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Abstract

We report a universal density-based basis-set incompleteness correction that can be applied

to any wave function method. �e present correction, which appropriately vanishes in the

complete basis set (CBS) limit, relies on short-range correlation density functionals (with multi-

determinant reference) from range-separated density-functional theory (RS-DFT) to estimate

the basis-set incompleteness error. Contrary to conventional RS-DFT schemes which require

an ad hoc range-separation parameter µ, the key ingredient here is a range-separation function

µ(r) that automatically adapts to the spatial non-homogeneity of the basis-set incompleteness

error. As illustrative examples, we show how this density-based correction allows us to obtain

CCSD(T) atomization and correlation energies near the CBS limit for the G2 set of molecules

with compact Gaussian basis sets.
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Contemporary quantum chemistry has developed in two directions — wave function theory

(WFT)
1

and density-functional theory (DFT).
2

Although both spring from the same Schrödinger

equation, each of these philosophies has its own pros and cons.

WFT is a�ractive as it exists a well-de�ned path for systematic improvement as well as

powerful tools, such as perturbation theory, to guide the development of new WFT ansätze.

�e coupled cluster (CC) family of methods is a typical example of the WFT philosophy and

is well regarded as the gold standard of quantum chemistry for weakly correlated systems. By

increasing the excitation degree of the CC expansion, one can systematically converge, for a given

basis set, to the exact, full con�guration interaction (FCI) limit, although the computational cost

associated with such improvement is usually high. One of the most fundamental drawbacks of

conventional WFT methods is the slow convergence of energies and properties with respect to the

size of the one-electron basis set. �is undesirable feature was put into light by Kutzelnigg more

than thirty years ago.
3

To palliate this, following Hylleraas’ footsteps,
4

Kutzelnigg proposed to

introduce explicitly the interelectronic distance r12 = |r1 − r2| to properly describe the electronic

wave function around the coalescence of two electrons.
3,5,6

�e resulting F12 methods yield a

prominent improvement of the energy convergence, and achieve chemical accuracy for small

organic molecules with relatively small Gaussian basis sets.
7–12

For example, at the CCSD(T)

level, one can obtain quintuple-ζ quality correlation energies with a triple-ζ basis,
13

although

computational overheads are introduced by the large auxiliary basis used to resolve three- and

four-electron integrals.
14

To reduce further the computational cost and/or ease the transferability

of the F12 correction, approximated and/or universal schemes have recently emerged.
15–20

Present-day DFT calculations are almost exclusively done within the so-called Kohn-Sham

(KS) formalism, which corresponds to an exact dressed one-electron theory.
21

�e a�ractiveness

of DFT originates from its very favorable accuracy/cost ratio as it o�en provides reasonably

accurate energies and properties at a relatively low computational cost. �anks to this, KS-

DFT
21,22

has become the workhorse of electronic structure calculations for atoms, molecules and

solids.
23

Although there is no clear way on how to systematically improve density-functional
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approximations,
24

climbing Perdew’s ladder of DFT is potentially the most satisfactory way

forward.
25,26

In the context of the present work, one of the interesting feature of density-based

methods is their much faster convergence with respect to the size of the basis set.
27

Progress toward unifying WFT and DFT are on-going. In particular, range-separated DFT

(RS-DFT) (see Ref. 28 and references therein) rigorously combines these two approaches via a

decomposition of the electron-electron (e-e) interaction into a non-divergent long-range part and

a (complementary) short-range part treated with WFT and DFT, respectively. As the WFT method

is relieved from describing the short-range part of the correlation hole around the e-e coalescence

points, the convergence with respect to the one-electron basis set is greatly improved.
27

�erefore,

a number of approximate RS-DFT schemes have been developed within single-reference
29–34

or

multi-reference
35–40

WFT approaches. Very recently, a major step forward has been taken by some

of the present authors thanks to the development of a density-based basis-set correction for WFT

methods.
41

�e present work proposes an extension of this new methodological development

alongside the �rst numerical tests on molecular systems.

�e present basis-set correction relies on the RS-DFT formalism to capture the missing part of

the short-range correlation e�ects, a consequence of the incompleteness of the one-electron basis

set. Here, we only provide the main working equations. We refer the interested reader to Ref. 41

for a more formal derivation.

