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Abstract

In a seminal contribution, Schmitt-Grohé and Uribe (JPE, 1997), showed that the balanced-
budget rule (BBR) produces aggregate instability in an exogenous growth model with labor tax-
based adjustment. The present paper challenges this result in an endogenous growth framework
with a more general budget rule, involving deficit and debt in the long-run and making the BBR
a special case. We show that the emergence of aggregate instability dramatically depends on
the level of public spending. In particular, low public spending ensures determinacy. However,
in the case of high public spending, multiplicity arises, with four potential equilibria: two
high-growth BGPs, a low-growth trap, and a “catastrophic” equilibrium where the economy
asymptotically collapses. In addition, when the ratio of public spending is sufficiently large, a
subcritical Hopf bifurcation appears around the low-growth trap, giving rise to a homoclinic
orbit going around the neighborhood of the catastrophic equilibrium. A calibration exercise
confirms that these results are obtained for realistic values of parameters.

Keywords: Budget rules; Indeterminacy; Distortionary taxation; Public Debt; Endogenous

growth; Bifurcation.

1. Introduction

Understanding aggregate fluctuations is at the core of macroeconomics. In the context

of the emergence of externality-based endogenous growth models in the late 1980s, Ben-

habib and Farmer (1994) showed how labor demand externalities generating increasing

returns may produce indeterminacy2. Backed-up by the evaluation performed by Farmer

and Guo (1994), showing the capacity of such models to replicate the features of the US

business cycle, these models imposed the study of endogenous fluctuations as a major

research topic in macroeconomics.

1Corresponding author: maxime.menuet@univ-orleans.fr.
2The literature refers to local indeterminacy (an infinity of possible paths towards a given equilibrium)

and global indeterminacy (several possible paths towards different equilibria, starting from given initial
conditions). Many terms are used to characterize this property, including aggregate instability, sunspots,
sink, animal spirits, or self-fulfilling prophecies (Benhabib and Farmer, 1999). This paper is concerned
with both local and global indeterminacy.
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Among the different potential sources of indeterminacy, few received so much atten-

tion as the fiscal policy, and important debates surround the effects of public spending

and taxes in terms of aggregate fluctuations. In a seminal contribution, Schmitt-Grohé

and Uribe (1997) (hereafter SGU) reveal that fiscal policy can be a source of aggregate

fluctuations. In the neoclassical growth model, SGU notably show that under a balanced-

budget rule (hereafter BBR) the use of endogenous labor-income distortionary taxes to

finance fixed wasteful government spending may lead to aggregate instability, defined as

the local indeterminacy of the perfect-foresight equilibrium. On the contrary, exploring

SGUs proposition to remove indeterminacy, Guo and Harrison (2004) show that financ-

ing endogenous public spending with fixed tax rates on labor (or capital income) under

a BBR turns the equilibrium into determinate (precisely, saddle-path stable). Starting

from these two influential results, a rich and expanding literature aims at identifying the

different channels of fiscal policy-driven (in)determinacy.

However, so far little is known regarding the implications of fiscal deficits for aggregate

fluctuations. The existing literature rests on a BBR, and does not account for public

debt. Yet, the presence of public deficits and debt characterizes most developed countries

since the mid-1970.3 In addition, starting the 1980, many economies adopted fiscal rules

constraining deficit and/or debt.4 As such, the study of aggregate instability in indebted

economies is a major challenge facing economic theory.

This paper addresses this challenge. To introduce public debt and deficit, we relax the

BBR hypothesis. A number of recent works have shown that endogenous growth setups

are a useful framework for reporting on continuous grow of public debt in the long run. 5

In these lines, we pursue the research program opened by SGU, and explore the issue

of (in)determinacy as related to public deficits and debt, in a Romer-type endogenous

growth model.

Our results are as follows.

First, we show that, under endogenous growth, SGUs findings must be amended on

two grounds. On the one hand, aggregate instability only occurs if public spending is high.

In the opposite case with low public spending, the perfect-foresight balanced-growth path

3The deficit-to-GDP ratio was around 2.5% on average in OECD countries in the period 1970-2005,
and this ratio increased since the Great Recession (according to the 2017 IMF’s World Economic Outlook,
average general government gross debt in ratio of GDP in developed countries rose from around 72% in
2007 to roughly 105% in 2007; and the imbalances triggered by the public debt were at the core of the
2012 Eurozone debt crisis).

4For example, in eurozone countries, the Stability and Growth Pact (SGP) imposes deficit and debt
ceilings. More generally, among all types of fiscal rules, debt and deficit rules were enacted in more than
60 countries by 2012, namely roughly three times more than expenditure rules, and more than six times
more than revenue rules (see Schaechter et al., 2012; Combes et al., 2017).

5In exogenous growth setups, public debt is only transitory (see section 3 in SGU). With endogenous
growth, in contrast, public debt can grow in the long run; see, e.g., Minea and Villieu (2012), Boucekkine
et al. (2015), Nishimura et al. (2015a), Nishimura et al. (2015b), Menuet et al. (2017).

2



(hereafter BGP) is unique and well-determined, such that there is no aggregate instability.

On the other hand, in the case with high public spending, our aggregate-instability result

covers a broader class of mechanisms than in SGU, because it may rely on local or global

indeterminacy.

Second, we subsequently extend and generalize these findings to the presence of deficit

and debt. We confirm that aggregate instability emerge only when public spending (in

ratio of GDP) are sufficiently large; however, accounting for deficit and debt yields two ad-

ditional equilibria, and the model now displays four potential equilibria: two high-growth

BGPs, a low-growth trap (with growth close to zero), and a “catastrophic” equilibrium

where the economy asymptotically collapses.

Third, when the ratio of public spending is sufficiently large, a subcritical Hopf bi-

furcation appears around the low-growth trap, giving rise to a homoclinic orbit going

around the neighborhood of the catastrophic equilibrium.

Interestingly, although indeterminacy can be avoided with sufficiently small public

spending, the economy cannot reach the highest BGP in such a case. This BGP can be

achieved only if public spending is large enough, but at the price of aggregate instability

(local and global indeterminacy).

Regarding the related literature, Benhabib and Farmer (1999) provide a comprehen-

sive discussion of the different sources of indeterminacy, notably regarding the role of

externalities and increasing social returns. Our model belongs to this class, since a hu-

man capital externality generates increasing returns. Besides, our paper is close to a rich

and expanding literature aiming at identifying the different channels of fiscal policy-driven

(in)determinacy. Taking SGU and Guo and Harrison (2004) setups as benchmarks, these

channels can be roughly divided into three categories. The first one relates to the way

taxes are modeled; examples include taxes on consumption, instead of labor (Giannit-

sarou, 2007), or progressive taxation6 (Guo and Lansing, 1998; Christiano and Harrison,

1999). Second, the way public spending are modeled is also of importance. Growth- or

utility-enhancing, instead of wasteful public spending, can either support determinacy

(Chen, 2006) or indeterminacy (Guo and Harrison, 2008, with exogenous growth, and

Cazzavillan, 1996; Palivos et al., 2003; Park and Philippopoulos, 2004 with endogenous

growth). Third, the (de)stabilizing effects of fiscal policy may significantly differ when

departing from SGU and GH setups aside from alternative assumptions on taxes and

public spending.7

6For example, Guo and Lansing (1998) find that a progressive income tax can stabilize the economy.
This result does no longer hold when progressive taxes are combined with growth-enhancing (Chen
and Guo, 2013b,a) or utility-enhancing public spending (Chen and Guo, 2014), or in the presence of
heterogeneous agents Bosi and Seegmuller (2010).

