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ABSTRACT

This article improves over the recently proposed Bethe Hes-
sian matrix for community detection on sparse graphs, as-
suming here a more realistic setting where node degrees are
inhomogeneous. We notably show that the parametrization
proposed in the seminal work on the Bethe Hessian cluster-
ing can be ameliorated with positive consequences on correct
classification rates. Extensive simulations support our claims.

Index Terms— community detection; Bethe Hessian;
spectral clustering; statistical physics.

1. INTRODUCTION

Community detection on graphs [1, 2] is a cornerstone topic
in machine learning, much related to unsupervised classi-
fication (or clustering) [3], and consists in grouping nodes
of strong affinity in distinct classes. Theoretically speak-
ing, given a statistical generative model for a graph G with
classes, the first question to consider is their detectability and
the capability to associate each node to its genuine class.

The most popular and versatile approach to perform com-
munity detection on graphs is the belief propagation algo-
rithm; however, the latter is computationally expensive, of-
fers no convergence guarantee and is theoretically hard to an-
alyze. Most convincing (since well performing, theoretically
analyzable and computationally appealing) among the pro-
posed alternative approaches to community retrieval are spec-
tral methods that consist in reading the community classes
directly off the dominant eigenvectors of a matrix represen-
tation of G, thereby reminiscent of spectral clustering [3].
Assuming a two-class stochastic block model (SBM) for the
generative graph model with n nodes – where the probabil-
ity for node i to connect to node j equals pin ∈ [0, 1] if they
belong to the same class or pout ∈ [0, 1] otherwise, and ev-
ery edge is drawn independently – a natural spectral commu-
nity detection method consists in extracting the class informa-
tion from the dominant eigenvectors of the adjacency matrix
A ∈ {0, 1}n×n, where Aij = 1 if nodes i and j are con-
nected, and Aij = 0 otherwise.
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It was indeed shown that, as n → ∞ and pin, pout are in-
dependent of n, which is referred to as a dense graph commu-
nity detection problem, spectral clustering on A is “optimal”
in the sense that:

(a) there exists a minimal value for (pin−pout)/
√
pin + pout

below which community detection is infeasible;
(b) spectral clustering on A returns non-trivial classifica-

tion (that is on average better than random guess) as
soon as this threshold is exceeded.

In statistical physics terms, this asymptotic decidability
thresholding effect is referred to as a phase transition phe-
nomenon.

Yet, the conditions under which spectral clustering on A
is optimal rely on two key ingredients:

(i) the statistical block model for G is quite elementary;
(ii) the graph is dense (the node degrees scale with n).

Both conditions are deemed unrealistic as not representative
of real world graphs. To address issue (i), a line of works
was developed [4, 5] in a K-class degree corrected stochastic
block model (DC-SBM), where

P (Aij = 1) = qiqjC(xi, xj)

with qi > 0 some intrinsic connectivity amplitude for node i,
such that E[qi] = 1, xi ∈ {1, . . . ,K} the label of the class of
node i, and C(xi, xj) some class-wise affinity parameter. In
[5], it is shown that spectral clustering on A is no longer opti-
mal in that the phase transition phenomenon in general arises
well below the detectability power of A; an improvement is
then proposed in [5] which shows that there exists α > 0 de-
pending on the law of the qi’s such that performing spectral
clustering onD−αAD−α rather thanA drastically pushes the
phase transition to smaller discriminative values of C(a, b).

Addressing limitation (ii) is theoretically much harder.
Assuming that the probability for Aij = 1 scales like 1/n,
i.e., the average nodal degree is of order O(1) with respect to
n, it has long been seen in simulations that spectral clustering
on A is largely suboptimal. Via the impulse of statistical
physics tricks, mostly consisting in either approximating
(linearizing) belief propagation or mapping the community
detection problem into an Ising model analog, new spec-
tral clustering algorithms were proposed that are shown in



practice (and sometimes in theory [6]) to dramatically im-
prove over spectral clustering on A; this is notably the case
of spectral clustering on the non-backtracking operator B
[7] and on the (closely related) Bethe Hessian matrix Hr [8]
parametrized by r ∈ R.

In this article we focus on spectral clustering performed
over the matrix Hr, and propose an improved choice r = rc
for the parameter r, which differs from the parameter initially
suggested in [8]. This choice results in two important im-
provements: (i) our algorithm is not sign-based (unlike in [8])
and is able to make a clear distinction between classes; (ii)
Hrc is the only Hr matrix resilient to degree heterogeneity,
hence more suited to applications to real networks [9]. In the
next section we formally introduce the interrelated matrices
B and Hr.

