) K 1 ⊗ qf 1 q -h 1 + K 0 ⊗ e 0 , ∆( Z1 ) = Z1 ⊗ 1 + (q 2 -q -2 ) K 1 ⊗ e 1 + K 0 ⊗ qf 0 q -h 0 . (4.5)
On the other hand, the restriction of the opposite co-product ∆ ′ of U q ( sl 2 ) to O aug q gives the co-action map ∆ ′ : O aug q → U q ( sl 2 ) ⊗ O aug q . The restriction of the evaluation map (2.22) to O aug q under (4.3) produces the evaluation map O aug q → U q (sl 2 ):

ev x (K 0 ) = ǫ + q H , ev x (K 1 ) = ǫ -q -H , ev x (Z 1 ) = (q 2 -q -2 )F ǫ -x -s 1 q 1-H + ǫ + x s 0 , ev x ( Z1 ) = (q 2 -q -2 )E ǫ -x s 1 + ǫ + x -s 0 q H+1 .
Let us now consider the following intertwining relations associated with the first realization of the augmented q-Onsager algebra. They read:

ev x -1 (a)K(x) = K(x)ev x (a) for any a ∈ {K 0 , K 1 , Z 1 , Z1 }. (4.6)
The equations for a ∈ {K 0 , K 1 } imply that [K(x), q H ] = 0. The equations for a ∈ {Z 1 , Z1 } give:

F (ǫ + x -s 0 + ǫ -x s 1 q -H+1 )K(x) = K(x)F (ǫ + x s 0 + ǫ -x -s 1 q -H+1 ), (4.7) 
E(ǫ -x -s 1 + ǫ + x s 0 q H+1 )K(x) = K(x)E(ǫ -x s 1 + ǫ + x -s 0 q H+1 ). (4.8)

Solutions of the intertwining relations

According to the intertwining relations (4.7) and (4.8), solutions are defined up to a function

f (H) of the Cartan element (f (x) is a function of x ∈ C with f (x + 2) = f (x)).
We find various different solutions with different non-trivial prefactors. Here we present two typical examples of them:10 

K(x) = x s 0 H -ǫ - ǫ + x s q -H-1 ; q -2 ∞ -ǫ - ǫ + x -s q -H-1 ; q -2 ∞ for |q| > 1, (4.9) 
= x s 0 H -ǫ - ǫ + x -s q -H+1 ; q 2 ∞ -ǫ - ǫ + x s q -H+1 ; q 2 ∞ for |q| < 1, (4.10) 
and

K(x) = x -s 1 H -ǫ + ǫ -x s q H-1 ; q -2 ∞ -ǫ + ǫ -x -s q H-1 ; q -2 ∞ for |q| > 1, (4.11) 
= x -s 1 H -ǫ + ǫ -x -s q H+1 ; q 2 ∞ -ǫ + ǫ -x s q H+1 ; q 2 ∞ for |q| < 1. (4.12)
These solutions (4.9)-(4.12) satisfy

K(x)K(x -1 ) = K(x -1 )K(x) = 1, K(1) = 1. (4.13)
Note that other expressions are given in Appendix E.

Reflection equations

Let us define the R-operators in U q (sl 2 ) ⊗ U q (sl 2 ) by R 12 (x, y) = (ev x ⊗ ev y )R and R 21 (x, y) = (ev x ⊗ ev y )R 21 . Then the first relations in (2.10) and (2.13) produce the following intertwining relations

((ev x ⊗ ev y )∆ ′ (a))R 12 (x, y) = R 12 (x, y)((ev x ⊗ ev y )∆(a)), ((ev x ⊗ ev y )∆(a))R 21 (x, y) = R 21 (x, y)((ev x ⊗ ev y )∆ ′ (a)) for any a ∈ U q ( sl 2 ). (4.14)
The intertwining relations (4.6) and (4.14) imply the following reflection equation in U q (sl 2 ) ⊗ U q (sl 2 ):

R 12 (x -1 , y -1 )K 1 (x)R 21 (x, y -1 )K 2 (y) = K 2 (y)R 12 (x -1 , y)K 1 (x)R 21 (x, y), (4.15) 
where we set

K 1 (x) = K(x) ⊗ 1, K 2 (y) = 1 ⊗ K(y).
In fact, the intertwining relations

r i ((ev x ⊗ ev y )∆ ′ (a)) = ((ev x -1 ⊗ ev y -1 )∆ ′ (a)
)r i for any a ∈ O aug q follow 11 from (4.6) and (4.14), where the right hand side and the left hand side of (4.15) are denoted as r 1 and r 2 , respectively. Evaluating (4.15) for 1 ⊗ π 1 , we obtain the following reflection equation for the L-operators

L y x K 1 (x)L (xy) K 2 (y) = K 2 (y)L 1 xy K 1 (x)L x y , (4.16) 
where we set K(x) = π 1 (K(x)) and used the difference property with respect to the spectral parameters. Expanding (4.16) with respect to the spectral parameter y, one recognizes the intertwining relations (4.6).

Specialization to π 1 : Evaluating (4.16) further for π 1 ⊗ 1, we obtain the following reflection equation for the R-matrices.

R y x K 1 (x)R (xy) K 2 (y) = K 2 (y)R 1 xy K 1 (x)R x y . (4.17)
The solution of (4.17) is given by

K(x) = π 1 (K(x)) = κ(x) x s 0 ǫ + + x -s 1 ǫ - 0 0 x -s 0 ǫ + + x s 1 ǫ - . (4.18) 
Here κ(x) is an overall factor. In case one uses (4.9) for |q| > 1, it reads

κ(x) = -ǫ - ǫ + x s q -2 ; q -2 ∞ ǫ + -ǫ - ǫ + x -s ; q -2 ∞ . (4. 19 
)
11 This is not a substitute of a proof of (4.15). One will be able to prove this on the level of irreducible representations of O aug q by using the Schur's lemma (which fixes r 1 = scalar × r 2 ) and an assumption on the behavior of r i with respect to the spectral parameters x, y (which determines scalar = 1). We do not have a universal K-matrix relevant to our discussion. Thus we do not have a proof of (4.15) on the level of the algebra. On the other hand, we have a proof of the reflection equation for the L-operators (4.16), which follows from this generic reflection equation (4.15).

Note that the solution (4.18) is a special case of the most general scalar solution 12 (F.1) of the reflection equation (4.17) [START_REF] Vega | Boundary K-matrices for the XYZ, XXZ and XXX spin chains[END_REF][START_REF] Ghoshal | Boundary S-Matrix and Boundary State in Two-Dimensional Integrable Quantum Field Theory[END_REF]. In the context of quantum integrable systems, it characterizes systems with arbitrary diagonal boundary conditions.

The second realization

Next, the augmented q-Onsager algebra is realized as a left coidal subalgebra of U q ( sl 2 ). An intertwiner K(x) is explicitly constructed.

4.2.1

Left coideal subalgebra of U q ( sl 2 ) and the intertwiner K(x)

Using the automorphism (2.5) of U q ( sl 2 ), a second realization of the augmented q-Onsager algebra O aug q , now as a left-coideal subalgebra of U q ( sl 2 ). Let ǫ ± be non-zero scalars. It is given by 13 :

K 0 = τ (K 0 ) = ǫ -q h 0 , K 1 = τ (K 1 ) = ǫ + q h 1 , Z 1 = τ (Z 1 ) = (q 2 -q -2 ) ǫ + qe 1 q h 1 + ǫ -f 0 , Z1 = τ ( Z1 ) = (q 2 -q -2 ) ǫ + f 1 + ǫ -qe 0 q h 0 . (4.21)
where τ (ǫ ± ) = ǫ ∓ is assumed. Note that the automorphism (2.4) of U q ( sl 2 ) also gives the automorphism of O aug q , σ :

K 0 → K 1 , K 1 → K 0 , Z 1 → Z1 , Z1 → Z 1 , (4.22) 
under the condition σ(ǫ ± ) = ǫ ∓ . The co-action map ∆ : O aug q → U q ( sl 2 ) ⊗ O aug q , that is compatible with the relations (4.1) corresponds to the restriction of the co-product (2.6) of U q ( sl 2 ) to O aug q under the realization (4.21). It is such that:

∆(K 0 ) = q h 0 ⊗ K 0 , ∆(K 1 ) = q h 1 ⊗ K 1 , ∆(Z 1 ) = 1 ⊗ Z 1 + (q 2 -q -2 ) qe 1 q h 1 ⊗ K 1 + f 0 ⊗ K 0 , ∆( Z1 ) = 1 ⊗ Z1 + (q 2 -q -2 ) f 1 ⊗ K 1 + qe 0 q h 0 ⊗ K 0 . (4.23)
12 Here the word 'scalar' means the matrix elements of the solution are not operators but scalar quantities. 13 [START_REF] Baseilhac | The half-infinite XXZ chain in Onsager's approach[END_REF] under the transformations q → q -1 and ǫ ± → ǫ ∓ . In addition, instead of using the automorphism (2.5), one can also use an anti-automorphism τ defined by

(K 0 , K 1 , Z 1 , Z1 ) in (4.21) corresponds to (K 0 , K 1 , -Z1 , -Z 1 ) in eq. (3.21) in
τ (e i ) = -f i , τ (f i ) = -e i , τ (h i ) = h i , τ (q) = q -1 , i = 0, 1. (4.20)
Recall the evaluation map (2.22). Define14 ev x = ev x | (s 0 ,s 1 )→(-s 1 ,-s 0 ) . It follows:

ev x (K 0 ) = ǫ -q -H , ev x (K 1 ) = ǫ + q H , ev x (Z 1 ) = (q 2 -q -2 )E ǫ + x -s 0 q H+1 + ǫ -x s 1 , ev x ( Z1 ) = (q 2 -q -2 )F ǫ + x s 0 + ǫ -x -s 1 q -H+1 .
We now consider the following intertwining relations associated with the second realization of the augmented q-Onsager algebra:

ev x -1 q -2 s (a)gK(x) t = gK(x) t ev xq 2 s (a) for any a ∈ {K 0 , K 1 , Z 1 , Z1 }, (4.24) 
where g = q H(s 0 -s 1 )/s . Here t is the transposition. One may drop it from (4.24) since the K-operator here is a diagonal operator. The equations for a ∈ {K 0 , K 1 } imply that [K(x) t , q H ] = 0. The equations for a ∈ {Z 1 , Z1 } give:

E(ǭ + qx s 0 q H+1 + ǭ-q -1 x -s 1 )K(x) t = K(x) t E(ǭ + q -1 x -s 0 q H+1 + ǭ-qx s 1 ), (4.25) 
F (ǭ + q -1 x -s 0 + ǭ-qx s 1 q -H+1 )K(x) t = K(x) t F (ǭ + qx s 0 + ǭ-q -1 x -s 1 q -H+1 ). (4.26)

Solutions of the intertwining relations

The solutions of the intertwining relations (4.24) follow from the ones for the first realization (4.6) under the identification

K(x) = gK(xq -2 s ) t | ǫ ± =ǫ ± . (4.27)

Reflection equations

The intertwining relations (4.24) and (4.14) imply the following dual reflection equation in U q (sl 2 ) ⊗ U q (sl 2 ):

R 12 (x -1 q -2 s , y -1 q -2 s )g 1 K 1 (x) t 1 R 21 (xq 2 s , y -1 q -2 s )g 2 K 2 (y) t 2 = = g 2 K 2 (y) t 2 R 12 (x -1 q -2 s , yq 2 
s )g 1 K 1 (x) t 1 R 21 (xq 2 s , yq 2 s 
). (4.28) This also follows from (4.15) under the identification (4.27). Evaluating (4.28) for 1 ⊗ π 1 , we obtain the following dual reflection equation for the L-operators [START_REF] Mezincescu | Integrable open spin chains with nonsymmetric R-matrices[END_REF]:

L y x K 1 (x) t 1 g -1 2 L xyq 4 s g 2 K 2 (y) t 2 = K 2 (y) t 2 g 2 L q -4 s xy g -1 2 K 1 (x) t 1 L x y , (4.29) 
where g = π 1 (g -1 ) and K(x) = π 1 (K(x)). Taking appropriate limits in the variable y of the reflection equation (4.16), one recovers the intertwining relations (4.25)-(4.26).