7Such departures include non-separable utility function (Linnemann, 2008; Nourry et al., 2013; Abad
et al., 2017), CES production function (Guo and Lansing, 2009; Ghilardi and Rossi, 2014), two-sector
models (Nishimura et al., 2013; Chang et al., 2015), or an open economy (Huang et al., 2017).
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With respect to this literature, we remain faithful to SGUs setup, and conserve waste-

ful public spending, endogenous flat-rate taxes on endogenous labor, and an additive

utility function. Therefore, our (in)determinacy results are not triggered by the channels

previously emphasized. On the methodological side, moving from exogenous to endoge-

nous growth dramatically changes SGUs conclusions regarding the effects of labor taxes.

In addition, our analysis provides a rich environment for studying complicated dynamics

in a simple two-dimensional system.

Moreover, our results do not depend on the famous Benhabib-Farmer-Guo condition

for indeterminacy (Benhabib and Farmer, 1994; Farmer and Guo, 1994), namely that the

increasing labor demand must be positively sloped and steeper than the labor supply. 8

In our model with constant returns-to-scale and decreasing returns in all private factors,

the labor demand is a decreasing function of the wage, bur nonetheless consistent with

indeterminacy.

Finally, our findings highlight a new channel in the emergence of indeterminacy,

through public spending. Indeed, large public spending (in percent of GDP) is a nec-

essary, but not sufficient, condition for the birth of aggregate instability, resulting from

either local or global indeterminacy.

Our results have important policy implications. First, contrary to SGUs main finding,

(labor) taxes alone are not found to be a source of indeterminacy; indeed the amount of

public spending has crucial implications in de(stabilizing) a growing economy. Second, in

the presence of public debt, increasing public spending with the aim of reaching a higher

BGP may bring the economy close to a low-growth trap in the long run. Finally, with

large public spending, the presence of a subcritical orbit triggers possible large oscilla-

tions around the low-growth trap. Such finding can shed some light on the concept of

debt “super-cycles” in the post-crisis low-growth context (see Rogoff, 2015).

The paper is organized as follows. Section 2 presents the model, section 3 analyzes

the no-debt special case, and section 4 solves the model in the general case. Sections 5

and 6 look at local and global dynamics, respectively. Section 7 provides a calibration

exercise. Finally, section 8 concludes the paper.

2. The model

We consider a simple continuous-time endogenous-growth model with N representa-

tive individuals and a government. Each representative agent consists of a household and

a competitive firm. All agents are infinitely-lived and have perfect foresight. Population

remains fixed over time, and we denote individual quantities by lower case letters, and

aggregate quantities by corresponding upper case letters, namely X = Nx for all variable

X.

8The survey of Benhabib and Farmer (1999) provides a thorough discussion of this condition.
4



2.1. Households

The representative household starts at the initial period with a positive stock of

capital (k0), and chooses the path of consumption {ct}t≥0, hours worked {lt}t≥0, and

capital {kt}t>0, so as to maximize the present discount value of its lifetime utility. We

follow SGU’s specification, namely

U =

∞∫

0

e−ρt

{

log(ct) −
B

1 + ε
l1+ε
t

}

dt, (1)

where ρ ∈ (0, 1) is the subjective discount rate, ε ≥ 0 the constant elasticity of intertem-

poral substitution in labour, and B > 0 a scale parameter.

Households use labor income (wtlt, where wt is the hourly wage rate) and capital

revenues (qtkt, where qt is the rental rate of capital), to consume (ct), invest (k̇t), and buy

government bonds (dt), which return the real interest rate rt. They pay taxes on wage

income (τtwtlt, where τt is the wage tax rate) and lump-sum taxes πt (in equilibrium, πt

is the share Πt/N of total lump-sump taxes Πt); hence the following budget constraint

k̇t + ḋt = rtdt + qtkt + (1 − τt)wtlt − ct − πt. (2)

The first order conditions for the maximization of the household’s programme give

rise to the familiar Keynes-Ramsey rule (with qt = rt in competitive equilibrium)

ċt

ct

= rt − ρ, (3)

and to the static relation

(1 − τt)wt/ct = Blεt . (4)

Eq. (4) means that, at each period t, the marginal gain of hours worked (the net real

wage (1 − τt)wt, expressed in terms of marginal utility of consumption 1/ct) just equals

the marginal cost (Blεt ).

Finally, the optimal path of consumption has to verify the set of transversality con-

ditions

lim
t→+∞

{exp(−ρt) u′ (ct) kt} = 0 and lim
t→+∞

{exp(−ρt) u′ (ct) dt} = 0,

ensuring that lifetime utility U is bounded.9

9On the BGP associated to constant growth and interest rates (γ∗ and r∗, respectively), transversality
conditions correspond to the no-Ponzi game constraint γ∗ < r∗. Such condition ensures that public debt
will be repaid in the long run, and does not preclude the possibility that γ > r in the short run.
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2.2. Firms

Output of the individual firm (yt) is produced using a constant returns-to-scale tech-

nology with a human capital externality, namely yt = Ãkα
t h1−α

t , where kt and ht respec-

tively stand for physical and human capital, Ã > 0 is a scale parameter, and α ∈ (0, 1)

is the elasticity of output to private capital.

According to Romer (1986), human capital is produced both by raw labor (or training

activity) lt, and by the economy-wide stock of knowledge Xt that generates positive

technological spillovers onto firms’ productivity, namely ht = Xtlt. We assume that

knowledge is produced by a simple Cobb-Douglas technology depending on aggregate

levels of physical and human capital: Xt = Hβ
t K1−β

t , where β ∈ (0, 1) is a measure of

human capital efficiency in the accumulation of knowledge. At aggregate level, we then

obtain Ht = KtL
1/(1−β)
t = KtL

1+φ
t , with 1 + φ = 1/(1 − β) ≥ 1.10

As usual, the production function exhibits constant returns-to-scale at the individual

level, and decreasing returns in all private factors. Thus, the first order conditions for

profit maximization (relative to private factors) are

rt = α
yt

kt

, (5)

wt = (1 − α)
yt

lt
. (6)

At the aggregate level, the knowledge externality will allow reaching an endogenous

growth path, because the social return of capital is not decreasing. Effectively, the ag-

gregate production function is

Yt = ÃKtL
(1+φ)(1−α)
t . (7)

2.3. The government

The government provides public expenditures Gt, levies taxes, and borrows from

households. Fiscal deficit is financed by issuing debt (Ḋt); hence, the following budget

constraint

Ḋt = rtDt + Gt − τtwtLt − Πt. (8)

We shall assume that the government claims a fraction g of aggregate output for public

spending Gt = gYt. As in SGU, public expenditure has no effect on utility or production

(i.e. wastefull public spending).11 In addition revenues retrieved from lump-sum taxation

10Human capital externalities, i.e. the fact that your coworkers’ human capital makes you more
productive, are well documented in empirical literature (see, e.g. Rauch, 1993; Moretti, 2004, who find
very significant estimates of human capital externalities). Alternative models of endogenous growth,
based on the Lucas (1988)’s archetype, consider the formation of human capital through individual
training decisions that compete with productive activities.

11For a model with productive expenditure, see, e.g. Menuet et al. (2017).
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are assumed to be a constant fraction of aggregate output Π t = vYt. At this stage, there

are two exogenous parameters (g and v) and two endogenous policy instruments in Eq.(7):

public debt (Dt), and the tax rate (τt). To close the model, one instrument has to be

exogenously specified. To this end, we suppose that the government follows a fiscal rule

Ḋt = θYt, (9)

where θ is the deficit-to-GDP ratio.12

2.4. Equilibrium

To find endogenous growth solutions, we deflate all growing variables by the capital

stock to obtain long-run stationary ratios, namely (we henceforth omit time indexes):

yk := Y/K, ck := C/K and dk = D/K.

From (4), (5), and (7), we obtain the equilibrium level of output

yk = A

(
(1 − α)(1 − τ)

ck

)ψ

, (10)

where ψ := (1+φ)(1−α)
1+ε−(1+φ)(1−α)

> 0,13 and A := Ã
(

ÃNε

B

)ψ

.