2. MODEL AND MAIN RESULTS

2.1. Preliminaries

Consider a 2-class symmetric n-node graph G = G(E ,V)
(with E the set of edges, |E| = m, and V the set of nodes,
|V| = n) generated from a sparse DC-SBM model, i.e., with
adjacency matrix A ∈ {0, 1}n×n defined by

P (Aij = 1) = qiqj
C(xi, xj)

n
(1)

for q1, . . . , qn > 0 random and independently drawn with
E[qi] = 1, xi ∈ {−1, 1} the class label of node i, and
C(xi, xj) = cin > 0 if xi = xj or C(xi, xj) = cout < cin
if xi 6= xj . When qi = 1 for each i, we fall back on the
homogeneous degree SBM model. The problem of retrieving
classes information from the graph is feasible only above a
certain threshold. It was proved in [10] that class reconstruc-
tion is asymptotically possible if and only if the following
condition is met

√
Φ(cin − cout) > 2

√
c (2)

where Φ = E[q2] and c = (cin+cin)/2. From now on we will
assume to work in a regime where the condition is satisfied.

Standard spectral clustering methods, well adapted in
dense graphs, are however known to perform poorly close to
the above threshold condition. By default of efficient math-
ematical methods, the first well-performing spectral method
arose from statistical physics intuitions.

The main idea is as follows. One may map the cluster-
ing problem to a “minimal-energy” configuration of interact-
ing particles (the nodes i) under a given temperature-related
parameter r. The energy E({x}; r) formulation follows the
so-called dimensionless Ising Hamiltonian on G and reads

E({x}; r) = −
∑

i,j∈V:Aij=1

ath

(
1

r

)
xixj . (3)

Studying the system equilibria (at local minima of the en-
ergy) leads one to evaluate the Hessian matrix of the free en-
ergy F (r) = − log(Z), with Z the partition function of the
Boltzmann distribution P ({x}; r) = Z−1e−E({x};r). Under
a sparse (tree-like) network hypothesis that assumes a factor-
izable form for the joint probability of the xi’s, the Hessian
may be approximated by the Bethe Hessian matrixHr defined
at “temperature” r (up to a multiplicative constant) by:

Hr = (r2 − 1)In +D − rA (4)

with D = diag(d1, . . . , dn) (di = [A1n]i) the degree matrix.
However, selecting the parameter r (or temperature) in-

ducing minimal energy configuration is a delicate matter. At
high temperature (r → ∞), the free energy is dominated by
the entropy contribution and the xi’s become independent,
thereby not raising any clustering of the particles. On the
opposite, at low temperature the spins align in a non-trivial
way and the solution can be found, provided the detectability
threshold (2) is overtaken.

With an intuitive argument, the authors in [8] exploit
the relation between the Bethe Hessian and the related non-
backtracking operator B ∈ R2m×2m defined by

B(ij)(kl) = δjk(1− δil) (5)

for all {i, j, k, l} ∈ V such that AijAkl = 1. The Bethe
Hessian Hr relates to B in that eigenvalues of B correspond
to values of r for which Hr is singular. It was shown in [10]
that these eigenvalues {γi} (sorted by decreasing amplitudes)
of B satisfy the following:

γ1 = Φ
cin + cout

2
, γ2 = Φ

cin − cout
2

, |γi>2| ≤
√
cΦ.

(6)
Thus B has two isolated real eigenvalues, and all others are
contrived to a circle of radius

√
cΦ on the complex plane.

Exploiting the mapping between B and Hr, in the pre-
cise SBM setting (where qi = 1 and Φ = 1), [8] proposes
take r =

√
c, i.e., to take r to be radius of the main eigen-

value bulk of B. This choice is based on observing that the
sign of the elements of the second smallest eigenvector are
correlated with the class labels {xi}. Furthermore, [8] claims
that, for heterogeneous degree distributions (so in particular
for the DC-SBM setting), this choice should remain optimal,
i.e., r =

√
ρ(B) for ρ(·) the spectral radius.

Unlike in [8], we claim in the following that the choice
r =

√
ρ(B) is not optimal in the DC-SBM case. This is

first seen in simulations where H√
ρ(B)

often performs far
from optimally for either the DC-SBM model or for realistic
graphs. Even for rather sparse scenarios, spectral clustering
on the (supposedly suboptimal) matrices D−αAD−α (even
for α = 0) often outperforms Hr.



