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This paper analyses the influence of form deviations on over-constrained mechanical systems. A mechanical clamp was equipped with 
LVDT sensors to measure relative displacements between its two parts to derive their relative position. Each part was measured using 
CMM filtering its form deviations. Part feature variations (position, orientation and dimension) and assembly clearances were 
aggregated on a set of 6d linear constraints. From the measured local displacements another polytope is derived. These two polytopes 
are compared to quantify the influence of form error on the geometrical behaviour of the assembly. To do this evaluation new metrics 
are presented and discussed.  
 

Precision; Positioning; Geometric modelling 

 

1. Introduction 

The objective of a tolerance analysis is to aggregate the geometric error variations of the constitutive parts of a 
mechanical system in order to check the functional requirements. Such an analysis process is based on: a model of 
geometric error variations, a set of relations between them derived from the topological structure of the mechanical 
system and numerical tools to simulate its geometrical behavior. This tolerance analysis can be done according to worst 
case or statistical approaches [1]. The major question is how to select the suited values of geometrical product 
specifications in order to control the geometric error variations (form, orientation, position and dimension) to guarantee 
the expected product quality. To simplify the tolerance analysis, some assumptions are usually made, among which form 
errors are neglected and mechanism parts are considered as infinitely rigid bodies. These assumptions could lead to 
inaccuracies in the computation results as shown by [2]. Only a few research works, summarized in [3], address the effect 
of form error variations on the geometrical behavior of an assembly. This is a key point in mechanism analysis that should 
be quantified. Some works are based on experimental devices to compare the simulated and the real behaviors of the 
assembly. However, these works were dedicated to analyze, experimentally, isostatic assemblies.  

In this work, a practical case study is used to demonstrate the influence of form errors in the positioning precision on 
over-constrained mechanical systems.  Error metrics are proposed to quantify that. In the context of Industry 4.0, these 
metrics are computed using a digital twin of the mechanical system. Their uses in production control are discussed in the 
manufacturing field. In a first part of this paper, a geometrical model for over constrained mechanisms is set up assuming 
no error from variations. An example of a mechanical clamp with 2 parts and their several parallel joints is treated. In the 
second part, based on rigid body restrictions, the influence of the form error variations on the relative position between 
two parts is evaluated. This evaluation is based on the comparison of the calculated and the measured displacements due 
to geometrical errors. To do this evaluation four new metrics are presented and discussed.  

2. Materials and methods 

The parts were modeled as infinitely rigid bodies. The displacement restrictions induced by the non-interpenetration 
conditions between two surfaces potentially in contact are formalized by a set of linear constraints [4, 5, 6]. Each set of 
contact constraints is represented by a polyhedron shown in the next section [7]. 
 
2.1. Geometrical model for over-constrained systems 
 

Let us consider a contact restriction between surfaces 1,j (surface j of part 1) and 2,j (surface j of part 2), see fig. 1. The 
general definition of the contact restriction is given by (1). This definition is applied to a set of Nk  points (with 1≤k≤kmax 
and kmax is the number of facets for the discretization of each contact surface). At each point, the contact restriction is 
applied along the normal vector nk where dk is the distance between 1,j and 2,j. The intersection of this set of restrictions 
defines the polyhedron Pj.  

 

P𝑗 = ⋂(𝐭𝑁𝑘_𝟏,𝒋/𝟐,𝒋). 𝐧𝒌 ≤ 𝑑𝑘 ⟺

𝑘

 

P𝑗 = ⋂ (𝐭𝑶_𝟏,𝒋/𝟐,𝒋 + 𝐍𝐤𝐎 × 𝐫𝟏,𝒋/𝟐,𝒋). 𝐧𝒌 ≤ 𝑑𝑘𝑘    (1) 

 