Let us assume that we have reasonable approximations of the FCI energy and density of

a N-electron system in an incomplete basis set B, say the CCSD(T) energy EB
CCSD(T)

and the

Hartree-Fock (HF) density nB
HF

. According to Eq. (15) of Ref. 41, the exact ground-state energy E

may be approximated as

E ≈ EB
CCSD(T)

+ ĒB[nB
HF
], (1)

where

ĒB[n] = min
Ψ→n

〈Ψ|T̂ + Ŵ
ee
|Ψ〉 − min

ΨB→n
〈ΨB|T̂ + Ŵ

ee
|ΨB〉 (2)

is the basis-dependent complementary density functional, T̂ is the kinetic operator and Ŵ
ee
=
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∑i<j r−1
ij is the interelectronic repulsion operator. In Eq. (2), ΨB and Ψ are two general N-electron

normalized wave functions belonging to the Hilbert space spanned by B and the complete basis

set (CBS), respectively. Both wave functions yield the same target density n (assumed to be

representable in B). Importantly, in the CBS limit (which we refer to as B → CBS), we have, for

any density n, limB→CBS
ĒB[n] = 0. �is implies that

lim
B→CBS

(
EB

CCSD(T)
+ ĒB[nB

HF
]
)
= ECBS

CCSD(T)
≈ E, (3)

where ECBS

CCSD(T)
is the CCSD(T) energy in the CBS limit. Of course, the above holds true for any

method that provides a good approximation to the energy and density, not just CCSD(T) and HF.

In the case where CCSD(T) is replaced by FCI in Eq. (3), we have a strict equality as ECBS

FCI
= E.

Provided that the functional ĒB[n] is known exactly, the only sources of error at this stage lie in

the approximate nature of the CCSD(T) and HF methods, and the lack of self-consistency of the

present scheme.

�e functional ĒB[n] is obviously not universal as it depends on B. Moreover, as ĒB[n] aims

at �xing the incompleteness of B, its main role is to correct for the lack of cusp (i.e. discontinuous

derivative) in ΨB at the e-e coalescence points, a universal condition of exact wave functions.

Because the e-e cusp originates from the divergence of the Coulomb operator at r12 = 0, a cuspless

wave function could equivalently originate from a Hamiltonian with a non-divergent two-electron

interaction at coalescence. �erefore, as we shall do later on, it feels natural to approximate

ĒB[n] by a short-range density functional which is complementary to a non-divergent long-range

interaction. Contrary to the conventional RS-DFT scheme which requires a range-separation

parameter µ, here we use a range-separation function µB(r) that automatically adapts to quantify

the incompleteness of B in R3
.

�e �rst step of the present basis-set correction consists in obtaining an e�ective two-electron

interaction WB(r1, r2) “mimicking” the Coulomb operator in an incomplete basis B. In a sec-

ond step, we shall link WB(r1, r2) to µB(r). As a �nal step, we employ short-range density

6



functionals
42

with µB(r) as range-separation function.

We de�ne the e�ective operator as
41

WB(r1, r2) =


f B(r1, r2)/nB2 (r1, r2), if nB2 (r1, r2) 6= 0,

∞, otherwise,

(4)

where

nB2 (r1, r2) = ∑
pqrs∈B

φp(r1)φq(r2)Γrs
pqφr(r1)φs(r2), (5)

and Γrs
pq = 2 〈ΨB|â†

r↓ â
†
s↑ âp↑ âq↓ |ΨB〉 are the opposite-spin pair density associated with ΨB and its

corresponding tensor, respectively, φp(r) is a (real-valued) molecular orbital (MO),

f B(r1, r2) = ∑
pqrstu∈B

φp(r1)φq(r2)Vrs
pqΓtu

rs φt(r1)φu(r2), (6)

and Vrs
pq = 〈pq|rs〉 are the usual two-electron Coulomb integrals. With such a de�nition,

WB(r1, r2) satis�es (see Appendix A of Ref. 41)

