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Abstract. Recommenders personalize the web content using collabora-
tive �ltering to relate users (or items). This work proposes to unify user-

based, item-based and neural word embeddings types of recommenders
under a single abstraction for their input, we name Consumed Item
Packs (CIPs). In addition to genericity, we show this abstraction to be
compatible with incremental processing, which is at the core of low la-
tency recommendation to users. We propose three such algorithms using
CIPs, analyze them, and describe their implementation and scalability
for the Spark platform. We demonstrate that all three provide a recom-
mendation quality that is competitive with three algorithms from the
state-of-the-art.

Keywords: Implicit recommenders, incremental updates, parallelism, Spark.

1 Introduction

Recent recommender systems exploit implicit feedback [1,2,3] (i.e., they do not
leverage ratings collected from users), and show competitive results with Singular
Value Decomposition (SVD) based recommenders [4]. They aim at uncovering
high-order relations between consumed items. Each paper proposes a speci�c
algorithm, with an arbitrary de�nition of sequences of consumed items. Our mo-
tivation is to investigate the existence of a higher level abstraction for sequences
of consumed items, and algorithms for dealing with it. Such an abstraction, we
name a Consumed Item Pack (CIP), allows to reason about and to propose
sequence-aware algorithms within the same framework, capable of addressing
implicit recommendation.

The challenges are threefold. (i) We �rst have to highlight that the notion of
CIP captures the analogous consumption pattern of users (e.g., the one exposed
in [1]). (ii) The second challenge is the computational complexity of the pro-
posed algorithms in the CIP framework. Leveraging CIPs for building implicit
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recommenders is not immediate, for the computation time can easily become pro-
hibitive given the size of user consumption logs in production systems. This is for
instance the case in the previously introduced sequential approach HOSLIM [1],
where algorithmic tractability is at stake. Section 2 presents three CIP based
algorithms. Concerning memory-based Collaborative Filtering (CF), we show in
subsection 2.1 (resp. subsection 2.2) how to build a CIP based similarity metric
that is incremental, which helps in designing an implicit user-based (resp. item-
based) recommender that scales while providing good recommendation quality.
Moreover, we also present a model-based CF technique incorporating CIPs in
subsection 2.3, which leverages neural word embeddings [5]. We demonstrate
that our techniques scale with an increasing number of computing nodes while
achieving a speedup comparable to Spark's Alternating Least Squares (ALS)
recommender from the MLlib library. (iii) These proposed implicit algorithms
have to provide an accuracy that is at least comparable with classic CF recom-
menders, in order to be adopted in practice. For assessing their performance,
we then conduct a comparison with an explicit SVD-based recommender [4],
with an implicit one [6], as well as with a recent state-of-the-art algorithm [7]
incorporating both implicit and explicit techniques.

Consumed Item Packs Our CIPs relate to high order relations between items
enjoyed by a user. Some previous works such as HOSLIM [1], considered the
consumption of items by the same user as the basis for implicit recommendation.
HOSLIM places the so called user-itemsets (implicit feedback) in a matrix, and
then computes the similarity of jointly consumed items over the whole user
history (that leads to the optimal recommendation quality). High-order relations
are sought in principle, but due to the tractability issue of this approach (for
m items and order k: O(mk) combinations of the items are enumerated and
tested for relevance), authors limit computations only to pairs of items. Recently,
Barkan et al. proposed to consider item-item relations using the model of word
embeddings in their technical report [2]. Our work generalizes the notion of
implicit item relations, based on consumption patterns.

To get access to useful information from service logs, we de�ne the CIP data
structure. CIPs are extracted from users' consumption patterns, and allow us
to compute the similarity between those users (or items consumed by them).
A user's pro�le is composed of multiple CIPs. The notion of CIP is then in-
stantiated in three di�erent algorithms: in a user-based algorithm (subsection
2.1), in an item-based one (subsection 2.2) and in a word embedding based one
(subsection 2.3).

To make things more precise, consider a set of m users U = {u1, u2, ..., um}
and a set of n items from a product catalog I = {i1, i2, ..., in}. The transaction
history of a user u, consists of a set of pairs of the form 〈i, tui〉 (where u consumed
an item i at a time tu,i), extracted from service logs. We denote u's pro�le as
Pu, which consists of the time-ordered items in the log. CIPs are composed of
items: each CIP ∈ I∗. The order of the items in a given user's CIP represents
their relative appearance in time, the leftmost symbol being the oldest one:
CIPu = [i1, i2, i3, ..., ik] such that tu,i1 < tu,i2 < ... < tu,ik .
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A CIP then represents the items consumed by a user over a prede�ned period
of time. Using such a data structure, one can devise a similarity measure sim :
I∗ × I∗ → R+ between two CIPs, that captures the proximity between users
(or items) as we explain it in the next section.