Pj is a polyhedron of dimension 6 since each local contact restriction is a half-space kH
−  in the deviation space of 

dimension 6 [7]. The 6 parameters (Rx,Ry,Rz,Tx,Ty,Tz) are coming from the components of r1,j/2,j (rotation vector) and 
tO˗1,j/2,1 (translation vector expressed at point O). The point O is any point assumed to be rigidly linked to the set of points 
Nk. Let us consider a mechanical assembly composed of two parts: part 1 and part 2, in multiple relations by several 
contacts in parallel between surface 1,j and 2,j (1≤ j ≤ jmax): see fig. 2. A datum R1 is associated to the surfaces 1,j of part 



1 by measurements. Following the same method, a datum R2 is associated to the surfaces 2,j of part 2. The determination 
of the local distances dk from (1) takes into account the location deviations of 1,j with respect to R1 (d1,j/R1) and 2,j with 
respect to R2 (d2,j/R1). The relative position between R1 and R2 is defined by Pc. Pc is the intersection of the n polyhedron 
Pj (1≤ j ≤ jmax; where jmax is the number of contact surfaces). If the contacts between parts 1 and 2 suppress the 6 degrees 
of freedom, Pc is a polytope (i.e. a bounded polyhedron). Then the vertices of Pc define the extremal values of the 
parameters (Rx,Ry,Rz,Tx,Ty,Tz) in a deviation space. Pc is the result of the intersection between (jmax×kmax) local 
restrictions (i.e. half-spaces of dimension 6). Finally, we will use the general expression (2), commonly named H-
description, to define the polytope Pc. According to the Minkowski-Weyl theorem [8], an equivalent definition (3) can be 
used for Pc where vci are the vertices of Pc. 

 

Pc = ⋂ P𝑗𝑗 = ⋂ H̅𝑢
− with: 1 ≤ 𝑢 ≤ 𝑗max × 𝑘max 𝑢  (2) 

 

Pc = Conv(𝑣𝑐𝑖) (3) 

 

 
Figure 1. Local (a) and global (b) contact restrictions. 

 
The definition (3) is commonly named the V-description of Pc, where Pc is defined by the convex hull of its vertices vci. 

We use this theorem in order to directly measure the relative position between parts 1 and 2 by a measured polytope Pm. 
A mechanical system was instrumented by sensors which measures a finite number of relative positions between parts. 
Each position corresponds to a set of parameters defined by a point devu in the deviation space. Finally, Pm can be 
estimated by the convex hull of points devu according to (4) where umax is the number of measures to generate the points 
devu. 

 
P𝑚 = Conv(𝑑𝑒𝑣𝑢) 1 ≤ 𝑢 ≤ 𝑢max (4) 

 

 
Figure 2. Contact restrictions at the assembly level. 

 
2.2. Experimental protocol  
 

Our aim is to evaluate the influence of the form error variations on the relative position between two parts in contact 
in the case of an over constrained assembly. This evaluation is based on the comparison between the calculated polytope 
Pc and the measured polytope Pm. The surfaces 1,j and 2,j are modeled by substitute surfaces through the measurement 
process, in order to eliminate the form deviations by least square best-fit method (i.e. gaussian filters). So, the polytope 
Pc is the aggregation of orientation, position and dimension variations. The convex hull of points (devu) derives from direct 
measurements of the relative position between parts. The polytope Pm is then the aggregation of all the possible sources 
of geometrical variations of surfaces 1,j and 2,j (i.e. orientation, position, dimension and then form errors).  

The study is carried out on a mechanical system inspired by a clamp (fig. 3a and b). The constitutive parts 1 and 2 are 
in multiple contacts by three couples of pin 1,j – hole 2,j (1≤ j ≤ 3) with a nominal diameter equal to Ø10. These couples 
are evenly distributed on a nominal circle (Ø80) (fig. 3c). Two additional datums 1,4 and 2,4 respectively on part 1 and 
part 2, are nominally located on the center of this circle. These respective center holes O1,4 and O2,4 with a fixed square on 
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part 1 are used to measure the relative position between datum R1 and datum R2 respectively linked to parts 1 and 2. We 
define contact restrictions assuming the contact zones between pins and holes lie in the same plane (i.e. the common 
plane between parts). As a consequence, the relative position between R1 and R2 is defined by a small rotation along a 
normal to the common plane and two orthogonal translations in this plane. The polytopes Pc and Pm are both 3d polytopes. 
The origin of datum R1 is defined by O1,1 and one axis by the square. The origin of datum R2 is defined by O2,1 and one axis 
by a line (O2,1, O2,4).  