Specialization to π 1 : Specializing to the two-dimensional representation of U q (sl 2 ), the solution of the intertwining relations is unique (up to an overall factor). It reads:

K(x) = π 1 (K(x)) = κ(x) qx s 0 ǫ + + q -1 x -s 1 ǫ - 0 0 q -1 x -s 0 ǫ + + qx s 1 ǫ - . (4.30)
Here κ(x) is an overall factor. In case one uses (4.9) for |q| > 1 and (4.27), it reads

κ(x) = κ(xq 2 s )| ǫ ± =ǫ ± = -ǫ - ǫ + x s ; q -2 ∞ ǫ + -ǫ - ǫ + x -s q -2 ; q -2 ∞ . (4.31)
By construction, it solves the specialization of the dual reflection equation 15 (4.29):

R y x K 1 (x) t 1 g 1 R xyq 4 s g -1 1 K 2 (y) t 2 = K 2 (y) t 2 g -1 1 R q -4 s xy g 1 K 1 (x) t 1 R x y . (4.32)
The solution (4.30) is a special case of the general scalar solution (F.2) of the dual reflection equation. Note that the solutions of the reflection and dual reflection equations are related by the following transformation (see [START_REF] Mezincescu | Integrable open spin chains with nonsymmetric R-matrices[END_REF]):

K(x) = K t xq 2/s g -1 | ǫ ± =ǫ ± .

Limit of intertwining relations and their solutions: Koperators for Q-operators

In this subsection, we consider the limit q ∓µ → 0 of the intertwining relations and their solutions in the Verma module π + µ . In order to avoid divergences, we have to renormalize the generators of the augmented q-Onsager algebra and the K-operators. The resulting K-operators serve as building blocks of Q-operators in that they solve reflection equations for the L-operators for Q-operators. Similar K-operators for the rational case can be found in [START_REF] Frassek | Q-operators for the open Heisenberg spin chain[END_REF].

The first realization

The limit q -µ → 0 under the shift x → xq µ s : Let us make a shift x → xq µ s on the spectral parameter in (4.7)-(4.8) and multiply the factors x -s 0 µ q -µs 0 H s -2s 0 µ s (for (4.7)) and x -s 0 µ q -µs 0 H s -2s 1 µ s (for (4.8)) from the left. We find that the limit q -µ → 0 for this in π + µ produces

f 1 (ǫ + x -s 0 + ǫ -x s 1 q -h 1 +1 )K (1) (x) = K (1) (x)f 1 (ǫ + x s 0 ), (4.33 
)

e 1 (ǫ + x s 0 q h 1 +1 )K (1) (x) = K (1) (x)e 1 (ǫ + x -s 0 q h 1 +1 + ǫ -x s 1 ), (4.34) 
15 One can modify this by the relations

g 1 R xyq -4 s g -1 1 = g -1 2 R xyq -4 s g 2 , g -1 1 R q 4 s xy g 1 = g 2 R q 4 s xy g -1 2 .
where we set

K (1) (x) = lim q -µ →0 x -s 0 µ π + µ (q -s 0 µH s K(q µ s x)). (4.35)
Similarly, we derive the limit of the equations (4.6) for the renormalized generators K 0 q -µ and K 1 q µ :

q ±h 1 K (1) (x) = K (1) (x)q ±h 1 . (4.36)
Then a solution of (4.33), (4.34) and (4.36) is given by the limit of (4.9) or (4.10):

K (1) (x) = x s 0 h 1 - ǫ - ǫ + x s q -h 1 -1 ; q -2 ∞ for |q| > 1, = x s 0 h 1 - ǫ - ǫ + x s q -h 1 +1 ; q 2 -1 ∞ for |q| < 1.
(4.37)

The limit q -µ → 0 under the shift x → xq -µ s : Let us make a shift x → xq -µ s on the spectral parameter in (4.7)-(4.8) and multiply the factor x -s 0 µ q µs 0 H s (for (4.7)) and x -s 0 µ q µs 0 H s -2µ (for (4.8)) from the left. We find that the limit q -µ → 0 for this in π + µ produces

f 1 (ǫ + x -s 0 ) Ǩ(1) (x) = Ǩ(1) (x)f 1 (ǫ + x s 0 + ǫ -x -s 1 q -h 1 +1 ), (4.38) 
e 1 (ǫ -x -s 1 + ǫ + x s 0 q h 1 +1 ) Ǩ(1) (x) = Ǩ(1) (x)e 1 (ǫ + x -s 0 q h 1 +1 ), (4.39) 
where we set Ǩ(1) (x) = lim q -µ →0

x -s 0 µ π + µ (q s 0 µH s K(q -µ s x)). (4.40) Similarly, we derive the limit of the equations (4.6) for the renormalized generators K 0 q -µ and K 1 q µ :

q ±h 1 Ǩ(1) (x) = Ǩ(1) (x)q ±h 1 . (4.41)
Then a solution of (4.38), (4.39) and (4.41) is given by the limit of (4.9) or (4.10):

Ǩ(1) (x) = x s 0 h 1 - ǫ - ǫ + x -s q -h 1 -1 ; q -2 -1 ∞ for |q| > 1, = x s 0 h 1 - ǫ - ǫ + x -s q -h 1 +1 ; q 2 ∞ for |q| < 1.
(4.42)

The limit q µ → 0 under the shift x → xq -µ s : Let us make a shift x → xq -µ s on the spectral parameter in (4.7)-(4.8) and multiply the factors x s 1 µ q -µs 1 H s + 2s 0 µ s (for (4.7)) and x s 1 µ q -µs 1 H s + 2s 1 µ s (for (4.8)) from the left. We find that the limit q µ → 0 for this in π

+ µ produces f 2 (ǫ -x s 1 q -h 2 +1 )K (2) (x) = K (2) (x)f 2 (ǫ + x s 0 + ǫ -x -s 1 q -h 2 +1
), (4.43)

e 2 (ǫ + x s 0 q h 2 +1 + ǫ -x -s 1 )K (2) (x) = K (2) (x)e 2 (ǫ -x s 1 ), (4.44) 
where we define

K (2) (x) = lim q µ →0
x s 1 µ π + µ (q -s 1 µH s K(q -µ s x)). (4.45) Similarly, we derive the limit of the equations (4.6) for the renormalized generators K 0 q -µ and K 1 q µ :

q ±h 2 K (2) (x) = K (2) (x)q ±h 2 . (4.46)
Then a solution of (4.43), (4.44) and (4.46) is given by the limit of (4.11) or (4.12) in π + µ :

K (2) (x) = x -s 1 h 2 - ǫ + ǫ - x s q h 2 -1 ; q -2 ∞ for |q| > 1, = x -s 1 h 2 - ǫ + ǫ - x s q h 2 +1 ; q 2 -1 ∞ for |q| < 1.
(4.47)

The limit q µ → 0 under the shift x → xq µ s : Let us make a shift x → xq µ s on the spectral parameter in (4.7)-(4.8) and multiply the factor x s 1 µ q µs 1 H s +2µ (for (4.7)) and x s 1 µ q µs 1 H s (for (4.8)) from the left. We find that the limit q µ → 0 for this in π + µ produces

f 2 (ǫ + x -s 0 + ǫ -x s 1 q -h 2 +1 ) Ǩ(2) (x) = Ǩ(2) (x)f 2 (ǫ -x -s 1 q -h 2 +1
), (4.48)

e 2 (ǫ -x -s 1 ) Ǩ(2) (x) = Ǩ(2) (x)e 2 (ǫ -x s 1 + ǫ + x -s 0 q h 2 +1 ), (4.49) 
where we define

Ǩ(2) (x) = lim q µ →0
x s 1 µ π + µ (q

s 1 µH s K(q µ s x)). (4.50) 
Similarly, we derive the limit of the equations (4.6) for the renormalized generators K 0 q -µ and K 1 q µ :

q ±h 2 Ǩ(2) (x) = Ǩ(2) (x)q ±h 2 . (4.51)
Then a solution of (4.48), (4.49) and (4.51) is give by the limit of (4.11) or (4.12) in π + µ :

Ǩ(2) (x) = x -s 1 h 2 - ǫ + ǫ - x -s q h 2 -1 ; q -2 -1 ∞ for |q| > 1, = x -s 1 h 2 - ǫ + ǫ - x -s q h 2 +1 ; q 2 ∞ for |q| < 1. (4.52)
Renormalizing (4.16) and taking the limits q ∓µ → 0 in π + µ ⊗ 1, we obtain the reflection equations 16 for L-operators for Q-operators: (for (4.25)) and x -s 0 µ q -µs 0 H s -µ-2s 0 µ s (for (4.26)) from the left. We find that the limit q -µ → 0 for this in π + µ produces

L (a) y x K (a) 1 (x)L (a) (xy) K 2 (y) = K 2 (y)L (a) 1 xy K (a) 1 (x)L ( 
e 1 (ǭ + qx s 0 q h 1 +1 )K (1) (x) t = K (1) (x) t e 1 (ǭ + q -1 x -s 0 q h 1 +1 + ǭ-qx s 1 ), (4.55) f 1 (ǭ + q -1 x -s 0 + ǭ-qx s 1 q -h 1 +1 )K (1) (x) t = K (1) (x) t f 1 (ǭ + qx s 0 ), (4.56) 
where we set

K (1) (x) = lim q -µ →0
x -s 0 µ π + µ (K(q µ s x)q -s 0 µH s -µ ). (4.57) 16 The limit does not change the form of the reflection equation for the L-operators (4.16). Making the shift x → xq µ s on the spectral parameter in (4.16), and multiplying (ev x -1 ⊗ π 1 (y -1 ))(q -µh1 ⊗ q -µh1 ) = q -µH ⊗ q -µ(E11-E22) from the left and q s 1 µH s ⊗ 1 from the right, we obtain

L yq -µ s x q -µ⊗π 1 (1)(h 1 ) 2 q -s 0 µH s K(xq µ s ) ⊗ 1 q (s 0 -s 1 )µH 2s ⊗ 1 L q µ s xy q -(s 0 -s 1 )µH 2s ⊗ 1 × q -µ⊗π 1 (1)(h 1 ) 2 K 2 (y) = = K 2 (y)L( q -µ s xy )q -µ⊗π 1 (1)(h 1 ) 2 q -s 0 µH s K(xq µ s ) ⊗ 1 q (s 0 -s 1 )µH 2s ⊗ 1 L xq µ s y × q -(s 0 -s 1 )µH 2s ⊗ 1 q -µ⊗π 1 (1)(h 1 )
2 .

