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Abstract. Verification of timed concurrent systems is hard, especially
when the exact value of timing constants remains unknown. In this work,
we propose a new subclass of Parametric Timed Automata (PTAs) en-
joying a decidability result; we allow clocks to be compared to parameters
in guards, as in classic PTAs, but also to be updated to parameters. If
we update all clocks each time we compare a clock with a parameter
and each time we update a clock to a parameter, we obtain a syntactic
subclass for which we can decide the EF-emptiness problem (“is the set
of parameter valuations for which some given location is reachable in
the instantiated timed automaton empty?”) and even perform the ex-
act synthesis of the set of rational valuations such that a given location
is reachable. To the best of our knowledge, this is the first non-trivial
subclass of PTAs, actually even extended with parametric updates, for
which this is possible.

1 Introduction

Timed automata (TAs) are a powerful formalism to model and verify timed
concurrent systems, both expressive enough to model many interesting systems
and enjoying several decidability properties. In particular, the reachability of a
discrete state is PSPACE-complete [1]. In TAs, clocks can be compared with
constants in guards, and can be updated to 0 along edges. This can model a
system where processes synchronise (are reset) together periodically.

Timed automata may turn insufficient to verify systems where the timing
constants themselves are subject to some uncertainty, or when they are simply
not known at the early design stage. Parametric timed automata (PTAs) [2] ad-
dress this drawback by allowing parameters (unknown constants) in the timing
constraints; this high expressive power comes at the cost of the undecidability of
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most interesting problems. In particular, the basic problem of EF-emptiness (“is
the set of valuations for which a given location is reachable in the instantiated
timed automaton empty?”) is “robustly” undecidable: even for a single rational-
valued [20] or integer-valued parameter [2,8], or when only strict constraints are
used [15]. A well-known syntactic subclass of PTAs that enjoys limited decidabil-
ity is L/U-PTAs [17], where the parameters set is partitioned into lower-bound
and upper-bound parameters, i.e., parameters that can only be compared to a
clock as a lower-bound (resp. upper-bound). The EF-emptiness problem is decid-
able for L/U-PTAs [17,11] and for PTAs under several restrictions [13]; however,
most other problems are undecidable (e.g., [11,21,18,7,4]).

Contributions. We investigate parametric updates, which can model an un-
known timing configuration in a system where processes need to synchronise
together on common events, as in e.g., programmable controller logic programs
with concurrent tasks execution. We show that the EF-emptiness problem is de-
cidable for PTAs augmented with parametric updates, with the additional con-
dition that whenever a clock is compared to a parameter in a guard or updated
to a parameter, all clocks must be updated (possibly to parameters)—this gives
R-U2P-PTA. This result holds when the parameters are bounded rationals in
guards, and possibly unbounded rationals in updates. Non-trivial decidable sub-
classes of PTAs are a rarity (to the best of our knowledge, only L/U-PTAs [17]
and integer-points (IP-)PTAs [7]); this makes our positive result very welcome.
In addition, not only the emptiness is decidable, but exact synthesis for bounded
rational-valued parameters can be performed—which contrasts with L/U-PTAs
and IP-PTAs as synthesis was shown intractable [18,7].

A full version of this paper with all detailed proofs is available at [6].

Related work. Our construction is reminiscent of the parametric difference
bound matrices (PDBMs) defined in [22, section III.C] where the author revisit
the result of the binary reachability relation over both locations and clock valu-
ations in TAs; however, parameters of [22] are used to bound in time a run that
reaches a given location, while we use parameters directly in guards and resets
along the run, which make them active components of the run specifically for
intersection with parametric guards, key point not tackled in [22].

Allowing parameters in clock updates is inspired by the updatable TA defined
in [10] where clocks can be updated not only to 0 (“reset”) but also to rational
constants (“update”). In [5], we extended the result of [10] by allowing para-
metric updates (and no parameter elsewhere, e.g., in guards): the EF-emptiness
is undecidable even in the restricted setting of bounded rational-valued param-
eters, but becomes decidable when parameters are restricted to (unbounded)
integers.

Synthesis is obviously harder than EF-emptiness: only three results have been
proposed to synthesize the exact set of valuations for subclasses of PTAs, but
they are all concerned with integer -valued parameters [11,18,5]. In contrast, we
deal here with (bounded) rational-valued parameters—which makes this result
the first of its kind. The idea of updating all clocks when compared to parameters
comes from our class of reset-PTAs briefly mentioned in [7], but not thoroughly
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studied. Finally, updating clocks on each transition in which a parameter appears
is reminiscent of initialized rectangular hybrid automata [16], which remains one
of the few decidable subclasses of hybrid automata.
Section 2 recalls preliminaries. Section 3 presents R-U2P-PTA along with our
decidability result. Section 4 gives a concrete application of our result.

2 Preliminaries

Throughout this paper, we assume a set X = {x1, . . . , xH} of clocks, i.e., real-
valued variables evolving at the same rate. A clock valuation is w : X → R+.
We write 0 for the clock valuation that assigns 0 to all clocks. Given d ∈ R+,
w+ d (resp. w− d) denotes the valuation such that (w+ d)(x) = w(x) + d (resp.
(w − d)(x) = w(x) − d if w(x) − d > 0, 0 otherwise), for all x ∈ X. We assume
a set P = {p1, . . . , pM} of parameters, i.e., unknown constants. A parameter
valuation v is a function v : P → Q+. We identify a valuation v with the point
(v(p1), . . . , v(pM )) of QM

+ . Given d ∈ N, v+d (resp. v−d) denotes the valuation
such that (v + d)(p) = v(p) + d (resp. (v − d)(p) = v(p) − d if v(p) − d > 0, 0
otherwise), for all p ∈ P.