2 CIP based Algorithms

The core claim of this paper is that the notion of CIP is general enough to
capture di�erent types of algorithms that rely on sequences of items. In the
next three subsections, we present novel algorithms that determine CIP based
similarities and leverage sequence of items for recommendation. To illustrate
the generality of CIPs, the last subsection shows how a previously introduced
algorithm (FISM [3]) is captured by the CIP framework.

2.1 CIP-u: a user-based recommender

CIP-u is an incremental algorithm that maintains a user-user network where
each user is connected to the most similar K other users. CIP-u exploits users'
CIPs, and accepts batches of items freshly consumed by users (i.e., last logged
transactions on the service) to update this network.

P lu denotes the pro�le of a user u till the lth update of her consumed items,
while CIPl+1

u denotes the batch of new items consumed by her since the last
batch update. Assuming P lu = i1i2...ik and CIP

l+1
u = ik+1ik+2...in, we can

denote the pro�le of a user u after the (l+1)th iteration as P l+1
u = P lu∪CIP

l+1
u .

Note that ∪ is an order preserving union here.
Before we provide the similarity measure to compare users, we introduce

some preliminary de�nitions. We �rst introduce the notion of hammock distance
between a pair of items in the pro�le of a given user u.

De�nition 1 (Hammock distance). The hammock distance between a pair
of items (i, j) in Pu, denoted by Hu(i, j), is the number of hops between them.

For instance, in Pu = [i14, i3, i20, i99, i53, i10, i25], Hu(i14, i99) = 3.

De�nition 2 (Hammock pairs). Given two users u and v, their hammock
pairs HPu,v are the set of distinct item pairs both present in Pu and in Pv, under
the constraint that the number of hops between pairs is at most δH .

HPu,v = {(i, j) | Hu(i, j) ≤ δH ∧ Hv(i, j) ≤ δH ∧ i 6= j}

Hyper-parameter δH denotes the hammock threshold and serves the purpose of
tuning the CIP based latent feature considered between related items.

Let [ ] denote the Iverson bracket: [P] = 1 if P is True, 0 otherwise. From
hammock pairs, we derive the similarity of two users with regards to their CIPs:
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De�nition 3 (Similarity measure for user-based CIP). The sim-
ilarity between two users u and v is de�ned as a function of the cardinality of
the set of hammock pairs between them:

simCIP-u(u, v) = 1− (1− [Pu = Pv]) · e−|HPu,v| (1)

We obtain simCIP-u ∈ [0, 1], with the boundary conditions, simCIP-u = 0 if
the two users have no pair in common (|HPu,v| = 0 and [Pu = Pv] = 0), while
simCIP-u = 1 if their CIPs are identical ([Pu = Pv] = 1).

Incremental updates CIP-u enables incremental updates, in order to conve-
niently re�ect the latest users' consumption in recommendations without re-
quiring a prohibitive computation time. CIP-u processes batches of events (con-
sumed items) at regular intervals and updates the similarity measure for pairs
of users. Cu,v denotes the set of items common in the pro�les of two users u and
v. More precisely, after the lth iteration, we obtain: Clu,v = P lu ∩ P lv. Then, at
the (l + 1)th iteration, we get:

Cl+1
u,v = P l+1

u ∩ P l+1
v = (P lu ∪ CIP

l+1
u ) ∩ (P lv ∪ CIP

l+1
v ) = (P lu ∩ P lv) ∪

(P lu ∩ CIP
l+1
v ) ∪ (P lv ∩ CIP

l+1
u ) ∪ (CIPl+1

u ∩ CIPl+1
v ) = Clu,v ∪ ∆Cl+1

u,v , where

∆Cl+1
u,v =(P lu ∩ CIP

l+1
v ) ∪ (P lv ∩ CIP

l+1
u ) ∪ (CIPl+1

u ∩ CIPl+1
v ). Note that the

time complexity of this step is O((|P lu|+ |CIP
l+1
v |) + (|P lv|+ |CIP

l+1
u |)), where

|CIPl+1
u |, |CIP

l+1
v | are bounded by the number of events, say Q, after which the

batch update will take place. Hence, the time complexity is O(n + Q) = O(n),
where n denotes the total number of items, and when Q is a constant (and
Q << n as expected in a system built for incremental computation).

