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1 Motivation

The aim is to obtain the analytical expression of the continuous component
of the laser-induced temperature rise in a layer on a substrate in good ther-
mal contact with a thermostat and in a layer in bad thermal contact with
a thermostat (contact thermal resistance). The results were given in the
following paper without detailed calculation:

In the case of a layer on a substrate in good thermal contact with a thermo-
stat, the temperature rise at the surface is given by Eq. 1, which reads:
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2 TWO-LAYER SAMPLE IN CONTACT WITH A THERMOSTAT

and in the case of a single layer in bad thermal contact with a thermostat,
the temperature rise is given by Eq.2, which reads:

2 Two-layer sample in contact with a thermo-

stat

The heat di�usion equation is written as

∂∆T/∂t−D∇2∆T = p (r, z, t) /ρC, (2.1)

with ∆T = T − Tthermostat, D the di�usivity, p the absorbed power per unit
volume, ρ the mass density and C the mass speci�c heat. Tthermostat is the
base temperature. The continuous component of ∆T is found as the solution

3



2 TWO-LAYER SAMPLE IN CONTACT WITH A THERMOSTAT

of the time-independent di�usion equation in response to the time-averaged
absorbed power (CW component).

Here the system under consideration is a layer of thickness L1 and thermal
conductivity k1 on top of a substrate of thickness L0 and thermal conductivity
k0 in contact with a thermostat (Fig. 2.1).

Figure 2.1:

We �rst assume that the energy �ux from the laser transmitted at the surface
(z=0) is totally converted into heat �ux within an in�nitely thin depth.

The temperature and the heat �ux at the layer/substrate interface are con-
tinuous functions of the depth z in the case of zero contact resistance at each
interface. The sample is perfectly thermalized at the substrate-thermostat
interface, i.e., ∆T = T (r, L0 + L1)− Tthermostat = 0.

In the continuous regime and without volume heat source the heat di�usion
equation in each layer is reduced to :

∇2∆T = 0 (2.2)

which in cylindrical coordinates translates to

∂2∆T

∂r2
+

1

r

∂∆T

∂r
+
∂2∆T

∂z2
= 0 (2.3)

∆T (r, z) is written as a function of its Hankel transform Θ(r, z) as ∆T (r, z) =∫ +∞
0

Θ(u, z)J0 (ru)u du, where J0 is the Bessel Function of the �rst kind. The
Hankel transform then veri�es
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2 TWO-LAYER SAMPLE IN CONTACT WITH A THERMOSTAT

∂2∆T

∂r2
+

1

r

∂∆T

∂r
+
∂2∆T

∂z2
=

∫ +∞

0

(
−u2Θ(u, z) +

∂2Θ(u, z)

∂z2

)
J0 (ru)u du

(2.4)

The solutions of
(
−u2Θ(u, z) + ∂2Θ(u,z)

∂z2

)
= 0 are then

Θ(u, z) = A1,0 (u) exp (−uz) +B1,0 (u) exp (uz) , (2.5)

Where the two indices 1 and 0 refer to the layer and the substrate, respec-
tively. The functions A and B are determined by the boundary conditions.

At the surface, the incoming heat �ux φ (r), which has cylindrical symmetry
is equal to the normal �ux at z=0.

− k1
∂∆T

∂z
= φ (r) (2.6)

Taking the Hankel transform on both side, we have (condition 1)

− k1
∂Θ

∂z
= ψ (u) (2.7)

with ψ (u) =
∫ +∞

0
φ(u, z)J0 (ru) r dr, the Hankel transform of φ.

Condition 2 and 3 are given by the continuity of the temperature and the heat
�ux at the layer-substrate interface. Condition 4 is given by the continuity of
the temperature at the substrate- thermostat interface ∆T (r, L0 + L1) = 0.
The four conditions then lead to the following set of equations:

k1u (A1 (u)−B1 (u)) = ψ (u) (2.8)

A1 (u) exp (−uL1) +B1 (u) exp (uL1) =

A0 (u) exp (−uL1) +B0 (u) exp (uL1) (2.9)

k1u [A1 (u) exp (−uL1)−B1 (u) exp (uL1)] =

k0u [A0 (u) exp (−uL1)−B0 (u) exp (uL1)] (2.10)

A0 (u) exp (−u (L0 + L1)) +B0 (u) exp (u (L0 + L1)) = 0 (2.11)
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2 TWO-LAYER SAMPLE IN CONTACT WITH A THERMOSTAT

Solving this system gives the functions A1 (u) and B1 (u):

A1 (u) = ψ(u)
eL1u [k1 sinh (L0u) + k0 cosh (L0u)]

2k1u [k1 sinh (L0u) sinh (L1u) + k0 cosh (L0u) cosh (L1u)]

(2.12)

B1 (u) = ψ(u)
e−L1u [k1 sinh (L0u)− k0 cosh (L0u)]

2k1u [k1 sinh (L0u) sinh (L1u) + k0 cosh (L0u) cosh (L1u)]

(2.13)

The temperature at the surface (z = 0) is expressed as

∆T (r, 0) =

∫ +∞

0

(A1(u) +B1(u)) J0(ru)u du (2.14)

Since the laser spot is well �tted by a Gaussian, the incident �ux is taken as

φ (r) = φ0 exp
(
−2r2

w2

)
. The measured incident power is:

P0 =

∫ +∞

0

φ0 exp

(
−2r2

w2

)
2πr dr =

πw2φ0

2
. (2.15)

The incoming �ux has to be corrected by a factor (1−R), where R is the

re�ectance. Therefore the incoming �ux is expressed as 2P0(1−R)
πw2 exp

(
−2r2

w2

)
and its Hankel transform ψ(u) =

∫ +∞
0

(
2P0(1−R)
πw2 exp

(
−2r2

w2

))
J0(ru) r dr is

equal to P0(1−R)
2π

exp
(
−1

8
u2w2

)
.