In the following, we assume / ∈ {<,≤} and ./ ∈ {<,≤,≥, >}.
A parametric guard g is a constraint over X∪P defined as the conjunction of

inequalities of the form x ./ z, where x is a clock and z is either a parameter or a
constant in Z. A non-parametric guard is a parametric guard without parameters
(i.e., over X).

Given a parameter valuation v, v(g) denotes the constraint over X obtained
by replacing in g each parameter p with v(p). We extend this notation to an
expression: a sum or difference of parameters and constants. Likewise, given a
clock valuation w, w(v(g)) denotes the expression obtained by replacing in v(g)
each clock x with w(x). A clock valuation w satisfies constraint v(g) (denoted
by w |= v(g)) if w(v(g)) evaluates to true. We say that v satisfies g, denoted by
v |= g, if the set of clock valuations satisfying v(g) is nonempty. We say that g
is satisfiable if ∃w, v s.t. w |= v(g).

A parametric update is a partial function u : X ⇀ N ∪ P which assigns
to some of the clocks an integer constant or a parameter. For v a parameter
valuation, we define a partial function v(u) : X ⇀ Q+ as follows: for each clock
x ∈ X, v(u)(x) = k ∈ N if u(x) = k and v(u)(x) = v(p) ∈ Q+ if u(x) = p a
parameter. A non-parametric update is unp : X ⇀ N. For a clock valuation w
and a parameter valuation v, we denote by [w]v(u) the clock valuation obtained
after applying v(u).

Given a clock x and a clock valuation w, bw(x)c denotes the integer part
of w(x) while frac(w(x)) denotes its fractional part. We define the same notation
for parameter valuations.

We first define a new class of parametric timed automata and further define
classic parametric timed automata and timed automata.

Definition 1. An update-to-parameter PTA (U2P-PTA) A is a tuple A = (Σ,L, l0,X,P, ζ),
where: i) Σ is a finite set of actions, ii) L is a finite set of locations, iii) l0 ∈ L
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Fig. 1: A proof-of-work
modeled with a bounded R-U2P-PTA.

is the initial location, iv) X is a finite set of clocks, v) P is a finite set of param-
eters, vi) ζ is a finite set of edges e = 〈l, g, a, u, l′〉 where l, l′ ∈ L are the source
and target locations, g is a parametric guard, a ∈ Σ and u : X ⇀ N ∪ P is a
parametric update function.

An U2P-PTA is depicted in Figure 1. Note that all clocks are updated whenever
there is a comparison with a parameter (as in newBlock) or a clock is updated to
a parameter (as in blockSolutionx). Given a parameter valuation v, we denote by
v(A) the structure where all occurrences of a parameter pi have been replaced
by v(pi). If v(A) is such that all constants in guards and updates are integers,
then v(A) is a updatable timed automaton [10] but will be called timed automaton
(TA) for the sake of simplicity in this paper.
A bounded U2P-PTA is a U2P-PTA with a bounded parameter domain that
assigns to each parameter a minimum integer bound and a maximum integer
bound. That is, each parameter pi ranges in an interval [ai, bi], with ai, bi ∈ N.
Hence, a bounded parameter domain is a hyperrectangle of dimension M .
A parametric timed automaton (PTA) [2] is a U2P-PTA where, for any edge
e = 〈l, g, a, u, l′〉 ∈ ζ, u : X⇀ {0}.
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Definition 2 (Concrete semantics of a TA). Given a U2P-PTA A =
(Σ,L, l0,X,P, ζ), and a parameter valuation v, the concrete semantics of v(A)
is given by the timed transition system (S, s0,→), with S = {(l, w) ∈ L× RH

+},
s0 = (l0,0) and → consists of the discrete and (continuous) delay transition
relations:

– discrete transitions: (l, w)
e7→ (l′, w′), if (l, w), (l′, w′) ∈ S, there exists e =

〈l, g, a, u, l′〉 ∈ ζ, w′ = [w]v(u), and w |= v(g).

– delay transitions: (l, w)
d7→ (l, w + d), with d ∈ R+.

Moreover we write (l, w)
e−→ (l′, w′) for a combination of a delay and discrete

transitions where ((l, w), e, (l′, w′)) ∈ → if ∃d,w′′ : (l, w)
d7→ (l, w′′)

e7→ (l′, w′).

Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states
of S as the concrete states of v(A). A (concrete) run of v(A) is a possibly infinite
alternating sequence of concrete states of v(A) and edges starting from s0 of the

form s0
e0−→ s1

e1−→ · · · em−1−→ sm
em−→ · · · , such that for all i = 0, 1, . . . , ei ∈ ζ,

and (si, ei, si+1) ∈ →.

Given a state s = (l, w), we say that s is reachable (or that v(A) reaches s)
if s belongs to a run of v(A). By extension, we say that l is reachable in v(A),
if there exists a state (l, w) that is reachable.

Throughout this paper, let K denote the largest constant in a given U2P-
PTA, i.e., the maximum of the largest constant compared to a clock in a guard
and the largest upper bound of a parameter (if the U2P-PTA is bounded).

