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FRT PRESENTATION OF CLASSICAL ASKEY-WILSON ALGEBRAS

PASCAL BASEILHAC∗ AND NICOLAS CRAMPÉ†

Abstract. Automorphisms of the infinite dimensional Onsager algebra are introduced. Certain quotients
of the Onsager algebra are formulated using a polynomial in these automorphisms. In the simplest case,
the quotient coincides with the classical analog of the Askey-Wilson algebra. In the general case, gener-
alizations of the classical Askey-Wilson algebra are obtained. The corresponding class of solutions of the
non-standard classical Yang-Baxter algebra are constructed, from which a generating function of elements
in the commutative subalgebra is derived. We provide also another presentation of the Onsager algebra and
of the classical Askey-Wilson algebras.
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Keywords: Onsager algebra; Non-standard Yang-Baxter algebra; Askey-Wilson algebras; Integrable systems.

1. Introduction

The Onsager algebra is an infinite dimensional Lie algebra with three known presentations. Introduced by
L. Onsager in the investigation of the exact solution of the two-dimensional Ising model [O44], the original
presentation is given in terms of generators {An, Gm|n,m ∈ Z} and relations (see Definition 2.1). The second
presentation is given in terms of two generators {A0, A1} satisfying the so-called Dolan-Grady relations (2.4)
[D91]. Recently [BBC17], a third presentation has been identified. It is given in terms of elements of the
non-standard classical Yang-Baxter algebra (2.7) with r-matrix (2.5).

The Askey-Wilson algebra has been introduced in [Z91], providing an algebraic scheme for the Askey-
Wilson polynomials. This algebra is connected with the double affine Hecke algebra of type (C∨

1 , C1) [K07,
T12, M13, KM18], the theory of Leonard pairs [T87, NT07, TV03] and Uq(sl2) [GZ93, WZ95]. A well-
known presentation of the Askey-Wilson algebra1 is given in terms of three generators satisfying the relations
displayed in Definition 3.1. Generalizations of the Askey-Wilson algebra is an active field of investigation.
Various examples of generalizations have been considered in the literature, see for instance [DGVV16, GVZ13,
P15, PW17].

In this note, it is shown that the class of quotients of the Onsager algebra considered by Davies in [D91]
generates a classical analog (q = 1) of the Askey-Wilson algebra and generalizations of this algebra. For each
quotient, classical analogs of the automorphisms recently introduced in [BK17] are used to derive explicit
polynomial expressions for the generators. Based on the results of [BBC17] extended to these quotients, for
the classical Askey-Wilson algebra and each of its generalization, a presentation à la Faddeev-Reshetikhin-
Takhtajan is given. Using this presentation, for each quotient a commutative subalgebra is identified. To
complete the analysis, we also give a new presentation of the Onsager algebra that can be understood as the
specialization q = 1 of the infinite dimensional quantum algebra Aq introduced in [BK07]. In this alternative
presentation, the quotients of the Onsager algebra corresponding to Davies’ prescription are determined.

2. The Onsager algebra, quotients and FRT presentation

In this section, three different presentations of the Onsager algebra O are first reviewed, and three different
automorphisms Φ, τ0, τ1 of the Onsager algebra are introduced. Using these, the elements in O are written
as simple polynomial expressions of the fundamental generators A0, A1. Then, we consider certain quotients
of the Onsager algebra introduced by Davies [D91]. Each quotient is formulated using an operator written
as a polynomial in the automorphisms. Given a quotient, the FRT presentation is constructed from which
a generating function for mutually commuting quantites is obtained.

1For the universal Askey-Wislon algebra introduced in [T11], a second presentation is known.
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2.1. The Onsager algebra. The Onsager algebra has been introduced in the context of mathematical
physics [O44]. The first presentation of this algebra which originates in Onsager’s work [O44] is now recalled.

Definition 2.1. The Onsager algebra O is generated by {An, Gm|n,m ∈ Z} subject to the following relations:

[An, Am] = 4 Gn−m ,(2.1)

[Gn, Am] = 2An+m − 2Am−n ,(2.2)

[Gn, Gm] = 0 .(2.3)

Remark 1. {An, Gm} for n ∈ Z and m ∈ Z+ form a basis of O. Note that G−n = −Gn and G0 = 0.

