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This paper analyses the influence of form deviations on over-constrained mechanical systems. A mechanical clamp was equipped with LVDT sensors to measure relative displacements between its two parts to derive their relative position. Each part was measured using CMM filtering its form deviations. Part feature variations (position, orientation and dimension) and assembly clearances were aggregated on a set of 6d linear constraints. From the measured local displacements another polytope is derived. These two polytopes are compared to quantify the influence of form error on the geometrical behaviour of the assembly. To do this evaluation new metrics are presented and discussed.

Introduction

The objective of a tolerance analysis is to aggregate the geometric error variations of the constitutive parts of a mechanical system in order to check the functional requirements. Such an analysis process is based on: a model of geometric error variations, a set of relations between them derived from the topological structure of the mechanical system and numerical tools to simulate its geometrical behavior. This tolerance analysis can be done according to worst case or statistical approaches [START_REF] Cao | A comprehensive review of tolerance analysis models[END_REF]. The major question is how to select the suited values of geometrical product specifications in order to control the geometric error variations (form, orientation, position and dimension) to guarantee the expected product quality. To simplify the tolerance analysis, some assumptions are usually made, among which form errors are neglected and mechanism parts are considered as infinitely rigid bodies. These assumptions could lead to inaccuracies in the computation results as shown by [START_REF] Grandjean | On the role of form defects in assemblies subject to local deformations and mechanical loads[END_REF]. Only a few research works, summarized in [START_REF] Xingyu | Review and Comparison of Form Error Simulation Methods for Computer-Aided Tolerancing[END_REF], address the effect of form error variations on the geometrical behavior of an assembly. This is a key point in mechanism analysis that should be quantified. Some works are based on experimental devices to compare the simulated and the real behaviors of the assembly. However, these works were dedicated to analyze, experimentally, isostatic assemblies.

In this work, a practical case study is used to demonstrate the influence of form errors in the positioning precision on over-constrained mechanical systems. Error metrics are proposed to quantify that. In the context of Industry 4.0, these metrics are computed using a digital twin of the mechanical system. Their uses in production control are discussed in the manufacturing field. In a first part of this paper, a geometrical model for over constrained mechanisms is set up assuming no error from variations. An example of a mechanical clamp with 2 parts and their several parallel joints is treated. In the second part, based on rigid body restrictions, the influence of the form error variations on the relative position between two parts is evaluated. This evaluation is based on the comparison of the calculated and the measured displacements due to geometrical errors. To do this evaluation four new metrics are presented and discussed.

Materials and methods

The parts were modeled as infinitely rigid bodies. The displacement restrictions induced by the non-interpenetration conditions between two surfaces potentially in contact are formalized by a set of linear constraints [START_REF] Fleming | Geometric relationships between toleranced features[END_REF][START_REF] Giordano | Clearance space in volumic dimensioning[END_REF][START_REF] Davidson | A new mathematical model for geometric tolerances as applied to round faces[END_REF]. Each set of contact constraints is represented by a polyhedron shown in the next section [START_REF] Arroyave Tobon | Tolerance analysis with polytopes in HV-description[END_REF].

