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1. Introduction

1.1. Objectives of the project

The purpose of this work is to show the possibility of creating a multi-
scale tool enabled to analyse data from smart buildings. Here we explore
the coupling model/data using Machine Learning algorithms. The model
used is the heat diffusion equation and the data come from simulations. To
recreate real life sensor data, we added noise to the data after running the
simulations.

1.2. Challenges

The main challenge is to build a link between the variables and the dif-
ferent scales considered here. The simulations will help us to fix this point
thanks to the huge amount of data we will be able to generate. The final
challenge is to have a model that predicts accurate results.

1.3. Technological choices

The technologies we use in this project are the followings:
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� Python2 language is used because it can be object oriented and exe-
cutable. Python is also very useful for scientific simulation and provides
a lot of important packages such as Numpy3, Pandas4 or Scipy5. Fi-
nally, packages for Machine Learning algorithms are already developped
for python in scikit learn libraries 6.

� MongoDB7: to store all the data generated by our simulation, we choose
to use a noSQL database technology.

� Web services to build the API.

2. Theory

2.1. Heat diffusion and convection

Our model is based on the use of the diffusion equation in a homogeneous
and isotropic medium with constant thermodynamics coefficients :

∂T

∂t
= α(

∂2T

∂x2
+
∂2T

∂y2
+
∂2T

∂z2
) (1)

where :

� α is a real coefficient called the thermal diffusivity.

� T = T (t, x, y, z) is temperature as a function of space and time.

Diffusion is taken into account following the classical finite differences
approximation (3D). The temperature at time t+ ∆t (note T (t+ ∆t; i; j; k))
depends on 2 main things:

1. An evaluation of ∂T (t;x;y;z)
∂t

' T (t+∆t;x;y;z)−T (t;x;y;z)
∆t

2www.python.org/
3www.numpy.org/
4pandas.pydata.org/
5www.scipy.org/
6scikit-learn.org/stable/
7www.mongodb.com
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2. An evaluation of the Laplacian operator with the use of Taylor’s ap-
proximation. For example, the derivative order following x can be
approximated with the following equation:

∂2T (t;x; y; z)

∂x2
=
T (t;x+ h; y; z)− 2T (t;x; y; z) + T (t;x− h; y; z)

h2
+

hε(x, h)

(2)

which leads to (3) when the Laplacian is calculated on 3 dimensions.
The temperature at a given point (i; j; k) corresponding to the (x; y; z)

axes is given by the following numerical approximation :

T (t+ ∆t; i; j; k) 'T (t; i; j; k) + · · ·

α∆t(
T (t; i+ 1; j; k) + T (t; i− 1; j; k)− 2T (t; i; j; k)

∆2
x

+ · · ·

T (t; i; j + 1; k) + T (t; i; j − 1; k)− 2T (t; i; j; k)

∆2
y

+ · · ·

T (t; i; j; k + 1) + T (t; i; j; k − 1)− 2T (t; i; j; k)

∆2
z

)

(3)

The aim is to have a quick approximate solution of the heat fluctuations
over time. Each room is only seen as a regular mesh with only a few points
(' 1000 for a room). Every heat source (radiant, window, door) takes 5-
6 points from the mesh. To take into account convection, we just have to
implement the following approximation of the first derivate following the z
axe:

T (t+ ∆t; i; j; k) ' T (t; i; j; k) + β∆t(
T (t; i; j; k + 1)− T (t; i; j; k − 1)

2 ∗∆z

) (4)

2.2. Machine learning

Pure physical models are generally difficult to set up. They have a lot of
parameters to evaluate, a slight variation in the initial conditions can lead to
big differences in the final result. The use of Machine Learning algorithms
will help us to overcome these problems:
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� We can use a simpler physical modeling. The gaps between the real
world and the physical model will be learned through a self-learning
algorithm. If large differences appear, they will be filled following the
assimilation of data from ground return. The improvements will not
be the result of ever more complexity but the integration of multiple
data.

� As the physical model is simpler it will present fewer parameters, which
means a smaller dimensionality. The evaluation of the parameters will
therefore be simplified. In the end, the process will be transferable from
one building to another without major modification of the physical part
of the model. Only the layout of the rooms will have to be changed.
The data will make the adjustments.

� Classical Machine Learning methods make it easy to take into account
non-linearities (unlike classical statistical models for example). That
is to say we don’t need to make assumptions about the shape of the
model errors.

All these advantages have a flaw, they require a lot of data in order to
learn the different underlying schemes. This defect will be partially circum-
vented with the use of at least one sensor per room.

The aim will be to determine if a window (for example) is open by com-
paring the states of the physical simulations to the states of the sensors.

In the next sub-section, we will discuss the main Machine Learning method
used in this article.

2.2.1. Random forests

Random forests were introduced by Breiman in 2001 and are based on
the classification and regression trees (Breiman and al. 1984). It’s an es-
timator that fits a huge number of regression trees on various sub-samples
of the dataset. Each tree is constructed taking a small number of variables
(columns) and a small number of lines (≈

√
n).