The inverse relationship between the consumption ratio and the output ratio in Eq

(10) comes from the labor market equilibrium (4). As the consumption ratio increases, the

marginal utility of consumption decreases, thus inducing the representative household to

substitute leisure for working hours (since ε ≥ 0, leisure and consumption are complement

in equilibrium). As a result, the equilibrium labor supply and output are reduced. The

same arises following an increase in the tax rate, which reduces net real wage.

As the production function exhibits constant returns-to-scale at the individual level,

and decreasing returns in all private factors, labor demand is normal, i.e. decreasing

with real wage. Thus our indeterminacy results do not rest on a positively-sloped labor-

demand curve, contrasting with Benhabib and Farmer (1994); Farmer and Guo (1994).14

12Such a deficit rule is discussed in Minea and Villieu (2012); Menuet et al. (2017).
13The denominator is strictly positive under the sufficient unnecessary condition β < α, that we assume

throughout the paper.
14In Benhabib and Farmer, 1994, p. 30, a necessary condition for indeterminacy is that (using our

notations): (1 + φ)(1 − α) > 1 + ε. This implies that the aggregate labor demand has to be increasing
with real wages (see Eqs. (6) and (7) with (1+φ)(1−α)−1 > ε ≥ 0). For the labor demand to slope up
with real wages, increasing returns must be important, as discussed by Benhabib and Farmer (1994) and
Schmitt-Grohé (1997). In our model, as we have seen, we assume (1 + φ)(1−α) < 1 + ε, such that labor
demand is normal, i.e. decreasing with real wages. We nevertheless obtain indeterminacy, thanks to the
constant social return of capital at equilibrium. In addition, in our model, indeterminacy is consistent
with lowly-increasing social returns, as illustrated by our quantitative analysis in section 7 (see Benhabib
and Farmer, 1999, for a synthesis of several ways to obtain indeterminacy with small increasing returns).
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The optimal aggregate consumption behaviour is, from (3) and (4),

Ċ

C
= αyk − ρ. (11)

Using Eqs. (6) and (9), the tax rate on wages is endogenously determined by

τ =
αdk + g − v − θ

1 − α
, (12)

and the path of the capital stock is given by the goods market equilibrium

K̇

K
= (1 − g)yk − ck. (13)

From (6) and (8), the path of public debt is Ḋ = αykD+(g−v)Y −τ(1−α)Y . Hence,

the reduced-form of the model is obtained by Eqs. (5)-(6)-(9)-(11)-(12)-(13), namely






ċk

ck

= (α + g − 1)yk − ρ + ck,

ḋk

dk

=
θyk

dk

− (1 − g)yk + ck,

(14)

where, from Eqs. (10) and (12)

yk = A

(
d̄ − αdk

ck

)ψ

=: yk(ck, dk), (15)

with d̄ := 1 + v − α − g + θ ≥ αdk ≥ 0.15

At equilibrium, any increase in the deficit ratio reduces the output ratio. Indeed, by

increasing wage taxation, dk discourages labor supply. The same mechanism applies in

case of increases in public spending, through coefficient d̄.

We define a BGP as a path on which consumption, capital, output and public debt

grow at the same (endogenous) rate, namely: ċk = ḋk = 0 in (14). Thus, for any steady-

state i, we have: γi := Ċ/C = K̇/K = Ẏ /Y = Ḋ/D, while the real interest rate (ri) is

constant.

We determine the steady-state solutions of the model in section 4, and analyze local

and global dynamics in sections 5 and 6, respectively. Beforehand, for the stake of clarity,

let us turn our attention to a simple special case without public debt.

15Notice that d̄ ≥ αdk is a necessary condition for the tax rate on wage to be less than one.

8



3. A preliminary analysis: the case without public debt

Without public debt, our model is similar to Schmitt-Grohé and Uribe (1997), but in

an endogenous growth context. In this special case, θ = dk = 0 at each instant, and the

reduced form of the model (14) boils down to

ċk

ck

=
Ċ

C
−

K̇

K
= (α + g − 1)yk(ck) − ρ + ck, (16)

where yk(ck) = A
(

d̄
ck

)ψ

.

To fix ideas, suppose that ψ = 1. Ignoring (for the moment) the degenerate solution

ck = 0, relation ċk = 0 then has two real solutions: cP
k = 1

2

[
ρ +

√
ρ2 − 4Ad̄ (α + g − 1)

]

and cQ
k = 1

2

[
ρ −

√
ρ2 − 4Ad̄ (α + g − 1)

]
, provided that ρ2 > 4Ad̄ (α + g − 1). If α+g <

1, cQ
k is negative, and there is one unique positive long-run solution cP

k . As dċk/dck > 0

this solution is unstable (see Figure 1a). If α + g > 1, both solutions are positive, and

ċk has a minimum at ĉk =
√

Ad̄ (α + g − 1). Therefore, cP
k is unstable and cQ

k is stable

(see Figure 1b). Since the consumption ratio ck is a jump variable, the steady state P

associated to cP
k is locally determined, while the steady state Q associated to cQ

k is locally

undetermined.

1a: α < 1 − g 1b: α > 1 − g

Figure 1: Phase portrait in the no-debt case

The intuition of these results is as follows. A necessary and sufficient condition for a

BGP to be stable is that dċk/dck < 0. Yet, in Eq. (16), an increase in the consumption

ratio ck exerts two effects.

First, capital accumulation (K̇/K) is reduced, because consumption is higher (direct

effect). This rises the law of motion of the consumption ratio ċk/ck.

Second, the output ratio yk decreases, as we have seen (indirect effect), with two

consequences: (i) the return of capital (r = αyk) is reduced, which affects the consumption

path (Ċ/C) in the Keynes-Ramsey relationship; (ii) simultaneously, the capital path
9



(K̇/K) is also affected in the goods market equilibrium, through the public spending

puncture ((1 − g)yk).

If 1 − g > α, the second consequence (ii) outweighs the first (i), so that the indirect

effect also rises the law of motion of the consumption ratio ċk/ck. In this case, both the

direct and the indirect effects play in the same direction, and we have: dċk/dck > 0;

hence the local instability of steady state P . To circumvent this unstable dynamics, the

consumption ratio must jump initially to its long-run value cP
k . This makes P locally

determined, as in Figure 1a (there is no aggregate instability in the form of SGU, 1997).

If 1 − g < α, the first consequence (i) outweighs the second (ii), so that the indirect

effect leads to a decrease in the law of motion of the consumption ratio ċk/ck. In this

case, the direct and the indirect effects play in opposite directions, and we cannot, a

priori, assert unambiguously the sign of dċk/dck. However the condition dċk/dck = 0 is

precisely the minimum ĉk of ċk, such that the direct and the indirect effects offset each

other. Clearly, since cQ
k < ĉk < cP

k (see Figure 1b), the direct effect dominates at point

P , while the indirect effect dominates at point Q.16 Thus dċk/dck > 0 in the vicinity of

P, and dċk/dck < 0 in the vicinity of Q. This makes steady-state P locally determined,

and steady-state Q locally undetermined.

Indeed, in the neighborhood of Q, any initial value of the consumption ratio can be

chosen, which makes the adjustment path to Q subject to sunspots.17 If, during the tran-

sition path, households expect a high return of capital, they reduce initial consumption to

increase saving. This reduces the marginal utility of leisure and rises labor supply, which

will, in turn, produce a high return of capital. If they expect a low return of capital

and increase initial consumption, this expectation will also be validated at equilibrium,

because the marginal utility of leisure will rise, thus discouraging labor supply. Such

self-fulling prophecies are the mechanism that drives the indeterminacy of point Q.