Here we used the fact that π 1 (y -1 )(h 1 ) is independent of y, and the commutativity (2.11). Multiplying x -s0µ and taking the limit q -µ → 0 in π + µ ⊗ 1, we arrive at (4.53) for a = 1. Expanding (4.53) with respect to the spectral parameter y, one can reproduce (4.33), (4.34) and (4.36). Similarly, making the shift x → xq -µ s on the spectral parameter in (4.16), multiplying x -s0µ q -2µ (ev x -1 ⊗ π 1 (y -1 ))(q -s 1 µh 1 s ⊗ 1)(q µh1 ⊗ q µh1 ) from the left, and taking the limit q -µ → 0 in π + µ ⊗ 1, we obtain (4.54) for a = 1; making the shift x → xq -µ s on the spectral parameter in (4.16), multiplying x s1µ (ev x -1 ⊗π 1 (y -1 ))(q -µh1 ⊗q -µh1 ) from the left and (q s 0 µH s ⊗ 1) from the right, and taking the limit q µ → 0 in π + µ ⊗ 1, we obtain (4.53) for a = 2; making the shift x → xq µ s on the spectral parameter in (4.16), multiplying x s1µ q 2µ (ev x -1 ⊗ π 1 (y -1 ))(q -s 0 µh 1 s ⊗ 1)(q µh1 ⊗ q µh1 ) from the left, and taking the limit q µ → 0 in π + µ ⊗ 1, we obtain (4.54) for a = 2. Similarly, we derive the limit of the equations (4.24) for the renormalized generators K 0 q µ and K 1 q -µ :

q ∓h 1 K (1) (x) = K (1) (x)q ∓h 1 .
(4.58)

The limit q -µ → 0 under the shift x → xq -µ s : Let us make a shift x → xq -µ s on the spectral parameter in (4.25)-(4.26) and multiply the factors x -s 0 µ q µs 0 H s -3µ (for (4.25)) and x -s 0 µ q µs 0 H s -µ (for (4.26)) from the left. We find that the limit q -µ → 0 for this in π + µ produces e 1 (ǭ + qx s 0 q h 1 +1 + ǭ-q -1 x -s 1 ) Ǩ(1) (x) t = Ǩ(1) (x) t e 1 (ǭ + q -1 x -s 0 q h 1 +1 ), (4.59)

f 1 (ǭ + q -1 x -s 0 ) Ǩ(1) (x) t = Ǩ(1) (x) t f 1 (ǭ + qx s 0 + ǭ-q -1 x -s 1 q -h 1 +1
), (4.60)

where we set

Ǩ(1) (x) = lim q -µ →0
x -s 0 µ π + µ (K(q -µ s x)q s 0 µH s -µ ). (4.61) Similarly, we derive the limit of the equations (4.24) for the renormalized generators K 0 q µ and K 1 q -µ :

q ∓h 1 Ǩ(1) (x) = Ǩ(1) (x)q ∓h 1 .
(4.62)

The limit q µ → 0 under the shift x → xq -µ s : Let us make a shift x → xq -µ s on the spectral parameter in (4.25)-(4.26) and multiply the factors x s 1 µ q -µs 1 H s + 2s 1 µ s +µ (for (4.25)) and x s 1 µ q -µs 1 H s + 2s 0 µ s +µ (for (4.26)) from the left. We find that the limit q µ → 0 for this in π + µ produces

e 2 (ǭ + qx s 0 q h 2 +1 + ǭ-q -1 x -s 1 )K (2) (x) t = K (2) (x) t e 2 (ǭ -qx s 1 ), (4.63) f 2 (ǭ -qx s 1 q -h 2 +1 )K (2) (x) t = K (2) (x) t f 2 (ǭ + qx s 0 + ǭ-q -1 x -s 1 q -h 2 +1
), (4.64)

where we set

K (2) (x) = lim q µ →0
x s 1 µ π + µ (K(q -µ s x)q -s 1 µH s +µ ). (4.65) Similarly, we derive the limit of the equations (4.24) for the renormalized generators K 0 q µ and K 1 q -µ :

q ∓h 2 K (2) (x) = K (2) (x)q ∓h 2 .
(4.66)

The limit q µ → 0 under the shift x → xq µ s : Let us make a shift x → xq µ s on the spectral parameter in (4.25)-(4.26) and multiply the factors x s 1 µ q µs 1 H s +µ (for (4.25)) and x s 1 µ q µs 1 H s +3µ (for (4.26)) from the left. We find that the limit q µ → 0 for this in π + µ produces e 2 (ǭ -q -1 x -s 1 ) Ǩ(2) (x) t = Ǩ(2) (x) t e 2 (ǭ + q -1 x -s 0 q h 2 +1 + ǭ-qx s 1 ), (4.67)

f 2 (ǭ + q -1 x -s 0 + ǭ-qx s 1 q -h 2 +1 ) Ǩ(2) (x) t = Ǩ(2) (x) t f 2 (ǭ -q -1 x -s 1 q -h 2 +1 ), (4.68) 
where we set

Ǩ(2) (x) = lim q µ →0 x s 1 µ π + µ (K(q µ s x)q s 1 µH s +µ ). (4.69)
Similarly, we derive the limit of equations (4.24) for the renormalized generators K 0 q µ and K 1 q -µ :

q ∓h 2 Ǩ(2) (x) = Ǩ(2) (x)q ∓h 2 . (4.70)
Explicit expressions of the second intertwiner K(x) are given by (4.27) with (4.9)-(4.12). Thus explicit expressions of (4.57), (4.61), (4.65) and (4.69) are obtained via

K (a) (x) = K (a) (xq 2 
s ) t q -(s 0 -s 1 )ha s | ǫ ± =ǭ ± , Ǩ(a) (x) = Ǩ(a) (xq 2 
s ) t q -(s 0 -s 1 )ha s | ǫ ± =ǭ ± , a = 1, 2, (4.71) 
and (4.37), (4.42), (4.47) and (4.52).

Renormalizing 17 (4.29) and taking the limits q ∓µ → 0 in π + µ ⊗ 1, we obtain the dual reflection equations for L-operators for Q-operators:

L (a) y x K (a) 1 (x) t 1 g -1 2 L (a) xyq 4 s g 2 K 2 (y) t 2 = = K 2 (y) t 2 g 2 L (a) q -4 s xy g -1 2 K (a) 1 (x) t 1 L (a) x y , (4.72) 
Ľ(a) y x

Ǩ(a) 1 (x) t 1 g -1 2 Ľ(a) xyq 4 s g 2 K 2 (y) t 2 = = K 2 (y) t 2 g 2 Ľ(a) q -4 s xy g -1 2 Ǩ(a) 1 (x) t 1 Ľ(a)
x y , a = 1, 2. (4.73) 17 Making the shift x → xq µ s on the spectral parameter in (4.29), multiplying x -s0µ q -µ (ev x ⊗ π 1 (y))((q

s 1 µh 1 s ⊗ 1)(q -µh1 ⊗ q -µh1
)) from the right, and taking the limit q -µ → 0 in π + µ ⊗ 1, we obtain (4.72) for a = 1; making the shift x → xq -µ s on the spectral parameter in (4.29), multiplying x -s0µ q -2µ (ev x -1 ⊗ π 1 (y -1 ))((q µh1 ⊗ q µh1 )(q -s 1 µh 1 s ⊗ 1)) from the left, and taking the limit q -µ → 0 in π + µ ⊗ 1, we obtain (4.73) for a = 1; making the shift x → xq -µ s on the spectral parameter in (4.29), multiplying x s1µ q µ (ev x ⊗ π 1 (y))((q s 0 µh 1 s ⊗ 1)(q -µh1 ⊗ q -µh1 )) from the right, and taking the limit q µ → 0 in π + µ ⊗ 1, we obtain (4.72) for a = 2; making the shift x → xq µ s on the spectral parameter in (4.29), multiplying x s1µ q 2µ (ev x -1 ⊗ π 1 (y -1 ))((q µh1 ⊗ q µh1 )(q -s 0 µh 1 s ⊗ 1)) from the left, and taking the limit q µ → 0 in π + µ ⊗ 1, we obtain (4.73) for a = 2.

4.3.3 Rational limit q → 1 One can take the rational limit q → 1 of the formulas in this paper easily. The q-gamma function (see for example, [START_REF] Andrews | Special Functions, Encyclopedia of Mathematics and its Applications[END_REF]) is defined by

Γ q (x) = (q; q) ∞ (q x ; q) ∞ (1 -q) 1-x for |q| < 1. (4.74)
This reduces to the normal gamma function in the rational limit. lim q→1 Γ q (x) = Γ(x). (4.75) Let us define the rational limit of the generators of the q-oscillator algebra Osc 1 by

a = lim q→1 λe 1 , a † = lim q→1 f 1 , n = lim q→1 1 -h 1 2 . ( 4 

.76)

Then these generators satisfy [a, a † ] = 1, aa † = n + 1 2 , a † a = n -1 2 . Let q 2p = -ǫ -/ǫ + . Then one can take the rational limit of renormalized versions of (4.9)-(4.12), (3.10), (3.12), (4.18) and (4.37) as

lim |q|→1+0 K(q 2u )(1 -q -2 ) -2su = Γ(-p + su + H+1 2 ) Γ(-p -su + H+1 2 )
for (4.9), (4.77)

lim |q|→1-0 K(q 2u )(1 -q 2 ) -2su = Γ(p + su -H-1 2 ) Γ(p -su -H-1 2 )
for (4.10), (4.78)

lim |q|→1+0 K(q 2u )(1 -q -2 ) -2su = Γ(p + su -H-1 2 ) Γ(p -su -H-1 2 )
for (4.11), (4.79)

lim |q|→1-0 K(q 2u )(1 -q 2 ) -2su = Γ(-p + su + H+1 2 ) Γ(-p -su + H+1 2 )
for (4.12), (4.80)

lim q→1 L (1) (q 2u )(1 ⊗ (E 11 -q -1 λ -1 E 22 )) = 1 -a † a su -n , (4.81) lim q→1 L (1) (q 2u )(1 ⊗ (E 11 -q -1 λ -1 E 22 )) = 1 -a † a -su -n , (4.82) lim q→1 K(q 2u )(1 -q -2 ) -2su = - Γ(su -p) Γ(1 -su -p) p -su 0 0 p + su , (4.83) lim q→1 (q 2 ; q 2 ) ∞ (1 -q 2 ) -p-su+ h 1 +1 2 K (1) (q 2u ) = Γ(p + su + n), u ∈ C. (4.84)
It is important to note that the above limits keep the reflection equation (4.53) unchanged. This is because of the relation (2.11) for ξ = (1q 2 ) h 1 2 and

ρ (1) x ((1 -q 2 ) h 1 2 ) = (1 -q 2 ) h 1 2 , π 1 (y)((1 -q 2 ) h 1 2 ) = (1 -q 2 ) 1 2 (E 11 -q -1 λ -1 E 22 ), (4.85)
where ρ

x is defined in (B.12). The rational limit of all the other K-and L-operators can be taken in the same way. In this way, we have recovered K-operators for Q-operators for rational (XXX-) models which are similar to the ones in [START_REF] Frassek | Q-operators for the open Heisenberg spin chain[END_REF].