Geometrical model for over-constrained systems

Let us consider a contact restriction between surfaces 1,j (surface j of part 1) and 2,j (surface j of part 2), see fig. 1. The general definition of the contact restriction is given by (1). This definition is applied to a set of Nk points (with 1≤k≤kmax and kmax is the number of facets for the discretization of each contact surface). At each point, the contact restriction is applied along the normal vector nk where dk is the distance between 1,j and 2,j. The intersection of this set of restrictions defines the polyhedron Pj. P 𝑗 = ⋂(𝐭 𝑁𝑘_𝟏,𝒋/𝟐,𝒋 ). 𝐧 𝒌 ≤ 𝑑 𝑘 ⟺ 𝑘 P 𝑗 = ⋂ (𝐭 𝑶_𝟏,𝒋/𝟐,𝒋 + 𝐍 𝐤 𝐎 × 𝐫 𝟏,𝒋/𝟐,𝒋 ). 𝐧 𝒌 ≤ 𝑑 𝑘 𝑘 [START_REF] Cao | A comprehensive review of tolerance analysis models[END_REF] Pj is a polyhedron of dimension 6 since each local contact restriction is a half-space k H -in the deviation space of dimension 6 [START_REF] Arroyave Tobon | Tolerance analysis with polytopes in HV-description[END_REF]. The 6 parameters (Rx,Ry,Rz,Tx,Ty,Tz) are coming from the components of r1,j/2,j (rotation vector) and tO˗1,j/2,1 (translation vector expressed at point O). The point O is any point assumed to be rigidly linked to the set of points Nk. Let us consider a mechanical assembly composed of two parts: part 1 and part 2, in multiple relations by several contacts in parallel between surface 1,j and 2,j (1≤ j ≤ jmax): see fig. 2. A datum R1 is associated to the surfaces 1,j of part 1 by measurements. Following the same method, a datum R2 is associated to the surfaces 2,j of part 2. The determination of the local distances dk from (1) takes into account the location deviations of 1,j with respect to R1 (d1,j/R1) and 2,j with respect to R2 (d2,j/R1). The relative position between R1 and R2 is defined by Pc. Pc is the intersection of the n polyhedron Pj (1≤ j ≤ jmax; where jmax is the number of contact surfaces). If the contacts between parts 1 and 2 suppress the 6 degrees of freedom, Pc is a polytope (i.e. a bounded polyhedron). Then the vertices of Pc define the extremal values of the parameters (Rx,Ry,Rz,Tx,Ty,Tz) in a deviation space. Pc is the result of the intersection between (jmax×kmax) local restrictions (i.e. half-spaces of dimension 6). Finally, we will use the general expression (2), commonly named Hdescription, to define the polytope Pc. According to the Minkowski-Weyl theorem [START_REF] Ziegler | Lectures on polytopes[END_REF], an equivalent definition (3) can be used for Pc where vci are the vertices of Pc. The definition ( 3) is commonly named the V-description of Pc, where Pc is defined by the convex hull of its vertices vci. We use this theorem in order to directly measure the relative position between parts 1 and 2 by a measured polytope Pm. A mechanical system was instrumented by sensors which measures a finite number of relative positions between parts. Each position corresponds to a set of parameters defined by a point devu in the deviation space. Finally, Pm can be estimated by the convex hull of points devu according to (4) where umax is the number of measures to generate the points devu.

P c = ⋂ P 𝑗 𝑗 = ⋂ H ̅ 𝑢 -with: 1 ≤ 𝑢 ≤ 𝑗max × 𝑘max 𝑢 (2) 
P c = Conv(𝑣 𝑐𝑖 ) (3) 
P 𝑚 = Conv(𝑑𝑒𝑣 𝑢 ) 1 ≤ 𝑢 ≤ 𝑢max (4) 
Figure 2. Contact restrictions at the assembly level.

Experimental protocol

Our aim is to evaluate the influence of the form error variations on the relative position between two parts in contact in the case of an over constrained assembly. This evaluation is based on the comparison between the calculated polytope Pc and the measured polytope Pm. The surfaces 1,j and 2,j are modeled by substitute surfaces through the measurement process, in order to eliminate the form deviations by least square best-fit method (i.e. gaussian filters). So, the polytope Pc is the aggregation of orientation, position and dimension variations. The convex hull of points (devu) derives from direct measurements of the relative position between parts. The polytope Pm is then the aggregation of all the possible sources of geometrical variations of surfaces 1,j and 2,j (i.e. orientation, position, dimension and then form errors).