We next incrementally compute the new hammock pairs. ∆HPu,v denotes
the set of new hammock pairs for users u and v. Computation is performed
as follows: ∆HPu,v = {(i, j) | (i ∈ Clu,v, j ∈ ∆Cl+1

u,v ) ∧ (i ∈ ∆Cl+1
u,v , j ∈

∆Cl+1
u,v ) ∧ Hu(i, j) ≤ δH ∧ Hv(i, j) ≤ δH}.
The time complexity of this step is O(|Clu,v| · |∆Cl+1

u,v |), where |∆Cl+1
u,v | is

bounded by the number of events after which the batch update takes place (Q).
Hence, the time complexity is also of O(n ·Q) = O(n).

Finally, the similarities are computed leveraging the cardinality of the com-
puted incremental hammock pairs. More precisely, we compute the updated sim-
ilarity on-the-�y between a pair of users u and v after the (l + 1)th iteration as

follows: siml+1
u,v = 1− (1− [P l+1

u = P l+1
v ]) · e−|HP

l
u,v+∆HPu,v|.

Hence, the similarity computation between one user and all m others is
O(nm). In CIP-u, we retain a small number K of the most similar users (where
K << m) per given user. Selecting the top-K similar users for collaborative �l-
tering based on their similarity requires sorting, which induces an additional
O(m logm). The total complexity is O(nm) + O(m logm) = O(nm) (since
n >> logm). Note that classic explicit collaborative �ltering algorithms (user or
item-based) have same time complexity for periodically updating their recom-
mendation models. Note that complexity for the top-K neighbors can be reduced
further to O(n) by using biased sampling and iteratively updating neighbors [8].
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2.2 CIP-i: an item-based recommender

CIP-i is also an incremental algorithm that processes user consumption events
in CIPs, to update its item-item network. Similar to CIP-u, we also leverage
the notion of user pro�les: a pro�le of a user u is noted Pu, and is composed of
one or more disjoint CIPs. We use multiple CIPs in a user pro�le to model her
consumption pattern. CIPs are separated based on the timestamps associated
with the consumed items: two consecutive CIPs are disjoint if the former's last
and latter's �rst items are separated in time by a given interval δ.

De�nition 4 (CIP partitions in a user profile). Let ik and ik+1 de-
note two consecutive consumption events of a user u, with consumption times-
tamps tu,ik and tu,ik+1

, such that tu,ik ≤ tu,ik+1
. Given ik belongs to CIPlu, item

ik+1 is added to CIPlu if tu,ik+1
≤ tu,ik + δ. Otherwise ik+1 is added as the �rst

element in a new CIP
l+1
u .

These CIPs are de�ned as δ-distant. The rationale behind the creation of
user pro�les composed of CIPs is that each CIP is intended to capture the
semantic taste of a user within a consistent consumption period.

With i <CIP j denoting the prior occurrence of i before j in a given CIP,
and the inverse hammock distance εu(i, j) being a penalty function for distant
items in a CIPu (e.g., εu(i, j) = 1

Hu(i,j)
), we express a similarity measure for

items, based on those partitioned user pro�les, as follows.

De�nition 5 (Similarity measure for item-based CIP). Given a
pair of items (i, j), their similarity is:

simCIP-i(i, j) =

∑
u

∑|l|u
l=1[(i, j) ∈ CIPlu ∧ i <CIP j](1 + εu(i, j))

2 ·max{
∑
u

∑|l|u
l=1[i ∈ CIPlu],

∑
u

∑|l|u
l=1[j ∈ CIPlu]}

=
scoreCIP-i(i, j)

2 ·max{cardV (i), cardV (j)}
,

(2)

with |l|u the number of CIPs in u's pro�le, and [ ] the Iverson bracket.