Concluding remarks

In the context of quantum groups and related coideal subalgebras, finding a universal product formula for the K-matrix by analogy with the known product formula (A.1) for the universal R-matrix proposed in [START_REF] Tolstoy | The universal R-matrix for quantum untwisted affine Lie algebras[END_REF] is an interesting problem. In this direction, a universal formulation of the reflection equation algebra and related intertwining relations associated with a given coideal subalgebra are highly desirable (see recent progress in [START_REF] Kolb | Braided module categories via quantum symmetric pairs[END_REF]). In the present paper, we have focused on homomorphic images of two different coideal subalgebras of U q ( sl 2 ) (onto U q (sl 2 )), that are related with the augmented q-Onsager algebra first introduced by Ito and Terwilliger in [START_REF] Ito | The augmented tridiagonal algebra[END_REF] (see also [START_REF] Baseilhac | The half-infinite XXZ chain in Onsager's approach[END_REF]). Based on the intertwining relations, product formulae for the K-matrix solutions in terms of the generators of U q (sl 2 ) are derived. They solve certain reflection and dual reflection equations associated with L-operators. In the second part of the paper, certain limits of these K-operators are studied. For these limits, contracted versions of the augmented q-Onsager algebra are considered and q-oscillator representations are constructed. Importantly, these K-operators are the basic ingredient for the construction of Q-operators that are relevant in the analysis of quantum integrable models with non-periodic diagonal boundary conditions. An interesting problem would be to extend the analysis presented here to the case of the q-Onsager algebra [START_REF] Terwilliger | Two relations that generalize the q-Serre relations and the Dolan-Grady relations[END_REF][START_REF] Baseilhac | A new (in)finite dimensional algebra for quantum integrable models[END_REF], which is isomorphic to the fixed point subalgebra of U q ( sl 2 ) under the action of the Chevalley involution [START_REF] Kolb | Quantum symmetric Kac-Moody pairs[END_REF]. A product formula in this case is an open problem, that should find applications to the analysis of integrable models with non-diagonal boundary conditions.

It is known that L-operators for Verma modules of the quantum affine algebra (or the Yangian) factorize with respect to L-operators for the Q-operators. Examples for such factorization formulas appeared in a number of papers (see for example, [START_REF] Derkachov | Factorization of the R-matrix.I[END_REF][START_REF] Bazhanov | A Shortcut to the Q-Operator[END_REF] and references therein). In [START_REF] Khoroshkin | The universal R-matrix and factorization of the Loperators related to the Baxter Q-operators[END_REF], such factorization formulas were reconsidered in relation to properties of the universal R-matrix, and a universal factorization formula, which is independent of the quantum space, was proposed. One of our motivations was to generalize the universal factorization formula [START_REF] Khoroshkin | The universal R-matrix and factorization of the Loperators related to the Baxter Q-operators[END_REF] to the case of open boundary conditions in the light of the augmented q-Onsager algebra [START_REF] Baseilhac | The half-infinite XXZ chain in Onsager's approach[END_REF]. The main obstacle for this is that we do not have the defining relations of the universal K-matrix corresponding to the relations (2.10) for the universal R-matrix of U q ( sl 2 ). This is a reason why we focused our discussions only on one of the most essential objects, the K-matrices, without application to Q-operators and their properties. Still, in appendix G we suggest universal T-and Q-operators. For a class of representations, the commutativity is proven. It is desirable to reconsider the problem after formulation of the universal K-matrix for the universal R-matrix of U q ( sl 2 ) in the future.

B.1 The contracted algebra U q ( sl(2; I))

Let I be a subset 19 of the set {0, 1}, and define θ(True) = 1, θ(False) = 0. The contracted algebra U q ( sl(2; I)) is an algebra generated by the generators20 e i , f i , h i , where i ∈ {0, 1}. For i, j ∈ {0, 1}, the defining relations of the algebra U q ( sl(2; I)) are given by

[h i , h j ] = 0, [h i , e j ] = a ij e j , [h i , f j ] = -a ij f j , (B.1) [e i , f j ] = δ ij θ(i + 1 ∈ I)q h i -θ(i ∈ I)q -h i q -q -1 , (B.2) [e i , [e i , [e i , e j ] q 2 ]] q -2 = [f i , [f i , [f i , f j ] q -2 ]] q 2 = 0, i = j, (B.3)
where (a ij ) 0≤i,j≤1 is the Cartan matrix of sl 2 , and 2 ≡ 0 in I. Note that U q ( sl(2; {0, 1})) coincides with U q ( sl 2 ). We use the following co-products ∆, ∆ ′ , ∆, ∆ ′ : U q ( sl(2; I)) → U q ( sl(2; I)) ⊗ U q ( sl 2 ):

∆(e i ) = e i ⊗ 1 + q -h i ⊗ e i , ∆ ′ (e i ) = 1 ⊗ e i + e i ⊗ q -h i , ∆(f i ) = f i ⊗ q h i + θ(i ∈ I)(1 ⊗ f i ), ∆ ′ (f i ) = θ(i + 1 ∈ I)(q h i ⊗ f i ) + f i ⊗ 1, (B.4) ∆(h i ) = ∆ ′ (h i ) = h i ⊗ 1 + 1 ⊗ h i . and ∆(e i ) = e i ⊗ 1 + θ(i ∈ I)(q -h i ⊗ e i ), ∆ ′ (e i ) = θ(i + 1 ∈ I)(1 ⊗ e i ) + e i ⊗ q -h i , ∆(f i ) = f i ⊗ q h i + 1 ⊗ f i , ∆ ′ (f i ) = q h i ⊗ f i + f i ⊗ 1, (B.5) ∆(h i ) = ∆ ′ (h i ) = h i ⊗ 1 + 1 ⊗ h i .
We define a smaller contracted algebra21 U q ( sl(2; I)) by imposing [e 0 , [e 0 , e 1 ] q 2 ] = [e 1 , [e 1 , e 0 ] q -2 ] = 0 for I = {0}, (B.6)

[f 0 , [f 0 , f 1 ] q -2 ] = [f 1 , [f 1 , f 0 ] q 2 ] = 0 for I = {0}, (B.7) [e 0 , [e 0 , e 1 ] q -2 ] = [e 1 , [e 1 , e 0 ] q 2 ] = 0 for I = {1}, (B.8) [f 0 , [f 0 , f 1 ] q 2 ] = [f 1 , [f 1 , f 0 ] q -2 ] = 0 for I = {1}, (B.9)
on U q ( sl(2; I)). Note that (B.3) follows from (B.6)-(B.9). U q ( sl(2; {0})) and U q ( sl(2; {1})) are sort of coupled q-oscillator algebras. The map (2.5), which preserves the defining relations of U q ( sl(2; {0, 1})), swaps the defining relations U q ( sl(2; {0})) and U q ( sl(2; {1})) one another. The fact that Serre-type relations for q-oscillator representations for the Q-operators can be simpler than the original ones was pointed out first by Bazhanov et al. in [START_REF] Bazhanov | Integrable structure of W 3 Conformal Field Theory, Quantum Boussinesq Theory and Boundary Affine Toda Theory[END_REF] for B + of U q ( ŝl(3)). In [START_REF] Tsuboi | Asymptotic representations and q-oscillator solutions of the graded Yang-Baxter equation related to Baxter Q-operators[END_REF], this phenomenon was observed for the contracted algebras U q ( gl(M|N; I)) of U q ( gl(M|N)). It is desirable to study this systematically for the Drinfeld's second realization of the quantum affine (super)algebras. For the case of the Yangian Y (sl( 2)), a degenerated algebra A for Q-operators was studied in terms of the Drinfeld's second realization [START_REF] Rolph | Drinfeld basis for string-inspired Baxter operators[END_REF]. Their co-products correspond to the case ∆ : A → A ⊗ A. On the other hand, our co-product (B.4), which was used for the intertwining relations for L-operators for Q-operators [START_REF] Tsuboi | Asymptotic representations and q-oscillator solutions of the graded Yang-Baxter equation related to Baxter Q-operators[END_REF], might be related to the case ∆ : A → A ⊗ Y (sl( 2)) if an appropriate rational limit was taken. Thus, it will be interesting to consider the case ∆ : U q ( sl(2; I)) → U q ( sl(2; I)) ⊗ U q ( sl(2; I)).

The Borel subalgebras of U q ( sl(2; I)) and U q ( sl 2 ) share the same defining relations. U q ( sl(2; I)) is a subalgebra of U q ( sl(2; I)). Taking note of this fact, we purposely use the same symbols for the generators of these algebras.

The contracted algebra U q ( ŝl(2; I)) has subalgebras U q (sl(2; I)) generated by the generators E, F, H obeying the relations,

[H, E] = 2E, [H, F ] = -2F, (B.10) [E, F ] = θ(0 ∈ I)q H -θ(1 ∈ I)q -H q -q -1 . (B.11)
This reduces to U q (sl( 2)) for I = {0, 1} and to q-oscillator algebras for I = {0} or I = {1}. The q-oscillator algebra Osc 1 (resp. Osc 2 ) corresponds to U q (sl(2; {0})) (resp. U q (sl(2; {1}))) with a fixed value of the central element [E, F ] q -2 = 1/(qq -1 ) (resp.

[E, F ] q 2 = -1/(qq -1 )). Contractions of a quantum algebra was previously discussed in [START_REF] Chaichian | Quantum Lie Superalgebras and q-Oscillators[END_REF]. Contracted quantum algebras in relation to L-operators for Q-operators were previously discussed in [32] and developed in [START_REF] Bazhanov | La 79ème Rencontre entre physiciens théoriciens et mathématiciens "Supersymmetry and Integrability[END_REF][START_REF] Tsuboi | Asymptotic representations and q-oscillator solutions of the graded Yang-Baxter equation related to Baxter Q-operators[END_REF].