∫∫ nB2 (r1, r2)

r12
dr1dr2 =

∫∫
WB(r1, r2)nB2 (r1, r2)dr1dr2, (7)

which intuitively motivates WB(r1, r2) as a potential candidate for an e�ective interaction. Note

that the divergence condition of WB(r1, r2) in Eq. (4) ensures that one-electron systems are

free of correction as the present approach must only correct the basis-set incompleteness error

originating from the e-e cusp. As already discussed in Ref. 41, WB(r1, r2) is symmetric, a priori

non translational, nor rotational invariant if B does not have such symmetries. �anks to its

de�nition one can show that (see Appendix B of Ref. 41)

lim
B→CBS

WB(r1, r2) =
1

r12
, (8)

for any (r1, r2) such that nB2 (r1, r2) 6= 0.
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A key quantity is the value of the e�ective interaction at coalescence of opposite-spin electrons,

WB(r, r), which is necessarily �nite for an incomplete basis set as long as the on-top pair density

nB2 (r, r) is non vanishing. Because WB(r1, r2) is a non-divergent two-electron interaction, it can

be naturally linked to RS-DFT which employs a non-divergent long-range interaction operator.

Although this choice is not unique, we choose here the range-separation function

µB(r) =
√

π

2
WB(r, r), (9)

such that the long-range interaction of RS-DFT, wlr,µ(r12) = erf(µr12)/r12, coincides with the

e�ective interaction at coalescence, i.e. wlr,µB(r)(0) = WB(r, r) at any r.

Once µB(r) is de�ned, it can be used within RS-DFT functionals to approximate ĒB[n]. As

in Ref. 41, we consider here a speci�c class of short-range correlation functionals known as

correlation energy with multi-determinantal reference (ECMD) whose general de�nition reads
42

Ēsr

c,md
[n, µ] = min

Ψ→n
〈Ψ|T̂ + Ŵ

ee
|Ψ〉 − 〈Ψµ [n]|T̂ + Ŵ

ee
|Ψµ [n]〉 , (10)

where Ψµ [n] is de�ned by the constrained minimization

Ψµ [n] = arg min
Ψ→n

〈Ψ|T̂ + Ŵlr,µ
ee |Ψ〉 , (11)

with Ŵlr,µ
ee = ∑i<j wlr,µ(rij). �e ECMD functionals admit, for any n, the following two limits

lim
µ→∞

Ēsr

c,md
[n, µ] = 0, lim

µ→0
Ēsr

c,md
[n, µ] = Ec[n], (12)

where Ec[n] is the usual universal correlation density functional de�ned in KS-DFT. �e choice of

ECMD in the present scheme is motivated by the analogy between the de�nition of ĒB[n] [Eq. (2)]

and the ECMD functional [Eq. (10)]. Indeed, the two functionals coincide if ΨB = Ψµ
. �erefore,

we approximate ĒB[n] by ECMD functionals evaluated with the range-separation function µB(r).
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Inspired by the recent functional proposed by some of the authors,
40

we propose here a new

Perdew-Burke-Ernzerhof (PBE)-based ECMD functional

ĒB
PBE

[n, µB] =
∫

n(r)ε̄sr,PBE

c,md

(
n(r), s(r), ζ(r), µB(r)

)
dr, (13)

where ζ = (n↑ − n↓)/n is the spin polarization and s = |∇n|/n4/3
is the reduced density gra-

dient. ε̄sr,PBE

c,md
(n, s, ζ, µ) interpolates between the usual PBE correlation functional,

43 εPBE

c
(n, s, ζ),

at µ = 0 and the exact large-µ behavior,
28,44,45

yielding

ε̄sr,PBE

c,md
(n, s, ζ, µ) =

εPBE

c
(n, s, ζ)

1 + β(n, s, ζ)µ3 , (14a)

β(n, s, ζ) =
3

2
√

π(1−
√

2)
εPBE

c
(n, s, ζ)

nUEG

2 (n, ζ)
. (14b)

�e di�erence between the ECMD functional de�ned in Ref. 40 and the present expression

(14a)-(14b) is that we approximate here the on-top pair density by its uniform electron gas
46

(UEG) version, i.e. nB2 (r, r) ≈ nUEG

2 (n(r), ζ(r)), where nUEG

2 (n, ζ) ≈ n2(1− ζ2)g0(n) with the

parametrization of the UEG on-top pair-distribution function g0(n) given in Eq. (46) of Ref. 44.