Finally, combining Eqs 2.12, 2.13 with the expression of ψ(u), one obtains:

∆T (r, 0) =
P0(1−R)

2π

∫ +∞

0

exp

(
−1

8
u2w2

)
f (u) J0(ru) du , (2.16)

with

f (u) =
k0 sinh (L1u) cosh (L0u) + k1 sinh (L0u) cosh (L1u)

k1 (k1 sinh (L0u) sinh (L1u) + k0 cosh (L0u) cosh (L1u))
, (2.17)

which is actually Eq. 1 of the paper quoted above.
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3 Single layer and contact thermal resistance

at the layer-thermostat interface

The system is now a single layer with thickness L and thermal conductivity
k (Fig. 3.1). We assume that it is in bad thermal contact with a thermostat,
i.e., there is a temperature discontinuity at the layer-substrate interface owing
to a contact thermal resistance.

Figure 3.1:

Now we explicitely take into account the light absorption depth. We solve
the heat di�usion equation −D∇2∆T = p (r, z) /ρC, which is also written
as ∇2∆T = −p (r, z) /k. Taking the radial and depth dependence of ab-

sorbed power per unit volume as p (r, z) = p0 exp
(
−2r2

w2

)
exp (−α z) , we

have P0 (1−R) =
∫ +∞

0
p0 exp

(
−2r2

w2

)
exp (−α z) 2π r dr dz, therefore p0 =

2αP0(1−R)
πw2 . We have now to solve the following equation:

∂2∆T

∂r2
+

1

r

∂∆T

∂r
+
∂2∆T

∂z2
=

∫ +∞

0

(
−u2Θ(u, z) +

∂2Θ(u, z)

∂z2

)
J0 (ru)u du

= − 1
k

∫ ∞
0

Π (u) J0 (ru)u du ,

where Π (u, z) is the Hankel transform of p (r, z), i.e.,

Π (u, z) =
αP0(1−R)

2π
exp

(
−1

8
u2w2

)
exp (−α z) (3.1)

= Π0 exp

(
−1

8
u2w2

)
exp (−α z)
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with Π0 = αP0(1−R)
2π

. The solutions are found by solving

− u2Θ(u, z) +
∂2Θ(u, z)

∂z2
= −1

k
Π (u, z) (3.2)

We then have

Θ(u, z) = A (u) exp (−uz)+B (u) exp (uz)+
Π0

k (u2 − α2)
exp

(
−1

8
u2w2

)
exp (−α z)

(3.3)

The functions A andB are found by solving the boundary conditions using the
Hankel transform. The �ux accross the interface at z=0 is zero

(
−k1

∂Θ
∂z

= 0
)
,

which gives:

u (−A (u) +B (u))− αΠ0

k (u2 − α2)
exp

(
−1

8
u2w2

)
= 0 (3.4)

At the layer-thermostat interface there is a temperature discontinuity owing
to the contact thermal resistance Rc. We thus have:

T
(
r, z = L+

)
− T

(
r, z = L−

)
= −Rc

(
−k ∂T

∂z

∣∣∣∣
z=L

)
∆T

(
r, L−

)
= Rc

(
−k ∂∆T

∂z

∣∣∣∣
z=L

)
Θ(u, L−) = − Rc k

∂Θ

∂z

∣∣∣∣
z=L

A exp (−uL) +B exp (uL) +
Π0

k (u2 − α2)
exp

(
−1

8
u2w2

)
exp (−αL) +

Rc k

(
−Au exp (−uL) +Bu exp (uL)− αΠ0

k (u2 − α2)
exp

(
−1

8
u2w2

)
exp (−αL)

)
= 0

(3.5)
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From Eqs 3.4 and 3.5, one �nds for A (u) and B (u) :

A (u) = −
eLu
(
αeLu(kRcu+ 1) + ue−αL(1− αkRc)

)
ku (u2 − α2) (e2Lu(kRcu+ 1)− kRcu+ 1)

Π0 exp

(
−u

2w2

8

)
(3.6)

B (u) =
e−αL

(
αeαL(1− kRcu)− ueLu(1− αkRc)

)
ku (u2 − α2) (e2Lu(kRcu+ 1)− kRcu+ 1)

Π0 exp

(
−u

2w2

8

)
(3.7)

The radial and z-dependence of the temperature are then obtained as:

∆T (r, z) =

∫ +∞

0

(
A (u) exp (−uz) +B (u) exp (uz)

+
Π0

k (u2 − α2)
exp

(
−1

8
u2w2

)
exp (−α z)

)
J0 (ru)u du

(3.8)

which, after some algebra, gives Eq.2 of the above paper, namely:

∆T (r, z) =
P0(1−R)

2π

∫ ∞
0

g (u, z) exp

(
−u

2w2

8

)
J0 (ru) du , (3.9)

with g (u, z) = α
k(u2−α2)

(
cosh(uz)(αe−Lu(1−kRcu)+ue−αL(αkRc−1))

kRcu sinh(Lu)+cosh(Lu)
+ ue−αz − αe−uz

)
.
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