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LITTLE AND BIG q−JACOBI POLYNOMIALS AND THE ASKEY-WILSON

ALGEBRA

PASCAL BASEILHAC†, XAVIER MARTIN†, LUC VINET∗, AND ALEXEI ZHEDANOV⋄,∗

Abstract. The little and big q-Jacobi polynomials are shown to arise as basis vectors for representa-
tions of the Askey-Wilson algebra. The operators that these polynomials respectively diagonalize are
identified within the Askey-Wilson algebra generated by twisted primitive elements of Uq(sl(2)). The
little q-Jacobi operator and a tridiagonalization of it are shown to realize the equitable embedding of
the Askey-Wilson algebra into Uq(sl(2)).
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1. Introduction

This paper indicates how the little and big q-Jacobi polynomials [KS96] occur in the context of
representations of the Askey-Wilson algebra. This structure was originally identified in [Z91] as the
algebra generated by the Askey-Wilson operator and the multiplication by the independent variable; its
representations were shown to account for the bispectral properties of the Askey-Wilson polynomials.
It has thereafter appeared in various contexts.

The little q-Jacobi polynomials [KS96] have received algebraic interpretations some time ago, either
as matrix elements of co-representations of the quantum group SLq(2) [VS88, K89, MMNNU88, M91]
or equivalently [FV93], as matrix elements of q-exponentials in the generators of the quantum algebra
Uq(sl(2)) [FV93b]. The big q-Jacobi polynomials have been connected to quantum 2-spheres [NM90].
We shall provide here a rather different algebraic setting for these q-polynomials as basis vectors for
modules of the Askey-Wilson algebra.

On the one hand, consider twisted primitive elements in Uq(sl(2)) [K93, KJ98]. It is known that
such elements provide an embedding of the Askey-Wilson algebra in Uq(sl(2)) [GZ93]. Take the
holomorphic realization of Uq(sl(2)) and a specialization of the generators, it will be seen that the
operators of which the little and big q-Jacobi polynomials are eigenfunctions belong to this realization
of the Askey-Wilson algebra.

On the other hand, the polynomials of the Askey scheme and especially those under consideration
here, are solutions of bispectral problems. It has been shown recently how algebraic Heun operators
can be associated to any such problems [GVZ17]. For some choices of the generic parameters, the
resulting Heun operator can be one of those corresponding to the polynomials of the Askey tableau
and this provides a procedure often referred to as tridiagonalization [IK11, IK12] to construct and
study higher special functions from simpler ones. Clearly, bilinear combinations of the bispectral oper-
ators of classical polynomials will be tridiagonal in the eigenbasis . The main point is that such Heun
operators generate when combined with one of the operators entering in the bispectral problem, an
algebra that encodes the properties of the higher functions/polynomials. This algebraic viewpoint on

Date: May 31, 2018.

1

http://arxiv.org/abs/1806.02656v2


2 PASCAL BASEILHAC†, XAVIER MARTIN†, LUC VINET∗, AND ALEXEI ZHEDANOV⋄,∗

tridiagonalization has been developed recently. The 4-parameter Wilson polynomials have thus been
recovered and analysed in that perspective through the tridiagonalization of the 2-parameter hyperge-
ometric operator [GIVZ16]. Similarly the characterization of the 4-parameter Bannai-Ito polynomials
could be retrieved by observing that the embedding of the Bannai-Ito algebra into the superalgebra
osp(1,2) involved tridiagonalizing the operator of which the little -1 Jacobi polynomials are eigen-
functions [BGVZ17]. It is hence natural at this point, to complete the picture by determining how
the Askey-Wilson polynomials lend themselves to a tridiagonalization analysis. This is one of the
goals of this paper. Typically one would work with the differential or difference operator of which
the polynomials are eigenfunctions. This will also be the main approach here. It should be said that
tridiagonalization can as well be applied to recurrence operators. As a matter of fact, it has already
been shown that the recurrence coefficients of the Askey-Wilson polynomials can be obtained from
those of the big q-Jacobi polynomials from the tridiagonalization of the recurrence operator of the
latter polynomials [TVZ17].

It will be seen that the tridiagonalization of the q-difference operator, of which the little q-Jacobi
polynomials are eigenfunctions, leads to the Askey-Wilson algebra in the fashion described above. It
will be further observed that if the equitable presentation of Uq(sl(2)) is called upon [ITW06, T15],
the little q-Jacobi operator and its tridiagonalized companion turn out to naturally take the form that
generators of the Askey-Wilson algebra have when symmetrically embedded in Uq(sl(2)).