Note that a second presentation is given in terms of two generators A0, A1 subject to a pair of relations,
the so-called Dolan-Grady relations [DG82]. They read:

[A0, [A0, [A0, A1]]] = 16[A0, A1], [A1, [A1, [A1, A0]]] = 16[A1, A0].(2.4)

These two presentations define isomorphic Lie algebras, see [D91, R91].

In a recent paper [BBC17], a third presentation of the Onsager algebra was proposed using the framework
of the non-standard classical Yang-Baxter algebra. It is called a FRT presentation in honour of the authors
Faddeev-Reshetikhin-Takhtajan [FRT87]. Let us introduce the r-matrix (u, v are formal variables, sometimes
called ‘spectral parameters’ in the literature on integrable systems)

r12(u, v) =
1

(u− v)(uv − 1)







u(1− v2) 0 0 −2(u− v)
0 −u(1− v2) −2v(uv − 1) 0
0 −2u(uv − 1) −u(1− v2) 0

−2uv(u− v) 0 0 u(1− v2)







(2.5)

solution of the non-standard classical Yang-Baxter equation

(2.6) [ r13(u1, u3) , r23(u2, u3) ] = [ r21(u2, u1) , r13(u1, u3) ] + [ r23(u2, u3) , r12(u1, u2) ] ,

where we denote r12(u) = r(u) ⊗ II , r23(u) = II ⊗ r(u) and so on.

Theorem 1. [BBC17] The non-standard classical Yang-Baxter algebra

(2.7) [ B1(u) , B2(v) ] = [ r21(v, u) , B1(u) ] + [ B2(v) , r12(u, v) ]

for the r-matrix (2.5) and

(2.8) B(u) =

(
G(u) A−(u)
A+(u) −G(u)

)

with

G(u) =
∑

n≥1

unGn , A−(u) =
∑

n≥0

unA−n , A+(u) =
∑

n≥1

unAn ,(2.9)

provides an FRT presentation of the Onsager algebra.

2.2. Automorphisms of the Onsager algebra. We are interested in three algebra automorphisms of O.
Let Φ : O → O denote the algebra automorphism defined by Φ(A0) = A1 and Φ(A1) = A0. Observe that
Φ2 = id. We now introduce two other automorphisms of O.

Proposition 2.1. There exist two involutive algebra automorphisms τ0, τ1 : O → O such that

τ0(A0) = A0 ,(2.10)

τ0(A1) = −
1

8

(
A1A

2
0 − 2A0A1A0 +A2

0A1

)
+A1 = −

1

8
[A0, [A0, A1]] +A1 ,(2.11)

τ1(A1) = A1 ,(2.12)

τ1(A0) = −
1

8

(
A0A

2
1 − 2A1A0A1 +A2

1A0

)
+A0 = −

1

8
[A1, [A1, A0]] +A0 .(2.13)
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Proof. Firstly, we show that τ0 leaves invariant the first relation in (2.4). This follows immediately from the
fact that

[A0, τ0(A1)] = [A1, A0].(2.14)

Secondly, we show that τ0 leaves invariant the second relation in (2.4). Observe that:

[τ0(A1), [τ0(A1), A0]] = −8τ0τ1(A0) + 8A0 .(2.15)

It follows:

[τ0(A1), [τ0(A1), [τ0(A1), A0]]] = 8 [τ0τ1(A0), τ0(A1)]
︸ ︷︷ ︸

=τ0([τ1(A0),A1])

+8 [τ0(A1), A0]
︸ ︷︷ ︸

=[A0,A1]

= 16[A0, A1].

So, we conclude that τ0 leaves invariant both relations in (2.4).

τ0(τ0(A0)) = A0 ,(2.16)

τ0(τ0(A1)) = −
1

8
[A0, [A0, τ0(A1)]] + τ0(A1) = A1 .(2.17)

This proves that τ0 is involutive and, by consequence is a bijection.
The same holds for τ1, using τ1 = Φ ◦ τ0 ◦ Φ. �

Remark 2. (τ0Φ)(τ1Φ) = (τ1Φ)(τ0Φ) = id.