Let us recall the notion of clock region [1].

Definition 3 (clock region). For two clock valuations w and w′, ∼ is an
equivalence relation defined by: w ∼ w′ iff i) for all clocks x, either bw(x)c =
bw′(x)c or w(x), w′(x) > K; ii) for all clocks x, y with w(x), w(y) ≤ K, frac(w(x)) ≤
frac(w(y)) iff frac(w′(x)) ≤ frac(w′(y)); iii) for all clocks x with w(x) ≤ K,
frac(w(x)) = 0 iff frac(w′(x)) = 0.

A clock region is an equivalence class of ∼.

Two clock valuations in the same clock region reach the same regions by time
elapsing, satisfy the same guards and can take the same transitions [1].

In this paper, we address the EF-emptiness problem: given a U2P-PTA A
and a location l, is the set of parameter valuations v such that l is
reachable in v(A) empty?

3 A decidable subclass of U2P-PTAs

We now impose that, whenever a guard or an update along an edge contains
parameters, then all clocks must be updated (to constants or parameters). Our
main contribution is to prove that this restriction makes EF-emptiness decidable.
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Definition 4. An R-U2P-PTA is a U2P-PTA where for any 〈l, g, a, u, l′〉 ∈ ζ,
u is a total function whenever:1 i) g is a parametric guard, or ii) u(x) ∈ P for
some x ∈ X.

The main idea for proving decidability is the following: given an R-U2P-
PTA A we will construct a finite region automaton that bisimulates A, as in
TA [1]. Our regions will contain both clocks and parameters, and will be a finite
number. Since parameters are allowed in guards, we need to construct parameter
regions and more restricted clock regions. We will define a form of Parametric
Difference Bound Matrices (viz., p–PDBMs for precise PDBMs, inspired by [17])
in which, once valuated by a parameter valuation, two clock valuations have the
same discrete behavior and satisfy the same non-parametric guards. A p–PDBM
will define the set of clocks and parameter valuations that satisfies it, while
once valuated by a parameter valuation, a valuated p–PDBM will define the set
of clock valuations that satisfies it. A key point is that in our p–PDBMs the
parametric constraints used in the matrix will be defined from a finite set of
predefined expressions involving parameters and constants, and we will prove
that this defines a finite number of p–PDBMs. Decidability will come from this
fact. We define this set (PLT for parametric linear term) as follows: PLT =
{frac(pi), 1 − frac(pi), frac(pi) − frac(pj), frac(pj) + 1 − frac(pi), 1, 0, frac(pi) −
1 − frac(pj),−frac(pi), frac(pi) − 1}, for all 1 ≤ i, j ≤ M . Given a parameter
valuation v and d ∈ PLT , we denote by v(d) the term obtained by replacing
in d each parameter p by v(p). Let us now define an equivalence relation between
parameter valuations v and v′.

Definition 5 (regions of parameters). We write that v _ v′ if i) for all
parameter p, bv(p)c = bv′(p)c; ii) for all d1, d2, d3 ∈ PLT , v(d1) ≤ v(d2)+v(d3)
iff v′(d1) ≤ v′(d2) + v′(d3);

Parameter regions are defined as the equivalence classes of _. The definition
is in a way similar to [1, Definition 4.3] but also involves comparisons of sums
of elements of PLT . In fact, we will need this kind of comparisons to define
our p–PDBMs. Nonetheless we do not need more complicated comparisons as
in R-U2P-PTA whenever a parametric guard or update is met the update is a
total function: this preserves us from the parameter accumulation, e.g., obtaining
expressions of the form 5frac(pi)−1−3frac(pj) (that may occur in usual PTAs).

In the following, our p–PDBMs will contain pairs of the form D = (d, /),
where d ∈ PLT . We therefore need to define comparisons on these pairs.

We define an associative and commutative operator ⊕ as /1 ⊕ /2 = < if
/1 6= /2, or /1 if /1 = /2. We define D1 +D2 = (d1 + d2, /1 ⊕ /2). Following the
idea of parameter regions, we define the validity of a comparison between pairs

1 In the following we only consider either non-parametric, or (necessarily total) fully
parametric update functions. A total update function which is not fully parametric
(i.e., an update of some clocks to parameters and all others to constants) can be
encoded as a total fully parametric update immediately followed by a (partial) non-
parametric update function.
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of the form (di, /i) within a given parameter region, i.e., whether the comparison
is true for all parameter valuations v in the parameter region Rp.

Definition 6 (validity of comparison). Let Rp be a parameter region. Given
any two linear terms d1, d2 over P (i.e., of the form

∑
i αipi + d with αi, d ∈ Z),

the comparison (d1, /1) / (d2, /2) is valid for Rp if:

1. / = <, and either i) for all v ∈ Rp, v(d1) < v(d2) evaluates to true, or ii)
for all v ∈ Rp, v(d1) ≤ v(d2) evaluates to true, /1 = < and /2 = ≤;

2. / = ≤, and either i) for all v ∈ Rp, v(d1) < v(d2) evaluates to true, or ii) for
all v ∈ Rp, v(d1) ≤ v(d2) evaluates to true, and /1 = /2, or /1 = <;

Transitivity is immediate from the definition: if D1 /1D2 and D2 /2D3 are valid
for Rp, D1(/1 ⊕ /2)D3 is valid for Rp.