The paper will be organized as follows. After having provided some relevant facts about Uq(sl(2)),
the Askey-Wilson algebra and its embedding in Uq(sl(2)) are presented in Section 2. In Section
3, the little q-Jacobi polynomials are introduced via their q-difference equation, which is identified
under special choices of the parameters as the eigenvalue equation for one generator of the Askey-
Wilson algebra through the realization inherited from that of Uq(sl(2)). The eigenfunctions of a
companion generator of the Askey-Wilson algebra are obtained and the expansion of the little q-Jacobi
polynomials in this eigenbasis will be shown to yield an explicit expression of these polynomials. The
tridiagonalization of the little q-Jacobi operator will be carried out in Section 4. This will provide
an operator that is tridiagonal on the little q-Jacobi polynomials and that generates a new Askey-
Wilson algebra together with the original little q-Jacobi operator. This will be obtained by noting
that these operators take the known form [T11] of the Askey-Wilson generators under the embedding
in Uq(sl(2)) in terms the equitable generators of this quantum algebra [T15]. In Section 5 we shall
turn to the big q-Jacobi polynomials and show that they are eigenfunctions of the same generator
as for the little ones, in the initial embedding of the Askey-Wilson algebra in Uq(sl(2)) albeit with
different and more general choices of the parameters. Their explicit expression will also be obtained
as in section 3. As supplementary information, we shall show in Section 6 that a large class of big
q-Jacobi polynomials can be obtained via tridiagonalization from special little q-Jacobi polynomials.
The paper will end with a summary and outlook in Section 7.

1.1. Notations. In this paper, we fix a nonzero complex number q which is not a root of unity. We
will use the standard q-shifted factorials (also called q−Pochhammer functions) [KS96]:

(a; q)n =
n−1∏

k=0

(1− aqk).(1.1)

2. The Askey-Wilson algebra and its embedding in Uq(sl(2))

We shall recap in this section the basic tools that shall be used in the remainder of the paper:
first the standard Chevalley presentation of Uq(sl(2)) and second the equitable one, together with
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isomorphisms between the two. The realization of Uq(sl(2)) in terms of q-difference operators will
then be recalled in subsection 2.3 and the Askey-Wilson algebra will be introduced via its embedding
into Uq(sl(2)) in subsection 2.4.

2.1. The Chevalley presentation of Uq(sl(2)). The Chevalley presentation of Uq(sl(2)) consists of
three generators denoted S±, s3. They satisfy

[s3, S±] = ±S± and [S+, S−] =
q2s3 − q−2s3

q − q−1
.(2.1)

The central element of Uq(sl(2)) is the Casimir operator:

Ω =
q−1q2s3 + qq−2s3

(q − q−1)2
+ S+S−.(2.2)

2.2. The equitable presentation of Uq(sl(2)). The equitable presentation of Uq(sl(2)) consists of
three generators denoted X,Y,Z [ITW06].

Y Y −1 = Y −1Y = 1,
qXY − q−1Y X

q − q−1
= 1,

qY Z − q−1ZY

q − q−1
= 1,

qZX − q−1XZ

q − q−1
= 1.(2.3)

In [T15, Lemma 5.1], an isomorphism with the presentation (2.1) is given. Here we will use a special
case. In our notation, it reads:

X = q−2s3 − (q − q−1)q1/2S+q
−s3 ,(2.4)

Y = q2s3 ,

Z = q−2s3 + (1− q−2)q1/2S−q
−s3 .

2.3. The q−difference operators realization of Uq(sl(2)). An irreducible infinite dimensional
representation Vν with 2ν /∈ Z+ can be realized by q−difference operators acting on the space of
formal power series f(z) =

∑

k∈Z+
µkz

k in the variable z. The lowest weight vector corresponds to 1.

Define T±(f(z)) = f(q±1z). There exists an homomorphism [S83]:

qs3 7→ q−νT+, q−s3 7→ qνT−,(2.5)

S+ 7→ z
(q2νT− − q−2νT+)

(q − q−1)
, S− 7→ −z−1 (T− − T+)

(q − q−1)
.

On Vν , the eigenvalue of Ω (2.2) is given by:

ων =
(q2ν+1 + q−2ν−1)

(q − q−1)2
.(2.6)

Note that if 2ν ∈ Z+, the representation becomes reducible as (S+)
2ν+1 = 0. The corresponding

invariant subspace of polynomials of degree 2ν.

2.4. The Askey-Wilson algebra. We now turn to the Askey-Wilson algebra and its embedding in
Uq(sl(2)). Let c0, c0, c1, c1, ǫ0, ǫ1, µ0, µ1 be arbitrary scalars. Define:

W0 = c0S+q
s3 + c0S−q

s3 + ǫ0q
2s3 + µ0,(2.7)

W1 = c1S+q
−s3 + c1S−q

−s3 + ǫ1q
−2s3 + µ1.