Let us mention that the automorphisms Φ, τ0, τ1 can be viewed as the classical analogs q = 1 of the
automorphisms considered in [BK17] (see also [T17]). Using τ0, τ1 and Φ, the elements of the Onsager
algebra admit simple expressions as polynomials of the two fundamental generators A0, A1.

Proposition 2.2. In the Onsager algebra O, one has:

Am = (τ1Φ)
m(A0) and Gn =

1

4
[(τ1Φ)

n(A0), A0] .(2.18)

Proof. By definition (2.1), one has G1 = [A1, A0]/4. By Remark 2, one has (τ0Φ) = (τ1Φ)
−1. According to

(2.10)-(2.13), it follows:

[G1, A0] = 2(A1 − τ0(A1)) , [G1, A1] = 2(τ1(A0)−A0) .(2.19)

Comparing (2.19) with (2.2), we see that the identification (2.18) holds for m = −1, 2. Then, we note that
τ1(G1) = −G1 by (2.4). Acting with (τ1Φ)

k on (2.19), one derives (2.2) for n = 1. The second relation in
(2.18) follows from (2.1). �

Remark 3. Φ(A−n) = An+1 and Φ(Gn) = −Gn.

In the FRT presentation displayed in Theorem 1, the action of the automorphisms is easily identified.
The action of τ0, τ1 on the currents is such that:

(τ0Φ)(A
−(u)) = u−1(A−(u)−A0) , (τ0Φ)(A

+(u)) = u(A+(u) +A0) ,(2.20)

(τ1Φ)(A
−(u)) = u(A−(u) +A1) , (τ1Φ)(A

+(u)) = u−1(A+(u)−A1) ,

(τ0Φ)(G(u)) = (τ1Φ)(G(u)) = G(u) .

2.3. Quotients of the Onsager algebra. In Davies’ paper on the Onsager algebra and superintegrability
[D91], Davies considers certain quotients of the Onsager algebra. Below, we characterize the relations
considered by Davies in terms of an operator which is a polynomial in two automorphisms τ0, τ1. As will be
shown later, these quotients can be viewed as generalizations of the classical (q = 1) Askey-Wilson algebra.

Definition 2.2. Let {αn|n = 0, ..., N} be non-zero scalars with N any non-zero positive integer. The algebra

ON is defined as the quotient of the Onsager algebra O by the relations

N∑

n=−N

αnA−n = 0 and

N∑

n=−N

αnAn+1 = 0 with α−n = αn .(2.21)
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There exists an algebra homomorphism ϕN : O → ON that sends A0 7→ A0, A1 7→ A1. We now introduce
three automorphisms τ0, τ1 and Φ of ON such that τ0ϕN = ϕNτ0, τ1ϕN = ϕNτ1 and Φ(A0) = A1.
According to Proposition 2.2, introduce the operator:

SN =

N∑

n=−N

αn(τ1Φ)
n .(2.22)

The relations in (2.21) simply read SN (A0) = 0 and SN(A1) = 0, respectively. These results allow us to give

an alternative presentation of the quotients ON :

Proposition 2.3. The quotient ON is generated by A0 and A1 subject to the Dolan Grady relations

[A0, [A0, [A0, A1]]] = 16[A0, A1] and [A1, [A1, [A1, A0]]] = 16[A1, A0],(2.23)

and to the relations

SN (A0) = 0 and SN (A1) = 0 ,(2.24)

where SN is defined by (2.22).

Furthermore, one has [(τ1Φ)
p, SN ] = 0 for any p ∈ Z. Together with the second relation in (2.18), it

follows:

Remark 4. The relations (2.21) imply:

N∑

n=−N

αnAn+p = 0 ,

N∑

n=−N

αnGn+p = 0 for any p ∈ Z .(2.25)

It follows that the algebra ON has only 3N linearly independent elements. We choose the set {An, Gm|n =
−N + 1, ..., N ;m = 1, ..., N}.

Note that above relations can be derived using the commutation relations (2.1)-(2.3) [D91].