2.2. Main result

Let us start by considering how the Bethe-Hessian matrix acts
on the exact labels vector x:

(Hrx)i = (r2 − 1)xi + dixi − r
∑

k∈N (i)

xk

where k ∈ N (i) ⇔ Aik = 1 (that is N (i) is the set of
neighbors of i). Denoting ∂Si ≡ {j, Aij = 1 and xi = xj}
the set of neighbors of node i belonging to the same class
and, similarly, ∂Oi ≡ {j, Aij = 1 and xi 6= xj} the set of
neighbors of i from the opposite class, this simply reads

(Hrx)i = xi
[
(r2 − 1) + di − r

(
|∂Si | − |∂Oi |

)]
.

We now make the assumption (or rather the heuristic ap-
proximation) that, although the average node degree is of or-
der O(1) with respect to n, one can approximately claim that

|∂Si |
di
' cin
cin + cout

,
|∂Oi |
di
' cout
cin + cout

at least for those nodes i having many neighbors (close to the
decidability threshold (2), the approximation is mostly ade-
quate to scenarios where cout is rather large). This result can
be interpreted as follows. Given a graph, the degree di of
node i is fixed, and the probability of two neighboring nodes
to be in the same class provided that they are connected is
equal to cin/(cin + cout). Since the graph is sparse – hence
tree-like – we can consider the neighbors of a same node as
“independent” from one another. We then obtain

(Hrx)i ' xi
[
(r2 − 1) + di

(
1− r cin − cout

cin + cout

)]
(7)

where, under the DC-SBM model (1), the di’s may in general
be quite different. Thus, in order to retrieve an approximate
eigenvector equation for x, one must set

r ≡ rc =
cin + cout
cin − cout

(8)

in which case Hrcx ' (r2c − 1)x. As such, for r = rc, one
expects to see one dominant eigenvector ofHrc not tainted by
the degrees di.

Remark 1 (Homogeneous case). Note that in the homoge-
neous case where the qi’s are all equal and thus the di’s are
expected to be approximately the same, (7) is an approximate
eigenvector equation for all r’s. And thus rc is not a particu-
larly preferred candidate.

This remark explains the origin of the good performances
of the Bethe-Hessian for r =

√
c in the SBM case. In the DC-

SBM case instead, from our above arguments, proper spectral

clustering is only achieved for r = rc. The chosen gener-
alization of [8] to r =

√
ρ(B) is thus inappropriate. Com-

paring the two values, it is easily shown that rc ≤
√
ρ(B)

with equality right at the transition (2). Somewhat counter-
intuitively, we thus propose a value of r inside the main bulk
of eigenvalues of B. Besides, rc approximately corresponds
to an actual eigenvalue of B, as proved in [7] by exploiting
the tree-like structure of sparse graphs.

This said, it is still important to note that the authors in [8]
have identified (mostly through simulations) the eigenvector
carrying the class information as the one associated to the sec-
ond smallest eigenvalue of Hr for all positive r’s inducing an
asymptotic phase transition. This observation seems also to
hold in the DC-SBM case.

As such, our final claim may then be formulated as:

Claim 1 (Spectral Clustering on Hrc ). Assume a sparse DC-
SBM model for a graph G. Then, community detection on G is
efficiently performed, irrespective of the heterogeneity of the
degrees, by performing spectral clustering on the eigenvec-
tor attached to the second smallest eigenvalue of Hrc with rc
given in Equation (8).

2.3. Estimation of rc and relation to D−1A

A subsequent difficulty for practical application is that cin −
cout, and thus rc, is not directly accessible. Several solu-
tions here exist to retrieve a good approximation for rc. One
may for instance iteratively perform spectral clustering onHr

starting with, say, r =
√
ρ(B) (which can be estimated by∑

i d
2
i /
∑
i di), obtain a first estimate of the class compo-

nents, from which cin and cout are further estimated, and so
on. Another initialization option follows from

(D−1Ax)i =
∑

k∈N (i)

xk
di

=
|∂Si | − |∂Oi |

di
xi '

cin − cout
cin + cout

xi.