A third operator, namely

G1 = qW1W0 − q−1W0W1(2.8)
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is constructed. By straightforward calculations, one finds:

G1 = g1S
2
− + g2S−q

−s3 + g3S−q
s3 + g′2S+q

−s3 + g′3S+q
s3 + g4q

2s3 + g5q
−2s3 + g6,(2.9)

where gi, i = 1, .., 6 and g′2, g
′
3 are expressed in terms of cj, cj , ǫj, j = 0, 1:

g1 = c0c1(q
2 − q−2),

g2 = c0ǫ1(q
2 − q−2)q + µ0c1(q − q−1), g3 = c1ǫ0(q

2 − q−2)q−1 + µ1c0(q − q−1),

g′2 = µ0c1(q − q−1), g′3 = µ1c0(q − q−1),

g4 = −
c0c1q

−1(q + q−1)

(q − q−1)
+ µ1ǫ0(q − q−1), g5 = −

c1c0q(q + q−1)

(q − q−1)
+ µ0ǫ1(q − q−1),

g6 = (c1c0q + c0c1q
−1)(q − q−1)Ω + (ǫ0ǫ1 + µ0µ1)(q − q−1).

Proposition 2.1. W0,W1, G1 satisfy the Askey-Wilson algebra:
[
W1,W0

]

q
= G1,

[
W0, G1

]

q
= ρ0W1 + ωW0 + γ0(W0W1 +W1W0) + γ1W

2
0 + η0,

[
G1,W1

]

q
= ρ1W0 + ωW1 + γ1(W0W1 +W1W0) + γ0W

2
1 + η1,

where

ρ0 = −c0c0(q + q−1)2 − µ2
0(q − q−1)2, ρ1 = −c1c1(q + q−1)2 − µ2

1(q − q−1)2,

ω = (q − q−1)g6 − 2µ0µ1(q − q−1)2,

γ0 = µ0(q − q−1)2, γ1 = µ1(q − q−1)2,

η0 = (q + q−1)
(
c0c0ǫ1(q − q−1)2Ω− ǫ0(qc1c0 + q−1c0c1)

)
− µ0(q − q−1)g6 + µ1c0c0(q + q−1)2 + µ2

0µ1(q − q−1)2,

η1 = (q + q−1)
(
c1c1ǫ0(q − q−1)2Ω− ǫ1(qc0c1 + q−1c1c0)

)
− µ1(q − q−1)g6 + µ0c1c1(q + q−1)2 + µ2

1µ0(q − q−1)2,

Proof. Straightforward, using (2.1) and (2.2). �

In the text below, we consider successively special values of the structure constants of the AW
algebra. In each case, a realization of W0,W1, G1 in terms of Uq(sl(2)) Chevalley generators is given.

For a first choice of ci, ci, ǫi, µi namely µ0 = c0 = c1 = 0 the operator G1 will be denoted by G̃1. It
is diagonalized by the little q-Jacobi polynomials. For a second choice of ci, ci, ǫi, µi, namely µ0 =
c0 = 0 the operator G1 is diagonalized by the big q-Jacobi polynomials. In both cases, the elements
W0,W1, G1 satisfy the ‘reduced’ relations:

[
W1,W0

]

q
= G1,

[
W0, G1

]

q
= ωW0 + γ1W

2
0 + η0,

[
G1,W1

]

q
= ρ1W0 + ωW1 + γ1(W0W1 +W1W0) + η1,

where the structure constants are specializations of ρi, ω, γi, ηi as given above.

3. The little q−Jacobi polynomials

We shall now make precise the circumstances under which the little q-Jacobi polynomials are eigen-
functions of G̃1 and form a representation basis of a specialized Askey-Wilson algebra. Given the
ensuing specific choice of parameters, the eigenfunctions of W0 will be determined to be q-Pochammer
symbols. It will be observed that G̃1 acts bidiagonally on these functions, as well as on monomials,
and this will entail explicit expressions for the little q-Jacobi polynomials.
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3.1. The second order q-difference operator G̃1. If we now compare the operator G1 of (2.9)
using (2.5) with (3.12.4) of [KS96], one has:

G̃1 ≡ G1|g′
2
=g′

3
=g1=0 7→

(
g3q

−ν

(q − q−1)

1

z
+ g4q

−2ν

)

︸ ︷︷ ︸

Ã0

T 2
+ +

(

−
g2q

ν

(q − q−1)

1

z
+ g5q

2ν

)

︸ ︷︷ ︸

B̃0

T 2
−(3.1)

+

(

−
(g3q

−ν − g2q
ν)

(q − q−1)

1

z
+ g6

)

︸ ︷︷ ︸

C̃0

.

Proposition 3.1. For the specialization1 g′2 = g′3 = g1 = 0, the ‘reduced’ operator G̃1 is diagonalized
by the little q−Jacobi polynomials.