We can now define our data structure, namely p–PDBMs, inspired by the
PDBMs of [17] themselves inspired by DBMs [14]. However, our p–PDBM com-
pare differences of fractional parts of clocks, instead of clocks as in classical
DBMs; therefore, our p–PDBMs are closer to clock regions than to DBMs and
fully contained into clock regions of [1] A p–PDBM is a pair made of an integer
vector (encoding the clocks integer part), and a matrix (encoding the paramet-
ric differences between any two clock fractional parts). Their interpretation also
follows that of PDBMs and DBMs: for i 6= 0, the matrix cell Di,0 = (di,0, /i0) is
interpreted as the constraint frac(xi) /i0 di,0, and D0,i = (d0,i, /0i) as the con-
straint −frac(xi) /0i d0,i. For i 6= 0 and j 6= 0, the matrix cell Di,j = (di,j , /ij) is
interpreted as frac(xi)− frac(xj) /ij di,j .

Definition 7 (p–PDBM). Let Rp be a parameter region. A p–PDBM for Rp

is a pair (E,D) with E = (E1, · · · , EH) a vector of H integers (or ∞ when
it exceeds a possible upper-bound) which is the integer part of each clock, and
D is an (H + 1)2 matrix where each element Di,j is a pair (di,j , /ij) for all
0 ≤ i, j ≤ H, where di,j ∈ PLT . Moreover, for all 0 ≤ i ≤ H, Di,i = (0,≤). In
addition, for all i, j, k:

1. (−1, <) ≤ D0,i ≤ (0,≤) and (0,≤) ≤ Di,0 ≤ (1, <) are valid for Rp,
2. For all i 6= 0, j 6= 0, either (0,≤) ≤ Di,j ≤ (1, <) is valid for Rp and

(−1, <) ≤ Dj,i ≤ (0,≤) is valid for Rp or (0,≤) ≤ Dj,i ≤ (1, <) is valid for
Rp and (−1, <) ≤ Di,j ≤ (0,≤) is valid for Rp.

3. Di,j ≤ Di,k +Dk,j is valid for Rp (canonical form).
4. If di,j = −dj,i and di,j 6= ±1 then /ij = /ji = ≤, else /ij = /ji = <,

The use of validity ensures the consistency of the p–PDBM. We denote
the set of all p–PDBMs that are valid for Rp by p–PDBM(Rp). Given a p–
PDBM (E,D), it defines the subset of RH ∪ QM satisfying the constraints∧

i,j∈[0,H] frac(xi)− frac(xj) /i,j di,j ∧
∧

i∈[1,H]bxic = Ei.

Given a parameter valuation v, we denote by (E, v(D)) the valuated p–
PDBM, i.e., the set of clock valuations defined by:∧

i,j∈[0,H]

frac(xi)− frac(xj) /i,j v(di,j) ∧
∧

i∈[1,H]

bxic = Ei.
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For a clock valuation w, we write w ∈ (E, v(D)) if it satisfies all constraints
of (E, v(D)). Intuitively, our p–PDBMs are partitioned into three types.

(1) The point p–PDBM is a clock region defined by only parameters which
contains only one clock valuation; it represents the unique clock valuation (for a
given parameter valuation) obtained after a total parametric update in an U2P-
PTA. Each clock is valuated to a parameter and each difference of clocks is
valuated to a difference of parameters (it corresponds to constraints of the form
x = p and x− y = pi − pj).

Let v be a parameter valuation. We assume bv(p2)c = bv(p1)c = k ∈ N and
frac(v(p1)) > frac(v(p2)). The p–PDBM obtained after an update u(x) = v(p2)
and u(y) = v(p1) is represented using the following pair (where the indices 0,x,y
are shown for the sake of comprehension)

(E,D) =
((

k
k

)
,

 0 x y
0 (0,≤) (−frac(p2),≤) (−frac(p1),≤)
x (frac(p2),≤) (0,≤) (frac(p2)− frac(p1),≤)
y (frac(p1),≤) (frac(p1)− frac(p2),≤) (0,≤)

)
y

(k, k + 1)

frac(v(p1))

(k, k)
frac(v(p2)) (k + 1, k) x

1− frac(v(p1))

Fig. 2: Graphical representations
of p–PDBMs and [1] regions

Once valuated with v, it contains a unique
clock valuation. We represent it as the black
dot in Figure 2.

(2) In contrast, a border p–PDBM is
a clock region which can contain sev-
eral clock valuations satisfying some pos-
sibly parametric constraints, or contain at
least one clock valuation satisfying non-
parametric constraints (as the corner-point
region of [1]). In particular, the initial clock
region {0H} and any clock region that is a
single integer clock valuation is a p–PDBM.
A border p–PDBM is characterized by at
least one clock x s.t. Dx,0 = D0,x = (0,≤) and can be seen as a subregion of
an open line segment or a corner point region of [1, fig. 9 example 4.4]. After an
immediate update of x to k, the above p–PDBM (E,D) becomes

(E,D) =
((

k
k

)
,

 0 x y
0 (0,≤) (0,≤) (−frac(p1),≤)
x (0,≤) (0,≤) (−frac(p1),≤)
y (frac(p1),≤) (frac(p1),≤) (0,≤)

)

We represent it once valuated with v as the blue dot in Figure 2. The open line
segment of [1, fig. 9 example 4.4] can be represented as