Our findings challenge Schmitt-Grohé and Uribe (1997)’s result. In a neoclassical

exogenous growth model, SGU show that aggregate instability, defined as the local in-

determinacy of the perfect-foresight equilibrium, occurs when taxes are levied on labor

income. In our endogenous growth setup, their analysis needs to be amended on two

levels. First, in the case with low public spending (g < 1−α), the perfect-foresight BGP

is unique and well-determined, such that there is no aggregate instability. Second, in

the case with high public spending (g > 1 − α), our aggregate-instability result covers a

broader class of mechanisms than in SGU, because it relies both on local and on global

indeterminacy. Indeed, as there are two possible reachable BGPs in the long run (P and

Q), and ck is a jumpable variable, not only the transition path to solution Q is undeter-

16The consumption ratio is very small at this steady state, so that the direct effect does not have much
strength.

17In deterministic perfect-foresight models, local indeterminacy can be associated to the existence of
sunspot equilibria (see, e.g., Woodford, 1986a,b; Matsuyama, 1991; Benhabib and Farmer, 1999).
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mined, but also the long-run solution towards which the economy converges in the long

run (due to the multipliticy of BGPs).

The following sections extend and generalize these findings in the general version of

the model with public debt.

4. Steady states in the general case with public debt

With public debt, long-run endogenous growth solutions can be described by two

relations between ck and dk.

The first one is the ċk = 0 locus, which comes from the Keynes-Ramsey relation (11)

and the IS equilibrium (13)

dk = d1(ck) =
1

α

{

d̄ − ck

(
ρ − ck

(α + g − 1)A

)1/ψ
}

. (17)

The second relation is the ḋk = 0 locus, related to the government’s budget constraint

(8), and the deficit rule (9)

θyk(ck, dk) = [(1 − g)yk(ck, dk) − ck]dk. (18)

In this section, we establish analytical results for the case θ = 0, which characterizes

the balanced-budget rule, associated with no deficit (but possibly to a positive inherited

public debt, i.e. dk0 ≥ 0). Numerical simulations in section 7 show that our results

continue to hold for reasonable values of the deficit ratio θ > 0.

Steady-state solutions are characterized by the crossing-point of Eqs. (17) and (18).

A trivial solution, denoted by point D, is associated to ck = 0 =: cD
k and dk = d̄/α := dD

k

(in this case, we have yD
k = 0). The couple (cD

k , dD
k ) is such that the economy asymptoti-

cally vanishes. Although this “catastrophic” solution might be seen as not economically

attractive, it cannot be rejected without assessing local and global dynamics of the model,

as we will see.18

Let us now study the solutions associated to (strictly) positive consumption and out-

put. First of all, if θ = 0, Eq. (17) leads to

γ(ck, dk)dk = 0,

where γ := (1−g)yk(ck, dk)−ck is the economic growth rate. Disregarding negative long-

run growth rate, this condition implies that either the long-run public debt is positive and

the associated growth rate is zero (zero-growth solution, such as dk > 0 ⇒ γ(ck, dk) = 0),

or the long-run growth rate is positive, with zero public debt (γ(ck, dk) > 0 ⇒ dk = 0).

18Clearly, households’ preferences are defined only for ct > 0, but the steady state D can be asymp-
totically reached with limt→+∞ ct = 0+.
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The following theorem describes the long-run solutions of the model.

Theorem 1. The long-run equilibria are characterized by the following regimes.

• Regime L (low public spending): g < 1 − α. There is one positive growth solution
(point P ), and one no-growth solution (point M).

• Regime H (high public spending): g > 1 − α. There are two critical levels A1 and
A2 (with 0 < A1 < A2), such that regime H is subdivided between three cases.

– Regime H1: A < A1. There is one positive growth solution (point Q), and the
degenerate solution (D).

– Regime H2: A1 < A < A2. There are two positive growth solutions (points P
and Q), the no-growth solution (point M), and the degenerate solution (D).

– Regime H3: A > A2. There is one no-growth solution (point M), and the
degenerate solution (D).

Proof. We adopt a three-step proof. The first two steps analyze the no-growth (M) and

the positive growth solutions (P and Q), respectively, and the last step completes the

description of the equilibria.

i. No-growth solution. This solution is characterized by (1 − g)yk(ck, dk) = ck >

0. In addition, from the Keynes-Ramsey relation (11), we have: γ = Ċ/C = 0 ⇔
αyk(ck, dk) = ρ. Consequently, the no-growth solution (denoted by the point M in Figure

1) is characterized by cM
k = (1 − g)ρ/α, and, from (17),

dM
k =

1

α

{

d̄ − cM
k

( ρ

αA

)1/ψ
}

. (19)

Outstandingly, by Eq. (15), the equilibrium condition (1 − g)yk(ck, dk) = ck leads to

the decreasing relation: ck = [(1−g)A]1/(ψ+1)[d̄−αdk]
ψ/(1+ψ), whose maximum is reached

at dk = 0 and ck = [(1 − g)A]1/(ψ+1)d̄ψ/(1+ψ) =: ck. Those steady states associated with

ck > c̄k are such that long-run economic growth is negative, which we exclude.

ii. Positive growth solutions. As dk = 0, we have, using Eq. (17),

Φ(ck) := d̄ − ck

(
ck − ρ

(1 − α − g)A

)1/ψ

= 0. (20)

As demonstrated in Appendix 1, if g < 1−α, there is a unique root (denoted by point

P in Figure 2a), for all A > 0. In contrast, if g > 1 − α, there is a threshold A2, such

that there are two roots (denoted by points P and Q in Figure 2b) iff A < A2. These

results generalize the findings obtained in the simple model of section 3.

iii. Existence. The point M characterizes a solution if: (i) dM
k > 0, namely if

d̄ > ρ
α

(
ρ

αA

)1/ψ
, and (ii) cP

k < c̄k, where c̄k :=
[
(1 − g)Ad̄ψ

]1/(1+ψ)
. To sump up, the set of

steady-states are fully characterized by four configurations.

12



• g < 1−α. There are two steady-states: the no growth (M) and the positive growth

(P ) solutions19 (see Figure 2a) – defining the regime L.

• g > 1 − α. As shown in Appendix 1, there is a threshold A1, where 0 < A1 < A2,

such that: cP
k < ck iff A > A1. Therefore, we can distinguish three subcases

according to the value of A.

– If A < A1, as cP
k > ck, there are two steady-states: the degenerate (D), and

the positive growth solution Q – defining the regime H1 (see Figure 4.2 in

section 6).

– If A1 < A < A2, as cP
k < ck, there are four steady-states: the degenerate

(D), the two positive-growth (Q and P ), and the no-growth (M) solutions

(see Figure 2b) – defining the regime H2.

– If A > A2, as cP
k < ck, there are two steady-states: the degenerate (D), and

the no-growth (M) solutions – defining the regime H3 (see Figures 6 in section

6). �

2a: Regime L (g < 1 − α) 2b: Regime H2 (g > 1 − α)

Figure 2.1: The Steady States (θ = 0)

19The point M is the unique crossing-point of Eqs. (17) and (18) in the open interval dk ∈ (0, d̄/α),

provided that ρ is small enough. Effectively, we have (i) dM
k > 0, since d̄ > 0 ≈ ρ

α

(
ρ

αA

)1/ψ
, and, from

(20), (ii) cP
k = [(1 − α − g)Ad̄ψ]1/(1+ψ) < [(1 − g)Ad̄ψ]1/(1+ψ) =: ck.

13



2c: Regime L (g < 1 − α) 2d: Regime H2 (g > 1 − α)

Figure 2.2: The Steady States (θ > 0)

Notice that, since cQ
k < cP

k and dQ
k = dP

k = 0, the output ratio and the return of

capital are higher at point Q than at point P . The BGP Q is then associated with a

higher growth rate than P.

For positive values of the deficit ratio (namely θ > 0), results are qualitatively un-

changed, as show Figures 2c and 2d. The major change is that the ḋk = 0 locus is now a

hump-shaped curve, which intersect the ċk = 0 locus, two, three, of four times, depend-

ing on parameters. The existence conditions of the different long-run solutions are only

slightly amended, as shows our numeric results in section 7.