Proof. Denote the little q-Jacobi polynomials as:

y(z) ≡ pn(z; a, b; q
2)

They satisfy the second-order q-difference equation:

q−2n(1− q2n)(1 − abq2n+2)y(z) = B(z)y(q2z) +B(z)y(q−2z)− (B(z) +B(z))y(z),

where

B(z) = −a
1

z
+ abq2,

B(z) = −
1

z
+ 1,

The exact relation between the parameters gi and the parameters entering in the little q-Jacobi
polynomials is as follows:

G̃1y(z) =
(
g5q

2ν(q−2n + abq2n+2) + g6
)
y(z)

and

a = −
g3
g5

q−3ν

(q − q−1)
, b = −

g4
g3

(q − q−1)q−ν−2 and
g2
g5

= (q − q−1)qν .(3.2)

�

3.2. Eigenfunctions and the explicit expression of the little q−Jacobi polynomials. First,
we construct the eigenfunctions of W0 in (2.7) for g′2 = g′3 = g1 = 0 .

Lemma 3.1. For c0 = µ0 = 0, one has:

W0fn(z) = λnfn(z) with λn = ǫ0q
2(n−ν) and fn(z) =

(
ǫ0
c0
(1− q2)q−ν−1z; q2

)

n

.(3.3)

Proof. Considering (2.7) for c0 = µ0 = 0 and using (2.5), the action on the monomials zn reads:

W0z
n = λnz

n + νnz
n−1 with λn = ǫ0q

2(n−ν) and νn = c0q
−ν+1 1− q2n

1− q2
.

1We choose c0 = c1 = µ0 = 0 in (2.7).
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Let fn(z) be such that W0fn(z) = λnfn(z). Define fn(z) =
∑

∞

s=0 αn,sz
s. The action of W0 on fn(z)

gives the recurrence relation:

λnαn,s = λsαn,s + νs+1αn,s+1.

The solution reads

αn,s = αn,0
(λn − λ0)(λn − λ1) · · · (λn − λs−1)

ν1ν2 · · · νs
(3.4)

= αn,0

(

(1− q2)
ǫ0
c0
q2n−ν−1

)s (q−2n; q2)s
(q2; q2)s

,

from which, setting αn,0 = 1 and using the q−binomial theorem [KS96], we finally obtain (3.3). �

On the eigenfunctions of W0, we now consider the action of G̃1.

Lemma 3.2. One has:

G̃1fn(z) = anfn(z) + bnfn−1(z)(3.5)

with

an = g5q
2ν(q−2n + abq2n+2) + g6,

bn = −g5q
2νq−2n(1− q2n)(1− q2nb).

Proof. Recall (3.1). The l.h.s. of (3.5) reads:

G̃1fn(z) =
(

Ã0(1− γ0q
2n−2z)(1− γ0q

2nz) + B̃0(1− γ0q
−2z)(1 − γ0z)

+C̃0(1− γ0z)(1 − γ0q
2n−2z)

)

(1− γ0q
2z) · · · (1− γ0q

2n−4z),

where we have denoted γ0 =
ǫ0
c0
(1− q2)q−ν−1. The r.h.s reads:

(
an(1− γ0z)(1 − γ0q

2n−2z) + bn(1− γ0z)
)
(1− γ0q

2z) · · · (1− γ0q
2n−4z).

Equating both sides of the equation (5.6), the coefficients an and bn are determined uniquely. �

Remark 3.1. Observe that the coefficient an coincides with the spectrum of G̃1, as expected (G̃1 is
lower triangular in the basis {fn}).

Next, we are interested in the overlap coefficients between the eigenfunctions of W0 (the fn(z)) and

the eigenfunctions of G̃1 (the little q-Jacobi polynomials).

Proposition 3.2. One has:

pn(z; a, b; q
2) =

∞∑

s=0

γn,sfs(z)(3.6)

where

γn,s = (−q2b)−nq−n(n−1) (q
2b; q2)n

(q2a; q2)n

(q−2n; q2)s(abq
2n+2; q2)s

(q2b; q2)s(q2; q2)s
q2s.(3.7)
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Proof. By Prop. 3.1 recall that pn(z; a, b; q
2) are eigenfunctions of G̃1 with the identification (3.2).

Consider the expansion (3.6). The action of G̃1 on pn(z; a, b; q
2) gives the recurrence relation:

anγn,s = asγn,s + bs+1γn,s+1.

The solution reads

γn,s = γn,0
(an − a0)(an − a1) · · · (an − as−1)

b1b2 · · · bs
.

By straightforward calculations, one finds:

(an − a0)(an − a1) · · · (an − as−1) = (−g5q
2ν)sq−s(s−1)(q−2n; q2)s(abq

2n+2; q2)s,

b1b2 · · · bs = (−g5q
2ν)sq−s(s+1)(q2b; q2)s(q

2; q2)s.

