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Nonlocal damage formulation with evolving internal length: the Eikonal
nonlocal approach

G. Rastiello
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91191 Gif-sur-Yvette Cedex, France

C. Giry & F. Gatuingt & F. Thierry & R. Desmorat
LMT/ENS Paris-Saclay/CNRS/Université Paris-Saclay
94235 Cachan Cedex, France

ABSTRACT: The proposed contribution presents and investigates the numerical properties of a Eikonal Non-
local (ENL) continuum damage model. According to this approach, nonlocal interactions between material
points are controlled by geodesic distances obtained as solutions of an isotropic time-independent Eikonal equa-
tion with a damage dependent metric function. Nonlocal interactions in two-dimensional damaged domains are
illustrated first. A numerical formulation for modeling damage dependent non-local interactions within me-
chanical computations is presented then. It is obtained by using a Fast-Marching Method for updating dam-
age dependent nonlocal interactions throughout the strain localization process. Numerical results of quasi-static
simulations involving the failure of quasi-brittle materials in isotropic media are presented. Regularization prop-
erties of the proposed model are demonstrated. Furthermore, it is shown that the proposed formulation allows
for reducing several parasite effects classically associated with Integral Nonlocal (INL) formulations (damage

spreading over large damaged bands, damage diffusion near notches and free-edges, etc).

1 INTRODUCTION

During the development of nonlinearities, the soften-
ing behavior of some materials (e.g. ductile failure in
metals, quasi-brittle failure in concrete, etc.) leads to
the appearance of a localization process zone finite
in size. Several theories were proposed to provide a
description of these phenomena (G. & Bazant 1987,
Pijaudier-Cabot & Benallal 1993, Bazant & Jirdsek
2002, Frémond & Nedjar 1996, Peerlings, Geers,
de Borst, & Brekelmans 2001, Miehe, Welschinger,
& Hofacker 2010, Moés, Stolz, Bernard, & Chevau-
geon 2011). Their common feature consists in the in-
troduction of an internal length expressing nonlocal
interactions in the localization process zone. Further-
more, these methods allow to avoid problems of non-
objective results (mesh dependency) that can appear
when using a finite element method for the solution
of the quasi-static boundary value problem.

Integral non-local (INL) formulations on the inter-
nal variables of the constitutive model (G. & Bazant
1987), in particular, are widely used due to their sim-
plicity of implementation, strong theoretical back-
ground and numerical robustness. According to this
approach the thermodynamic variable driving the

damage evolution process on a material point is com-
puted by weighted averaging of the corresponding lo-
cal field over the entire domain. Averaging is per-
formed through a nonlocal weighting function (e.g.
a Gaussian distribution function), such that the higher
is the Cartesian distance between two material points
lower is their interaction. A main drawback of this
assumption consists however, in nonphysical interac-
tions of material points across damaged bands, cracks
and holes. Indeed, any couple of material points such
that the Cartesian distance between them is the same
interact in the same way. From a numerical view-
point, this induces some parasite effects, such as dam-
age spreading over a large damaged band, damage
diffusion near notches and free-edges, etc. Enhance-
ments of the initial methods were proposed in order
to face these limitations and to describe more and
more precisely strain localization processes in soft-
ening media. Among a lot of papers in the literature,
several propose an evolution of the internal length
based on phenomenological considerations (Geers,
De Borst, Brekelmans, & Peerlings 1998, Pijaudier-
Cabot, Haidar, & Dubé 2004, Simone, Wells, & Sluys
2003, Nguyen 2011, Giry, Dufour, & Mazars 2011,
Saroukhani, Vafadari, & Simone 2013).