B.2 Universal L-operators for Q-operators and their intertwining relations

The L-operators (3.10)-(3.13) can also be presented as homomorphic images of the universal R-matrix under the homomorphism ρ (i)

x : B + → Osc i , i = 1, 2 defined by the relations

ρ (i) x (e 0 ) = x s 0 f i , ρ (i) x (e 1 ) = x s 1 e i , ρ (i) x (h 0 ) = -h i , ρ (i) x (h 1 ) = h i , (B.12)
or the homomorphism ρ (i)

x : B -→ Osc i , i = 1, 2 defined by the relations

ρ (i) x (f 0 ) = x -s 0 e i , ρ (i) x (f 1 ) = x -s 1 f i , ρ (i) x (h 0 ) = -h i , ρ (i) x (h 1 ) = h i . (B.13)
We remark that the maps ρ (i)

x cannot be straightforwardly extended to the whole algebra U q ( sl 2 ). ρ

x (resp. ρ

x ) should be regarded as a map from the contracted algebra U q ( sl(2; {0})) or U q ( sl(2; {0})) (resp. U q ( sl(2; {1})) or U q ( sl(2; {1}))) to Osc 1 (resp. Osc 2 ). Namely, they preserve the relations (B.1)-(B.3), (B.6)-(B.9), (2.1) and (2.3), but do not keep the relation (2.2) unchanged. Let N + (resp. N -) be the nilpotent subalgebra of U q ( sl 2 ) generated by e i (resp. f i ), i = 0, 1. The maps ρ [START_REF] Baxter | Partition function of the eight-vertex lattice model[END_REF] x and ρ

(2)

x can be realized as limits of shifted representations of B ± and representations 22 of N ∓ . We are interested in the following realizations 23 : ρ (1) x (a) =

   lim q -µ →0 π + µ (xq -µ s ) (τ -µ (a)) for a ∈ B + lim q -µ →0 π + µ (xq -µ s ) q -deg(a)µ a for a ∈ N -, (B.14) ρ (2) x (a) =    lim q µ →0 π + µ (xq µ s ) (τ -µ (a)) for a ∈ B + lim q µ →0 π + µ (xq µ s ) q deg(a)µ a for a ∈ N -, (B.15) 
or 24

ρ (1) x (a) =    lim q -µ →0 π + µ (xq µ s ) q -deg(a)µ+ (s 0 -s 1 )µh 1 2s a q -(s 0 -s 1 )µh 1 2s for a ∈ N + lim q -µ →0 π + µ (xq µ s ) q (s 0 -s 1 )µh 1 2s τ -µ (a)q -(s 0 -s 1 )µh 1 2s for a ∈ B -, (B.16) ρ (2) x (a) =    lim q µ →0 π + µ (xq -µ s ) q deg(a)µ+ (s 1 -s 0 )µh 1 2s a q -(s 1 -s 0 )µh 1 2s for a ∈ N + lim q µ →0 π + µ (xq -µ s ) q (s 1 -s 0 )µh 1 2s τ -µ (a)q -(s 1 -s 0 )µh 1 2s for a ∈ B -, (B.17) 
where deg is a linear operator which evaluates the degree of the monomials of the generators (for example, deg(f i ) = 1, deg(e i e j e k ) = 3). We define 25 universal L-operators as homomorphic image of the universal R-matrix:

L (i) (x) = (ρ (i) x ⊗ 1)R, L (i) (x) = (ρ (i) x ⊗ 1)R, (B.18) Ľ(i) (x) = (ρ (i) x ⊗ 1)R -1 , Ľ(i) (x) = (ρ (i) x ⊗ 1)R -1 . (B.19)
For example, one can calculate 26

L (1) (x) = exp q -2 (λx s 1 e 1 ⊗ f α ) exp ∞ k=1 (-1) k-1 x sk [2k] q ⊗ f kδ exp q -2 (λx s 0 f 1 ⊗ f δ-α ) q 1 2 h 1 ⊗h 1 , (B. 20 
)
22 Note that N ∓ is invariant under τ -µ . 23 To be precise, the letter a denotes an element of the quantum affine algebra on the right hand side, while that of a contracted algebra on the left hand side. 24 Similarity transformations by the Cartan element are used to renormalize the generators:

ξe 0 ξ -1 = q -(s 0 -s 1 )µ s e 0 , ξe 1 ξ -1 = q (s 0 -s 1 )µ s e 1 , ξf 0 ξ -1 = q (s 0 -s 1 )µ s f 0 , ξf 1 ξ -1 = q -(s 0 -s 1 )µ s f 1 , where ξ = q (s 0 -s 1 )µh 1 2s
. 25 One may also define (B.19) as Ľ(i) (x) = (ρ

(i) x • S ⊗ 1)R, Ľ(i) (x) = (ρ (i) 
x • S ⊗ 1)R, where S is the anti-pode satisfying (S ⊗ 1)R = R -1 = (1 ⊗ S -1 )R. 26 One can directly plug (B.12) into (A.1), or apply (B.14) to (A.1) by way of (A.13), (A.14), (A.18), (A.21) with the help of (2.15), (2.30) and (3.28). As remarked in [START_REF] Khoroshkin | The universal R-matrix and factorization of the Loperators related to the Baxter Q-operators[END_REF], L (1) (x) contains only two qexponentials, while L (2) (x) contains infinitely many. One could use the universal version of (3.9), L (2)′ (x) = (ρ

(1) x • σ ⊗ 1)R = (1 ⊗ σ -1 )L (1) (x) instead of (B.21) to avoid the infinite product. L (2) (x) = -→ ∞ k=0 exp q -2 (-1) k λx ks+s 1 q -kh 2 e 2 ⊗ f α+kδ × exp ∞ k=1 (-1) k-1 q -k x ks [2k] q q -k -(q k + q -k )q -kh 2 ⊗ f kδ × ← - ∞ k=0 exp q -2 (-1) k λx ks+s 0 f 2 q -kh 2 ⊗ f δ-α+kδ , (B.21)
where the relation lim 

q ∓ →0 π + µ (C k q ∓kµ ) = λ 2 lim q ∓ →0 π + µ (Cq ∓µ ) k = q ±k for k ∈ Z ≥1 , (B.
L (i) (x) = φ (i) (x)(1 ⊗ π 1 (1))L (i) (x), L (i) (x) = φ (i) (x -1 )(1 ⊗ π 1 (1))L (i) (x), Ľ(i) (x) = φ(i) (x -1 )(1 ⊗ π 1 (1)) Ľ(i) (x), Ľ(i) (x) = φ(i) (x)(1 ⊗ π 1 (1)) Ľ(i) (x) , where 27 φ (i) (x) = e -Φ(x s q -2δ i,2 ) , φ(i) (x) = (-x -s q -1 )e -Φ(x s q 2δ i,1 ) , Φ(x) = ∞ k=1 1 k(q k +q -k ) x k .
The intertwining relations for these operators are given28 by

((ρ (i) x ⊗ 1)∆ ′ (a))L (i) (x) = L (i) (x)((ρ (i) x ⊗ 1)∆(a)), (B.23) ((ρ (i 
) x ⊗ 1)∆(a))L (i) (x) = L (i) (x)((ρ (i) x ⊗ 1)∆ ′ (a)), (B.24) 
((ρ (i) x ⊗ 1)∆ ′ (a)) Ľ(i) (x) = Ľ(i) (x)((ρ (i) x ⊗ 1)∆(a)), (B.25) ((ρ (i) x ⊗ 1)∆(a)) Ľ(i) (x) = Ľ(i) (x)((ρ (i) x ⊗ 1)∆ ′ (a)), (B.26)
for a ∈ U q ( sl(2; I)), I = {i -1}, i ∈ {1, 2}. [START_REF] Sklyanin | Boundary conditions for integrable quantum systems[END_REF]. For example, let us multiply q -µ-1 2 µ⊗h 1 from the right of the first equation in (2.10) for f 1 :

q h 1 -µ ⊗ f 1 + f 1 q -µ ⊗ 1 Rq -1 2 µ⊗h 1 = Rq -1 2 µ⊗h 1 f 1 q -µ ⊗ q h 1 + q -2µ ⊗ f 1 . (B. 27 
)
Evaluating this for π + µ (xq -µ s ) ⊗ 1, we obtain

π + µ (q H-µ ) ⊗ f 1 + x -s 1 π + µ (F q -s 0 µ s ) ⊗ 1 (π + µ (xq -µ s )τ -µ ⊗ 1)R = (π + µ (xq -µ s )τ -µ ⊗ 1)R x -s 1 π + µ (F q -s 0 µ s ) ⊗ q h 1 + q -2µ ⊗ f 1 , (B.28)
where (2.15) for c 1 = -µ is used. Then the limit q -µ → 0 produces C Contraction of the augmented q-Onsager algebra

q h 1 ⊗ f 1 + x -s 1 f 1 ⊗ 1 (ρ (1) x ⊗ 1)R = (ρ (1) x ⊗ 1)R x -s 1 f 1 ⊗ q h 1 , (B.
Let I be a subset of the set {0, 1}, and define θ(True) = 1, θ(False) = 0. The contracted augmented q-Onsager algebra -denoted below O(I) aug q -is generated by four generators K 0 , K 1 , Z 1 , Z1 subject to the defining relations:

[K 0 , K 1 ] = 0 , K 0 Z 1 = q -2 Z 1 K 0 , K 0 Z1 = q 2 Z1 K 0 , K 1 Z 1 = q 2 Z 1 K 1 , K 1 Z1 = q -2 Z1 K 1 , Z 1 , Z 1 , Z 1 , Z1 q 2 q -2 = ρ diag Z 1 (θ(1 ∈ I) K 1 K 1 -θ(0 ∈ I) K 0 K 0 )Z 1 , Z1 , Z1 , Z1 , Z 1 q 2 q -2 = ρ diag Z1 (θ(0 ∈ I)K 0 K 0 -θ(1 ∈ I)K 1 K 1 ) Z1 (C.1)
with

ρ diag = (q 3 -q -3 )(q 2 -q -2 ) 3 q -q -1 . (C.2)
Note that O(I) aug q coincides with O aug q for I = {0, 1}. This algebra can be embedded into coideal subalgebras of U q ( sl 2 ). We introduce the smaller contracted augmented q-Onsager algebra O(I) aug q for I = {0}, {1} by imposing the following additional relations on the the algebras O(I) aug q :

Z 1 , Z 1 , Z1 q 2 = ρ diag q 2 K 0 K 0 Z 1 , Z1 , Z1 , Z 1 q -2 = ρ diag Z1 K 0 K 0 for I = {0}, Z 1 , Z 1 , Z1 q -2 = ρ diag Z 1 K 1 K 1 , Z1 , Z1 , Z 1 q 2 = ρ diag q 2 K 1 K 1 Z1 for I = {1}, (C.3) 
with

ρ diag = - q(q 2 -q -2 ) 3 q -q -1 . (C.4)
Note that the last two relations in (C.1) automatically hold 29 true under (C.3). This algebra can be embedded into U q ( sl(2; I)). Below, we will introduce four different realizations of the algebra O(I) aug q .