((
k
k

)
,

 0 x y
0 (0,≤) (0,≤) (0, <)
x (0,≤) (0,≤) (0, <)
y (1, <) (1, <) (0,≤)

)

and is depicted as the vertical left black line in Figure 2.
(3) A center p–PDBM is a clock region which can contain several clock

valuations satisfying some possibly parametric constraints (as the open region
of [1]). A center p–PDBM is characterized by at least one clock y s.t. Dy,0 =
(1, <) and for all x s.t. D0,x = (0, /ox), then we have /ox = < and can be seen as
a subregion of an open region of [1, fig. 9 example 4.4]. After some time elapsing,
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and before any clock valuation reaches the next integer k+1—therefore the next
border p–PDBM —, the above p–PDBM (E,D) becomes

(E,D) =
((

k
k

)
,

 0 x y
0 (0,≤) (0, <) (−frac(p1), <)
x (1− frac(p1), <) (0,≤) (−frac(p1),≤)
y (1, <) (frac(p1),≤) (0,≤)

)

We represent it once valuated with v as the red line in Figure 2. The open region
of [1, fig. 9 example 4.4] can be represented as

((
k
k

)
,

 0 x y
0 (0,≤) (0, <) (0, <)
x (1, <) (0,≤) (0, <)
y (1, <) (1, <) (0,≤)

)

and is depicted as the top left black triangle in Figure 2.

Remark that sets of the form {frac(w(x)) | 0 ≤ frac(w(x)) ≤ 1} are in
contradiction with Definition 7 (4) and therefore cannot be part of a p–PDBM,
as in the regions of [1]. Basically, only the first p–PDBM after a (necessarily total)
parametric clock update will be a point p–PDBM ; any following p–PDBM will
be a border p–PDBM or a center p–PDBM until the next (total) parametric
update.

The differentiation made in the previous paragraph between border p–PDBM
and center p–PDBM is intended to give an intuition to the reader about the
inclusion of p–PDBMs into [1] clock regions. Technical details are not relevant
for a good understanding of this paper but are given in[6].

In the following Section 3.1, we are going to define operations on p–PDBMs
(i.e., update of clocks, time elapsing and guards satisfaction), and will show that
the set of p–PDBMs is stable under these operations.

3.1 Operations on p–PDBMs

Non-parametric update. To apply a non-parametric update on a p–PDBM,
following classical algorithms for DBMs [9], we define an update operator.

Given a p–PDBM (E,D) and unp a non-parametric update function that
updates a clock x to k ∈ N, update((E,D), unp) defines a new p–PDBM by
i) updating Ex to k; ii) setting the fractional part of x to 0: Dx,0 := D0,x :=
(0,≤); iii) updating the new difference between fractional parts with all other
clocks i, which is the range of values i can currently take: Dx,i := D0,i and
Di,x := Di,0.

Intuitively, we update in (E,D) the lower and upper bounds of some clocks
to (0,≤) and the difference between two clocks Di,j to D0,j if xi is updated:
that is, the new difference between two clocks if one has been updated is just
the lower/upper bound of the one that is not updated. This allows us to conserve
the canonical form as we only “moved” some cells in D that already verified the
canonical form. Therefore update((E,D), unp) is a p–PDBM.

The following lemma states that the update operator behaves as expected.

9



Fig. 3: Representation of p–PDBMs in two dimensions with two clocks x, y, two
parameters p1, p2 and v s.t. bv(p1)c = bv(p2)c and frac(v(p1)) > frac(v(p2)).
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Lemma 1 (semantics of update on p–PDBM(Rp)). Let Rp be a parameter
region and (E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. Let unp be a non-parametric
update. For all clock valuations w, w ∈ update((E, v(D)), unp) iff w′ ∈ (E, v(D))
for some w′ s.t. w = [w′]unp .

Proof idea. The technical part is (⇒). The idea is to prove that, given w′ ∈
update((E, v(D)), unp) there is a non-empty set of clock valuations w s.t. w′ =
[w]unp

that is precisely defined by the constraints in (E, v(D)).

Parametric update. Given (E,D) ∈ p–PDBM(Rp) we write update((E,D), u)
to denote the update of (E,D) by u, when u is a total parametric update func-
tion, i.e., updating the set of clocks exclusively to parameters. We therefore
obtain a point p–PDBM, containing the parametric set of constraints defining a
unique clock valuation. The semantics is straightforward.

Time elapsing. Given a parameter region Rp, recall that constraints satis-
fied by parameters are known, and we can order elements of PLT . Thanks to
this order, within a p–PDBM (E,D) the clocks with the (possibly parametric)
largest fractional part i.e., the clocks that have a larger fractional part than
any other clock, can always be identified by their bounds in D. For a p–PDBM
(E,D), we define the set of clocks with the largest fractional part (LFP) as
LFPRp

(D) = {x ∈ [1, H] | 0 ≤ Dx,i is valid for Rp, for all 0 ≤ i ≤ H}. Clocks
belonging to LFP are the first to reach the upper bound 1 by letting time elapse.

Note that several clocks may have the largest fractional parts (up to some
syntactic replacements , in that case they satisfy the same constraints in (E,D)).

Let (E,D) ∈ p–PDBM(Rp) and x ∈ LFPRp(D). To formalize time elapsing
until the largest fractional part frac(x) reaches 1, we define a time elapsing
operator that will decline in two variants depending on the input: border p–
PDBM or center/point p–PDBM.