Fundamentally, the multiplicity that arises in our model comes from the interaction

between two non-linear relationships linking the consumption and the deficit ratios.

The first one is related to the government’s budget constraint (θyk = γdk) that can

be rewritten as θ = Ḋ/Y = dk[(1 − g) − ck/yk]. This relation describes a bell-curve

bewteen ck and dk. Indeed, there are two conflicting forces as dk increases. First, the

deficit-to-output ratio rises Ḋ/Y (direct effect). Second, the tax rate increases, leading to

a decrease of yk, namely an increase of ck/yk in the bracketed term. This in turn reduces

equilibrium economic growth, hence the deficit-to-output ratio Ḋ/Y (indirect effect).

As the deficit-to-output ratio is constant at θ on the BGP, the increase of dk exerts a

nonlinear effect on the consumption ratio ck. Consequently, due to the budget rule, each

value of ck is consistent with two values of dk: a small value associated to high economic

growth, and a high value associated to low growth.

The second relation comes from the assumption of the balanced-growth in the long

run (namely K̇/K = Ċ/C = γ). According to the Keynes-Ramsey relationship (12), and

14



the IS equilibrium (13), this condition amounts to (1 − g)yk − ck = αyk − ρ, or

ck − ρ = (1 − g − α)yk(ck, dk). (21)

As we have seen, yk negatively depends on dk and ck through the labour market

equilibrium (see Eq. (15)). The relation between ck and dk then crucially depends on

the sign of 1 − g − α, as emphasized in section 3. If g < 1 − α (regime L), an increase

of ck decreases the RHS of (21), and rises the LHS, thus generating an unambiguously

monotonic decreasing relation between ck and dk, as depicted in Figures 1a-2a. If g > 1−α

(regime H), both sides of Eq. (21) positively depend on ck, which produces a non-

monotonic relationship between ck and dk. Consequently, any deficit ratio is associated

with two consumption ratios.

The role of the condition g > (<)1 − α is intuitive. As dk increases, the growth rates

of consumption (Ċ/C) and private capital (K̇/K) decreases, through an adverse effect

on output. However, the impact of the output ratio on the growth rate of consumption

depends on the return of capital (α), while its impact on the growth rate of capital

depends on public spending (1 − g). Therefore, if 1 − g > (<)α, the investment-goods

sector is more (less) sensitive than the consumption-goods sector to a change of dk, and

the consumption ratio ck must adjust in order to restore the equality K̇/K = Ċ/C along

the BGP.

Let us now study local dynamics.

5. Local dynamics

By linearization, in the neighborhood of steady-state i, i ∈ S = {D,M,P,Q}, the

system (14) behaves according to (ċk, ḋk) = Ji(ck − ci
k, dk − di

k), where Ji is the Jacobian

matrix. The reduced-form includes one jump variable (the consumption ratio ck0) and

one pre-determined variable (the public-debt ratio dk0, since initial stocks of public debt

D0 and private capital K0 are predetermined). Thus, for BGP i to be well determined,

Ji must contain two opposite-sign eigenvalues. Using (14), when θ = 0, we compute

Ji =

(
CC i CDi

DC i DDi

)

,

where

CC i = ci
k[1 + (α + g − 1)yci], (22)

CDi = ci
k(α + g − 1)ydi, (23)

DDi = −γi − (1 − g)ydidi
k, (24)

DC i = −(1 − g)ycidi
k + di

k, (25)
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with, using (15),

yci :=
∂yi

k

∂ci
k

= −
ψyi

k

ci
k

< 0, and ydi :=
∂yi

k

∂di
k

= −
αψyi

k

d̄ − αdi
k

< 0. (26)

Hence, the trace and the determinant of the Jacobian matrix are, respectively

Tr(Ji) = ci
k[1 + (α + g − 1)yci] − γi − (1 − g)ydidi

k, (27)

det(Ji) = −ci
k[γ

i + (1 − g)di
kydi + (α + g − 1)(γiyci + di

kydi)]. (28)

The following theorem establishes the topological behaviour of each steady-state.

Theorem 2. (Local Stability)

• In regime L, M is locally over-determined (unstable), and P is locally determined
(saddle-point stable).

• In regime H, D is locally determined (saddle-point stable). The other steady-states
are characterized as follows.

– In regime H1, Q is locally under-determined (stable).

– In regime H2, P is locally determined (saddle-point stable), Q is locally under-
determined (stable), and M is locally over-determined (unstable).

– In regime H3, there is a critical public spending level gh > 1 − α, such that

∗ If 1 − α < g < gh, M is locally over-determined (unstable),

∗ If g = gh, a Hopf bifurcation occurs,

∗ If gh < g, M is locally under-determined (stable).

Proof. We study the local stability of steady-states in each regime.

(i) Regime L.

At steady-state P , we have dP
k = 0, thus: Tr(JP ) = cP

k [1 + (α + g − 1)ycP ] − γP , and

det(JP ) = −cP
k γP [1 + (α + g − 1)ycP ]. As g < 1 − α and ycP < 0, det(JP ) < 0, namely

there are two opposite-sign eigenvalues. Consequently, P is saddle-point stable.

At steady-state M , cM
k > 0, dM > 0 and γM = αyM

k − ρ = 0, namely Tr(JM ) =

cM
k [1 + (α + g − 1)ycM ] − (1 − g)ydMdM

k , and det(JM ) = −αcM
k dM

k ydM > 0. As ycM < 0

and ydM < 0, we have det(JM ) > 0, and Tr(JM) > 0, and there are two positive eigen-

values. Consequently, M is locally unstable.

(ii) Regime H.

First, Appendix 2 shows that the degenerate point D is a saddle-point.

Second, let us consider the two solutions with positive economic growth. At steady-

states P and Q, we have di
k = 0, thus: Tr(Ji) = ci

k[1 + (α + g − 1)yci] − γi, and

det(JP ) = −ci
kγ

i[1 + (α + g − 1)yci] for i = P,Q. Since DC i = 0, there is one negative
16



eigenvalue (λi
1 = −γi) and one eigenvalue that changes sign, depending on the considered

equilibrium (λi
2 = ci

k[1+(α+g−1)yci]). With yci = −ψyi
k/c

i
k and ci

k = ρ−(α+g−1)y−ki

at steady states i = P,Q, we obtain λi
2 := λ2(c

i
k) = ci

k +ψ(ci
k−ρ). Thus λi

2(ĉk) = 0, where

ĉk := ψρ/(1+ψ) is the minimum of Φ on [0, ρ) , see Eq. (20). Since cQ
k < ĉk and cP

k > ĉk,

it follows that λQ
2 < 0 and λP

2 > 0. Consequently, P is characterized by two opposite-sign

eigenvalues and is locally determined (saddle-point stable), while Q is characterized by

two negative eigenvalues and is locally undetermined (stable). This analysis generalizes

the simple case of section 3.

Third, in the neighbourhood of the no-growth trap (point M), the dynamics are

more complicated. As ycM = −ψ/(1 − g) < 0 and ydM < 0, we have det(JM) > 0, as in

the case g < 1 − α. However, the Trace of the Jacobian matrix now changes sign at

1 − (1 − g)ydMdM
k /cM

k = (1 − α − g)ycM . (29)

Therefore, if Tr(JM) > 0, JM has two positive eigenvalues and M is over-determined,

while if Tr(JM ) < 0, JM has two negative eigenvalues and M is under-determined. The

Hopf bifurcation arises for Tr(JM) = 0. At this point, a periodic orbit through a local

change in the stability properties of M appears. Since DDM > 0, a necessary condition

for Tr(JM ) to change sign is CCM < 0. Hence the public spending ratio must be higher

than gm, where: gm := 1+ψ(1−α)
1+ψ

> 1 − α. Then, by inspection of relations (26)-(29), we

can establish the following lemma.