In the algebra ON , all higher elements can be written in terms of the elements {An, Gm|n = −N +
1, ..., N ;m = 1, ..., N}. Without loss of generality, choose αN ≡ 1. By induction using (2.25), one finds:

A−N−p = (−1)p+N

N∑

j=−N+1

U
(N)
p,j (α0, · · · , αN−1)Aj for any p ≥ 0 ,(2.26)

where U
(N)
p,j (α0, · · · , αN−1) is a N−variable polynomial that is determined recursively through the relation:

U
(N)
p+1,j(α0, · · · , αN−1) =

p
∑

k=0

(−1)kαk−N+1U
(N)
p−k,j({αl}) +

{

(−1)N+pαj+p+1 for −N + 1 ≤ j ≤ N − p− 1

0 for N − p ≤ j ≤ N
,

with the convention α−N+1+k ≡ 0 if k ≥ 2N and initial conditions:

U
(N)
0,j (α0, · · · , αN−1) = (−1)N+1αj .

Similarly, one gets:

AN+p+1 = (−1)p+N

N∑

j=−N+1

U
(N)
p,j (α0, · · · , αN−1)A1−j ,

GN+p+1 = (−1)p+N+1
N∑

j=−N+1

U
(N)
p,j (α0, · · · , αN−1)Gj−1 for any p ≥ 0 ,

where (2.1) has been used to derive the second relation. For N = 1, one finds that U
(1)
n−j,j(α0) = Un(α0) is

the Chebyshev polynomial of second kind.
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2.4. FRT presentation of the quotients ON . For the class of quotients ON of the Onsager algebra, the
corresponding solutions of the non-standard Yang-Baxter algebra (2.7) are now constructed.

Proposition 2.4. The non-standard classical Yang-Baxter algebra (2.7) for the r-matrix (2.5) and

(2.27) B(N)(u) =
1

p(N)(u)

(
G(N)(u) A−(N)(u)
A+(N)(u) −G(N)(u)

)

with p(N)(u) =
N∑

p=−N

αpu
−p

where, by setting f (N)
p (u) =

N∑

q=p

αqu
p−q,

A+(N)(u) =
N∑

p=1

(
f (N)
p (u)Ap − uf (N)

p (u−1)A−p+1

)
,(2.28)

A−(N)(u) =

N∑

p=1

(
u−1f (N)

p (u)A−p+1 − f (N)
p (u−1)Ap

)
,(2.29)

G(N)(u) =

N∑

p=1

(
f (N)
p (u) + f (N)

p (u−1)
)
Gp −

N∑

p=1

αpGp ,(2.30)

provides an FRT presentation of the algebra ON .

Proof. The goal consists in expressing all the elements {An, Gm|n,m ∈ Z} present in the FRT presentation of

the Onsager algebra (see Theorem 1) in terms of the 3N linearly independent elements of ON {An, Gm|n =
−N + 1, ..., N ;m = 1, ..., N}. For instance, let us consider the current A+(u) in (2.8). Imposing the first
relation of (2.25), it follows:

A+(u) =

N∑

p=1

upAp +

∞∑

p=N+1

upAp

=
N∑

p=1

upAp −
1

αN

∞∑

p=1

up+N

N−1∑

q=−N

αqAp+q

=

N∑

p=1

upAp −
1

αN

−1∑

q=−N

αqu
N−q

∞∑

p=1

up+qAp+q

︸ ︷︷ ︸

=A+(u)+
∑0

p=q+1 upAp

−
α0

αN

uN

∞∑

p=1

upAp

︸ ︷︷ ︸

=A+(u)

−
1

αN

N−1∑

q=1

αqu
N−q

∞∑

p=1

up+qAp+q

︸ ︷︷ ︸

=A+(u)−
∑q

p=1 upAp

.