Given a border p–PDBM (E,D) with Ex = k, TE ((E,D)) defines a new
center p–PDBM by i) setting Dx,0 := (1, <) as x is the first one that will
reach k + 1; ii) updating the upper bound of all other clocks i, which has in-
creased: Di,0 := Di,x + (1, <); iii) updating all lower bounds as they have to
leave the border : D0,i := D0,i + (0, <) (x included). This gives the range of
possible clock valuations before frac(x) reaches 1. Intuitively it represents the
transformation from an open line segment or the corner-point region of [1] into
an open region of [1].

The time elapsing operator also operates the transformation from an open
region of [1] to the upper open line segment or the corner-point region of [1].
Given a center/point p–PDBM (E,D) where Ex = k, TE ((E,D)) defines a
new border p–PDBM by i) setting Dx,0 := D0,x := (0,≤) (intuitively both
became (1,≤)) and Ex = k+ 1 (if Ex ≤ K+ 1), as x is now in the upper border ;
ii) updating the upper and lower bounds of all other clocks i: Di,0 := Di,x+(1,≤)
and D0,i := Dx,i + (−1,≤); iii) updating the new difference between fractional
parts with all other clocks i, which is the range of values i can currently take
(as in the update operator): Dx,i := D0,i and Di,x := Di,0.

Although we perform some additions such as Dj,i + (1, <), we do not create
new expressions that are not in PLT . In fact, this addition is performed on a
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negative term (e.g., frac(p)− 1), as xi is a clock with the largest fractional part
and adding 1 transforms it into another term of PLT . The intuition is simi-
lar when performing additions such as Di,j + (−1,≤): as xi is a clock with the
largest fractional part, di,j is a positive term. The canonical form is also pre-
served by the last setting operations of the algorithm, as in the update operator.
Therefore TE ((E,D)) is a p–PDBM.

Proposition 1 (semantics of p–PDBM under TE). Let Rp be a parameter
region and (E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. There exists w′ ∈ TE ((E, v(D)))
iff there exist w ∈ (E, v(D)) and a delay δ s.t. w′ = w + δ.

Proof idea. This proof is quite technical. Intuitively, we bound the difference of
each upper bound v(di,0) and w(xi) and each lower bound v(d0,i) and w(xi).
This allows us to take a delay δ inside these bounds that allows us to reach the
next p–PDBM.

Running example: Figure 3 represents graphically different p–PDBMs obtained
after an update u(x) = v(p2) and u(y) = v(p1) (figure 1). Time elapsing be-
fore y ∈ LFP reaches the next integer gives the center p–PDBM (figure 2)

(E,D) =
((

k
k

)
,

 0 x y
0 (0,≤) (−frac(p2), <) (−frac(p1), <)
x (frac(p2) + 1− frac(p1), <) (0,≤) (−frac(p1) + frac(p2),≤)
y (1, <) (frac(p1)− frac(p2),≤) (0,≤)

)

After an update of y to k prior to reaching k+ 1, the border p–PDBM obtained
is (figure 3)

(E,D) =
((

k
k

)
,

 0 x y
0 (0,≤) (−frac(p2), <) (0,≤)
x (frac(p2) + 1− frac(p1), <) (0,≤) (frac(p2) + 1− frac(p1), <)
y (0,≤) (−frac(p2), <) (0,≤)

)

Time elapsing before x ∈ LFP reaches the next integer gives the center p–PDBM
(figure 4)

(E,D) =
((

k
k

)
,

 0 x y
0 (0,≤) (−frac(p2), <) (0, <)
x (1, <) (0,≤) (frac(p2) + 1− frac(p1), <)
y (1− frac(p2), <) (−frac(p2), <) (0,≤)

)

When x ∈ LFP reaches k + 1, the border p–PDBM obtained is (figure 5)

(E,D) =
((

k + 1
k

)
,

 0 x y
0 (0,≤) (0,≤) (−frac(p1) + frac(p2), <)
x (0,≤) (0,≤) (−frac(p1) + frac(p2), <)
y (1− frac(p2), <) (1− frac(p2), <) (0,≤)

)

Non-parametric guard. From [1, Section 4.2] we have that either every
clock valuation of a clock region satisfies a guard, or none of them does. Note that
a p–PDBM for Rp is contained into a clock region of [1, Section 4.2], therefore we
have that if w ∈ (E, v(D)) satisfies a non-parametric guard g, then for all w′ ∈
(E, v(D)) we also have w′ satisfies g.

Let v ∈ Rp. We define v ∈ guard∀(g,E,D) iff for all w ∈ (E, v(D)), w |= g.
As any two v, v′ ∈ Rp satisfy the same constraints, it is straightforward that if
v ∈ guard∀(g,E,D), then for all v′ ∈ Rp, v′ ∈ guard∀(g,E,D).
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Parametric guard. Using a projection on parameters does not create new
constraints on parameters that are not already in a parameter region Rp. Indeed,
a parametric guard g only adds new constraints of the form x ./ p which gives
again a comparison between elements of PLT . Therefore, these new constraints
already belong to PLT and we can decide whether the set of clock valuations
satisfying this set of constraints is non-empty i.e., given v ∈ Rp, v(g) is satis-
fied by some clock valuation w ∈ (E, v(D)). This is a key point in the overall
process of proving the decidability of our R-U2P-PTAs. Note that there will
also be additional constraints involving clocks (with other clocks, constants or
parameters), but they will not be relevant as we immediately update all clocks,
therefore replacing these constraints with new constraints encoding the clock
updates.