 

 
Figure 3. Experimental device (a); CAD part (b); geometric setting of the clamp (c). 

 
The five steps of the analysis protocol are depicted in fig. 4.  
First, part 1 is measured to estimate the location of surfaces 1,j in R1 and their diameters ØD1,j (step 1). By analogy, 

surfaces 2,j in R2 and their diameters ØD2,j are estimated on the part 2. Each surface is measured by 8 points evenly 
distributed with a CMM machine (Renishaw® TP20, measurement uncertainty: 7 µm in volume). Although they are not 
used in the computation of polytope Pc, the form deviations of each contact surface are also evaluated. In step 2, part 1 is 
assembled on part 2 and fixed in an arbitrary location such as their common planes are in contact.  Then, in step 3, the 
square and the hole 1,4 are measured in R2 and the LVDT sensors are initialized in this configuration. This is a major step 
in the best-fit of the origins of polytopes of Pc and Pm.  In step 4, an operator manually moved part 1 with respect to part 
2 reaching as many extremal positions as possible. The motions between parts are measured by the three LVDT sensors 
(DP5 probes of Solartron Metrology® with accuracy of 0.5 µm).  Finally, all the data are saved to be used for the 
computation of polytopes Pc and Pm (step 5). 
 
2.3. Computed polytope Pc 
 

The contact restrictions between pin 1,j and hole 2,j derive from definition (1), and Pj can be expressed as (5). 
 

𝐏𝒋 = ⋂ (𝐭𝑶_𝟏,𝒋/𝟐,𝒋 + 𝐍𝐤𝐎 × 𝐫𝟏,𝒋/𝟐,𝒋). 𝐧𝒌 ≤ 𝑑𝑘𝒌  (5) 

with  𝑑𝑘 = (
𝐷2,𝑗 − 𝐷1,𝑗

2
) + 𝐎1,𝑗𝐎2,𝑗 ∙ 𝐧𝑘 

 

The couples Nk , nk are deduced from a mesh built on the CAD model of the clamp. This couple and the point O control 

the normal of each half-space kH
− . An operand Pj is generated with kmax=36 such that the maximal deviation between 

the mesh and the surfaces of pin 1,j and hole 2,j is less than 1 µm [7]. The other parameters to compute a local distance dk 
are coming from the diameters and the location deviations of pin 1,j and hole 2,j. Their values derive from the 
measurements performed in steps 1 and 2 of the synoptic (see fig. 4). Least square filtering is used to remove the form 
deviations to others for pins 1,j and holes 2,j. From (2) the polytope Pc can be computed as shown in fig. 5. 
 



 
 
Figure 4.  Experimental protocol. 
 

 
Figure 5. Polytope Pc = P1 ∩ P2 ∩ P3. 
 

2.4. Measured polytope Pm  
 

From local measures of the sensors, we obtain a set of relations using equation (6). These relations can be expressed at 
a common point O assumed to be rigidly linked with the points Mi. Then the parameters Rz, Tx and Ty can be determined 
from (6) with (7) and (8) by (9). 

 

{𝒕𝑴𝒊_𝑹𝟏/𝑹𝟐. 𝒔𝒊 = 𝑚𝑖} 1 ≤ 𝑖 ≤ 3 (6) 

 
𝒕𝑴𝒊_𝑹𝟏/𝑹𝟐 = 𝒕𝑶_𝑹𝟏/𝑹𝟐 + 𝒓𝑹𝟏/𝑹𝟐 × 𝑴𝒊𝑶 (7) 

𝒔𝒊 = (𝑠𝑖𝑥 , 𝑠𝑖𝑦 , 0) 𝜪𝜧𝒊 = (𝑂𝑀𝑖𝑥, 𝑂𝑀𝑖𝑦, 0) 