C.1 The first realization

In this subsection, the contracted augmented q-Onsager algebra is embedded into U q ( sl(2; I)). We consider two types of realization of the contracted augmented q-Onsager algebra O aug q (I), as a subalgebra of U q ( sl(2; I)). The realizations of O aug q ({0}) in terms of U q ( sl(2; {0})) are given by

K (1,-) 0 = ǫ + q -h 0 , K (1,-) 1 = ǫ -q -h 1 , Z (1,-) 1 = (q 2 -q -2 ) ǫ + e 0 , Z(1,-) 1 = (q 2 -q -2 ) ǫ -e 1 + ǫ + qf 0 q -h 0 , (C.5) K (1,+) 0 = ǫ + q -h 0 , K (1,+) 1 = ǫ -q -h 1 , Z (1,+) 1 = (q 2 -q -2 ) ǫ -qf 1 q -h 1 + ǫ + e 0 , Z(1,+) 1 = (q 2 -q -2 ) ǫ + qf 0 q -h 0 , (C.6)
and the realizations of O aug q ({1}) in terms of U q ( sl(2; {1})) are given by

K (2,-) 0 = ǫ + q -h 0 , K (2,-) 1 = ǫ -q -h 1 , Z (2,-) 1 = 
(q 2 -q -2 ) ǫ -qf 1 q -h 1 + ǫ + e 0 , Z (2, 
-)

1 = (q 2 -q -2 ) ǫ -e 1 , (C.7) 
K (2,+) 0 = ǫ + q -h 0 , K (2,+) 1 = ǫ -q -h 1 , Z (2,+) 1 = (q 2 -q -2 ) ǫ -qf 1 q -h 1 , Z(2,+) 1 = (q 2 -q -2 ) ǫ -e 1 + ǫ + qf 0 q -h 0 . (C.8)
Here we attach symbols (1, +), (1, -), (2, +), (2, -) on the generators to distinguish different realizations of the algebras. We remark that O aug q (I) is realized by (C.5)-(C.8) even if {e 0 , e 1 , f 0 , f 1 , h 0 , h 1 } are generators of U q ( sl(2)), while O aug q (I) is realized only by the generators of U q ( sl(2; I)).

Limits of the renormalized generators of the augmented q-Onsager algebra in Verma modules are related to the images of the contracted augmented q-Onsager algebra under the maps (B.12)-(B.13) as follows: lim

q -µ →0 π + µ (xq µ s )(Z 1 q -2s 0 µ s ) = ρ (1) x (Z (1,-) 1 
), lim

q -µ →0 π + µ (xq µ s )( Z1 q -2s 1 µ s ) = ρ (1) x ( Z(1,-) 1 
), (C.9) lim

q -µ →0 π + µ (xq -µ s )(Z 1 ) = ρ (1) x (Z (1,+) 1
), lim

q -µ →0 π + µ (xq -µ s )( Z1 q -2µ ) = ρ (1) x ( Z(1,+) 1 ), (C.10) lim q -µ →0 π + µ (xq ± µ s )(τ -µ (K a )) = ρ (1) x (K (1,∓) a ), a = 0, 1, (C.11) lim q µ →0 π + µ (xq -µ s )(Z 1 q 2s 0 µ s ) = ρ (2) x (Z (2,-) 1 
), lim

q µ →0 π + µ (xq -µ s )( Z1 q 2s 1 µ s ) = ρ (2) x ( Z(2,-) 1 
), (C.12) lim

q µ →0 π + µ (xq µ s )(Z 1 q 2µ ) = ρ (2)
x (Z (2,+) 1

), lim

q µ →0 π + µ (xq µ s )( Z1 ) = ρ (2)
x ( Z(2,+) 1), (C.13) lim

q µ →0 π + µ (xq ± µ s )(τ -µ (K a )) = ρ (2) x (K (2,±) a ), a = 0, 1. (C.14)
Based on these relations and the commutation relations (4.1) , one can show 30 that the contracted commutation relations (C.1) hold under the maps (B.12)-(B.13). The limit of the intertwining relations associated with the first realization of the augmented q-Onsager algebra given in the main text can now be compactly summarized, in terms of the contracted augmented q-Onsager algebra, as

ρ (i) x -1 (a (i,+) )K (i) (x) = K (i) (x)ρ (i)
x (a (i,-) ), ρ

x -1 (a

(i,-) ) Ǩ(i) (x) = Ǩ(i) (x)ρ (i) x (a (i,+) ) for any a ∈ {K 0 , K 1 , Z 1 , Z1 }. (C.15) 1 ), (C.20) lim q -µ →0 π + µ (xq -µ s )(Z 1 q -2µ ) = ρ (1)
x (Z

(1,+) 1
), lim

q -µ →0 π + µ (xq -µ s )( Z1 ) = ρ (1) x ( Z(1,+) 1 ), (C.21) lim q -µ →0 π + µ (xq ± µ s )(τ -µ (K a )) = ρ (1) x (K (1,∓) a
), a = 0, 1, (C.22) lim

q µ →0 π + µ (xq -µ s )(Z 1 q (s 1 -s 0 )µ s ) = ρ (2) x (Z (2,-) 1 
), lim

q µ →0 π + µ (xq -µ s )( Z1 q (s 0 -s 1 )µ s ) = ρ (2) x ( Z (2,-) 1 ), (C.23) 
lim

q µ →0 π + µ (xq µ s )(Z 1 q -µ ) = ρ (2)
x (Z

(2,+) 1

), lim

q µ →0 π + µ (xq µ s )( Z1 q µ ) = ρ (2)
x ( Z(2,+)

1

), (C.24) lim

q µ →0 π + µ (xq ± µ s )(τ -µ (K a )) = ρ (2)
x (K

(2,±) a

), a = 0, 1, (C. [START_REF] Vega | Boundary K-matrices for the XYZ, XXZ and XXX spin chains[END_REF] where π + µ (x) = π + µ (x)| (s 0 ,s 1 ) →(-s 1 ,-s 0 ) and ρ (i) x = ρ (i)

x | (s 0 ,s 1 ) →(-s 1 ,-s 0 ) . The limit of the intertwining relations associated with the first realization of the augmented q-Onsager algebra in the main text can now be compactly summarized, in terms of the contracted augmented q-Onsager algebra, as

ρ (i) x -1 q -2 s (a (i,+) )g (i) K (i) (x) t = g (i) K (i) (x) t ρ (i) xq 2 s (a (i,-) ), ρ (i) x -1 q -2 s (a (i,-) )g (i) Ǩ(i) (x) t = g (i) Ǩ(i) (x) t ρ (i) xq 2 s (a (i,+) ) for any a ∈ {K 0 , K 1 , Z 1 , Z1 }, (C.26)
where g (i) = q h i (s 0 -s 1 )/s ∈ Osc i .

D Inversion relations

g -1 1 R(xq 4 s ) t 1 g 1 (R(x) -1 ) t 1 = (R(x) -1 ) t 1 g -1 1 R(xq 4 s ) t 1 g 1 = = g 2 R(xq 4 s ) t 2 g -1 2 (R(x) -1 ) t 2 = (R(x) -1 ) t 2 g 2 R(xq 4 s ) t 2 g -1 2 = (x s -1)(q 4 x s -1) (x s -q 2 )(x s -q -2 ) , g 1 = q s 0 -s 1 s 0 0 q -s 0 -s 1 s ⊗ 1 0 0 1 , g 2 = 1 0 0 1 ⊗ q s 0 -s 1 s 0 0 q -s 0 -s 1 s . (D.1)

E Various expressions of the solutions

Up to an overall factor 31 , a formal solution of (4.7) and (4.8) is given by

K(x) = ∞ j=0 ǫ -x -s 1 q -H-1 2 +j + ǫ + x s 0 q H-1 2 -j ǫ -x s 1 q -H+1 2 -j + ǫ + x -s 0 q H+1 2 +j . (E.1)
In order to make this converge, we have to rewrite this in various different form with different prefactors. In addition to the ones in the main text, we find the following expressions .

K(x) = ǫ - ǫ + x s 0 -s 1 q -H 2 H 2 - ǫ + ǫ - x s q H-1 ; q -2 ∞ - ǫ - ǫ + x s q -H-1 ; q -2 ∞ for |q| > 1, (E.2) = ǫ - ǫ + x s 0 -s 1 q -H 2 H 2 - ǫ + ǫ - x s q H+1 ; q 2 -1 ∞ - ǫ - ǫ + x s q -H+1 ; q 2 -1 ∞ for |q| < 1, (E.3) and K(x) = ǫ + ǫ - x s 0 -s 1 q H 2 H 2 - ǫ - ǫ + x -s q -H-1 ; q -2 -1 ∞ - ǫ + ǫ - x -s q H-1 ; q -2 -1 ∞ for |q| > 1, (E.4) = ǫ + ǫ - x s 0 -s 1 q H 2 H 2 - ǫ - ǫ + x -s q -H+1 ; q 2 ∞ - ǫ + ǫ - x -s q H+1 ; q 2 ∞ for |q| < 1.
(E.5)

F General scalar K-matrices

Let k ± , k ± , ǫ ± , ǫ ± be scalars. The most general solutions of the reflection equation (4.17) and the dual one (4.32) are given, respectively, by (see [START_REF] Vega | Boundary K-matrices for the XYZ, XXZ and XXX spin chains[END_REF][START_REF] Ghoshal | Boundary S-Matrix and Boundary State in Two-Dimensional Integrable Quantum Field Theory[END_REF][START_REF] Mezincescu | Integrable open spin chains with nonsymmetric R-matrices[END_REF])

K(x) = x s 0 ǫ + + x -s 1 ǫ - k + (x s -x -s ) q-q -1 k -(x s -x -s ) q-q -1 x -s 0 ǫ + + x s 1 ǫ - , (F.1) K(x) = qx s 0 ǫ + + q -1 x -s 1 ǫ - k + (q 2 x s -q -2 x -s ) q-q -1 k -(q 2 x s -q -2 x -s ) q-q -1 q -1 x -s 0 ǫ + + qx s 1 ǫ - . (F.2)
Note that (F.2) is related to (F.1) via

K(x) = K t xq 2/s g -1 | ǫ ± =ǫ ± , k ± q ∓ s 0 -s 1 s =k ∓ .
Moreover, (F.1) and (F.2) reduce to (4.18) and (4.30) at k ± = k ± = 0, respectively.

G Universal T-and Q-operators

In this appendix, we propose several version of operators in terms of L-and K-operators in the main text, which are candidate of universal T-and Q-operators for integrable systems with open boundary conditions associated with U q ( sl 2 ), and mention merit and demerit of them. We only sketch our idea on the definition of them and do not discuss convergence of the trace, explicit rational limit, functional relations among T-and Qoperators, Bethe equations, etc, which we prefer to consider in a separate publication (if there is an opportunity).

We define universal L-operators as

L(x) = (ev x ⊗ 1)R, L(x) = (ev x ⊗ 1)R, x ∈ C, (G.1) 
and define universal dressed K-operators as 32

K(x) = L(x -1 )(K(x) ⊗ 1)L -1 (x). (G.2) K(x) = L(x -1 )(K(x) ⊗ 1)L(x) (G.3)
Note that (G.2) is an element of U q (sl 2 ) ⊗ B -and (G.3) is an element of U q (sl 2 ) ⊗ U q ( sl 2 ) . One can show 33 that (G.2) satisfies the following dressed reflection equation

R 12 (x -1 , y -1 )K 13 (x)R 21 (x, y -1 )K 23 (y) = K 23 (y)R 12 (x -1 , y)K 13 (x)R 21 (x, y), (G.4)
under (4.15). In contrast, we have no proof (or disproof) that (G.3) satisfies

R 12 (x -1 , y -1 ) K13 (x)R 21 (x, y -1 ) K23 (y) = K23 (y)R 12 (x -1 , y) K13 (x)R 21 (x, y), (G.5)
even if we assume (4.15) since we do not have an analogue of (3.5) for the universal Loperators. Evaluating 34 (G.4) and (G.5) for 1 ⊗ π 1 ⊗ 1, we obtain the following dressed 32 As remarked in subsection 2.1, R -1 = R -1 21 also satisfies the relation (2.10). Thus one may also define a universal dressed K-operator as K(x) = L -1 (x -1 )(K(x) ⊗ 1)L(x), where L(x) = (ev x ⊗ 1)R. In this case, K(x) is an element of U q (sl 2 ) ⊗ B + . 33 One has to use R 12 (x, y)L 13 (x)L 23 (y) = L 23 (y)L 13 (x)R 12 (x, y) and R 21 (x, y)L 23 (y)L 13 (x) = L 13 (x)L 23 (y)R 21 (x, y), which follow from (2.12), and (4.15). 34 Here we abuse notation and use the same expression for both the image of K 23 (y) for 1 ⊗ π 1 ⊗ 1 and the original one.

reflection equations for the L-operators

L 12 x -1 y K 13 (x)L 12 (xy) K 23 (y) = K 23 (y)L 12 x -1 y -1 K 13 (x)L 12 xy -1 . (G.6) L 12 x -1 y K13 (x)L 12 (xy) K23 (y) = K23 (y)L 12 x -1 y -1 K13 (x)L 12 xy -1 . (G.7)
One can also prove (G.6) independent of (G.4) since (G.6) is a dressed version of (4.16).