Theoretically derived in (Desmorat, Gatuingt, &
Jirasek 2015) and numerically implemented/studied
in (Rastiello, Giry, Gatuingt, & Desmorat 2017),
the Eikonal Non-Local (ENL) formulation provides
a novel interpretation of damage dependent evolv-
ing non-local interactions. From a mathematical
point of view, interaction distances between material
points are computed by solving an isotropic time-
independent Eikonal equation (a stationary Hamilton-
Jacobi equation) with a damage dependent Rieman-
nian metric function. From a differential geometry
viewpoint, this approach leads to consider that dam-
age induces a curvature of the Riemannian space
in which interaction distances are computed. This
space is thus no more Euclidean, and distances in-
crease eventually tending to infinity. From a nu-
merical viewpoint, ENL damage models can be im-
plemented by coupling: 1) a nonlinear Finite Ele-
ment Method (FEM) for solving the continuum dam-
age mechanics problem; 2) a Fast-Marching Method
(FMM) (Sethian 1996) for evaluating damage depen-
dent interaction distances over the computed struc-
ture. This mathematical/physical framework allows
for directly modeling evolving interactions through-
out the localization process.

In this paper, a simple ENL Damage model and its
numerical implementation are presented first. Then,
after discussing on nonlocal interaction in damaged
media some simple quasi-static strain localization
problems are simulated in order to show the main fea-
tures of the proposed formulation.

2 ENL DAMAGE FORMULATION

Consider a n-dimensional domain B and suppose that
the mechanical behavior of its constituting material
can be described through an isotropic Continuum
Damage Model (CDM) with a single scalar variable
d € [0,1]. Under small-strain conditions, the second
order stress tensor (o) is written as:
o =o(e,d) = (1—d)[2ue+ \tre)I] (1)
where tr(e) is the trace operator, (), uz) are the homo-
geneous Lamé parameters, € is the second order small
strain tensor and I is the second order identity tensor.
The nonlocal damage criterion function is defined

as':

N=fleg kw) =€y — K (2)

where €} = ey*(x) is a nonlocal equivalent strain

measure (Mazars 1984, de Vree, Brekelmans, & van
Gils 1995) and k is an internal variable. This latter
starts at a (damage) threshold level x( and is updated

I'This represents a simple modeling assumption, introduced
for sake of illustration. The proposed ENL formulation can
be applied without modifications to different non-local damage
models.

by requiring that fN' = (0 during damage growth,
while 4 = 0 at unloading and when fNt' < 0. It is
therefore updated as:

_ NL
5 = maxel] 3)
where ¢t € [0,7] is a pseudo-time variable. Damage
growth is finally supposed to follow the exponential

evolution law:
_ M) 4)

where k. is the equivalent strain level controlling the
shape of the damage evolution function.

2.1 Nonlocal (NL) strain field

The nonlocal field e} is computed by weighted av-
eraging of its local couterpart (€eq = €cq()) OVer B.
Provided a material point occupying the position x,,
the averaging formula reads:

(Eus) €cq(xs) du

Ji5 6 (&es) dv

where ¢ = ¢(£,5) > 0 is a nonlocal weighting func-
tion and &, is the ratio of the interaction distance be-
tween material points s and x, to the characteris-
tic/internal length /.. A typical choice of function ¢ is
the Gaussian distribution function:

¢ = ¢(ws) = exp(—E;,/2) (©6)
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2.1.1 Integral NL model
In INL formulations, interactions are controlled by
Euclidean distances between material points. The
length ratio &, thus reads:

g:cs Ls — Ly

where ||| denotes the Euclidean norm. As a conse-
quence of this assumption, any pair of material points
(T, x;) and (x,,x,) such that /,; = (., interact in
the same way. A physical request is, however, that ma-
terial points across cracks, holes and highly damaged
zones do not interact (or at least reduce their interac-
tions).