�is represents a major computational saving without loss of accuracy for weakly correlated

systems as we eschew the computation of nB2 (r, r). �e complementary functional ĒB[nB
HF
] is

approximated by ĒB
PBE

[nB
HF

, µB] where µB(r) is given by Eq. (9). �e slightly simpler local-density

approximation (LDA) version of the ECMD functional is discussed in the supporting information.

As most WFT calculations are performed within the frozen-core (FC) approximation, it is

important to de�ne an e�ective interaction within a subset of MOs. We then naturally split the

basis set as B = C ⋃A (where C and A are the sets of core and active MOs, respectively) and

de�ne the FC version of the e�ective interaction as

W̃B(r1, r2) =


f̃ B(r1, r2)/ñB2 (r1, r2), if ñB2 (r1, r2) 6= 0,

∞, otherwise,

(15)
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with

f̃ B(r1, r2) = ∑
pq∈B

∑
rstu∈A

φp(r1)φq(r2)Vrs
pqΓtu

rs φt(r1)φu(r2), (16a)

ñB2 (r1, r2) = ∑
pqrs∈A

φp(r1)φq(r2)Γrs
pqφr(r1)φs(r2), (16b)

and the corresponding FC range-separation function µ̃B(r) = (
√

π/2)W̃B(r, r). It is noteworthy

that, within the present de�nition, W̃B(r1, r2) still tends to the regular Coulomb interaction as

B → CBS. De�ning ñB
HF

as the FC (i.e. valence-only) HF one-electron density in B, the FC

contribution of the complementary functional is then approximated by ĒB
PBE

[ñB
HF

, µ̃B].

�e most computationally intensive task of the present approach is the evaluation of WB(r, r)

at each quadrature grid point. In the general case (i.e. ΨB is a multi-determinant expansion), we

compute this embarrassingly parallel step in O(N
grid

N4
B) computational cost with a memory

requirement of O(N
grid

N2
B), where NB is the number of basis functions in B. �e computational

cost can be reduced to O(N
grid

N2N2
B) with no memory footprint when ΨB is a single Slater

determinant. As shown in Ref. 41, this choice for ΨB already provides, for weakly correlated

systems, a quantitative representation of the incompleteness of B. Hence, we will stick to this

choice throughout the present study. In our current implementation, the computational bo�leneck

is the four-index transformation to get the two-electron integrals in the MO basis which appear

in Eqs. (5) and (6). Nevertheless, this step usually has to be performed for most correlated WFT

calculations.

To conclude this section, we point out that, thanks to the de�nitions (4) and (9) as well as the

properties (8) and (12), independently of the DFT functional, the present basis-set correction i)

can be applied to any WFT method that provides an energy and a density, ii) does not correct

one-electron systems, and iii) vanishes in the CBS limit, hence guaranteeing an unaltered CBS

limit for a given WFT method.

We begin our investigation of the performance of the basis-set correction by computing the

atomization energies of C2, N2, O2 and F2 obtained with Dunning’s cc-pVXZ basis (X = D, T, Q

10
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Figure 1: Deviation (in kcal/mol) from CBS atomization energies of C2 (top le�), O2 (top right),

N2 (bo�om le�) and F2 (bo�om right) obtained with various methods and basis sets. �e green

region corresponds to chemical accuracy (i.e. error below 1 kcal/mol). See supporting information

for raw data and the corresponding LDA results.

11



and 5). In a second time, we compute the atomization energies of the entire G2 set
47

composed by

55 molecules with the cc-pVXZ basis set family. �is molecular set has been intensively studied

in the last 20 years (see, for example, Refs. 48–56) and can be considered as a representative set

of small organic and inorganic molecules. We employ either CCSD(T) or exFCI to compute the

energy of these systems. Here, exFCI stands for extrapolated FCI energies computed with the

CIPSI algorithm.
57–59

We refer the interested reader to Refs. 60–64 for more details. In the case of

the CCSD(T) calculations, we use the restricted open-shell HF (ROHF) one-electron density to

compute the complementary basis-set correction energy. In the case of exFCI, the one-electron

density is computed from a very large CIPSI expansion containing several million determinants.