This re�ects the number of close and ordered co-occurrences of items i and j over
the total number of occurrences of both items independently: simCIP-i(i, j) = 1
if each appearance of i is immediately followed by j in the current CIP. Con-
trarily, simCIP-i(i, j) = 0 if there is no co-occurrence of those items in any CIP.
Furthermore, we denote the numerator term as scoreCIP-i(i, j) and the denom-
inator term as a function of cardV (i) and cardV (j) sub-terms for Equation 2,

where cardV (i) =
∑
u

∑|l|u
l=1[i ∈ CIPlu]. As shown in Algorithm 1, we can up-

date scoreCIP-i(i, j) and cardV (i) terms incrementally. Finally, we compute the
similarity on-the-�y with the scoreCIP-i(i, j) and cardV (i) terms.

Incremental updates CIP-i processes users' recentCIPs scanned from users' con-
sumption logs. Score values (scoreCIP-i) are updated (Algorithm 1). We require
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an item-item matrix to maintain the score values, as well as a n-dimensional
vector that maintains the current number of occurrences of each item.

After the update of the score values, the algorithm terminates by updating a
data structure containing the top-K closest items for each given item, leveraging
the score matrix and the cardinality terms for computing the similarities on-the-
�y.

Algorithm 1 Incremental Updates for Item Pairs.

Require: CIPu B last δ-distant CIP received for user u
1: scoreCIP-i[ ][ ] B item-item score matrix, initialized to 0
2: cardV Bn-dim. vector of appearance cardinality of items
3: for item i in CIPu do
4: cardV (i) = cardV (i) + 1
5: for item j in CIPu do
6: if i 6= j then
7: ε(i, j) = ε(j, i) = 1

Hu(i,j)

8: if i <CIP j then
9: scoreCIP-i[i][j]+=(1 + ε(i, j))
10: else
11: scoreCIP-i[j][i]+=(1 + ε(j, i))

The complexity of Algorithm 1 depends on the maximum tolerated size of
incoming CIPs. As one expects an incremental algorithm to receive relatively
small inputs as compared to the total dataset size, the �nal complexity is com-
patible with online computation: e.g., if the largest CIP allowed has cardinality
|CIP| = O(log n), then run-time complexity is poly-logarithmic.

2.3 DeepCIP: an embedding-based recommender

In this subsection, we present an approach based on machine learning, inspired
by Word2Vec[5,2]. This approach relies on word embedding, transposed to
items. We speci�cally adapt this concept to our CIP data structure.

Neural word embeddings, introduced in [9,5], are learned vector representa-
tions for each word from a text corpus. These neural word embeddings are useful
for predicting the surrounding words in a sentence. A common approach is to use
a multi-layer Skip-gram model with negative sampling. The objective function
minimizes the distance of each word with its surrounding words within a sen-
tence while maximizing the distances to randomly chosen set of words (negative
samples) that are not expected to be close to the target. This is an objective
quite similar to ours as it enables to compute proximity between items in the
same CIP. With DeepCIP, we feed a Skip-gram model with item-pairs in CIPs
where each CIP is as usual an ordered set of items (similar to the instantia-
tion in CIP-i). More precisely, CIPs are δ-distant as instantiated in subsection
2.2. DeepCIP trains the neural network with pairs of items at a distance less
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than a given window size within a CIP. This window size corresponds to the
notion of hammock distance (de�ned in subsection 2.1) where the distance hyper-
parameter δH is de�ned by the window size. More formally, given a sequence of T
training items' vectors i1, i2, i3, ..., iT , and a maximum hammock distance of k,
the objective of the DeepCIP model is to maximize the average log probability:

1

T

T−k∑
t=k

log P (it|it−k, ...., it−1, it+1, ...., it+k). (3)

The Skip-gram model is employed to solve the optimization objective 3, where
the weights of the model are learned using back-propagation and stochastic gra-
dient descent. We implement DeepCIP using asynchronous stochastic gradient
descent (Downpour-SGD [10]). Downpour-SGD enables distributed train-
ing for the Skip-gram model on multiple machines by leveraging asynchronous
updates from them. We use a publicly-available deep learning framework [11]
which implements Downpour-SGD in a distributed setting. More precisely,
DeepCIP trains the model using Downpour-SGD on the recent CIPs thereby
updating the model incrementally.

DeepCIP uses a most_similar functionality to select items to recommend to
a user, using as input recently consumed items (the current CIP). We compute
a CIP vector using the items in the given CIP and then use this vector to
�nd most similar other items. More precisely, the most_similar method uses the
cosine similarity between a simple mean of the projection weight vectors of the
recently consumed items (i.e., items in a user's most recent CIP) and the vectors
for each item in the database.