As for (G.7), we can only prove the image of it for (tensor product of) the fundamental representation in the 3rd space based on the relation (3.5). We define universal T-operators as

T π (x) = (tr π ⊗ 1) (K(q -4 s x -1 )g 2 ⊗ 1)K(x) , (G.8) Tπ (x) = (tr π ⊗ 1) (K(q -4 s x -1 )g 2 ⊗ 1) K(x) , (G.9)
where π is any representation of U q (sl 2 ) for which the trace converges. Thanks to the relation (2.24), the T-operators for a finite dimensional representation are expressed in terms of those for Verma modules:

T πµ (x) = T π + µ (x) -T π + -µ-2 (x) for µ ∈ Z ≥0 , (G.10) Tπµ (x) = Tπ + µ (x) -Tπ + -µ-2 (x) for µ ∈ Z ≥0 . (G.11)
In a similar way as for T-operators, we define universal L-operators for Q-operators as

L (a) (x) = (ρ (a) x ⊗ 1)R, L (a) (x) = (ρ (a)
x ⊗ 1)R, x ∈ C, a = 1, 2, (G.12)

and universal dressed K-operators as

K (a) (x) = L (a) (x -1 )(K (a) (x) ⊗ 1)L (a) (x) -1 . (G.13) K(a) (x) = L (a) (x -1 )(K (a) (x) ⊗ 1)L (a) (x), a = 1, 2. (G.14)
One can prove that (G.13) satisfy dressed reflection equations

L (a) 12 x -1 y K (a) 13 (x)L (a) 12 (xy) K 23 (y) = K 23 (y)L (a) 12 x -1 y -1 K (a) 13 (x)L (a) 12 xy -1 , a = 1, 2. (G.15)
In contrast, we have no proof (or disproof) that (G. As (G.16) are limit of (G.7), we can prove (G.16) only for (tensor product of) the fundamental representation in the 3rd space at the moment. We also define universal Q-operators 35 as

Q (a) (x) = (tr Wa ⊗ 1) ( Ǩ(a) (q -4 s x -1 )(g (a) ) 2 ⊗ 1)K (a) (x) , (G.17) Q(a) (x) = (tr Wa ⊗ 1) ( Ǩ(a) (q -4 s x -1 )(g (a) ) 2 ⊗ 1) K(a) (x) for a = 1, 2, (G.18)
where g (a) = q (s 0 -s 1 )ha s and W a are Fock spaces generated by Osc a . Note that (G.17) are elements of B -and (G.18) are elements of U q ( sl 2 ). We remark that (G.18) are limit of the universal T-operator (G.9):

Q(1) (x) = lim q -µ →0 Tπ + µ (q µ s x)q µ-µh 1 , (G.19) Q(2) (x) = lim q µ →0 Tπ + µ (q -µ s x)q -µ-µh 1 , (G.20)
where (B.14)-(B.17) are used. In contrast, we can not interpret (G.17) as a straightforward limit of (G.8). Evaluating these for various representations of B -or U q ( sl 2 ), we obtain a wide class of T-and Q-operators. For example, T-and Q-operators acting on (C 2 ) ⊗L are given by

T πµ (x) = (π 1 (ξ 1 ) ⊗ • • • ⊗ π 1 (ξ L )) ∆ ⊗(L-1) T πµ (x), = Ψ(x, {ξ i })(tr πµ ⊗ 1 ⊗L ) K q -4 s x -1 g 2 ⊗ 1 ⊗L L 0L x -1 ξ -1 L • • • L 01 x -1 ξ -1 1 × K(x) ⊗ 1 ⊗L L 01 xξ -1 1 • • • L 0L xξ -1 L , (G.21) Tπµ (x) = (π 1 (ξ 1 ) ⊗ • • • ⊗ π 1 (ξ L )) ∆ ⊗(L-1) Tπµ (x), = Ψ(x, {ξ i })(tr πµ ⊗ 1 ⊗L ) K q -4 s x -1 g 2 ⊗ 1 ⊗L L 0L x -1 ξ -1 L • • • L 01 x -1 ξ -1 1 × K(x) ⊗ 1 ⊗L L 01 xξ -1 1 • • • L 0L xξ -1 L , (G.22) Q (a) (x) = (π 1 (ξ 1 ) ⊗ • • • ⊗ π 1 (ξ L )) ∆ ⊗(L-1) Q (a) (x), = Ψ (a) (x, {ξ i })(tr Wa ⊗1 ⊗L ) Ǩ(a) q -4 s x -1 (g (a) ) 2 ⊗ 1 ⊗L L (a) 0L x -1 ξ -1 L • • • L (a) 01 x -1 ξ -1 1 × K (a) (x) ⊗ 1 ⊗L Ľ(a) 01 xξ -1 1 • • • Ľ(a) 0L xξ -1 L , a = 1, 2, (G.23) 35 
Another possible definition will be Q , ϕ(x) := q -1 (λ 2 Cx sx -s ), (G.26)

(a) (x) = (tr Wa ⊗ 1) (K (a) (q -4 s x -1 )(g (a) ) 2 ⊗ 1) Ǩ(a) (x) , Ǩ(a) (x) = Ľ(a) (x -1 )( Ǩ(a) (x) ⊗ 1) Ľ(a) (x) -1 , a = 1, 2.
Ψ (a) (x, {ξ i }) = L k=1 φ (a) (xξ -1 k ) ϕ (a) (xξ -1 k )φ (a) (x -1 ξ -1 k )
, ϕ (a) (x) := q -1 (q 3-2ax -s ), (G.27)

Ψ(a) (x, {ξ i }) = L k=1 1 φ (a) (x -1 ξ -1 k )φ (a) (x -1 ξ k ) , a = 1, 2. 
(G.28)

The T-operators (G.21) and (G.22) are essentially the same object if the representation for the auxiliary space is irreducible, while the corresponding Q-operators (G. [START_REF] Drinfeld | Hopf algebras and the quantum Yang-Baxter equations[END_REF]) and (G.24) are substantially different each other. We expect that (G.23) or (G.24) give Qoperators for the XXZ-model. In fact our Q-operators (G.24) reduce to Q-operators for the XXX-model similar to the ones in [START_REF] Frassek | Q-operators for the open Heisenberg spin chain[END_REF] in the rational limit q → 1. In contrast, we can not take the rational limit of (G.23) straightforwardly 37 . In this sense, (G.24) might be more promising than (G.23). However, (G.23) still deserve further study as they have good properties on commutativity of operators. We expect that these operators constitute mutually commuting family of operators. In fact, we have proven commutativity of the universal T-operators (G.8) for the fundamental representation in the auxiliary space and the universal Q-operators (G.17):

T π 1 (x)T π 1 (y) = T π 1 (y)T π 1 (x), Q (a) (x)T π 1 (y) = T π 1 (y)Q (a) (x), a = 1, 2, x, y ∈ C.

(G.29)

At the moment, we do not have a proof of commutativity among T-operators for the generic representations in the auxiliary space and commutativity among Q-operators. As for (G.9) and (G.18), we have proof 38 of commutativity for only a particular representa- 36 These factors cannot be taken outside of the trace if the representations are not irreducible. 37 One may have to generalize (G.23) to interpolate (G.23) and a rational analogue of it (to use renormalized operators, which appear for example in the left hand side of (4.84)). This remains to be clarified. 38 The second relation also follows from limit of Tπ + µ (x) Tπ1 (y) = Tπ1 (y) Tπ + µ (x).

tion in the quantum space. Any object we consider under the trace is a linear combination of elements of the form J m,n = E m F n q ξH ∈ U q (sl 2 ) (or J m,n = e m a f n a q ξha ∈ Osc a , a = 1, 2) for m, n ∈ Z ≥0 , ξ ∈ C. In particular, only the terms for m = n (J := J m,m ) contribute to the trace. Then TrJ t = TrJ holds if the trace converges and the cyclicity of the trace holds. In the following, we assume 40 this. One can check the following relations for the L-operators 41 : L(x) t 1 t 2 = L(x -1 ), L(x) t 1 t 2 = L(x -1 ), L (a) (x) t 1 t 2 = L (a) (x -1 ), L (a) (x) t 1 t 2 = L (a) (x -1 ), Ľ(a) (x) t 1 t 2 = Ľ(a) (x -1 ), Ľ(a) (x) t 1 t 2 = Ľ(a) (x -1 ), a = 1, 2. (G.32)

Let ϕ (a) (x) = q -1 (q 3-2ax -s ), φ(a) (x) = q(q 3-2aq -2 x -s ) for a = 1, 2. Then we use a refinement of the Sklyanin's method [START_REF] Sklyanin | Boundary conditions for integrable quantum systems[END_REF]:

Q (a) (x)
T π 1 (y) = tr 1 Ǩ(a) 1 (q -4 s x -1 )(g tr 12 Ǩ(a)′ 1 (x -1 ) t 1 g 2 Ľ(a)

12

x -1 y -1 q -4 s g -1 2 K ′ 2 (y -1 ) t 2 t 2 39 The first relation in (G.29) can be proven similarly (easier than the second relation).