By factorizing A+(u) in the last equation and after simplifications, one gets:

A+(u)
N∑

q=−N

αqu
N−q

︸ ︷︷ ︸

≡uNp(N)(u)

=
N∑

q=1

αqu
N−q

q
∑

p=1

upAp −
−1∑

q=−N

αqu
N−q

0∑

p=q+1

upAp .(2.31)

It follows:

A+(u) =
1

p(N)(u)

N∑

q=1

q
∑

p=1

(
αqu

p−qAp − α−qu
q−p+1A−p+1

)
,

which leads to the formula (2.28). Applying the same procedure to A−(u) and G(u), we obtain the other
formulae. �

Using the FRT presentation, a commutative subalgebra of ON can be easily identified. Note that the
result below is a straightforward restriction of [BBC17, Proposition 2.5] to the quotients of the Onsager
algebra.
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Proposition 2.5. Let κ, κ∗, µ be generic scalars. A generating function of mutually commuting elements in
ON is given by:

b(N)(u) =
1

p(N)(u)

N−1∑

p=0

(
f (N)
p (u)− f (N)

p (u−1)
)
Ip ,(2.32)

where

Ip = κ(Ap +A−p) + κ∗(Ap+1 +A−p+1) + µ(Gp+1 −Gp−1) ,(2.33)

I0 = κA0 + κ∗A1 + µG1 .

Proof. Introduce the 2× 2 matrix:

(2.34) M(x) =

(
µ/x κ+ κ∗/x

κ+ κ∗x µx

)

which is a solution of

(2.35) [tr1(r12(u, v)M1(u)) , M2(v)] = 0 .

Then, by using the result [BBC17, Proposition 2.5 ], one shows that b(N)(u) = trM(u)B(N)(u) satisfies
[b(N)(u) , b(N)(v)] = 0. Inserting (2.28)-(2.30) in b(N)(u) = tr

(
M(u)B(N)(u)

)
, one derives (2.32). �

3. O1 and O2 and generalized classical Askey-Wilson algebras

The defining relations of the algebra ON are easily extracted from the defining relations of the non-
standard classical Yang-Baxter algebra (2.7). For instance, we consider the cases N = 1, 2 below. For

N = 1, we prove that O1 is isomorphic to the Askey-Wilson algebra introduced by [Z91] specialized at q = 1.

3.1. The classical Askey-Wilson algebra aw(3). We treat here in detail the case of the quotient O1. To
simplify the notations, we choose α0 = α and α±1 = 1. Equation (2.27) becomes

(3.1) B(1)(u) =
1

p(1)(u)

(
G1 u−1A0 −A1

−uA0 +A1 −G1

)

where p(1)(u) = u + α + u−1. Then, the non-standard Yang-Baxter algebra (2.7) provides the following

defining relations of O1

[G1 , A0] = 2αA0 + 4A1 , [A1 , G1] = 2αA1 + 4A0 , [A1 , A0] = 4G1 .(3.2)

Remark 5. The r-matrix (2.5) allows us to construct a representation of O1. Indeed, the map π(B
(1)
1 (u)) =

r13(u,w) satisfies the non-standard Yang-Baxter algebra (2.7) and the expansion w.r.t. u are the same. By
comparing the expansions, one gets the following representation, for α = −w − w−1,

(3.3) π(G1) = (w−1 − w)

(
1 0
0 −1

)

, π(A0) = 2

(
0 1
1 0

)

and π(A1) = 2

(
0 w−1

w 0

)

.

By Proposition 2.3, there is another presentation of the algebra O1. Indeed, O1 is generated by A0 and
A1 subject to

(3.4) [A0, [A0, A1]]− 8αA0 − 16A1 = 0 , [A1, [A1, A0]]− 8αA1 − 16A0 = 0.

Let us remark that the Dolan-Grady relations (2.23) are not necessary in this case since they are implied
by (3.4). In [Z91], Zhedanov introduced the Askey-Wilson algebra with three generators K0,K1,K2 and

deformation parameter q. More recently, a central extension of the original Askey-Wilson algebra [Z91]
called the universal Askey-Wilson algebra has been introduced [T11]. In that paper, besides the original
presentation of [Z91], a second presentation of the universal Askey-Wilson algebra is given. Below, we show

that the quotient of the Onsager algebra O1 is isomorphic to the classical (q = 1) analog of the Askey-Wilson
algebra, denoted aw(3). The first presentation of the original Askey-Wilson algebra is now recalled.
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Definition 3.1. [Z91] The Askey-Wilson algebra has three generators K0,K1,K2 that satisfy the commuta-
tion relations2:

[
K0,K1

]

q
= K2 ,

[
K2,K0

]

q
= BK0 + C1K1 +D1 ,

[
K1,K2

]

q
= BK1 + C0K0 +D0 ,(3.5)

where B,C0, C1, D0, D1 are the structure constants of the algebra.