2.1.2  Eikonal NL model

The ENL formulation models this effect by consider-
ing that damage induces a curvature of the Rieman-
nian space in which interaction distances are com-
puted. In this framework, interactions between x, and
other material points « € B are controlled by an effec-

tive/geodesic distances field /(x) approximating the



viscosity solution of the time-independent isotropic
Eikonal equation:

(ra@Iviol=1 a<b ®)

l(x,) =0
where V(e) is the gradient operator and m(x) de-

notes a damage dependent isotropic Riemannian met-
ric function:

m(x) =+/1—d(x) >0

This leads to rewrite the length ratio &, as:

rxeB 9

l 0
_ ¢ENL _ fas INL __ Yas 1
gJ?S £$S gc — gzs gc ( O)

Uni-dimensional example The influence of dam-
age on nonlocal interactions can be illustrated eas-
ily by studying simple one-dimensional (1D) case.
Consider an inhomogeneous field d = d(z) defined
over a bar B={r € R: z € (0,L)} and compute
the geodesic interaction distance between two mate-
rial points (z, and xs > x,) pertaining to B. Under
these conditions, the Eikonal problem (8) reads:

{mmﬂm:l veB (11)

lxy)=0

where d, denotes the total derivation with respect to
variable z and | e | is the absolute value operator.
Integrating (11) between x, and x, leads to write:

~ Ls dz

Uys = ——— 2>l =x5s— 1, >0 (12)
v V1 —d(z)

According to (12), ¢, coincides with /,, in undam-
aged conditions (i.e., the INL setting is recovered)
and increases progressively when damaging occurs.
As a consequence, material points separated by highly
damaged zones could no longer interact (or reduce
their interactions).

3 NONLOCAL INTERACTIONS IN
TWO-DIMENSIONS

Similar considerations apply to non-local interactions
in two-dimensional (2D) domains. When the damage
field d(«) is not uniform, however, no general closed
form viscosity solutions to the Eikonal equation exist.
For that reason, numerical solution procedures (Bert-
sekas 1993, Zhao 2005, Sethian 1996) are needed. In
this work, we use a FMM (Sethian 1996) based on a
second order approximation of the term V/(x) over a
regular grid of points (Rouy & Tourin 1992).

As a representative example, we consider a square
plate B and compute interaction distances from point

x, under three different conditions: 1) B is undam-
aged; 2) B is crossed by a sharp crack, i.e., d — 1~
along a line of points and is null elsewhere; 3) B is a
holed plate, i.e., d — 1~ on points located inside the
hole and is null otherwise.

The computed geodesic distances fields and result-
ing nonlocal weighting functions ¢ are depicted in
Figure 1. As expected, one observes that:

1. Geodesic and Cartesian distance fields coincide
when damage is null (as in the 1D case). The
resulting function ¢ is a Gaussian distribution
function with center in x,. (as it is classically as-
sumed in INL formulations);

2. When the domain is damaged (or an hole is
present), the Riemannian space in which dis-
tances are computed is deformed (i.e., m(x) #
1). Shortest paths between «,. and points x, € B
are no more straight lines and interaction dis-
tances increase. As in the 1D case, under some
conditions, material points separated by highly
damaged zones no-more interact (the resulting
weighting functions ¢ are truncated).

4 FEM-FMM NUMERICAL FORMULATION

The implementation of the ENL method into a non-
linear finite element code can be achieved in a non
intrusive (as less intrusive as possible) way. The main
ingredients of the numerical formulation proposed in
(Rastiello, Giry, Gatuingt, & Desmorat 2017) can be
summarized as follows:

1. Quasi-static equilibrium equations are solved
thanks to a standard FE formulation. Provided
the displacement and damage fields at time step
t,, the solution attime ¢,, .1 = t,, + At,11 > 1, 18
searched iteratively by using a secant algorithm.
An explicit integration scheme is adopted for up-
dating the damage field at the Gauss point level
throughout global iterations. For the Gauss point
occupying the position x,, at the global iteration
k 4 1, one computes:

dﬁﬁ(wx) = nax <9(€§1L,;zk+1)7 deJrl) (13)

ko gk .
where dy, | = dy, 1 (€2);

2. Interaction distances between integration points
are evaluated through a second-order accurate
FMM. For this purpose, independent FM grids
are defined gauss point by gauss point. They are
centered on the considered Gauss point (x,) and
are 20, x 2/, in size. Provided the finite differ-
ence approximation of the gradient term, grid
spacing (h) is adapted grid-by-grid in order to
ensure minimizing errors in distances computa-
tion;