CCSD(T) energies are computed with Gaussian09 using standard threshold values,
65

while RS-DFT

and exFCI calculations are performed with qantum package.
66

For the numerical quadratures,

we employ the SG-2 grid.
67

Apart from the carbon dimer where we have taken the experimental

equilibrium bond length (1.2425 Å), all geometries have been extracted from Ref. 68 and have been

obtained at the B3LYP/6-31G(2df,p) level of theory. Frozen-core calculations are systematically

performed and de�ned as such: a He core is frozen from Li to Ne, while a Ne core is frozen from

Na to Ar. �e FC density-based correction is used consistently with the FC approximation in WFT

methods. To estimate the CBS limit of each method, following Ref. 69, we perform a two-point

X
−3

extrapolation of the correlation energies using the quadruple- and quintuple-ζ data that we

add up to the HF energies obtained in the largest (i.e. quintuple-ζ) basis.

As the exFCI atomization energies are converged with a precision of about 0.1 kcal/mol, we

can label these as near FCI. Hence, they will be our references for C2, N2, O2 and F2. �e results

for these diatomic molecules are reported in Fig. 1. �e corresponding numerical data (as well

as the corresponding LDA results) can be found in the supporting information. As one can see,

the convergence of the exFCI atomization energies is, as expected, slow with respect to the basis

set: chemical accuracy (error below 1 kcal/mol) is barely reached for C2, O2 and F2 even with the

cc-pV5Z basis set, and the atomization energies are consistently underestimated. A similar trend

holds for CCSD(T). Regarding the e�ect of the basis-set correction, several general observations

12



can be made for both exFCI and CCSD(T). First, in a given basis set, the basis-set correction

systematically improves the atomization energies. A small overestimation can occur compared

to the CBS value by a few tenths of a kcal/mol (the largest deviation being 0.6 kcal/mol for N2

at the CCSD(T)+PBE/cc-pV5Z level). Nevertheless, the deviation observed for the largest basis

set is typically within the CBS extrapolation error, which is highly satisfactory knowing the

marginal computational cost of the present correction. In most cases, the basis-set corrected

triple-ζ atomization energies are on par with the uncorrected quintuple-ζ ones.
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Figure 2: µ̃B (top) and ñ × ε̄sr,PBE

c,md
(bo�om) along the molecular axis (z) for N2 for various basis

sets. �e two nitrogen nuclei are located at z = 0 and z = 2.076 bohr. �e calculations have been

performed in the FC approximation.

�e fundamental quantity of the present basis-set correction is µB(r). As it grows when one

gets closer to the CBS limit, the value of µB(r) quanti�es the quality of a given basis set at a

given r. Another important quantity closely related to µB(r) is the local energetic correction,

n(r)ε̄sr,PBE

c,md

(
n(r), s(r), ζ(r), µB(r)

)
, which integrates to the total basis set correction ĒB

PBE
[n, µB]

[see Eq. (13)]. Such a quantity essentially depends on the local values of both µB(r) and n(r). In

order to qualitatively illustrate how the basis-set correction operates, we report, in Figure 2, µ̃B and

13



ñ × ε̄sr,PBE

c,md
along the molecular axis (z) of N2 for B = cc-pVDZ, cc-pVTZ, cc-pVQZ. �is �gure

illustrates several general trends: i) the value of µ̃B(z) tends to be much larger than 0.5 bohr
−1

which is the common value used in RS-DFT, ii) µ̃B(z) is highly non-uniform in space, illustrating

the non-homogeneity of basis-set quality in quantum chemistry, iii) µ̃B(z) is signi�cantly larger

close to the nuclei, a signature that nucleus-centered basis sets be�er describe these high-density

regions than the bonding regions, v) the value of the energy correction gets smaller as one improves

the basis-set quality, the reduction being spectacular close to the nuclei, and iv) a large energetic

contribution comes from the bonding regions, highlighting the imperfect description of correlation

e�ects in these regions with Gaussian basis sets.