 

𝒓𝑹𝟏/𝑹𝟐 = (0,0, 𝑅𝑧)   𝒕𝑶_𝑹𝟏/𝑹𝟐 = (𝑇𝑥, 𝑇𝑦, 0)  (8) 

 
{(−𝑠𝑖𝑥. 𝑂𝑀𝑖𝑦 + 𝑠𝑖𝑦 . 𝑂𝑀𝑖𝑥)𝑅𝑧 + 𝑠𝑖𝑥. 𝑇𝑥 + 𝑠𝑖𝑦 . 𝑇𝑦 = 𝑚𝑖} 1 ≤ 𝑖 ≤ 3(9) 

 
Finally, from umax records of triplets mi we can deduce a cloud of points devu in a deviation space (Rz,Tx,Ty).  

 

Measurement of R1 such 
that part 1 is fixed on part 2

Measurements of part 1 
and part 2  individually

O1,j in R1, ØD1,j

O2,j in R2, ØD2,j

O1,4 in R2

square in R2

Initialization of sensors

Part 1 is manually moved
with respect to part 2

Measures mi

from sensors

Stop moving

Computation of 
Pm

Computation of 
Pc

Comparison 
between 

Pc and Pm

Step 1

Step 2

Step 3

Step 4

Step 5

Rz

Tx

Ty
P1

P2

P3



 
Figure 6. Cloud of 2000 points (a) and its convex hull Pm (b). 

3. Results and discussions 

3.1. Measured polytope Pm  
 

Fig. 6a gives an example with 2000 records of triplets mi. Fig 6b shows the polytope Pm resulting from the convex hull 
of 2000 points. The vertices of Pm are the extremal displacements between parts 1 and 2 reached by the manual operation. 
The point density on the boundary of Pm is very heterogeneous.  
 
3.2. Computed polytope Pc 
 

The results of the CMM measurement of parts 1 and 2 are displayed in table 1. The vertices of Pc result from the 
intersections of its half-spaces initially generated on the nodes of a regular mesh, see fig. 5 and 7.  
 

 
Figure 7. Projections of polytopes Pc and Pm in canonical views. 

 
3.3. Comparison between polytopes Pm and Pc 
 

The difference between the shape of polytopes Pc and Pm is due to the form deviations. Based on equation (5), the 
distance dk* between a pin 1,j and a hole 2,j is redefined by (10). 

 
𝑑𝑘∗ = 𝑑𝑘 + 𝑓𝑣𝑘  (10) 

 
The parameter fvk is the accumulation of form error deviation of a pin 1,j with respect to a hole 2,j at a node Nk along 

the normal nk, see fig. 1. It was filtered by the best-fit process after the CMM measurement of parts 1 and 2 and it is not 

taken into account in (5). In consequence, form error variations generate a translation fvk of the half-space kH
−  along its 

normal. In general, the parameters fvk have an influence on the boundary of the intersection of these half-spaces. Each 
vertex of a polytope defines an extremal position between the parts 1 and 2 and is created by a minimum of 3 concurrent 
hyperplanes in dimension 3. These hyperplanes are the boundaries of the half-spaces deriving from some points Nk which 
define the contact zone between the parts 1 and 2. The relation between the half-spaces and the vertices ensures the 
complete traceability between nodes Nk, nk and the extremal positions extracted from its faces [7]. The comparison 
between polytopes Pm and Pc cannot be done based on properties of their lattices. Therefore, the direct estimation of the 
values fvk is not possible. In response to this, new geometrical metrics are proposed to compare Pm and Pc such as the 
bounding boxes, the mass centers, the volumes and the Hausdorff distances [9]. The bounding box of Pm is included inside 
the bounding box of Pc. According to the parameters (Rz,Tx,Ty), the ratios of the three extends of the bounding boxes are 
88%, 87% and 67%, see table 2. If we want to limit the global motions of one part compare to the other one, this bounding 
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box computation is a useful quantification. It is also, a well indication of the positioning precision of the parts (small 
volume meaning a small motion). 
 