The study is carried out on a mechanical system inspired by a clamp (fig. 3a andb). The constitutive parts 1 and 2 are in multiple contacts by three couples of pin 1,j -hole 2,j (1≤ j ≤ 3) with a nominal diameter equal to Ø10. These couples are evenly distributed on a nominal circle (Ø80) (fig. 3c). Two additional datums 1,4 and 2,4 respectively on part 1 and part 2, are nominally located on the center of this circle. These respective center holes O1,4 and O2,4 with a fixed square on sensors part 1 are used to measure the relative position between datum R1 and datum R2 respectively linked to parts 1 and 2. We define contact restrictions assuming the contact zones between pins and holes lie in the same plane (i.e. the common plane between parts). As a consequence, the relative position between R1 and R2 is defined by a small rotation along a normal to the common plane and two orthogonal translations in this plane. The polytopes Pc and Pm are both 3d polytopes. The origin of datum R1 is defined by O1,1 and one axis by the square. The origin of datum R2 is defined by O2,1 and one axis by a line (O2,1, O2,4). The five steps of the analysis protocol are depicted in fig. 4. First, part 1 is measured to estimate the location of surfaces 1,j in R1 and their diameters ØD1,j (step 1). By analogy, surfaces 2,j in R2 and their diameters ØD2,j are estimated on the part 2. Each surface is measured by 8 points evenly distributed with a CMM machine (Renishaw® TP20, measurement uncertainty: 7 µm in volume). Although they are not used in the computation of polytope Pc, the form deviations of each contact surface are also evaluated. In step 2, part 1 is assembled on part 2 and fixed in an arbitrary location such as their common planes are in contact. Then, in step 3, the square and the hole 1,4 are measured in R2 and the LVDT sensors are initialized in this configuration. This is a major step in the best-fit of the origins of polytopes of Pc and Pm. In step 4, an operator manually moved part 1 with respect to part 2 reaching as many positions as possible. The motions between parts are measured by the three LVDT sensors (DP5 probes of Solartron Metrology® with accuracy of 0.5 µm). Finally, all the data are saved to be used for the computation of polytopes Pc and Pm (step 5).

Computed polytope Pc

The contact restrictions between pin 1,j and hole 2,j derive from definition (1), and Pj can be expressed as [START_REF] Giordano | Clearance space in volumic dimensioning[END_REF].

𝐏 𝒋 = ⋂ (𝐭 𝑶_𝟏,𝒋/𝟐,𝒋 + 𝐍 𝐤 𝐎 × 𝐫 𝟏,𝒋/𝟐,𝒋 ). 𝐧 𝒌 ≤ 𝑑 𝑘 𝒌 [START_REF] Giordano | Clearance space in volumic dimensioning[END_REF] with 𝑑 𝑘 = ( 𝐷 2,𝑗 -𝐷 1,𝑗 2 ) + 𝐎 1,𝑗 𝐎 2,𝑗 • 𝐧 𝑘

The couples Nk , nk are deduced from a mesh built on the CAD model of the clamp. This couple and the point O control the normal of each half-space k H -. An operand Pj is generated with kmax=36 such that the maximal deviation between the mesh and the surfaces of pin 1,j and hole 2,j is less than 1 µm [START_REF] Arroyave Tobon | Tolerance analysis with polytopes in HV-description[END_REF]. The other parameters to compute a local distance dk are coming from the diameters and the location deviations of pin 1,j and hole 2,j. Their values derive from the measurements performed in steps 1 and 2 of the synoptic (see fig. 4). Least square filtering is used to remove the form deviations to others for pins 1,j and holes 2,j. From (2) the polytope Pc can be computed as shown in fig. 5. 

Measured polytope Pm

From local measures of the sensors, we obtain a set of relations using equation ( 6). These relations can be expressed at a common point O assumed to be rigidly linked with the points Mi. Then the parameters Rz, Tx and Ty can be determined from ( 6) with ( 7) and ( 8) by [START_REF] Ushakov | Optimization of the Hausdorff distance between convex polyhedrons in R3[END_REF].

{𝒕 𝑴𝒊_𝑹𝟏/𝑹𝟐 . 𝒔 𝒊 = 𝑚 𝑖 } 1 ≤ 𝑖 ≤ 3 (6) 
𝒕 𝑴𝒊_𝑹𝟏/𝑹𝟐 = 𝒕 𝑶_𝑹𝟏/𝑹𝟐 + 𝒓 𝑹𝟏/𝑹𝟐 × 𝑴 𝒊 𝑶 (7) 𝒔 𝒊 = (𝑠 𝑖𝑥 , 𝑠 𝑖𝑦 , 0) 𝜪𝜧 𝒊 = (𝑂𝑀 𝑖𝑥 , 𝑂𝑀 𝑖𝑦 , 0) 𝒓 𝑹𝟏/𝑹𝟐 = (0,0, 𝑅 𝑧 ) 𝒕 𝑶_𝑹𝟏/𝑹𝟐 = (𝑇 𝑥 , 𝑇 𝑦 , 0)