Let v ∈ Rp. We define v ∈ p-guard∃(g,E,D) iff there is a w ∈ (E, v(D))
s.t. w |= v(g).2 Again, as any two v, v′ ∈ Rp satisfy the same constraints, it
is straightforward that if v ∈ p-guard∃(g,E,D), then for all v′ ∈ Rp, v′ ∈
p-guard∃(g,E,D).

Now that we have defined useful operations on p–PDBMs, we are going, given
a parameter region Rp, to construct a finite region automaton in which for any
run, there is an equivalent concrete run in the R-U2P-PTA.

3.2 Parametric region automaton

Let (E,D) ∈ p–PDBM(Rp), we say (E′, D′) ∈ Succ((E,D)) ⇔ ∃ i ≥ 0 s.t.
(E′, v(D′)) = TE i((E,D)). In other words, (E′, D′) is obtained after apply-
ing TE ((E,D)) a finite number of times. Succ((E,D)) is also called the time
successors of (E,D).

In order to finitely simulate an R-U2P-PTA, we create a parametric region
automaton.

Definition 8 (Parametric region automaton). Let Rp be a parameter re-
gion. For an R-U2P-PTA A = (Σ,L, l0,X,P, ζ), given (E0, D0) the initial p–
PDBM where all clocks are 0, the parametric region automaton R(A) over
Rp is the tuple (L′, Σ, L′0, ζ

′) where: i) L′ = L × p–PDBM(Rp) ii) L′0 =
(l0, (E0, D0)) iii) ζ ′ = {

(
(l, (E,D)), e, (l′, (E′, D′)

)
∈ L′ × ζ × L′ | either ∃e =

〈l, g, a, unp, l′〉 ∈ ζ, g is a non-parametric guard, ∃(E′′, D′′) ∈ Succ((E,D)),
Rp ⊆ guard∀(g, (E

′′, D′′)) and (E′, D′) = update(E′′, D′′, unp), or ∃e = 〈l, g, a, u, l′〉 ∈
ζ, g is a parametric guard, ∃(E′′, D′′) ∈ Succ((E,D)), Rp ⊆ p-guard∃(g, (E

′′, D′′))
and (E′, D′) = update(E′′, D′′, u).}

LetRp be a parameter region,A be an R-U2P-PTA andR(A) = (L′, Σ, L′0, ζ
′).

A run in R(A) is an untimed sequence
σ : (l0, (E0, D0))e0(l1, (E1, D1))e1 · · · (li, (Ei, Di))ei(li+1, (Ei+1, Di+1))ei+1 · · · such

2 Remark that here is why our construction works for EF-emptiness, but cannot be
used for, e.g.,, AF-emptiness (“is there a parameter valuation such that all runs
reach a goal location l”): unlike guard∀(g,E,D), not all clock valuations in a p–
PDBM (E, v(D)) can satisfy a parametric guard if v ∈ p-guard∃(g,E,D).
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that for all i we have
(
(li, (Ei, Di)), ei, (li+1, (Ei+1, Di+1))

)
∈ ζ ′, which we also

write (li, (Ei, Di))
ei−→ (li+1, (Ei+1, Di+1)) where ei. Note that we label our

transitions with the edges of the R-U2P-PTA.

3.3 Decidability of EF-emptiness and synthesis

Using our construction of the parametric region automaton R(A) for a given
R-U2P-PTA A, we state the next proposition.

Proposition 2. Let Rp be a parameter region. Let A be an R-U2P-PTA and R(A)

its parametric region automaton over Rp. There is a run σ : (l0, (E0, D0))
e0−→

(l1, (E1, D1))
e1−→ · · · (lf−1, (Ef−1, Df−1))

ef−1−→ (lf , (Ef , Df )) in R(A) iff for

all v ∈ Rp there is a run ρ : (l0, w0)
e0−→ (l1, w1)

e1−→ · · · (lf−1, wf−1)
ef−1−→ (lf , wf )

in v(A) s.t. for all 0 ≤ i ≤ f , wi ∈ (Ei, v(Di)).

From Proposition 2, if there is a run reaching a goal location in an instantiated
R-U2P-PTA, then for another parameter valuation in the same parameter region
there is a run in the instantiated R-U2P-PTA with the same locations and
transitions (but possibly different delays), reaching the same location.

Theorem 1. Let A be an R-U2P-PTA. Let Rp be a parameter region and v ∈
Rp. If there is a run ρ = (l0, w0)

e0−→ · · · ei−1−→ (li, wi) in v(A), then for all

v′ ∈ Rp there is a run ρ′ = (l0, w
′
0)

e0−→ · · · ei−1−→ (li, w
′
i) in v′(A) with for all i,

there is (Ei, Di) ∈ p–PDBM(Rp) s.t. wi ∈ (Ei, v(Di)) and w′i ∈ (Ei, v
′(Di)).

Note that there is a finite number of p–PDBMs for each parameter region Rp.
Let (E,D) ∈ p–PDBM(Rp) and consider PLT : D is an (H+1)2 matrix made of
pairs (d, /) where d ∈ PLT and / ∈{≤, <}. Therefore the number of possibleD

is bounded by (2 × (2 + 3 ×
(
M
2

)
+ 4 × M))(H+1)2 . Moreover the number of

possible values for E is unbounded, but only a finite subset of all values needs
to be explored, i.e., those smaller than K + 1: indeed, following classical works
on timed automata [1,10], (integer) values exceeding the largest constant used
in the guards or the parameter bounds are equivalent.