Incremental updates Online machine learning is performed to update a model
when data becomes available. The DeepCIP model training is performed in an
online manner [12], in which the model is updated using the recent CIPs. Online
machine learning is crucial for recommendation systems, as it is necessary for the
algorithm to dynamically adapt to new temporal patterns [13] in the data. Hence,
the complexity of the model update is dependent on the number of new CIPs
received along with the hyper-parameters for the learning algorithm (primarily:
the Skip-gram model parameters, the dimensionality of item vectors, the number
of training iterations, and the hammock distance).

2.4 The FISM algorithm under CIPs

We now demonstrate that the CIP framework can incorporate the state-of-
art sequence-based algorithm FISM [3] (standing for Factored Item Similarity
Models), in order to illustrate the generality of the CIP notion. In FISM, the
item-item similarity is computed as a product of two low-ranked matrices P ∈
Rm×k and Q ∈ Rm×k where k << m. More precisely, the item-item similarity
between any two items is de�ned as sim(i, j) = pjq

T
i where pj ∈ P and qi ∈ Q.

Finally, the recommendation score for a user u on an unrated item i (denoted
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by r̄ui) is calculated as an aggregation of the items that have been rated by u:

r̄ui = bu + bi + (n+u )−α
∑
j∈R+

u

pjq
T
i , (4)

where R+
u is the set of items rated by user u (note that FISM do not leverage

ratings, but only the fact that a rated item has been consumed by de�nition), bu
and bi are the user and item biases, pj and qi are the learnt item latent factors,
n+u is the number of items rated by u, and α is a user speci�ed parameter between
0 and 1. Moreover, term (n+u )−α in Equation 4 is used to control the degree of
agreement between the items rated by the user with respect to their similarity
to the item whose rating is being estimated (i.e., item i).

We now present how Equation 4 is adapted to �t into the CIP notion. For a
user u, her pro�le (Pu) consists of |l|u di�erent CIPs (similar to the notations
introduced for Equation 4). Equation 4 is rewritten with CIPs as:

r̄ui = bu + bi + (| ∪|l|uk=1 CIP
k
u|)−α

|l|u∑
k=1

∑
j∈CIPk

u

pjq
T
i , (5)

where |·| denotes the cardinality. We substitute consumed items by CIP struc-
tures; this last transformation shows that indeed CIPs incorporates the FISM
de�nition of item sequences. We also note that due to the CIPs, the terms in
Equation 5 could be incrementally updated, similarly to CIP-u and CIP-i, by
incorporating the latest CIP of user u.

3 Implementation with Spark and Evaluation

We �rst note that we open sourced our algorithms on GitHub[14]. We consider
Apache Spark [15] as our framework for the computation of recommendations.
Spark is a cluster computing framework for large-scale data processing; it pro-
vides several core abstractions, namely Resilient Distributed Datasets (RDDs),
parallel operations and shared variables. We now introduce the RDDs adapted
to our CIP-based algorithms.

RDDs for CIP-u We store the collected information into three primary RDDs
as follows. UsersRDD stores the information about the user pro�les. User-
SimRDD stores the hammock pairs between all pairs of users. The pairwise
user similarities are computed using a transformation operation over this RDD.
UserTopKRDD stores the K most similar users.

During each update step in CIP-u, after Q consumption events, the new
events are stored into a DeltaProfiles RDD, which is broadcast to all the
executors using the broadcast abstraction of Spark. Then, the hammock pairs
between users are updated (in UserSimRDD) and consequently transformed to
pairwise user similarities using Equation 1. Finally, CIP-u updates the top-K
neighbors (UserTopKRDD) based on the updated similarities.
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RDDs for CIP-i Two primary RDDs are used. ItemSimRDD stores score values
between items. The pairwise item similarities are computed using a transforma-
tion operation over this RDD. ItemTopKRDD stores the K most similar items
for each item based on the updated similarities.

During each update step in CIP-i, the item scores are updated incorporating
the received CIP using Algorithm 1 in the ItemSimRDD, and consequently the
pairwise item similarities are also revised using Equation 2. CIP-i computes the
top-K similar items and updates the ItemTopKRDD at regular intervals.