Lemma 1. The Hopf bifurcation occurs at the unique value gh > gm > 1 − α, such that

gh =
A0(1 − αψ) + ψ(1 − α + v)

A0 + ψ
.

where A0 := A(ρ/αA)(1+ψ)/ψ.20

�

Figure 3 illustrates the topological behavior of point M according to the public spend-

ing ratio.

Figure 3: Topological behavior of the no-growth solution

20To ensure that gh > gm, we assume that α(1 + ψA0)<v(1 + ψ).
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An important feature of the model is that the Hopf bifurcation can arise only in

the case where the steady states associated with positive BGP (namely, P and Q) do

not exist, namely in regime H3. Effectively, the Hopf bifurcation exists only in the case

gh > gm, such that the ċk = 0 locus must be positively sloped at M , as in Figure 6.2

below. This excludes the existence of points P and Q.

The major difference between regimes H and L is the presence or not of the catas-

trophic equilibrium D. In regime L this point is not relevant, because it cannot be

reached unless the economy is initially at zero. Effectively, for all positive value of ck, L
is defined only if ck > ρ. Therefore, as negative consumption ratios are excluded, steady

state D cannot be reached. This is no longer the case in regime H, since this regime is

characterized by ck < ρ.

As regards the local stability of the positive growth solutions P and Q, the difference

between the two equilibria only comes from the sign of the term CC i = ∂ċk/∂ck in

the Jacobian matrix. As in section 3, steady state Q is locally undetermined because

CCQ < 0; hence the law of motion of consumption is stable (so as the law of motion

of public debt). On the contrary, as CCP > 0, the law of motion of consumption is

unstable in the neighborhood of point P , which makes P a determined (saddle-path

stable) solution.

Finally, the dynamics around the no-growth solution can be explained by the law of

motion of public debt, which becomes unstable in the neighborhood of point M (in the

sense of DDM = ∂ḋk/∂dk > 0). Effectively, with zero growth, the snowball effect of the

debt burden cannot be avoided. Thus, if CCM > 0, the no-growth solution is locally

unstable, while a cyclical dynamic appears if CCM < 0. In the latter case, if public

spending is high enough (g > gh), the no-growth solution becomes locally stable and can

be reached, but at the price of (possibly large) oscillations during the transition path.

Thanks to local analysis, we can now turn to global dynamics.

6. Global dynamics

According to local analysis, we can distinguish four cases, depending on parameters,

and especially the public spending ratio.

Regime L – In this case, there are two steady-states, but only the high BGP (P ) can

be reached in the long-run, as the no-growth trap (M) is unstable. Thus, there is no local

or global indeterminacy.21 As in case without public debt studied in section 3, if public

spending is low (regime L), the unique equilibrium (namely, the positive growth BGP

21The initial public debt ratio exerts a threshold effect: if dk0 < dM
k , for any predetermined dk0, the

consumption ratio ck0 jumps to place the economy on the saddle-path that converges towards P , which
defines the unique long-run equilibrium. In contrast, if dk0 > dM

k , there is no long-run solution.
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P ), is locally and globally well determined. Therefore, in contrast with SGU, aggregate

instability disappears (see Figure 4.1).

Regime H1 – In this regime, there are two steady states (since we exclude steady

states with negative growth, i.e. above c̄k). One is associated to positive economic growth

(Q, with low consumption and deficit ratios) and is stable, while the “catastrophic”

equilibrium D is saddle-path stable. Consequently, there is both local (in the vicinity of

Q), and global indeterminacy (see Figure 4.2).

4.1: Regime L 4.2: Regime H1

Figure 4: Global dynamics

Regime H2 – This regime can be seen as the synthesis of the two preceding. As we

have seen, there are four steady states, whose properties are unchanged: P and D are

saddle-path stable, Q is stable, and M is unstable. Thus, this regime is characterized

by a local indeterminacy (in the vicinity of Q), and global indeterminacy that comes

from two facts. First, given a (predetermined) public debt ratio dk0 < dM
k , the initial

consumption ratio can jump on the unique transition path that converges towards P or

on one of the multiple paths that converges towards Q. Second, if dk0 > dM
k , one of the

latter paths can still be reached, as well as the unique path that converges towards the

catastrophic equilibrium D (see Figure 5). Yet, in both cases, the long-run equilibrium of

the economy is subject to “animal spirits”, in the form of optimistic or pessimistic views

of households at the initial time.
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Figure 5: Global dynamics – Regime H2

The mechanisms that make Q locally undetermined are the same as those outlined

in the no-debt case (section 3). Focusing here on global dynamics, the multiplicity that

arises in regimes H1 and H2 results, as usual in non-linear models with forward-looking

households, from self-fulfilling prophecies that generate multiple equilibrium growth paths

in the future.

Suppose, e.g., that, at the initial time, households expect low public debt in steady-

state. This implies that the expected tax rate is low, and the expected net return of

capital is high. At the initial time, households then increase their savings, such that

the initial consumption ratio (ck0) is low, and the initial hours worked will be high. This

means that, in equilibrium, labor supply will also be high, generating large fiscal resources

and low public debt in the future (along P and Q BGPs). Conversely, following the same

mechanism, high expected public debt is self-fulfilling, and may lead to the no-growth

solutions M or D. In other words, by their consumption-leisure tradeoff at the initial

time, households can, in equilibrium, validate any expectation on the BGP that can be

reached in the future.

Two results deserve particular attention. First, despite that the low regime is well-

determined, the higher growth solution (Q) cannot be reached. This explain why gov-

ernments can be induced to increase public spending until reaching regime H. Second,

in regime H2, indeterminacy cannot be avoided, unless the positive long-run solution

disappears. Effectively, one cannot obtain positive BGP P without the undetermined

solution Q. Thus, local and global indeterminacy can be viewed as the price that must

be paid to generate a positive long-run growth solution.
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Regime H3 – In this case, A > A2 and long-run solutions with positive growth are

eliminated.22 Thus, there are only two steady states, M and D. The latter is still locally

determined, but the topological behavior of the no-growth trap M depends on the level

of the public spending ratio. We can distinguish two situations.

(i) If 1 − α < g < gh, there is no local and global indeterminacy. The no-growth trap

M is an unstable node (if 1 − α < g < gm, see Figure 6.1) or focus (if gm < g < gh,

see Figure 6.2), and, provided that dk0 > dM
k or dk0 > dm

k (where dm
k is the leftmost

point of the unique trajectory that converges to D), the economy converges towards the

catastrophic equilibrium D.23

6.1: 1 − α < g < gm 6.2: gm < g < gh

Figure 6: Global dynamics – Regime H3

(ii) If gh < g, on the contrary, the no-growth solution M is stable, thus there is both

local and global indeterminacy. At g = gh, the Hopf bifurcation arises. Simulations

on matcont show that the first Lyapunov coefficient is positive, defining a sub-critical

bifurcation (see the numeric section below). Therefore, when g takes values slightly higher

than gh, an unstable closed orbit births; as g increases, this orbit becomes larger. This

unstable cycle defines a separatrix orbit between the paths that converge towards the

no-growth trap M (inside the closed orbit), and those that diverge from it. Among the

latter, there is a unique path that goes towards the catastrophic equilibrium D. Thus,

given a predetermined debt ratio, any path that converges toward M or D, or remains

on the cycle, can be reached (Figure 7.1).

22Since A2 negatively depends on g for reasonable values of parameters (see Appendix 1), such a case
is more likely to arise for relatively high public spending ratios.