Table 1: Statistical analysis (in kcal/mol) of the G2 atomization energies depicted in Fig. 3. Mean

absolute deviation (MAD), root-mean-square deviation (RMSD), and maximum deviation (MAX)

with respect to the CCSD(T)/CBS reference atomization energies. CA corresponds to the number

of cases (out of 55) obtained with chemical accuracy. See supporting information for raw data and

the corresponding LDA results.

Method MAD RMSD MAX CA

CCSD(T)/cc-pVDZ 14.29 16.21 36.95 2

CCSD(T)/cc-pVTZ 6.06 6.84 14.25 2

CCSD(T)/cc-pVQZ 2.50 2.86 6.75 9

CCSD(T)/cc-pV5Z 1.28 1.46 3.46 21

CCSD(T)+PBE/cc-pVDZ 1.96 2.59 7.33 19

CCSD(T)+PBE/cc-pVTZ 0.85 1.11 2.64 36

CCSD(T)+PBE/cc-pVQZ 0.31 0.42 1.16 53

As a second set of numerical examples, we compute the error (with respect to the CBS values)

of the atomization energies from the G2 test set with CCSD(T) and the cc-pVXZ basis sets. Here,

all atomization energies have been computed with the same near-CBS HF/cc-pV5Z energies;

only the correlation energy contribution varies from one method to the other. Investigating

the convergence of correlation energies (or di�erence of such quantities) is commonly done to

appreciate the performance of basis-set corrections aiming at correcting two-electron e�ects.
13,20,70

�e “plain” CCSD(T) atomization energies as well as the corrected CCSD(T)+PBE values are

depicted in Fig. 3. �e raw data (as well as the corresponding LDA results) can be found in the
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Figure 3: Deviation (in kcal/mol) from the CCSD(T)/CBS atomization energy obtained with various

basis sets for CCSD(T) (top) and CCSD(T)+PBE (bo�om). �e green region corresponds to chemical

accuracy (i.e. error below 1 kcal/mol). Note the di�erent scales of the vertical axes. See supporting

information for raw data and the corresponding LDA results.

supporting information. A statistical analysis of these data is also provided in Table 1, where we

report the mean absolute deviation (MAD), root-mean-square deviation (RMSD), and maximum

deviation (MAX) with respect to the CCSD(T)/CBS atomization energies. Note that the MAD of

our CCSD(T)/CBS atomization energies is only 0.37 kcal/mol compared to the values extracted

from Ref. 53 which corresponds to frozen-core non-relativistic atomization energies obtained

at the CCSD(T)(F12)/cc-pVQZ-F12 level of theory corrected for higher-excitation contributions

(E
CCSDT(Q)/cc-pV(D+d)Z

− E
CCSD(T)/cc-pV(D+d)Z

). From the double- to the quintuple-ζ basis, the MAD

associated with the CCSD(T) atomization energies goes down slowly from 14.29 to 1.28 kcal/mol.

For a commonly used basis like cc-pVTZ, the MAD of CCSD(T) is still 6.06 kcal/mol. Applying

the basis-set correction drastically reduces the basis-set incompleteness error. Already at the

CCSD(T)+PBE/cc-pVDZ level, the MAD is reduced to 1.96 kcal/mol. With the triple-ζ basis, the

MAD of CCSD(T)+PBE/cc-pVTZ is already below 1 kcal/mol with 36 cases (out of 55) where

we achieve chemical accuracy. CCSD(T)+PBE/cc-pVQZ returns a MAD of 0.31 kcal/mol while

CCSD(T)/cc-pVQZ still yields a fairly large MAD of 2.50 kcal/mol.

�erefore, similar to F12 methods,
13

we can safely claim that the present basis-set correction
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provides signi�cant basis-set reduction and recovers quintuple-ζ quality atomization and corre-

lation energies with triple-ζ basis sets for a much cheaper computational cost. Encouraged by

these promising results, we are currently pursuing various avenues toward basis-set reduction for

strongly correlated systems and electronically excited states.

Supporting Information Available

See supporting information for raw data associated with the atomization energies of the four

diatomic molecules and the G2 set as well as the de�nition of the LDA ECMD functional (and the

corresponding numerical results).
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