RDDs for DeepCIP We implement the DeepCIP using the DeepDist deep
learning framework [11] which accelerates model training by providing asyn-
chronous stochastic gradient descent (Downpour-SGD) for Spark data.DeepCIP
implements a standard master-workers parameter server model [10]. On the mas-
ter node, the CIPsRDD stores the recent CIPs aggregated from the user trans-
action logs preserving the consumption order. Worker nodes fetch the model from
the master before processing each partition, and send back the gradient updates.
The master node performs the stochastic gradient descent asynchronously us-
ing the updates sent by the worker nodes. Finally, DeepCIP predicts the most
similar items to a given user, based on its most recent CIP.

3.1 Experimental setup

For our experiments, we use a deployment of the Spark large-scale processing
framework [15]. We launch Spark as Standalone, with 19 executors each with 5
cores for a total of 96 cores in the cluster.

We then use the Grid5000 testbed to launch a Spark cluster consisting of 20
machines on Hadoop YARN, for the scalability experiments. Machines host an
Intel Xeon CPU E5520@ 2.26GHz.

Datasets and evaluation scheme We use real-world traces from the Movielens
movie recommendation website (ML-100K, ML-1M) [16], as well as from the
Ciao [17] product review website. Those traces contain users' ratings for movies
they enjoyed (ratings vary from 1 to 5). Note that the ratings are only leveraged
for the explicit (rating-based) SVD recommender we use as a competitor.

The dataset is sorted based on the Unix timestamps associated with the
rating events. Then, the sorted dataset is replayed to simulate the temporal
behavior of users. We measure the recommendation quality as follows: we divide
the sorted dataset into a training set, a validation set and a test set. The training
set is used to train our CIP based models, whereas the validation set is used
to tune the hyper-parameters of the models. For each event in the test set (or
rating when applied to the explicit recommender), a set of top recommendations
is selected as the recommendation set with size denoted as N .

Competitors We compare the recommendation quality of our three algorithms
with the following three competitors:
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Fig. 1: Result quality (precision) for CIP-based algorithms and competitors.

Matrix factorization (SVD).Matrix factorization techniques map both users
and items to a joint latent factor space, such that ratings are modeled as inner
products in that space. We use a publicly available library (Python-recsys [18])
for evaluations.

Implicit time-based recommender (TB-W5). A popular time-based rec-
ommender is providing recommendations without the need for explicit feed-
back [6]. Pseudo ratings are built from the collected implicit feedback based on
temporal information (user purchase-time and item launch-time). We use the
best performing variant: W5 (�ne-grained function with �ve launch-time groups
and �ve purchase-time groups).

Markov chain-based recommender (MCRec). We compare with a re-
cent recommender which combines matrix factorization and Markov-chains [7] to
model personalized sequential behavior. We use a publicly available library [19]
for the evaluation. We do not compare with FISM [3], as it is empirically shown
to be outperformed by the Markov-chain based algorithm [7].

3.2 Comparison with competitors

We refer to our technical report [20] for an in-depth exploration of parameters
for our three CIP based algorithms. We obtained the following optimal setting
for the hyper-parameters of those algorithms. For CIP-u: we set δH = 10 for
ML-100K, δH = 30 for ML-1M, and δH = 10 for Ciao to attain the best possible
quality; model size is set to K = 50. For CIP-i we set δ = 1 minute for ML-
100K, δ = 1 minute for ML-1M, and δ = 100 minutes for Ciao; model size is
set to K = 30. Finally for DeepCIP we set δ = 1 minute for ML-100K, δ = 1
minute for ML-1M, and δ = 100 minutes for Ciao. We set the window size (W )
to 5 for all three datasets.

The recommendation quality of all six evaluated algorithms in terms of pre-
cision (N = 10) is shown in Figure 1. We draw the following observations:

(a) Regarding our three algorithms, DeepCIP always outperforms CIP-i, which
in turn is always outperforming CIP-u (except on the Top-5 result on the Ciao
dataset, which is due to the relatively limited number of recommendations).

(b) The CIP based algorithms outperform TB-W5 on all three datasets. For
example, consider the top-10 recommendations in the ML-1M dataset: CIP-u
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provides around 1.82× improvement in the precision, CIP-i provides around
2.1× improvement, and DeepCIP provides around 2.4× improvement.