Setting the normalization such that:

γn,0 = (−q2b)−nq−n(n−1) (q
2b; q2)n

(q2a; q2)n
,(3.8)

we get (3.7). �

Remark 3.2. The expansion formula (3.6) coincides with (2.46) of [K94] with q → q2:

pn(z; a, b; q
2) = (−q2b)−nq−n(n−1) (q

2b; q2)n
(q2a; q2)n

3φ2

[
q−n, qn+1ab, q2bz

q2b, 0
; q2, q2

]

.(3.9)

Remark 3.3. Note that the little q-Jabobi operator G̃1 is also bidiagonal in the monomial basis zn.
By analogy with the proof of Lemma 3.1 one can retrieve the following familar explicit expression for
the little q-Jacobi polynomial [KS96, eq. (3.12.1)] (see also [K94, eq. (2.45)]):

pn(z; a, b; q
2) = 2φ1(q

−n, qn+1ab, q2a; q2; q2z).(3.10)

4. Tridiagonalization of the little q−Jacobi operator and the equitable
presentation of Uq(sl(2))

Calling upon the equitable embedding of the Askey-Wilson algebra [T11] which will be recalled
next, we shall now make the observation that the little q-Jacobi operator and a tridiagonalization of
this operator realizes also the Askey-Wilson algebra.

Remark 4.1. Define

g2 = (1− q−2)q1/2b−1, g3 = −q−3/2(q − q−1)ca−1, g4 = g−1
5 = b, g6 = 0.(4.1)

Then

G̃1 = (1− q−2)q1/2b−1S−q
−s3 − q−3/2(q − q−1)ca−1S−q

s3 + bq2s3 + b−1q−2s3(4.2)

= bY + b−1Z + qca−1(1− Y Z) ,

where Y and Z are the equitable Uq(sl(2)) generators introduced in (2.4).

Using the equitable presentation of Uq(sl(2)) (2.4), by Proposition 1.1 and Lemma 3.4 in [T11], one
gets:
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Proposition 4.1. Define

A = aX + a−1Y + qbc−1(1−XY ),(4.3)

B = bY + b−1Z + qca−1(1− Y Z),

C = cZ + c−1X + qab−1(1− ZX).

The generators A,B,C satisfy the Askey-Wilson algebra:

A+
qBC − q−1CB

q2 − q−2
=

Λ(a+ a−1) + (b+ b−1)(c+ c−1)

q + q−1
,

B +
qCA− q−1AC

q2 − q−2
=

Λ(b+ b−1) + (c+ c−1)(a+ a−1)

q + q−1
,

C +
qAB − q−1BA

q2 − q−2
=

Λ(c+ c−1) + (a+ a−1)(b+ b−1)

q + q−1
,

where Λ denotes the ‘normalized’ Casimir element

Λ = (q − q−1)2Ω.

Remark 4.2. In terms of the Chevalley generators of Uq(sl(2)), one has B = G̃1 with (4.2) and

A = −a(q − q−1)q1/2S+q
−s3 + bc−1(q2 − 1)q1/2S+q

s3 + a−1q2s3 + aq−2s3 ,(4.4)

C = (c+ c−1)q−2s3 − ab−1(q + q−1)q−4s3 + ab−1(q − q−1)2Ωq−2s3

+(1− q−2)
(

S−(cq
1/2q−s3 − q3/2ab−1q−3s3)− S+(c

−1q3/2q−s3 − ab−1q1/2q−3s3)
)

.

For the analysis to follow, let us introduce the operators O and O:

O = (q − q−1)q−νS+q
s3(1− q−2νq2s3)−1, O = (q − q−1)q−ν−1q−s3S−(1− q−2νq−2s3)−1,(4.5)

where (1− q−2νq±2s3)−1 is understood as a power series in the Cartan element of Uq(sl(2)). Note that

OO = OO = 1. Also, the action of each operator on the space of monomials in z, according to (2.5),
is such that:

O 7→ z, O 7→ z−1.(4.6)

Lemma 4.1. Consider A,B as the q−difference operators obtained from (4.3) with (2.4). One has:

A ≡ αOB + βBO + γO + δ,(4.7)

with

α = −
q(q3/2+νab− q−3/2−νc−1)

q2 − q−2
, β =

(q1/2+νab− q3/2−νc−1)

q2 − q−2
,(4.8)

γ = bc−1q3/2+ν + aq1/2−ν ,

δ =
(q2ν+1a+ q−2ν−1a−1 + bc+ b−1c−1)

q + q−1
.
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Proof. Recall that B = G̃1 is given by (4.2). Consider the r.h.s. of (4.7). The action of O on the
monomials S−q

±s3 , q±2s3 is such that:

OS−q
−s3 =

qν − q−νq−2s3

q − q−1
, OS−q

s3 =
−q−ν + qνq2s3

q − q−1
,

S−q
−s3O =

qν − q−ν−2q−2s3

q − q−1
, S−q

s3O =
−q−ν + qν+2q2s3

q − q−1
,

q2s3O = −(q − q−1)qν+2S+q
s3 + q2ν+2O, q−2s3O = (q − q−1)q−ν−2S+q

−s3 + q−2ν−2O.

