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Motivation

The aim is to obtain the analytical expression of the continuous component of the laser-induced temperature rise in a layer on a substrate in good thermal contact with a thermostat and in a layer in bad thermal contact with a thermostat (contact thermal resistance). The results were given in the following paper without detailed calculation:

In the case of a layer on a substrate in good thermal contact with a thermostat, the temperature rise at the surface is given by Eq. 1, which reads:

and in the case of a single layer in bad thermal contact with a thermostat, the temperature rise is given by Eq.2, which reads:

2 Two-layer sample in contact with a thermostat

The heat diusion equation is written as

∂∆T /∂t -D∇ 2 ∆T = p (r, z, t) /ρC, (2.1)
with ∆T = T -T thermostat , D the diusivity, p the absorbed power per unit volume, ρ the mass density and C the mass specic heat. T thermostat is the base temperature. The continuous component of ∆T is found as the solution of the time-independent diusion equation in response to the time-averaged absorbed power (CW component).

Here the system under consideration is a layer of thickness L 1 and thermal conductivity k 1 on top of a substrate of thickness L 0 and thermal conductivity k 0 in contact with a thermostat (Fig. 2.1).

Figure 2.1:

We rst assume that the energy ux from the laser transmitted at the surface (z=0) is totally converted into heat ux within an innitely thin depth.

The temperature and the heat ux at the layer/substrate interface are continuous functions of the depth z in the case of zero contact resistance at each interface. The sample is perfectly thermalized at the substrate-thermostat interface, i.e., ∆T = T (r, L 0 + L 1 ) -T thermostat = 0.

In the continuous regime and without volume heat source the heat diusion equation in each layer is reduced to :

∇ 2 ∆T = 0 (2.2)
which in cylindrical coordinates translates to

∂ 2 ∆T ∂r 2 + 1 r ∂∆T ∂r + ∂ 2 ∆T ∂z 2 = 0 (2.3) ∆T (r, z) is written as a function of its Hankel transform Θ(r, z) as ∆T (r, z) = +∞ 0
Θ(u, z)J 0 (ru) u du, where J 0 is the Bessel Function of the rst kind. The Hankel transform then veries

∂ 2 ∆T ∂r 2 + 1 r ∂∆T ∂r + ∂ 2 ∆T ∂z 2 = +∞ 0 -u 2 Θ(u, z) + ∂ 2 Θ(u, z) ∂z 2 J 0 (ru) u du (2.4) The solutions of -u 2 Θ(u, z) + ∂ 2 Θ(u,z) ∂z 2 = 0 are then Θ(u, z) = A 1,0 (u) exp (-uz) + B 1,0 (u) exp (uz) ,
(2.5)

Where the two indices 1 and 0 refer to the layer and the substrate, respectively. The functions A and B are determined by the boundary conditions. At the surface, the incoming heat ux φ (r), which has cylindrical symmetry is equal to the normal ux at z=0.

-

k 1 ∂∆T ∂z = φ (r) (2.6)
Taking the Hankel transform on both side, we have (condition 1)

-k 1 ∂Θ ∂z = ψ (u)
(2.7) with ψ (u) = +∞ 0 φ(u, z)J 0 (ru) r dr, the Hankel transform of φ. Condition 2 and 3 are given by the continuity of the temperature and the heat ux at the layer-substrate interface. Condition 4 is given by the continuity of the temperature at the substrate-thermostat interface ∆T (r, L 0 + L 1 ) = 0. The four conditions then lead to the following set of equations:

k 1 u (A 1 (u) -B 1 (u)) = ψ (u) (2.8) A 1 (u) exp (-u L 1 ) + B 1 (u) exp (u L 1 ) = A 0 (u) exp (-u L 1 ) + B 0 (u) exp (u L 1 )
(2.9)

k 1 u [A 1 (u) exp (-u L 1 ) -B 1 (u) exp (u L 1 )] = k 0 u [A 0 (u) exp (-u L 1 ) -B 0 (u) exp (u L 1 )]
(2.10)

A 0 (u) exp (-u (L 0 + L 1 )) + B 0 (u) exp (u (L 0 + L 1 )) = 0
(2.11) Solving this system gives the functions A 1 (u) and B 1 (u):

A 1 (u) = ψ(u) e L 1 u [k 1 sinh (L 0 u) + k 0 cosh (L 0 u)] 2k 1 u [k 1 sinh (L 0 u) sinh (L 1 u) + k 0 cosh (L 0 u) cosh (L 1 u)]
(2.12)