(9)

As such, rc can be retrieved, with the same approximation
made above on Hrcx, as a corresponding isolated (inverse)
eigenvalue of D−1A.1

3. NUMERICAL RESULTS

This section provides numerical support for our claimed re-
sults. We start first by considering synthetic DC-SBM graphs
with various laws for the qi’s. For comparison fairness and
adaptability to uneven class cardinalities, spectral cluster-
ing is systematically performed using the k-means algorithm
rather than on a sign-based method (as opposed to [8])

1This, in passing, raises the question as to why D−1A would not be an
equally valid matrix for spectral clustering as Hrc . The answer possibly lies
in the fact that, for small cin − cout (difficult clustering), the informative
eigenvector is associated with a small (and thus non-dominant, not isolated)
eigenvalue of D−1A.



We first focus on the case of two even size classes. While
the coming observations have been verified to be equally valid
for various heterogeneous settings, we will here depict the
most interesting and visible case where qi ∈ {0.4, 1.6} with
P (qi = 0.4) = P (qi = 1.6) = 1

2 . In this case, both Hrc

and H√
ρ(B)

essentially have the same performance in terms
of overlap (which measures the distance to random guess on
a [0, 1] scale), both overtaking that of D−1A. However, a
careful control of the second smallest eigenvectors of Hrc ,
H√

ρ(B)
and second largest of D−1A (Figure 1) reveals that

the second suffers from the presence of two distinct values for
the qi’s by exhibiting four ‘plateaus’ rather than two. This is
not the case of either Hrc or D−1A. Yet, when asked to re-
trieve exactly two classes, k-means usually performs a correct
partitioning, hence the equal overlap performance. Drawing
on this observation, Figure 2 compares the performance of the
same three methods and for the same choice of qi but now for
two classes of uneven sizes n

3 and 2n
3 , respectively. In this

more asymmetric situation, the performance of H√
ρ(B)

is
strongly affected by the qi’s that k-means wrongly confuses
for the genuine class divisions. Spectral clustering on Hrc

does not suffer this limitation.

Fig. 1. Second dominant eigenvector of Hrc , H√
ρ(B)

, and

D−1A for qi distributed as 1
2δ0.4+ 1

2δ1.6. In this case the qi’s,
i = 1, . . . , n, are sorted in four n4 -sized consecutive blocks as
(1.6, .4, 1.6, .4).

Table 1 provides a comparative overlap performance, on
the same real graphs as in [8], of H√

ρ(B)
, for the iterated

method discussed in Subsection 2.3 with initialization at r =√
ρ(B) (indicated as

√
ρ(B)

+
) or r = 1/λ2(D−1A) (indi-

cated as λ+2 (D−1A)), and for the oracle optimal r = ropt ∈
R. Consistently with our intuitive findings, it is observed
that ropt is systematically rather far from

√
ρ(B) while r =

1/λ2(D−1A) and further iterates are close. In terms of over-
lap, the proposed methods outperform the H√

ρ(B)
approach,

Fig. 2. Overlap performance of the three methods for an un-
even population |C1| = 2|C2| of classes C1 and C2, with qi’s
distributed as 1

2δ0.4 + 1
2δ1.6.

although some overlaps remain much lower than optimal, de-
spite the proximity of r to ropt; this is likely due both to a
finite-dimensional effect as well as to the specificities of the
possibly far-from-DCSBM looking graphs.

Graph / r
√
ρ(B)

√
ρ(B)

+
λ+2 (D−1A) ropt

Polblogs 0.32 0.59 0.03 0.90
(8 .01 ) (8 .01 ) (1 .09 ) (1 .15 )

(1 .94 ) (1 .00 )
Karate 1 0.94 0.94 1

(1 .78 ) (2 .14 ) (1 .15 ) (1 .78 )
(1 .19 ) (1 .19 )

Dolphins 0.93 0.97 0.97 0.97
(1 .61 ) (1 .61 ) (1 .04 ) (1 .08 )

(0 .97 ) (1 .08 )

Table 1. Overlap performance on benchmark graphs and, in
parentheses, starting and final values of r for the iterated esti-
mates (r+).

4. CONCLUDING REMARKS

This article proposes an improvement over the recently de-
veloped Bethe Hessian approach to community detection on
sparse graphs. We showed that the proposed new parametriza-
tion, while performing similarly on homogeneous graphs,
brings significant gains on more realistic heterogeneous
graphs, as confirmed by simulations on real networks.

The cornerstone of our approach however lies in a for-
tunate cancelling of the heterogeneity effect on the matrix
second smallest eigenvector for a precise parameter setting.
Estimating the latter satisfactorily, a point of crucial practical
importance, requires a more thorough analysis.

A line of further improvement lies in a deeper understand-
ing of the link to statistical physics and its extension to more
than two-class clustering.
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