By straightforward calculations, we obtain:

αOB + βBO + γO + δ = −b(q − q−1)qν(α+ βq2)S+q
s3 + b−1(q − q−1)q−ν(α+ βq−2)S+q

−s3

−ca−1q−3/2qν(α+ βq2)q2s3 − b−1q−1/2q−ν(α+ βq−2)q−2s3

+
(
α(bq2ν + b−1q−2ν) + β(bq2ν+2 + b−1q−2ν−2) + γ

)
O

+
(

b−1qν−1/2 + ca−1q−ν−3/2
)

(α+ β) + δ.

Compare the expression above with (4.4), we obtain the constraints:

a = −b−1q−1/2−ν(α+ βq−2), c = −
q−ν+3/2

(α+ βq2)
,

α(bq2ν + b−1q−2ν) + β(bq2ν+2 + b−1q−2ν−2) + γ = 0,
(

b−1qν−1/2 + ca−1q−ν−3/2
)

(α+ β) + δ = 0

from which we get (4.8). �

This lemma thus states that the generator A of the equitable presentation of the Askey-Wilson
algebra is obtained from B by tridiagonalization. Stated differently, the upshot is that B i.e. G̃1

together with its tridiagonalization (4.7) generate the Askey-Wilson algebra.
The tridiagonalized form of A can be inverted to express B in terms of A as follows.

Lemma 4.2. Consider A,B as the q−difference operators obtained from (4.3) with (2.4). One has:

B ≡ αOA+ βAO + γO + δ,(4.9)

with

α = −
q−1(q3/2+νc− q−3/2−νa−1b−1)

q2 − q−2
, β =

(q−3/2+νc− q−1/2−νa−1b−1)

q2 − q−2
,(4.10)

γ = b−1q−1/2+ν + ca−1q−3/2−ν ,

δ =
(q2ν+1b+ q−2ν−1b−1 + ac+ a−1c−1)

q + q−1
.
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Proof. Recall A is given by (4.4). Consider the r.h.s. of (4.9). The action of O on the monomials
S+q

±s3 , q±2s3 is such that:

OS+q
s3 =

qν − q−νq2s3

q − q−1
, OS+q

−s3 =
−q−ν + qνq−2s3

q − q−1
,

S+q
s3O =

qν − q−ν−2q2s3

q − q−1
, S+q

−s3O =
−q−ν + qν+2q−2s3

q − q−1
,

q−2s3O = −(q − q−1)qν+2S−q
−s3 + q2ν+2O, q2s3O = (q − q−1)q−ν−2S−q

s3 + q−2ν−2O.

By straightforward calculations, we obtain:

αOA+ βAO + γO + δ = a−1(q − q−1)q−ν(α+ βq−2)S−q
s3 − a(q − q−1)qν(α+ βq2)S−q

−s3

−bc−1q3/2−ν(α+ βq−2)q2s3 − aqν+1/2(α+ βq2)q−2s3

+
(
α(aq2ν + a−1q−2ν) + β(aq2ν+2 + a−1q−2ν−2) + γ

)
O

+
(

aq1/2−ν + bc−1q3/2+ν
)

(α+ β) + δ.

Compare the expression above with (4.2), we obtain the constraints:

c = −(α+ q−2β)q3/2−ν , b−1 = −(α+ q2β)aqν+1/2,

α(aq2ν + a−1q−2ν) + β(aq2ν+2 + a−1q−2ν−2) + γ = 0,
(

aq1/2−ν + bc−1q3/2+ν
)

(α+ β) + δ = 0

from which we get (4.10). �

5. The big q−Jacobi polynomials

We shall now carry for the big q-Jacobi polynomials an analysis similar to the one that was given
in Section 3 for the little q-Jacobi polynomials; namely, identify the specialization of the parameters
in G1 that will lead to the big q-Jacobi operator, identify the eigenfunctions of W0 in that case,
determine the action of the restricted G1 on these functions and arrive at the explicit expression of
the big q-Jacobi polynomials by expanding one eigenbasis over the other.

5.1. The second order q-difference operator G1. Recall (2.5). By straightforward replacements,
from (2.9) we get for the specialization2 g′2 = g′3 = 0:

G1|g′
2
=g′

3
=0 7→

(
g1q

−1

(q − q−1)2
1

z2
+

g3q
−ν

(q − q−1)

1

z
+ g4q

−2ν

)

︸ ︷︷ ︸

A0

T 2
+(5.1)

+

(
g1q

(q − q−1)2
1

z2
−

g2q
ν

(q − q−1)

1

z
+ g5q

2ν

)

︸ ︷︷ ︸

B0

T 2
−

+

(

−
g1(q + q−1)

(q − q−1)2
1

z2
−

(g3q
−ν − g2q

ν)

(q − q−1)

1

z
+ g6

)

︸ ︷︷ ︸

C0

.

Proposition 5.1. For g′2 = g′3 = 0, the operator G1 is diagonalized by the big q-Jacobi polynomials.

2We choose µ0 = c0 = 0 in (2.7).