B 1 (u) = ψ(u) e -L 1 u [k 1 sinh (L 0 u) -k 0 cosh (L 0 u)] 2k 1 u [k 1 sinh (L 0 u) sinh (L 1 u) + k 0 cosh (L 0 u) cosh (L 1 u)]
(2.13)

The temperature at the surface (z = 0) is expressed as

∆T (r, 0) = +∞ 0 (A 1 (u) + B 1 (u)) J 0 (ru) u du (2.14)
Since the laser spot is well tted by a Gaussian, the incident ux is taken as

φ (r) = φ 0 exp -2r 2
w 2 . The measured incident power is:

P 0 = +∞ 0 φ 0 exp - 2r 2 w 2 2πr dr = πw 2 φ 0 2 .
(2.15)

The incoming ux has to be corrected by a factor (1 -R), where R is the reectance. Therefore the incoming ux is expressed as

2P 0 (1-R) πw 2 exp -2r 2 w 2
and its Hankel transform

ψ(u) = +∞ 0 2P 0 (1-R) πw 2 exp -2r 2 w 2 J 0 (ru) r dr is equal to P 0 (1-R) 2π exp -1 8 u 2 w 2 .
Finally, combining Eqs 2.12, 2.13 with the expression of ψ(u), one obtains:

∆T (r, 0) = P 0 (1 -R) 2π +∞ 0 exp - 1 8 u 2 w 2 f (u) J 0 (ru) du , (2.16) with f (u) = k 0 sinh (L 1 u) cosh (L 0 u) + k 1 sinh (L 0 u) cosh (L 1 u) k 1 (k 1 sinh (L 0 u) sinh (L 1 u) + k 0 cosh (L 0 u) cosh (L 1 u))
, (2.17) which is actually Eq. 1 of the paper quoted above. Single layer and contact thermal resistance at the layer-thermostat interface

The system is now a single layer with thickness L and thermal conductivity k (Fig. 3.1). We assume that it is in bad thermal contact with a thermostat, i.e., there is a temperature discontinuity at the layer-substrate interface owing to a contact thermal resistance. . We have now to solve the following equation:

∂ 2 ∆T ∂r 2 + 1 r ∂∆T ∂r + ∂ 2 ∆T ∂z 2 = +∞ 0 -u 2 Θ(u, z) + ∂ 2 Θ(u, z) ∂z 2 J 0 (ru) u du = -1 k ∞ 0 Π (u) J 0 (ru) u du ,
where Π (u, z) is the Hankel transform of p (r, z), i.e.,

Π (u, z) = αP 0 (1 -R) 2π exp - 1 8 u 2 w 2 exp (-α z) (3.1) = Π 0 exp - 1 8 u 2 w 2 exp (-α z) 7 THE LAYER-THERMOSTAT INTERFACE with Π 0 = αP 0 (1-R) 2π
. The solutions are found by solving

-u 2 Θ(u, z) + ∂ 2 Θ(u, z) ∂z 2 = - 1 k Π (u, z) (3.2)
We then have

Θ(u, z) = A (u) exp (-uz)+B (u) exp (uz)+ Π 0 k (u 2 -α 2 ) exp - 1 8 u 2 w 2 exp (-α z) (3.3)
The functions A andB are found by solving the boundary conditions using the Hankel transform. The ux accross the interface at z=0 is zero -k 1 ∂Θ ∂z = 0 , which gives:

u (-A (u) + B (u)) - α Π 0 k (u 2 -α 2 ) exp - 1 8 u 2 w 2 = 0 (3.4)
At the layer-thermostat interface there is a temperature discontinuity owing to the contact thermal resistance R c . We thus have: 
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  T r, z = L + -T r, z = L - = -R c -k ∂T ∂z z=L ∆T r, L - = R c -k ∂∆T ∂z z=L Θ(u, L -) = -R c k ∂Θ ∂z z=L A exp (-uL) + B exp (uL) + Π 0 k (u 2 -α 2 ) exp -1 8 u 2 w 2 exp (-α L) + R c k -Au exp (-uL) + Bu exp (uL) -

  

THE LAYER-THERMOSTAT INTERFACE

From Eqs 3.4 and 3.5, one nds for A (u) and B (u) :

The radial and z-dependence of the temperature are then obtained as:

which, after some algebra, gives Eq.2 of the above paper, namely:

cosh(uz)(αe -Lu (1-kRcu)+ue -αL (αkRc-1)) kRcu sinh(Lu)+cosh(Lu)

+ ue -αz -αe -uz .