40 This is not a trivial issue in particular for infinite dimensional representations. 41 The anti-automorphism t defined by (2.21) or (2.29) might not be enough for more general Roperators. A relation corresponding to (G.32) (similar to (A.22)) may not hold true in general situation. However, it is enough for the L-operators discussed here. Ǩ(a)′ 1 (x -1 ) t 1 g 2 Ľ(a) 12

× K

x -1 y -1 q - = ϕ (a) x -1 y -1 φ(a) x -1 y -1 q -4 s -1

× tr 12 Ľ(a) 12 x -1 y t 1 t 2 Ǩ(a)′ 1 (x -1 ) t 1 g 2 Ľ(a)

12

x -1 y -1 q -4 s g -1 2 K ′ 2 (y -1 ) t 2 = ϕ (a) x -1 y -1 φ(a) x -1 y -1 q -4 s -1

× tr 12 Ľ(a) 12 xy -1 Ǩ(a)′ 1 (x -1 ) t 1 g 2 Ľ(a)

12

x -1 y -1 q -4 s g -1 2 K ′ 2 (y -1 ) t 2 

2

 2 The second realizationThe limit q -µ → 0 under the shift x → xq µ s : Let us make a shift x → xq µ s on the spectral parameter in (4.25)-(4.26) and multiply the factors x -s 0 µ q -µs 0 H s -µ-2s 1 µ s

  22) which follows from (A.21), (3.28) and (3.29), is used. Then the L-operators (3.10)-(3.13) and (3.16)-(3.19) are given by

  [START_REF] Tolstoy | The universal R-matrix for quantum untwisted affine Lie algebras[END_REF] where (B.14) for B + is applied to the first component of the tensor product in R ∈ B + ⊗ B -, and (2.30) is used. Taking note on (B.4) and (B.13), we arrive at (B.23) for i = 1, a = f 1 ∈ U q ( sl(2; {0})).The other relations in (B.23)-(B.26) can be derived in a similar manner. Evaluating these relations (B.23)-(B.26) for 1 ⊗ π 1 (1), one can derive the intertwining relations for the L-operators (3.10)-(3.13) and (3.16)-(3.19).

Q 1 ×- 1 L

 11 (a) (x) = (π 1 (ξ 1 ) ⊗ • • • ⊗ π 1 (ξ L )) ∆ ⊗(L-1) Q(a) (x), = Ψ(a) (x, {ξ i })(tr Wa ⊗1 ⊗L ) Ǩ(a) q -4 s x -1 (g (a) ) 2 ⊗ 1 ⊗L L K (a) (x) ⊗ 1 ⊗L L , a = 1, 2, (G.24)where ξ 1 , . . . , ξ L ∈ C \ {0} are inhomogeneities on the spectral parameter in the quantum space; the trace is taken over the auxiliary space (denoted as 0); the relations (3.5),(3.20) and(3.22) are applied. The overall factors 36 are given by Ψ(x, {ξ i }) = -1 ξ -1 k )φ(x -1 ξ k )

Tπ 1 (

 1 x) Tπ 1 (y) = Tπ 1 (y) Tπ 1 (x), Q(a) (x) Tπ 1 (y) = Tπ 1 (y) Q(a) (x), a = 1, 2, x, y ∈ C. (G.30)A proof of the second relation in (G.29) is given as follows39 . First, we rewrite the reflection equation (4.73) in terms of K ′ (x) = K(q -4 s x)g 2 and Ǩ

t 1 K

 1 [START_REF] Drinfeld | Hopf algebras and the quantum Yang-Baxter equations[END_REF] (y) = φ(a) x -1 y -1 q -4 s -1

1 [

 1 1 y -1 t 1 t 2 K 23 (y) t by (3.24), (3.26)]= φ(a) x -1 y -1 q -

t 1 t 2

 2 

t 1 t 2 4 s - 1 × tr 12 K ′ 2 (y - 1 ) t 2 g -1 2 Ľ) t 1 t 1 t 2 × K 23 (

 2412121223 ) K 23 (y) [by (G.32)] = ϕ (a) x -1 y -1 φ(a) x -1 y -1 q -G.15), (G.31)] = ϕ (a)x -1 y -1 φ(a) x -1 y -1 q -a) x -1 y -1 q -

t 1 [ 4 s - 1 tr 12 g 2 Ľ

 1412 by (3.21), (3.23)] = φ(a) x -1 y -1 q -

(K 0 , K 1 , Z 1 , Z1 ) in (4.3) corresponds to (K 0 , K 1 , -Z1 , -Z 1 ) in eq.(3.24) in[START_REF] Baseilhac | The half-infinite XXZ chain in Onsager's approach[END_REF] under the transformations q → q -1 and ǫ ± → ǭ∓ .

After we obtained these solutions, we were informed by S. Belliard that he obtained a solution for the rational case Y (sl 2 ).

One may also interpret this as evx = ev x • σ • τ | ǫ±=ǫ± , τ (ǫ ± ) = ǫ ∓ .

This came from a notation in[START_REF] Tsuboi | Solutions of the T -system and Baxter equations for supersymmetric spin chains[END_REF], where 2 M+N Q-functions for U q ( gl(M |N )) are classified in terms of all the subsets I of the set {1, 2, . . . , M + N }. The number '0' in I corresponds to '2' (for (M, N ) = (2, 0) case) in the[START_REF] Tsuboi | Solutions of the T -system and Baxter equations for supersymmetric spin chains[END_REF]. In our present paper, there are 2 2 = 4 Q-operators. Two of them, which correspond to I = {0, 1}, ∅, are identity operators in the normalization of the universal R-matrix.

In this paper, we do not use the derivation d.

The coproduct (B.4) (resp. (B.5)) does not keep (B.6) and (B.8) (resp. (B.7) and (B.9)). Then there is an option to consider algebras bigger than U q ( sl(2; I)), where (B.7) and (B.9) with (B.4), or (B.6) and (B.8) with (B.5) are imposed on U q ( sl(2; I)). However, we focus on U q ( sl(2; I)) since (B.6)-(B.9) always hold true for the q-oscillator representations in this paper.

There is a useful identity φ (i) (x) φ(i) (x) = q -1 (q 1-2δi,2x -s ), i = 1, 2.

We may interpret the first space of these as a composition of natural evaluation maps U q ( sl(2; I)) → U q ( sl(2; I)) → Osc i .

One has to take care the relations of the form:[A, [A, [A, B] q 2 ] q -2 ] = [A, [A, [A, B] q 2 ]] q -2 = A 3 B -(q 2 + 1 + q -2 )A 2 BA + (q 2 + 1 + q -2 )ABA 2 -BA[START_REF] Bazhanov | Integrable structure of W 3 Conformal Field Theory, Quantum Boussinesq Theory and Boundary Affine Toda Theory[END_REF] , which are symmetric with respect to q ↔ q -1 .

The overall factor has the form f (H), where f (x) is a function of x ∈ C with f (x + 2) = f (x).
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A The universal R-matrix

In this section, we briefly review the product expression of the universal R-matrix given by Khoroshkin and Tolstoy in [START_REF] Tolstoy | The universal R-matrix for quantum untwisted affine Lie algebras[END_REF]. Their universal R-matrix was already reviewed by several authors [START_REF] Zhang | Quantum Affine Algebras and Universal R-Matrix with Spectral Parameter[END_REF][START_REF] Boos | Exercises with the universal R-matrix[END_REF]. Here we basically follow these.

Let {α + kδ} ∞ k=0 ∪ {kδ} ∞ k=1 ∪ {δα + kδ} ∞ k=0 be a positive root system of sl 2 in the notation of [START_REF] Tolstoy | The universal R-matrix for quantum untwisted affine Lie algebras[END_REF]. We choose the root ordering as α + (k -1)δ ≺ α + kδ ≺ lδ ≺ (l + 1)δ ≺ δα + mδ ≺ δα + (m -1)δ for any k, l, m ∈ Z ≥1 . In this case, the universal R-matrix has the following expression:

where we use notations

Let e α = e 1 , e δ-α = e 0 , f α = f 1 , f δ-α = f 0 . Then the other root vectors are defined by the following recursion relations:

q [e α+(k-1)δ , e ′ δ ], (A.5)

δ , e δ-α+(k-1)δ ], (A.7)

where the root vectors with prime are given by the following generating functions.

In general, root vectors contain many commutators. However, simplification occurs under the evaluation map.

ev x (e α+kδ ) = (-1) k x ks+s 1 q -kH E, (A.13)

, and (A. [START_REF] Mezincescu | Integrable open spin chains with nonsymmetric R-matrices[END_REF])

where the central elements C k are defined by

Inserting these 18 into (A.1), we obtain R(x, y). In order to obtain R 21 (x, y), one has to swap the first and the second components of the tensor product in (A.1) beforehand.

Based on these product formulas, one can check

B Contraction of the quantum affine algebra

A systematic study of the asymptotic representation theory of the Borel subalgebras of quantum affine algebras was given in [START_REF] Hernandez | Asymptotic representations and Drinfeld rational fractions[END_REF]. How to evaluate the universal R-matrix for the purpose of Q-operators was explained in detail in [START_REF] Boos | Exercises with the universal R-matrix[END_REF]. We nevertheless review the subject in the spirit of [START_REF] Tsuboi | Asymptotic representations and q-oscillator solutions of the graded Yang-Baxter equation related to Baxter Q-operators[END_REF], which is inspired by earlier discussions [START_REF] Bazhanov | Integrable Structure of Conformal Field Theory III. The Yang-Baxter Relation[END_REF][START_REF] Bazhanov | Integrable structure of W 3 Conformal Field Theory, Quantum Boussinesq Theory and Boundary Affine Toda Theory[END_REF]32,[START_REF] Bazhanov | La 79ème Rencontre entre physiciens théoriciens et mathématiciens "Supersymmetry and Integrability[END_REF][START_REF] Bazhanov | Baxter's Q-operators for supersymmetric spin chains[END_REF]. We are interested in considering limits of representations of the whole quantum affine algebra rather than those of its Borel subalgebras. In particular, we will present the universal form of the intertwining relations for the L-operators for Q-operators (B.23)-(B.26). 18 For the second component of the tensor product, one has to replace x with y beforehand.

C.2 The second realization

In this subsection, the contracted augmented q-Onsager algebra is also embedded into U q ( sl(2; I)). We consider two types of realization of the contracted augmented q-Onsager algebra O aug q (I) with I = {0, 1} \ I, as subalgebra of U q ( sl(2; I)). The realizations of O aug q ({1}) in terms of U q ( sl(2; {0})) are given by

where τ (ǫ ± ) = ǫ ∓ is assumed. The realizations of O aug q ({0}) in terms of U q ( sl(2; {1})) are given by

(C.18) 30 For example, multiplying the equation in the 4-th line in (4.1) by q -2µ-4s 0 µ s , one obtains Z 1 q -2s 0 µ s , Z 1 q -2s 0 µ s , Z 1 q -2s 0 µ s , Z1 q -2s 1 µ s q 2 q -2 = ρ diag Z 1 q -2s 0 µ s ( (K 1 q µ ) 2 q -4µ -(K 0 q -µ ) 2 )Z 1 q -2s 0 µ s . Then take the limit q -µ → 0 in the representation π + µ (xq 

We remark that O aug q (I) is realized by (C.16)-(C.19) even if {e 0 , e 1 , f 0 , f 1 , h 0 , h 1 } are generators of U q ( sl(2)), while O aug q (I) is realized only by the generators of U q ( sl(2; I)). Limits of the renormalized generators of the augmented q-Onsager algebra in the Verma modules are related to the images of the contracted augmented q-Onsager algebra under the maps (B.12)-(B.13) as follows: lim q -µ →0 π + µ (xq µ s )(Z 1 q -2s 1 µ s ) = ρ (1) x (Z

(1,-) 1

), lim

π + µ (xq µ s )( Z1 q -2s 0 µ s ) = ρ (1) x ( Z(1,-)

= tr 2 K ′ 2 (y -1 )K 23 (y) tr 1 Ǩ(a)′ 1 (x -1 ) t 1 K (a)

13 (x) t 1 = T π 1 (y)Q (a) (x). (G.33)