ASKEY-WILSON ALGEBRA REVISITED AND TRIDIAGONALIZATION 11

Proof. Compare the operator G1 written as (5.1) with the second-order q-difference operator3 (3.5.4)
in [KS96]. Denote the big q-Jacobi polynomials as:

y(z) ≡ Pn(z; a, b, c; q
2)

They satisfy the second-order q-difference equation:

q−2n(1− q2n)(1 − abq2n+2)y(z) = B(z)y(q2z) +B(z)y(q−2z)− (B(z) +B(z))y(z),(5.2)

where

B(z) = acq2
1

z2
− a(b + c)q2

1

z
+ abq2,

B(z) = acq4
1

z2
− (a+ c)q2

1

z
+ 1,

The exact relation between the parameters gi and the parameters entering in the big q-Jacobi poly-
nomials is as follows:

G1y(z) =
(
g5q

2ν(q−2n + abq2n+2) + g6
)
y(z)

and

ac =
g1
g5

q−2ν−3

(q − q−1)2
, a(b + c) = −

g3
g5

q−3ν−2

(q − q−1)
, ab =

g4
g5

q−4ν−2, a+ c =
g2
g5

q−ν−2

(q − q−1)
.(5.3)

Remark 5.1. Note that if instead we would like to consider the spectral problem for the big q-Jacobi
polynomials

y(q2bz) ≡ Pn(q
2bz; a, b, c; q2),(5.4)

the substitution z → q2bz into (5.2) gives the following identification:

ac

b2
=

g1
g5

q−2ν+1

(q − q−1)2
,

a(b + c)

b
= −

g3
g5

q−3ν

(q − q−1)
, ab =

g4
g5

q−4ν−2,
a+ c

b
=

g2
g5

q−ν

(q − q−1)
.(5.5)

For the special choice c = 0, note that the big q-Jacobi polynomial Pn(q
2bz; b, a, 0; q2) can be expressed

in terms of the little q-Jacobi polynomial pn(z; a, b; q
2). See [KS96] for details.

�

5.2. Eigenfunctions and the explicit expression of the big q−Jacobi polynomials. Consider
the eigenfunctions of W0 in (2.7) for g′2 = g′3 = 0. They coincide with the ones given in Lemma 3.1.
On these eigenfunctions of W0, we now consider the action of G1.

Lemma 5.1. One has:

G1fn(z) = anfn(z) + bnfn−1(z)(5.6)

with

an = g5q
2ν(q−2n + abq2n+2) + g6,

bn = −g5q
2νq−2n(1− q2n)(1 − q2na)(1− q2nc).

3Here q2 is q of [KS96].
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Proof. Recall (5.1). The l.h.s. of (5.6) reads:

G1fn(z) =
(
A0(1− γ0q

2n−2z)(1 − γ0q
2nz) +B0(1− γ0q

−2z)(1 − γ0z)

+C0(1− γ0z)(1− γ0q
2n−2z)

)
(1− γ0q

2z) · · · (1− γ0q
2n−4z),

where γ0 =
ǫ0
c0
(1− q2)q−ν−1. The r.h.s reads:

(
an(1− γ0z)(1 − γ0q

2n−2z) + bn(1− γ0z)
)
(1− γ0q

2z) · · · (1− γ0q
2n−4z).

Equating both sides of the equation (3.5), the coefficients an and bn are determined uniquely. �

Remark 5.2. Observe that the coefficient an coincides with the spectrum of G1, as expected (G1 is
lower triangular in the basis {fn}).

Next, we are interested in the overlap coefficients between the eigenfunctions of W0 (the fn(z)) and
the eigenfunctions of G1 (the big q-Jacobi polynomials). The proof of the following proposition is
straightforward, by analogy with the proof of Prop. 3.2

Proposition 5.2. One has:

Pn(q
2bz; a, b, c; q2) =

∞∑

s=0

γ′n,sfs(z)(5.7)

where

γ′n,s =
(q−2n; q2)s(abq

2n+2; q2)s
(q2a; q2)s(q2c; q2)s(q2; q2)s

q2s.(5.8)

Remark 5.3. In particular, note that:

pn(z; a, b; q
2) = (−q2b)−nq−n(n−1) (q

2b; q2)n
(q2a; q2)n

Pn(q
2bz; b, a, 0; q2).(5.9)

6. A connection between some big q−Jacobi polynomials and special little q−Jacobi
polynomials by tridiagonalization

Much as in [IK11] and [IK12] we shall supplement the observations of the preceding section by noting
that a large class of big q-Jacobi polynomials can be obtained from a particular tridiagonalization of
the special little q-Jacobi operator with (3.2) for a = q2.