Geodesic distances

2.0
3.2
15
2.8
1.0F
2.4
05
2.0
< oof
B 1.6
—05 12
—LOF 08
—15r § 0.4
Ly
—92.0 - i — 0.0
050 —15 —10 —05 00 05 10 15 20
x/l.
: 4.5
4.0
3.5
3.0
2.5
2.0
L5
1.0
0.5
i ‘ 0.0
250 —15 —10 —05 00 0.5
3.6
1.5 3.2
Lok 2.8
2.4
0.5
. 2.0
< 00f
- 1.6
—05
12
—1.0F 08
—15F 04
—20 0.0

1.0

0.5

—2.0 715 710 700 U(J
/L,

15 20

Gaussian weighting function

—0.5

-1.0

-1.5

-2.0
—-20 -15 -1.0 0.5 0.0
-0

=2.0 -15 —-1.0 =05 0.0

05 1.0 15

v /P

-2.0 H

~2.0 -1.5 —1.0 —0.5 0.0
z/l,

2.0

0.90

0.75

0.60

0.45

0.30

0.15

—1.5

0.00

05 1.0 1.5 20

Figure 1: Geodesic distances field 1 () for a square plate and its influence on the Gaussian weighting function ¢ (&) centered on the
point x,: a) undamaged medium; b) cracked medium; c¢) holed plate. Geodesic distances are computed over a regular grid comprising

40’401 = 201 x 201 vertex (grid spacing h = 4¢./200)

3. The discretized metric function to be used for
computing interaction distances is obtained after
projection of the damage field from the FE mesh
to FM grids;

. Geodesic distances between gauss points are
then computed at the beginning of each time step
by solving:

{ V 1-— ||v£n+1

€n+1(wm) =0
where d,,(x) is the damage field a time step t,,;

=1, xeB

(14)

. Interaction distances are then kept constant un-
til convergence at time ¢, 1. They are then used
to update the equivalent nonlocal strain field e3y-
driving damage evolution.

5 STRAIN LOCALIZATION EXAMPLES

In this section, 2D quasi-static strain localization
problems in quasi-brittle continua are simulated to
illustrate the main features (regularization, damage
evolution, ...) of the ENL damage formulation. In
computations, a simple yield criterion function writ-
ten in the equivalent Mazars strain space is adopted
for sake of simplicity.

5.1

Tie-specimen under tensile loading

A tie-specimen submitted to a tensile loading is con-
sidered first (Figure 2). The domain is discretized
through three FE meshes comprising 26, 51 or 101
linear quadrangular FEs to study mesh sensitivity.
Strain localization is forced on the center of the spec-
imen by introducing a weak finite element. Provided



the chosen material parameters (Figure 2), the result-
ing structural responses are unstable in the post-peak
phase of load for every considered mesh. For that
reason, the external load is controlled indirectly us-
ing path-following method based upon controlling the
mean relative horizontal displacement of two vertical
lines of nodes symmetrically placed (4L /20) with re-
spect to the vertical symmetry axis of the specimen.

5.1.1 Representative responses

Computations are performed assuming plane strains
conditions and considering the local, standard INL
and ENL formulations for sake of comparison. Rep-
resentative structural responses obtained for a mesh
comprising 51 = 51 x 1 elements are compared in
Figure 2. Damage and equivalent strain distributions
along a horizontal line (parallel to the loading direc-
tion) for different time stations are depicted in Fig-
ure. 3. Numerical results evidence that:

e When damage is small, the global and local re-
sponse provided by the ENL formulation is very
close to that obtained using the INL formulation.
In this phase, the metric field is approximatively
equal to unity and effective geodesic distances
do not strongly differ from Euclidean ones.

e When damage increases, geodesic distances in-
crease and become larger than Euclidean dis-
tances. Non-local interactions progressively re-
duce and the ENL global response tends progres-
sively to that obtained through the local damage
model.

e When d — 1~ on the weak finite element, the
response provided by the ENL formulation be-
comes equivalent to that obtained in a local set-
ting. Interaction distances between gauss inte-
gration points across the damaged zone tend to
infinity and non-local interactions vanish. By this
way, no damage evolution occurs even through
the sample elongation continues to increase. As
it is well known, this effect cannot be modeled
through a INL formulation.