A tree is constructed by recursively partitioning the data space (with an
inter-class variance criterion) and fitting a simple prediction model within
each partition.

In the end, the prediction is given by averaging the results on all trees.
Random forests have the advantage over a single tree to control over-fitting,
it also gives good predictive accuracy in practice. In fact the average of the
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errors of these forest predictions is not larger than to the average tree grown
from the entire dataset.

In our case, the inputs of the model will therefore be the data of the sen-
sors at a given time as well as the corresponding derivatives. The predicted
values will be an estimate of the given state of the building (which doors are
open, which radiators are lit).

3. Decomposition of the house into three scales

The model will consist in three scales: The macroscopic scale is the one
of an entire building seen as an object, the meso-scopic scale describes the
structure of the building (architecture) and finally the microscopic scale rep-
resents the rooms and its elements (windows, door, radiator, air conditioner)

3.1. Micro-scale

The microscopic scale details the behaviour of each room. It is the place
where partial derivative equation are resolved in order to determine the heat
evolution. A set of state variables are associated with this scale.

Figure 1: 2D mapping of a room example
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3.2. Meso-scale

The mesoscopic scale will be a graph from which each node represents a
room. The connection between the rooms are defined by wrappers (see image
2). Each wrapper contains a room. They play a role of a connector between
the microscopic and the macroscopic scales. Wrappers carry the information
about the heat penetration coefficient of each wall.

Figure 2: Wrapper scheme

3.3. Macro-scale

The macroscopic model describs the buildings with several parameters:
surface, isolation level, heating type, orientation energy consumption, ther-
mal dissipation.

4. Simulation

4.1. Inside the rooms

The rooms scale is the micro-scale and for each cells the equation [5] is
resolved for each time step. Thus we can vizualize the heat diffusion created
in each room such as describes in figures 3, 4 and 5. Figure 3 represents the
temperature distribution after the first time step in a test room. Each image
gives the 2D (x,y) temperature distribution of strata in zi from z0 to zn, with
n the roof and 0 the floor. Figures 4 and 5 represent the same room after
t+ 500 and t+ 5000 time steps respectively.
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Figure 3: Simulation of the temperature evolution inside a room after one time step. Each
slice represents one zi level. z0 (top left) and z11 (bottom right) are respectively the floor
and the ceiling of the room.

Figure 4: Simulation of the temperature evolution inside a room after 500 time step. Each
slice represents one zi level. z0 (top left) and z11 (bottom right) are respectively the floor
and the ceiling of the room.
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Figure 5: Simulation of the temperature evolution inside a room after 5000 time step.
Each slice represents one zi level. z0 (top left) and z11 (bottom right) are respectively the
floor and the ceiling of the room.

4.2. Between the rooms

Between the rooms the temperature can be transfered in two different
ways: passing through the wall /closed door or as a direct exchange if the
door is open. The temperature in each cell of a room is written Tr(t, i, j, k),
with r the room number, t the time value, i the cell number in x, j in y and
k in z. The heat exchange in the case of an open door between room 1 and
room 2 is computed by:

T1(t; i; j; k) = T2(t; i′; j′; k′) (5)

For i, j and k at the door position. In the case of two rooms separated by
a wall the temperature exchange will depend on the penetration coefficient
α as described in figure 2. We can write the temperature interaction for a
cell (i; j; k) in Room 1 in contact with the wall of Room 2 (cell (i′; j′; k′)):

T1(t+ ∆t; i; j; k) = T1(t+ ∆t; i; j; k) + α(
T2(t; i′; j′; k′)− T1(t; i; j; k)

2
),

T2(t+ ∆t; i
′; j′; k′) = T2(t+ ∆t; i

′; j′; k′) + α(
T1(t; i; j; k)− T2(t; i′; j′; k′)

2
)

(6)
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The penetration coefficient α is meant to be learnt on real data for each
building. Each wall being made of a specific material, the penetration coef-
ficient will reflect its physical properties.

4.3. Outside the building

Figure 6: Light intensity on walls

In order to learn the behavior of the building with respect to the exterior
temperature and sunlight, we simulate the radiation on each wall of the
macro-scale. The simulation can be summarized by the figure 6. For instance
the radiation power on the east wall is typically stronger in the morning. To
simulate properly this effect we use a Weibull function given by:

f(x; k, λ) =
k

λ

(x
λ

)k−1

e(−x/λ)k (7)

The peak intensity abscissa is given by λ and is randomly chosen between
8 am and 10 am for the east wall, 12 pm and 2 pm for the south and north
wall (north wall intensity being reduced by 80%) and between 4 and 6 pm
for the west wall.
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5. Code architecture

Figure 7: Code architecture

The code architecture is described in figure 7. The micro-scale class
is defined in ’Piece3D.py’, the meso-scale and the wrappers are defined in
’Connection.py’ and ’Wrapper.py’ and the macro-scale in ’Building.py’. The
method ’SendTWall’ is explicitly showed on the figure because it defines the
entire communication between the rooms. All the classes are compiled in the
main code ’SimulSeed.py’. Through API calls, this code allows the user to
construct its own building architecture and simulate the heat diffusion for
all the initial conditions available. The data created are stored in a mongo
database along with the real data collected from the existing building (if
data are collected). The database is then loaded in ’ML GE.py’ which uses
Machine Learning algorithm such as Random Forest described in sections
2.2.1 to train the algorithm. After this training phase, the code can provide
the most likely state of the building (Temperature, windows and heater closed
or open).