Lemma 6.1. Consider the little q-Jacobi operator G̃1 and the big q-Jacobi operator G1 of the form:

G1 = g1S
2
− + g2S−q

−s3 + g3S−q
s3 + g4q

2s3 + g5q
−2s3 + g6,(6.1)

G̃1 = g̃2S−q
−s3 + g̃3S−q

s3 + g̃4q
2s3 + g̃5q

−2s3 + g̃6.(6.2)

For g̃3 = −q2ν+2g̃2, one has:

G1 ≡ βG̃1O + γG̃1 + γ′O + δ(6.3)

with (4.5) and

β =
(qν+1g2 + q−ν−1g3)

(q − q−1)(q−2ν−3g̃4 − q2ν+3g̃5)
,(6.4)

γ =
q−ν−1(qν+2g3g̃5 + q−ν−2g̃4g2)

g̃2(q−2ν−3g̃4 − q2ν+3g̃5)
, γ′ = −

(q−2ν−2g̃4 + q2ν+2g̃5 + g̃6)(q
ν+1g2 + q−ν−1g3)

(q − q−1)(q−2ν−3g̃4 − q2ν+3g̃5)
,

δ = g6 − γg̃6.



ASKEY-WILSON ALGEBRA REVISITED AND TRIDIAGONALIZATION 13

Proof. Consider the l.h.s. of (6.3). The monomial S2
− is easily reduced in terms of OS−q

±s3 , namely:

S2
− = −

q1−ν

q − q−1
OS−q

−s3 +
qν−1

q − q−1
OS−q

s3 .(6.5)

Consider the r.h.s. of (6.3). Using:

S−q
−s3O = q2OS−q

−s3 −O
2
qν+1, S−q

s3O = q−2OS−q
s3 −O

2
q−ν−1,(6.6)

by straightforward calculations, for a slightly more general combination we obtain:

αOG̃1 + βG̃1O + γG̃1 + γ′O + δ = −(α+ βq2)(q − q−1)qν−1g̃2S
2
−

+
(
(α+ βq−2)(q − q−1)q−ν g̃4 + γg̃3

)
S−q

s3

+
(
−(α+ βq2)(q − q−1)qν g̃5 + γg̃2

)
S−q

−s3

+γg̃4q
2s3 + γg̃5q

−2s3 + γg̃6 + δ

+
(
(α+ βq−2)g̃3 + (α+ βq2)g̃2q

2ν−2
)
OS−q

s3

+
(
(α+ βq−2)g̃4q

−2ν + (α+ βq2)g̃5q
2ν + (α+ β)g̃6 + γ′

)
O

−β(g̃2q
ν+1 + g̃3q

−ν−1)O
2
.

Comparing the r.h.s and l.h.s of (6.3), we identify:

g1 = −(α+ βq2)(q − q−1)qν−1g̃2 ,(6.7)

g2 = −(α+ βq2)(q − q−1)qν g̃5 + γg̃2 ,

g3 = (α+ βq−2)(q − q−1)q−ν g̃4 + γg̃3 ,

g4 = γg̃4, g5 = γg̃5 , g6 = γg̃6 + δ

together with the constraints:

g̃2q
ν+1 + g̃3q

−ν−1 = 0 ,(6.8)

(α+ βq−2)g̃3 + (α+ βq2)g̃2q
2ν−2 = 0 ,

(α+ βq−2)g̃4q
−2ν + (α+ βq2)g̃5q

2ν + (α+ β)g̃6 + γ′ = 0 .

The first constraint gives g̃3 = −q2ν+2g̃2. Inserting in the second constraint, one gets α = 0. The
other equations imply (6.4). �

Note from eq. (3.2) that the condition g̃3 = −q2ν+2g̃2 implies that a = q2. Thus, for a large
parameter set, big q-Jacobi polynomials can be constructed from little q- Jacobi polynomials with
that special value of the parameter a by using the one-sided tridiagonalization introduced in [IK11]
and [IK12].

7. Conclusion

This paper has shown how the little and big q-Jacobi polynomials form bases for representations
of the (specialized) Askey-Wilson algebra. The starting point has been the embedding of the Askey-
Wilson algebra in Uq(sl(2)) realized in terms of q-difference operators. It then proved possible to
identify within the model the defining operators of the polynomials; once this was done the algebraic
structure could be used to obtain, for instance, the explicit expressions of these polynomials in a simple
fashion. The realization was also instrumental in the observation that the little q-Jacobi operator and a
tridiagonalization of this operator realized together the Askey-Wilson algebra since they could readily
be identified as generators in the equitable embedding of this algebra in Uq(sl(2)).



14 PASCAL BASEILHAC†, XAVIER MARTIN†, LUC VINET∗, AND ALEXEI ZHEDANOV⋄,∗

It should similarly prove interesting to adopt the somewhat opposite viewpoint, that is to start
from the little and big q-Jacobi operators and their tridiagonalizations and to look at the conditions
for these operators to form Askey-Wilson algebras. Recall that the most general tridiagonalization
of the ordinary Jacobi operator led to the standard Heun operator [GVZ17]. The program thus
suggested would therefore involve certain q-analogs of the Heun equation. An interesting question
that is complementary to those pursued in the present paper is: under what specializations will these
q-Heun operators form Askey-Wilson algebras with the original operators. We plan to pursue this
matter in a future publication.
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