23If dk0 < dm
k , the model has no solution in the long-run.
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7.1: gh < g 7.2: g = gmax

Figure 7: Global dynamics – Regime H3

Moreover, as g rises, the closed orbit becomes larger, until it includes point D, as in

Figure 7.2. This defines a subcritical Hopf-homoclinic bifurcation. In such a case, the

economy can reach either the no-growth trap with large oscillations during the transition

period or the homoclinic orbit that passes “through” D, with a cycle of (asymptotically)

infinite period.24

Fundamentally, the interaction between Households’ saving behavior and fiscal rules

can give rise to very complicated dynamics, especially when public spending is “high”.

The next section shows that these results hold for reasonable values of parameters.

7. A quantitative exploration

In this numerical section, we generalize our analytical results by considering positive

deficit rules θ ≥ 0. Our numerical results are based on reasonable values for parameters.

We interpret the time period as 5-year average. We choose ρ = 0.05, corresponding

to a 1% annual risk free (real) interest rate and the labor elasticity of substitution is

fixed at ε = 0, thus characterizing an infinite Frisch elasticity. This choice corresponds

to Schmitt-Grohé and Uribe (1997). Regarding the technology, we set A ∈ (0.01, 0.1) to

obtain realistic rates of economic growth, and the capital share in the production function

is α = 0.75, close to the value (0.715) used by Gomme et al. (2011). As the model is

driven by an AK technology, capital should be interpreted broadly as a composite of

physical and human capital. If the share of human capital is about, e.g., 60%, the share

24The birth of the homoclinic orbit is linked to the point F , where the ċ = 0 locus intersects with the
ck = 0 axis. In such a situation, all orbits are forced to turn around on ċ = 0, and can not escape up.
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of output going to physical capital will be 30%. The measure of human capital intensity

in the accumulation of knowledge is set to β ∈ (0, 0.75) (with a benchmark at 0.5), to

produce the different cases that can arise in Regime H3.
25

Regarding the government’s behavior, the deficit ratio is θ ∈ (0, 0.03), consistent with

long-run average values in the US or OECD from 1950 to 2015, and the value of the

public spending ratio will be scanned over a large range of values to verify the presence

(or not) of a Hopf bifurcation in Regime H3. In our benchmark calibration, lump-sum

taxation is assumed to be 20% of GDP (namely, v = 0.2). For these parameters’ values,

the corresponding rate of wage taxation (in percent of GDP) is between 10% and 16.5%,

depending on the equilibrium considered.

Table 1 shows that our analytical results are qualitatively unchanged with a positive

deficit rule. Our numeric results are rather realistic. The annual real interest rate is

between 1% and 15%, depending on the considered equilibrium, and the long-run rate of

economic growth in the different steady-states are hard-nosed: between 1% and 3% at

point P, between 8% and 10% at point Q, and close to zero at point M.

Table 1: Steady-state values in the benchmark calibration (Regime H3).
(g = 0.3, α = 0.75, A = 0.05, ρ = 0.05, v = 0.2, ε = 0, and β = 0.5)

The tax rate on wage is around 40%, and as a percent of GDP, total tax revenues

(lump-sum plus wage taxes) are around 30% at points P and Q, and 37% at point M ,

consistent with estimates for developed countries.26

In the benchmark calibration, regime L appears for g < 0.25, while, in the opposite

case, regime H1 prevails for A < A1 ≈ 0.01, regime H3 for A > A2 ≈ 0.083, and regime

H2 in the intermediate interval. Figure 8 depicts the values of the consumption ratio in

the different steady states as a function of A.

Interestingly, regime H2 can occur without the need of high social returns-to-scale in

the aggregate production function. With g = 0.15, A = 0.051, ρ = 0.05, v = 0.2, ε = 0,

25The corresponding values for φ are φ ∈ (0, 3).
26In 2017, the tax wedge on wage – the sum of personal income tax, employee and employer social

security contributions plus any payroll tax less cash transfers expressed as a percentage of labour costs
– was 36% on average in OECD countries.
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for example, regime H2 is consistent with β = 0 and α = 0.99, namely for almost constant

returns-to-scale (1 + (1 + ρ)(1 − α) = 1.01). Therefore, in our model, multiplicity can

arise even if returns-to-scale are close to constant, as empirical evidence suggests (see,

e.g. Basu and Fernald, 1997). In contrast Benhabib and Farmer (1994) need increasing

returns in excess of 1.43.

Figure 8: Bifurcation diagram as a function of A (regime H)

From a cyclical analysis perspective, the most interesting configuration is the regime

H3. This regime occurs when human capital externalities are high enough (in our simula-

tions below, we take β = 0.7). The value of the public spending ratio that corresponds to

the Hopf bifurcation around the low-growth trap is gh ' 40.547%, such that, for slightly

higher values of g, a closed orbit appears (the corresponding Lyapunov coefficient is equal

to 105, confirming the presence of a sub-critical Hopf bifurcation). As g increases, the

(unstable) cycle becomes larger, as in Figure 9. Increasing g further, the periods of these

periodic orbits tend to infinity, and, at the limit, we find the homoclinic orbit, which con-

nects the saddle equilibrium to itself. This homoclinic orbit is composed of the unstable

and stable manifolds of the saddle equilibrium D. This homoclinic orbit is obtained for

g = gH ' 40.783%. If g rises further, point D can no longer be reached.
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Figure 9: The family of cycles as g becomes larger

Figure 10a and 10b depict two typical configurations for g = 40.65% ∈ (gh, gH). There

is a periodic orbit such that the public debt ratio oscillates between 0.018 and a value

close to (but strictly superior than) zero. As the cycle is unstable, inside the orbit the

economy converges to the no-growth trap M (Figure 10a), while outside the orbit it goes

to the catastrophic equilibrium D (Figure 10b). In the first case, the public debt ratio

remains relatively weak in the long-run, while it takes a high value (and the debt-to-GDP

ratio becomes virtually infinite) in the second case.

Clearly, since the initial consumption ratio is a free jumpable variable, both situations

are possible, departing from a predetermined public debt ratio dk0 < d̄/α. The economy

then is subject to households’ optimistic or pessimistic views on the future.

Figure 10a: Inside the periodic orbit: exit from the cycle to M (g = 0.4065)
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Figure 10b: Outside the periodic orbit: exit from the cycle to D (g = 0.4065)

As g rises, the amplitude of the cycle increases, but its frequency decreases. At the

limit, when g approaches gH , the period of the cycle becomes asymptotically infinite, and

the economy converges more and more slowly towards the catastrophic equilibrium D.

For g = 0.407827, e.g., the cycle already lasts more than 1000 periods (see Figure 11).

From an empirical point of view, it would be difficult, then, to distinguish the cyclical

nature of the economy, and not to consider it as a monotonic convergence towards D.

Figure 11: A debt “Supercycle” close to the homoclinic orbit

This configuration recalls the notion of “debt super-cycle” developed by Rogoff (2015),

suggesting that economies experiment large oscillating debt cycles during crisis periods,

rather than secular stagnation. Our model also develops two alternative views of the

future: a convergence to a low-growth trap, or a large debt cycle characterized by long

periods of economic atony, as in Figure 11.27 As shows Figure 11, debt super-cycles

generate sudden periodic debt crises and thus capture the “heart attack” (in Rogoff’s

words) experienced by the global economy during the Great Recession.

27If the first view can be associated to a stagnationist perspective (Hansen, 1939), the second is closer
to the harrodian’s vision (Harrod, 1939; Domar, 1944).
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8. Conclusion

The seminal contribution of SGU motivated a large literature analyzing the conse-

quences of fiscal policy in terms of aggregate fluctuations. Compared to this rich and

influencing literature that rests on a balanced-budget rule (BBR), we adopt an endoge-

nous growth framework that allows dealing with more general budget rules, in which the

possible existence of deficit and debt in the long-run turn the BBR into a special case.

Under this more general framework, our results are threefold.