5.1.2 Regularization features
As shown in Figure 4, the ENL formulation ensures
the objectivity of the obtained solution with respect
to the spatial discretization of the computed struc-
ture. The global force-displacement responses ob-
tained through three different FE meshes are in good
agreement in the whole range of displacements.
Small differences in global responses can be ob-
served only on final simulation phases, when the
weaker element is almost fully damaged and no more
interacts with its neighbors. A tendency toward a
mesh convergence can be however evidenced, thus
demonstrating the regularization properties of the

proposed ENL formulation. Damage profiles obtained
for the three FE meshes are also similar for any dam-
age level (Figure 5) .

5.2 Wedge-splitting test

A wedge-splitting test (Brithwiler & Wittman 1990)
is simulated to study the damage propagation process
in a 2D context. A vertically notched sample 100 mm
width and 100 mm in height is solicited by impos-
ing increasing horizontal displacements of two ver-
tical bearing surfaces. A sub-vertical damage prop-
agation (form the notch to the bottom of the speci-
men) is thus induced. The computational domain is
discretized by using a finite element mesh compris-
ing 2510 linear quadrilateral finite elements. Compu-
tations are performed under plane strain conditions,
considering both ENL and INL formulations.

Damage fields obtained corresponding to an ad-
vanced phase of the test are compared in Figure 6.
This allows showing that the damage field predicted
by the INL formulation is spread over a large dam-
aged band, whereas the ENL formulation allows re-
ducing this diffusion. In that case, the damaged band
in less wide and d attains unity values on the sym-
metry axis only. Once this condition is attained, the
damage field no more evolves because no interactions
occur between integration points located across the
symmetry axis. This also ensure that damage diffu-
sion in the backward of the notch is strongly reduced.

L =100mm
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------ Local
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Figure 2: Tensile test. Comparison among representative global
force - displacement responses obtained through the local, INL
and ENL damage evolution models (FE mesh comprising 51 el-
ements). The specimen in 100 mm in length and 5 mm in width.
Constitutive model parameters are as follows: £ = 100 MPa
(Young’s modulus), v = 0, kg = 0.0001, k. = 0.001 and ¢, = 20
mm.
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6 CONCLUSIVE REMARKS

A simple Eikonal Nonlocal (ENL) continuum dam-
age model was presented in this paper. According to
this approach (Desmorat, Gatuingt, & Jirasek 2015,
Rastiello, Giry, Gatuingt, & Desmorat 2017), non-
local interactions between material points are con-
trolled by geodesic distances obtained as solutions of
an isotropic time-independent Eikonal equation with
a damage dependent metric function. In a differen-
tial geometry context, the ENL framework considers
that the Riemannian space in which interaction dis-
tances are computed is curved due to damage. In other
words, interaction distances are no more Euclidean,

1 T T

I T T T
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—— 51 elements
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Damage
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0
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Figure 5: Tensile test, FE mesh sensitivity study. Damage distri-
butions obtainted through three different FE meshes.

as in the INL formulation, but evolves depending
on the damage field evolution. The numerical im-
plementation was obtained by using a Fast-Marching
Method (Sethian 1996) for updating damage depen-
dent nonlocal interactions throughout a quasi-static
Finite Elements computation (Rastiello, Giry, Gatu-
ingt, & Desmorat 2017). Two simple test-cases were
performed in order to show the main features of the
ENL formulation. Regularization properties of the
proposed model were demonstrated. Furthermore, it
was shown that the proposed formulation allows for
reducing several parasite effects classically associated
with INL formulations (damage spreading over large
damaged bands, damage diffusion near notches and
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