{(-𝑠 𝑖𝑥 . 𝑂𝑀 𝑖𝑦 + 𝑠 𝑖𝑦 . 𝑂𝑀 𝑖𝑥 )𝑅 𝑧 + 𝑠 𝑖𝑥 . 𝑇 𝑥 + 𝑠 𝑖𝑦 . 𝑇 𝑦 = 𝑚 𝑖 } 1 ≤ 𝑖 ≤ 3(9)

Finally, from umax records of triplets mi we can deduce a cloud of points devu in a deviation space (Rz,Tx,Ty).

Measurement of R 1 such that part 1 is fixed on part 2 Step 1

Measurements of part 1 and part 2 individually

O 1,j in R 1 , ØD 1,j O 2,j in R 2 , ØD 2,j O 1,4 in R 2 square in
Step 2

Step 3

Step 4

Step 5 

R z T x T y P 1 P 2 P 3

Results and discussions

Measured polytope Pm

Computed polytope Pc

The results of the CMM measurement of parts 1 and 2 are displayed in table 1. The vertices of Pc result from the intersections of its half-spaces initially generated on the nodes of a regular mesh, see fig. 5 and7. 

Comparison between polytopes Pm and Pc

The difference between the shape of polytopes Pc and Pm is due to the form deviations. Based on equation ( 5), the distance dk* between a pin 1,j and a hole 2,j is redefined by (10).

𝑑 𝑘 * = 𝑑 𝑘 + 𝑓𝑣 𝑘 (10) 
The parameter fvk is the accumulation of form error deviation of a pin 1,j with respect to a hole 2,j at a node Nk along the normal nk, see fig. 1. It was filtered by the best-fit process after the CMM measurement of parts 1 and 2 and it is not taken into account in [START_REF] Giordano | Clearance space in volumic dimensioning[END_REF]. In consequence, form error variations generate a translation fvk of the half-space k H -along its normal. In general, the parameters fvk have an influence on the boundary of the intersection of these half-spaces. Each vertex of a polytope defines an extremal position between the parts 1 and 2 and is created by a minimum of 3 concurrent hyperplanes in dimension 3. These hyperplanes are the boundaries of the half-spaces deriving from some points Nk which define the contact zone between the parts 1 and 2. The relation between the half-spaces and the vertices ensures the complete traceability between nodes Nk, nk and the extremal positions extracted from its faces [START_REF] Arroyave Tobon | Tolerance analysis with polytopes in HV-description[END_REF]. The comparison between polytopes Pm and Pc cannot be done based on properties of their lattices. Therefore, the direct estimation of the values fvk is not possible. In response to this, new geometrical metrics are proposed to compare Pm and Pc such as the bounding boxes, the mass centers, the volumes and the Hausdorff distances [START_REF] Ushakov | Optimization of the Hausdorff distance between convex polyhedrons in R3[END_REF]. The bounding box of Pm is included inside the bounding box of Pc. According to the parameters (Rz,Tx,Ty), the ratios of the three extends of the bounding boxes are 88%, 87% and 67%, see table 2. If we want to limit the global motions of one part compare to the other one, this bounding box computation is a useful quantification. It is also, a well indication of the positioning precision of the parts (small volume meaning a small motion). These results do not integrate the correlations between the parameters (Rz,Tx,Ty). Assuming that the relative position of parts is randomly distributed in the polytope, the vector GcGm then gives the average of the relative location between datum R1 and R2 in terms of (Rz,Tx,Ty) in the 3d deviation space, see table 2. The magnitude and the direction of this vector are strongly correlated to the distribution of fvk on the contact surfaces. Furthermore, the polytope Pm is not included inside the polytope Pc but the volume of Pc ∩ Pm is very closed to the volume of Pm, see table 4. These volumes indicate the inclusion rate and traduce if the polytope Pc increase or not the extremal displacements of Pm. These two-last metrics (GcGm and volumes) can help a designer to validate a design choice in a preliminary design stage.