To test EF-emptiness given a bounded R-U2P-PTA A and a goal location l,
we first enumerate all parameter regions (which are in finite number), and apply
for each Rp the following process: we pick v ∈ Rp (e.g., using a linear pro-
gramming algorithm [19]). Then, we consider v(A) which is an updatable timed
automaton and test the reachability of l in v(A) [10]. Then EF-emptiness is false
if and only if there is v and a run in v(A) reaching l.

Theorem 2. The EF-emptiness problem is PSPACE-complete for bounded R-
U2P-PTAs.

Given a goal location l and a bounded R-U2P-PTA A, we can exactly syn-
thesize the parameter valuations v s.t. there is a run in v(A) reaching l by
enumerating each parameter region (of which there is a finite number) and test
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if l is reachable for one of its parameter valuations. The result of the synthesis
is the union of the parameter regions for which one valuation (and, from our
results, all valuations in that region) indeed reaches the goal location in the
instantiated TA.

Corollary 1. Given a bounded R-U2P-PTA A and a goal location l we can
effectively compute the set of parameter valuations v s.t. there is a run in v(A)
reaching l.

Remark 1. By bounding parameter valuations in guards but not those used in
updates, we still have a finite number of parameter regions. Indeed, an integer
vector E with components Ex greater than bKc + 1 is equivalent to an integer
vector E′ with E′x = Ex if Ex < bKc + 1 and E′x = bKc + 1 if Ex ≥ bKc + 1.
Moreover for all p, we have to replace each parameter valuation v used in an
update by v(p) = v′(p) if v(p) ≤ K and v′(p) = K + 1 if v(p) > K.

4 Case study

We implemented EFsynth for R-U2P-PTAs in IMITATOR, a parametric model
checker for (extensions of) PTAs [3].

Our class is the first for which synthesis is possible over bounded rational
parameters. We believe our formalism is useful to model several categories of
case studies, notably distributed systems with a periodic (global) behavior for
which the period is unknown: this can be encoded using a parametric guard
while resetting all clocks—possibly to other parameters.

Consider the R-U2P-PTA in Figure 1 with six locations, three clocks com-
pared to parameters (x, y, t), one constant (max) and six parameters (p, p1, p2,
v, pv1, pv2).

We consider the case of a network of peers exchanging transactions grouped
by blocks, e.g., a blockchain, using the Proof-of-Work as a mean to validate new
blocks to add. In this simplified example, we consider a set of two peers (repre-
sented by x, y) which have different computation power (represented by p1, p2).
Peers write new transactions on the current block (newTx). If it is full (t = p),
both peers try to add a new block (newBlock) to write the transaction on it.
We update x to p1, y to p2, and t to 0 as the peers have a different computation
power, and they start “mining” the block (find a solution to a computation prob-
lem). Either x or y will eventually offer a solution to the problem (blockSolutionx

if x = max or blockSolutiony if y = max). If y offers a solution, x will check
whether the solution is correct: x is updated to pv1 to represent its rapidity to
verify an offer. x can refuse the offer if the verification is too long (fakeBlock
if x > v) therefore the mining step restarts. x can approve the offer (okBlock
if x ≤ v), y is rewarded and the block is added to the blockchain (addBlock).

We are interested in a malicious peer x that wants to avoid y to be re-
warded for every new block. Therefore x asks: “what are the possible computation
power configurations and verification rapidity so that y is eventually rewarded”
(EF (rewardy)-synthesis), considered as a bug state in the automaton.
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We run this R-U2P-PTA using IMITATOR [3]. We set max = 30 units of time
and also the upper bound of p and 1 ≥ v > 0 unit of time. IMITATOR computes
a disjunction of constraints so that rewardy is unreachable: we keep two relevant
ones; i) p1 ≥ p2: x has strictly more computation power than y in which case x
always offers a block solution, or has the same computation power than y in
which case the systems blocks. x should invest heavily into hardware to keep
its computation power high; ii) pv1 > v: the malicious peer x is always faster
to verify the solution offered by y and refuses it. The blockchain is probably
compromised.

Using a parameter valuation respecting one of the previous constraints guar-
antees that y is never rewarded.

5 Conclusion and perspectives

Our class of bounded R-U2P-PTAs is one of the few subclasses of PTAs (actually
even extended with parametric updates) to enjoy decidability of EF-emptiness.
In addition, R-U2P-PTAs is the first “subclass” of PTAs to allow exact synthesis
of bounded rational -valued parameters.

Beyond reachability emptiness, we aim at studying unavoidability-emptiness
and language preservation emptiness, as well as their synthesis.

Finally, we would like to investigate whether our parametric updates can be
applied to decidable hybrid extensions of TAs [16,12].

Acknowledgements. We would like to thank anonymous reviewers for construc-
tive remarks.
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(eds.) FM. Lecture Notes in Computer Science, vol. 7436, pp. 33–36. Springer
(Aug 2012). https://doi.org/10.1007/978-3-642-32759-9_6, http://www.lsv.
fr/Publis/PAPERS/PDF/AFKS-fm12.pdf
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