(c) The CIP-u algorithm performs on par withMCRec, as well as with the SVD
technique. CIP-i overcomes MCRec on all three scenarios, sometimes only by
a short margin (ML-1M). Most notably, DeepCIP outperforms all other ap-
proaches signi�cantly. For example, consider the top-10 recommendations in the
ML-1M dataset: DeepCIP provides 2.4× improvement over TB-W5, 1.29× im-
provement over MCRec, and 1.31× improvement over the matrix factorization
algorithm. The reason behind this improvement is that DeepCIP considers, for
any given item, the packs of items at a distance dependent on the de�ned win-
dow size, whereas MCRec only considers item pairs in the sequence of chain
states (i.e., has a more constrained learning). Note that the precision of the SVD
algorithm on Movielens (11% to 12%) is consistent with other standard quality
evaluation benchmarks for state-of-the-art recommenders [21].

These results show the existence of the latent information contained in closely
consumed items, accurately captured by the CIP structure. It is consistent for
DeepCIP to perform well in this setting: the originalWord2Vec concept cap-
tures relations among words w.r.t. their proximity in a given context. DeepCIP
captures item proximity w.r.t. their consumption time.

3.3 Scalability of the CIP based algorithms

We evaluate the scalability of our algorithms while increasing the Spark clus-
ter size from one machine to a maximum of 20 machines. Furthermore, we also
compare the speedup achieved by a matrix factorization technique (ALS) im-
plemented in the publicly available MLlib library for Spark. We use 50 Spark
partitions.5
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Fig. 2: Spark cluster size e�ects on computation speedup.

5 Please refer to our technical report [20] for a detailed study of the scalability of CIP
based algorithms facing a varying number of partitions.



12 Guerraoui, Le Merrer, Patra, Vigouroux.

Figure 2 depicts a sublinear increase in speedup while increasing the num-
ber of machines, on both datasets. The sublinearity in the speedup is due to
communication overheads in Spark with the increasing number of machines.
The speedup on ML-1M is higher due to more computations being required for
larger datasets and higher utilization of the cluster. The speedup for CIP-i is
similar for both datasets as its time complexity depends on the CIP size (Algo-
rithm 1). DeepCIP scales well due to the distributed asynchronous stochastic
gradient descent (Downpour-SGD) for training the Skip-gram model, where
more gradient computations are executed asynchronously in parallel with the
increasing number of nodes. CIP-u and DeepCIP scale better than ALS.

4 Related Work

CIP-based algorithms belong to the category of recommenders using implicit
feedback from users. HOSLIM [1] proposes to compute higher order relations
between items in consumed itemsets; those relations are the ones that maxi-
mize the recommendation quality, but without notions of temporality in item
consumption. The proposed algorithm is time-agnostic, and does not scale for
orders superior to pairs of items. Moreover, it is not designed to e�ciently incor-
porate freshly consumed items and faces computational intractability. Barkan et
al. present Item2Vec in their technical report [2], that also uses skip-gram with
negative sampling to retrieve items' relations w.r.t their context in time. Besides
the fact that their implementation does not scale on multiple machines due to
the use of synchronous stochastic gradient descent, the technical report evalu-
ates algorithms on private datasets. Implicit feedback has been used for multiple
applications: e.g., in search engines, where clicks are tracked [22]. SPrank [23]
leverages semantic descriptions of items, gathered in a knowledge base available
on the web. Koren et al. [24] have shown that implicit TV switching actions are
valuable enough for recommendation. Within implicit based recommenders, the
notion of �time� has been exploited in various ways since it is a crucial implicit
information collected by all services. Baltrunas et al. presented a technique [25]
similar to CIP where a user pro�le is partitioned into micro-pro�les; still, ex-
plicit feedback is required for each of these micro-pro�les. Time window (or
decay) �ltering is applied to attenuate recommendation scores for items with a
small purchase likelihood at the moment a user might view them [26]. While
such an approach uses the notion of time in transaction logs, it still builds on
explicit ratings for computing the basic recommendation scores. Finally, Lee et
al. [6] introduced a fully implicit feedback based approach, that weights new
items if users are sensitive to the item's launch times; we compared to [6] and
demonstrated a better performance.

5 Conclusion

In an e�ort for a detailed and scalable proposal for generalizing such a direction,
we presented two memory-based and one model-based recommendation algo-
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rithms exploiting the implicit notion of consumed item packs. We made them
available on GitHub [14]. We have shown this framework to incorporate a state-
of-the-art approach. In our experiments, CIP based algorithms provided a better
recommendation quality than the widespread SVD-based approach [4], as well
as implicit ones leveraging consumption times [6] or consumption sequences [7].
Importantly for deployments, those �ts the incremental nature of collected data,
to leverage freshly consumed items.
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