First, SGUs indeterminacy result is modified in the presence of endogenous growth,

even with a BBR. Indeed, the equilibrium is determined provided that exogenous pub-

lic spending is below a certain threshold. Conversely, indeterminacy arises above this

threshold, but under more complex forms than in SGU; in this case, two BGPs exist, and

our model exhibits both local and global indeterminacy. Second, although the equilib-

rium is still determined with low public spending when we relax the BBR, the presence

of deficit and debt yields up to four equilibria in the long run when public spending is

above a threshold. Third, when public spending is sufficiently large, complex dynamics

emerge around the low-BGP trap (i.e. a subcritical Hopf bifurcation), which triggers a

homoclinic orbit going around the neighborhood of the catastrophic equilibrium.

Our model has several policy implications. Compared to SGU, public spending

presents a crucial role for aggregate fluctuations, despite being held exogenous. Indeed,

indeterminacy can be avoided provided that public spending is maintained to a suffi-

ciently low level. However, in this case, the economy cannot reach the highest BGP. On

the contrary, this BGP may be attained provided that public spending is large. However,

in this case, the model displays local and global indeterminacy: attempting to put the

economy on the highest BGP comes with the cost of aggregate fluctuations, and even a

possible growth trap. Finally, when public spending are sufficiently large, our model can

comfort recent propositions asserting the presence of a debt super-cycle in our current

indebted economies (Rogoff, 2015), since large oscillations arise around the low-growth

trap.

From a general perspective, our analysis opens the door for reassessing the conse-

quences of fiscal policy in terms of aggregate fluctuations, in the presence of a major

component of nowadays Governments fiscal policies, namely deficits and debt, on at least

two grounds. On the one hand, some of the conclusions of the previous literature may

have to be revisited in the presence of deficit and debt. Evaluating the (in)determinacy

effects of endogenous public spending, progressive taxes, or alternative specifications of

preferences are some handful examples. On the other hand, the complex effects triggered

by our simple budget rule make the case for exploring alternative fiscal rules, all the

more given their increase popularity since the recent crisis (see, e.g., Combes et al., 2017;

Menuet et al., 2017). These two possible directions are left for future research.
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Annexe 1: Characterization of positive growth solutions

By (20), positive growth solutions are given by

Φ(ck) := d̄ − ck

(
ck − ρ

(1 − α − g)A

)1/ψ

= 0. (.1)

(a) If g < 1 − α. Clearly, Φ ∈ C1((ρ, +∞)) and Φ is a decreasing function. As

Φ(ρ) = d̄ > 0, and limck→+∞ Φ(ck) = −∞, according to the Intermediate Value Theorem,

there is a unique point čk ∈ (ρ, +∞), such that Φ(čk) = 0. The point P = (0, čk)

characterizes a steady-state if and only if cP
k < ck = [(1 − g)d̄ψ]1/(1+ψ), which is true for

small discount rates (see footnote 6).

(b) If g > 1 − α. In this case, Φ ∈ C1([0, ρ)), and

Φ′(ck) =

[
ρ − ck

(α + g − 1)A

]−1+1/ψ [
1 + ψ

ψ(α + g − 1)A

]

(ck − ĉk),

where ĉk = ψρ/(1 + ψ) < ρ is the minimum of Φ on [0, ρ).

Consequently, Φ′(ck) < 0 if ck ∈ [0, ĉk) and Φ′(ck) > 0 if ck ∈ (ĉk, ρ). As Φ(0) =

Φ(ρ) = d̄ > 0, according to the Intermediate Value Theorem, there are two roots: cQ
k ∈

(0, ĉk) and cP
k ∈ (ĉk, ρ) if and only if

Φ(ĉk) = d̄ − ĉk

(
ρ − ĉk

(α + g − 1)A

)1/ψ

< 0 (.2)

If (.2) is true, Q = (cQ
k , 0) is a steady-state, and, if cP

k < ck, P = (cP
k , 0) is also a

steady-state. As shown by the following lemma, these two existence conditions can be

expressed according to the value of A.

Lemma 2. Let g > 1−α. There are two critical levels A1, A2 (0 < A1 < A2) such that:

• If A < A1, there are two roots, and cP
k > ck.

• If A1 < A < A2, there are two roots, and cP
k < ck.

• If A > A2, there is no root.

Proof. First, from (11), as ĉk does not depend on A, A 7→ Φ(ĉk) is an increasing con-

tinuous function on (0, +∞), where limA→0+ Φ(ĉk) = −∞, and limA→+∞ Φ(ĉk) = d̄ > 0.

Consequently, according to the Intermediate Value Theorem, there is a unique value

A2 > 0, such that Φ(ĉk) < 0 (namely, there are two roots: regimes H1 or H2) if

A < A2; and Φ(ĉk) > 0 (there are no roots: regime H3) if A > A2. As Figure A1

depicts, the value A2 is such that the two positive growth solutions (P and Q) coincide
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(A = A2 ⇒ cP
k = cQ

k = ĉk); hence

A2 =

(
ĉk

d̄

)ψ (
ρ − ĉk

α + g − 1

)

Second, we compute

cP
k < ck := [(1 − g)Ad̄ψ]1/(1+ψ) ⇔ Φ(ck, A) = d̄ − ck

(
ρ − ck

(α + g − 1)A

)1/ψ

> 0

On the one hand, ck is an increasing continuous function with respect to A (d̄ does not

depend on A). On the other hand, we have ∂AΦ(ck, A) > 0, and ∂ck
Φ(ck, A) as ck > ĉk;

28

hence Φ is an increasing function with respect to A. Besides, using κ := [(1−g)d̄ψ]1/(1+ψ),

we compute

Φ(c̄k, A) = d̄ −
κ

A1/(ψ(1+ψ))

(
ρ − κA1/(1+ψ)

α + g − 1

)

→ −∞ when A → 0,

and, limA→+∞ Φ(ck, A) = d̄ +
(

κ1+ψ

α+g−1

)1/ψ

> 0. Consequently, according to the Interme-

diate Value Theorem, there is a unique value A1 > 0, such that: cP
k < ck if A > A1

and cP
k > ck if A < A1. As Figure A1 shows, A1 is such that the higher positive growth

solution (P ) and the no growth solution coincide (A = A1 ⇒ cP
k = cM

k = ck).

Third, we have A1 < A2, because ck > ĉk. �

Consequently, if A < A1 < A2, solutions P and Q are present, but P is not a

crossing-point, since cP
k > ck. In this case, there is only one positive-growth steady-state:

Q (regime H1). If A1 < A < A2, P and Q are crossing-points, and characterize positive-

growth solutions (regime H2). Finally, if A > A2, P and Q do not exist, and there is no

positive-growth solution (regime H3).

In this way, there is a bifurcation at A = A1 and A = A2, as depicted in Figure 1A.

Indeed, at A = A1, the system changes from regime H1 to regime H2, and at A = A2, the

system changes from H2 to H3. The bifurcation-diagram will be numerically characterized

in Section 6.

28Indeed, ĉk positively and linearly depends on ρ, while ck is independent of ρ. Thus, if ρ is small
enough, if follows that ck > ĉk.
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Figure 2: Existence (g > 1 − α, θ = 0)

Annexe 2: Topological behaviour of point D

To show that D = (0, dD
k ) is a saddle-point, we must ensure that: (i) for ck = 0,

ḋk < 0 if dk < dD
k ; (ii) for dk = dD

k := d̄/α, ċk < 0 if ck > 0 (we exclude the case ck < 0

and dk > dD
k , since yk is not defined in the latter case).

(i) Let m > 0. By considering the point (0, dD
k −m), according to the global stability

analysis of section 5 (see Figure 4), the deficit ratio decreases, because (0 , dD
k − m) lies

below the ḋk = 0 locus.

(ii) Let h > 0. By considering the point (h, dD
k ), according to the global stability

analysis, the consumption ratio decreases, because (h, dD
k ) lies above the ḋk = 0 locus.

Finally, we conclude that the point (0, dD
k ) is a saddle-point.
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