Finally, the deviations from the tessellated boundary of Pm with respect to the boundary of Pc can be deduced by a set of distances, see fig. 

Conclusion

A complete analysis protocol to evaluate the influence of the form error variations on the relative position between parts of an over constrained assembly was presented. This study proposes new metrics to detect and localize assembly interferences induced by form deviations. Moreover, it brings to the fore the influence of form errors in the positioning precision. The four proposed metrics were: Bounding boxes, Mass centers, Volumes of polytopes and Hausdorff distances. 

Figure 1 .

 1 Figure 1. Local (a) and global (b) contact restrictions.

Figure 3 .

 3 Figure 3. Experimental device (a); CAD part (b); geometric setting of the clamp (c).

Figure 4 .

 4 Figure 4. Experimental protocol.
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 5 Figure 5. Polytope Pc = P1 ∩ P2 ∩ P3.

Figure 6 .

 6 Figure 6. Cloud of 2000 points (a) and its convex hull Pm (b).

Fig. 6a gives

  Fig. 6a gives an example with 2000 records of triplets mi. Fig 6b shows the polytope Pm resulting from the convex hull of 2000 points. The vertices of Pm are the extremal displacements between parts 1 and 2 reached by the manual operation. The point density on the boundary of Pm is very heterogeneous.

Figure 7 .

 7 Figure 7. Projections of polytopes Pc and Pm in canonical views.

8 .

 8 Each distance is the Hausdorff distance between a point from the boundary of Pm and Pc. Each signed distance indicates if the form deviation must be added or subtracted along a given direction in the neighborhood of an extremal position between the parts 1 and 2. These distances and their directions can lead to detect what half-space k H -are on the boundary of Pm. Thus, it is possible to investigate about the evolution of the contact zones with and without form error variations in a geometrical model. This diagnosis can lead to detect precisely where are the influent zones on the relative position between parts 1 and 2. Furthermore, this diagnosis can be useful to analyze the load transfer between the parts in order to predict the mechanical behavior of the assembly. These new metrics were integrated in the open source software (i2m.u-bordeaux.fr/politopix).

Figure 8 .

 8 Figure 8. Hausdorff distances between tessellation of Pm with respect to the boundary of Pc.

Table 1 .

 1 Measurement results of individual parts 1 and 2 in R2 in mm

	Surface	1,1	1,2	1,3	2,1	2,2	2,3
	Form dev	0.014	0.011	0.012	0.007 0.009	0.007
	Diameter 10.004 10.008 10.006 10.554 10.558 10.557
	Loc x	-0.273	34.904	-34.422	0.000	34.663	-34.619
	Loc y	39.973	20.070	20.056	40.000	19.995	19.995

Table 2 .

 2 Bounding

	boxes of polytopes			
	Bounding box	Rz (10 -3 rad)	Tx (mm)	Ty (mm)
	Pc	[-7.321; 6,384]	[-0.510; 0.023]	[-0.302; 0.207]
	Pm	[-6.190; 5.860]	[-0.456; 0.007]	[-0.217; 0.133]
	Ratio Pm / Pc	88%	87%	67%

Table 3 .

 3 Mass

	centres of polytopes			
	Mass center	Rz (10 -3 rad)	Tx (mm)	Ty (mm)
	Gc (Pc)	-0.468	-0.247	-0.056
	Gm (Pm)	-0.165	-0.211	-0.065
	GcGm	0.303	0.026	-0.009

Table 4 .

 4 Volumes of polytopes in 10 -3 mm 2 .rad

		Pc	Pm	Pc ∩ Pm
	Volume	46.04	25.58	25.46

In future, the metric uncertainties will be evaluated in order to take into account the effect of assumptions (rigid body, small screw displacement, surface discretization,…) and measure uncertainties. These metrics can help designers to take decisions in geometrical product specification. Additionally, they could be used in Industry 4.0, for example in smart part pairing, for choosing the constitutive parts that warrantee an assembly with no interference. This could be done, in real time in the production chain, by digital twin assembly simulation. The knowledge of the assembly interference localization opens the way to automatic processes to repair high added value parts.