6. Case study

6.1. Test with 3 simply connected rooms

For our first test, we have considered a simple case pictured in figure 8.
The building consists in three rooms. Room 1 & 3 are connected to room 2
with doors and both are equipped with a radiator. We have imagined that
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3 temperature sensors are placed in the middle of each room. After running
a simulation of this configuration, we represent on figure 9 the temperature
given by the sensors. The initial conditions are the following,
∀i; j; k ∈ Ω3 :

� Room 1 : T1(0; i; j; k) = 10°C

� Room 2 : T2(0; i; j; k) = 25°C

� Room 3 : T3(0; i; j; k) = 15°C

With this configuration we have 16 (24) different cases (windows and heater
closed or open) we need to simulate.

Figure 8: Mapping of test rooms
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Figure 9: Temperature evolution for the initial conditions T1(0; i; j; k) = 10°C,
T2(0; i; j; k) = 25°C and T3(0; i; j; k) = 15°C

6.1.1. Configuration classifier

We will now use a random forest classifier to learn the 16 different con-
figurations.

� Build database :

1. Simulate 5000 time steps for each case (note S(t) the simulated
temperature at time t)

2. Add a gaussian random factor with a squared deviation of 3% of
the sensor values. (It represents the sensors measurement errors):
S̃(t) = S(t) + ε(t) where ε(t) ∼ N (0, [0.03 ∗ S(t)]2)

3. LetX(t) =
(
S̃s1(t), S̃s2(t), S̃s3(t),∆Ss1(t),∆Ss1(t),∆Ss1(t)

)
a vec-

tor of prediction variables. With S̃s1(t) (resp. S̃s2, S̃s3(t)) the
observed temperatures of sensor 1 (resp. 2,3) at time t,
and ∆Ss1(t) = Ss1(t)− Ss1(t−∆t)

4. Let Y (t) ∈ Y = {conf1; conf2; · · · ; conf16} the label to predict.
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5. Our global sample is now build :

D{16;5000} = {(X1(1), Y1(1)), · · · , (X1(5000), Y1(5000)), · · ·
(X16(1), Y16(1)), · · · , (X16(5000), Y16(5000))}

6. Randomly split the dataset in a train sample set (80%) and a test
sample set (20%).

� Learning and testing :

1. Construct a collection of N randomized classification trees (ck)
with the train sample set :

{ck(x,Θk), 1 ≤ k ≤ N}

x ∈ R6 is an input vector.
{Θk} are independent and identically distributed random vectors
independent of, but distributed as D{16;5000}
The classifier ck is a mapping function : R6 → Y

2. The random forest classifier RFc is obtained via a majority vote
among the classification trees, that is :

RFc(x,Θ1, · · · ,ΘN ,D{16;5000}) =

arg max
j∈Y

(Card{ck(x,Θk) = j, 1 ≤ k ≤ N})

3. We can now apply our random forest predictor on our test sample,
and compare the predicted Ŷ labels against the real one Y (results
Figure 10)
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Figure 10: Confusion matrix for the 16 cases. Horizontal axis represents Y and the vertical
axis Ŷ . The diagonal in yellow shows a very low misclassification rate.

Most of the failure cases are due to low time step while the building heat
diffusion process is still unclear. After these results we went for a real test
using See-d’s office architecture.

6.2. Test on See-d’s office

The case of See-d’s office is more complicated due to the numerous doors,
windows and radiators. On the figure 11 See-d’s office structure of six rooms
is represented. Doors are colored in green, windows in purple and radiators
in red. The number of possible combinations is huge in this case (216) and
no Machine Learning algorithm would be able to learn each of them. The
number of sensors has to be increased. So, each room is equipped in its center
with temperature sensors and in addition each door is equipped with status
(closed/open) sensors.
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Figure 11: Mapping of See-d’s desk

Using the exact same methodology as in section 6.1 we reach a success
rate of 85%.

7. Summary

We prooved in this POC that the multi-scale model we developed enables
to represent a building in a very robust way.The Machine Learning algorithm
is improved by the imformation on the derivative of the sensors temperature.
The full model is now callable by API and each user can create a specific
building. The results are very encouraging with only a few sensors and this
can be improved. In the future this tool could be embedded in a full scale
smart building computer system.

The next steps in this project are:

� Gathering real data in a first test environment

� Find a building partner equipped with a lot of sensors

� Develop a user interface

The commercial prospections for the future of such a tool are:

� Computer system of smart building

� Architecture software for energy optimization
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� Construction and public work software
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