Table 1. Measurement results of individual parts 1 and 2 in R2

 in mm 
Surface 1,1 1,2 1,3 2,1 2,2 2,3 

Form dev  0.014 0.011 0.012 0.007 0.009 0.007 
Diameter  10.004 10.008 10.006 10.554 10.558 10.557 

Loc x  
Loc y  

-0.273 
39.973 

34.904 
20.070 

-34.422 
20.056 

0.000 
40.000 

34.663 
19.995 

-34.619 
19.995 

 
Table 2. Bounding boxes of polytopes 

Bounding box  Rz (10-3 rad) Tx (mm) Ty (mm) 

Pc [-7.321; 6,384] [-0.510; 0.023] [-0.302; 0.207] 

Pm  [-6.190; 5.860] [-0.456; 0.007] [-0.217; 0.133] 

Ratio Pm / Pc  88% 87% 67% 

 
These results do not integrate the correlations between the parameters (Rz,Tx,Ty). 

 
Table 3. Mass centres of polytopes 

Mass center Rz (10-3 rad) Tx (mm) Ty (mm) 

Gc (Pc)  -0.468 -0.247 -0.056 

Gm (Pm)  -0.165 -0.211 -0.065 

GcGm  0.303 0.026 -0.009 

 
Assuming that the relative position of parts is randomly distributed in the polytope, the vector GcGm then gives the 

average of the relative location between datum R1 and R2 in terms of (Rz,Tx,Ty) in the 3d deviation space, see table 2. The 
magnitude and the direction of this vector are strongly correlated to the distribution of fvk on the contact surfaces. 
 
 
Table 4. Volumes of polytopes in 10-3 mm2.rad 

 Pc Pm Pc ∩ Pm 

Volume  46.04 25.58 25.46 

 
Furthermore, the polytope Pm is not included inside the polytope Pc but the volume of Pc ∩ Pm is very closed to the 

volume of Pm, see table 4. These volumes indicate the inclusion rate and traduce if the polytope Pc increase or not the 
extremal displacements of Pm. These two-last metrics (GcGm and volumes) can help a designer to validate a design choice 
in a preliminary design stage. 

Finally, the deviations from the tessellated boundary of Pm with respect to the boundary of Pc can be deduced by a set 
of distances, see fig. 8. Each distance is the Hausdorff distance between a point from the boundary of Pm and Pc. Each 
signed distance indicates if the form deviation must be added or subtracted along a given direction in the neighborhood 
of an extremal position between the parts 1 and 2. These distances and their directions can lead to detect what half-space 

kH
−  are on the boundary of Pm. Thus, it is possible to investigate about the evolution of the contact zones with and without 

form error variations in a geometrical model. This diagnosis can lead to detect precisely where are the influent zones on 
the relative position between parts 1 and 2. Furthermore, this diagnosis can be useful to analyze the load transfer between 
the parts in order to predict the mechanical behavior of the assembly. These new metrics were integrated in the open 
source software (i2m.u-bordeaux.fr/politopix). 
 

 
 

Figure 8. Hausdorff distances between tessellation of Pm with respect to the boundary of Pc. 

4. Conclusion  

A complete analysis protocol to evaluate the influence of the form error variations on the relative position between 
parts of an over constrained assembly was presented. This study proposes new metrics to detect and localize assembly 
interferences induced by form deviations. Moreover, it brings to the fore the influence of form errors in the positioning 
precision. The four proposed metrics were: Bounding boxes, Mass centers, Volumes of polytopes and Hausdorff distances. 
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In future, the metric uncertainties will be evaluated in order to take into account the effect of assumptions (rigid body, 
small screw displacement, surface discretization,…) and measure uncertainties. These metrics can help designers to take 
decisions in geometrical product specification. Additionally, they could be used in Industry 4.0, for example in smart part 
pairing, for choosing the constitutive parts that warrantee an assembly with no interference. This could be done, in real 
time in the production chain, by digital twin assembly simulation. The knowledge of the assembly interference 
localization opens the way to automatic processes to repair high added value parts. 
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