Remark 6. In terms of the generators K0,K1, the defining relations of the Askey-Wilson algebra read:

[
K0,

[
K0,K1

]

q

]

q−1 +BK0 + C1K1 +D1 = 0 ,
[
K1,

[
K1,K0

]

q

]

q−1 +BK1 + C0K0 +D0 = 0 .

Definition 3.2. The classical Askey-Wilson algebra, denoted aw(3), is the Askey-Wilson algebra specialized
to q = 1. We keep the same notations for the classical Askey-Wilson algebra than for the usual Askey-Wilson
algebra.

Proposition 3.1. The algebra O1 and the algebra aw(3) are isomorphic.

Proof. The defining relations of O1 are given in (3.2). Let a0, a1, b0, b1 be generic scalars. The isomorphism
is given by:

K0 7→ a0A0 + b0 , K1 7→ a1A1 + b1 , K2 7→ −
a0a1
4

G1 , q 7→ 1

with the identification of the structure constants:

B 7→ −8α/a0a1 , C0 = −16/a20 , C1 = −16/a21 , D0 = −
8αb0 + 16b1

a20a1
, D1 = −

8αb1 + 16b0
a21a0

.

�

A corollary of this proposition is that Proposition 2.4 provides an FRT presentation of aw(3). Note that
for a specialization of the structure constants B = D0 = D1 in (3.5), one recovers the q-deformation of
the Cartesian presentation of the sl2 Lie algebra [Z92]. From that point of view, the representation (3.3) is
natural.

The universal Askey-Wilson algebra has been introduced in [T11]. For this algebra, a second presentation
is known [T11, Theorem 2.2]. It is given in terms of the quotient of the q-deformed analog of the Dolan-Grady
relations (2.4) by a relation of quartic order in the two fundamental generators. These relations correspond
to the presentation given by relations (3.4). Let us mention also that, from the second relation of (2.25)
with N = p = 1, one gets αG1 +G2 = 0. In terms of A0, A1 this relation reads:

8α[A1, A0] + 2(A1A0A1A0 −A0A1A0A1)−A2
1A

2
0 +A2

0A
2
1 = 0.(3.6)

Note that (3.6) is not necessary: it follows from the commutator of the first (resp. second) relation in (3.4)
with A0 (resp. A1). We would like to point out that the relations (3.4) coincide with (2.2), (2.3) of [T11]
for the specialization q = 1 and central elements evaluated to scalar values. Also, the Dolan-Grady relations
(2.4) together with (3.6) coincide with the specialization q = 1 (and a suitable identification of the central
element γ in terms of α) of the relation given in [T11, Theorem 2.2].

3.2. The generalized classical Askey-Wilson algebra aw(6). For N = 2, choose α0 = α′, α±1 = α and
α±2 = 1, equation (2.27) reads
(3.7)

B(2)(u) =
1

p(2)(u)

(
G2 + (u + α+ u−1)G1 u−1A−1 + u−1(α+ u−1)A0 − (u+ α)A1 −A2

−uA−1 − u(u+ α)A0 + u(α+ u−1)A1 +A2 −G2 − (u + α+ u−1)G1

)

2We denote the q−commutator [X,Y ]q = qXY − q−1Y X.
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where p(2)(u) = u2 + αu+ α′ + αu−1 + u−2. One gets the following defining relations for O2 from (2.7)

[A0 , A−1] = [A2 , A1] = [A1 , A0] = 4G1 , [A1 , A−1] = [A2 , A0] = 4G2 ,(3.8)

[A2 , A−1] = 4(1− α′)G1 − 4αG2 ,(3.9)

[G1 , A0] = 2A1 − 2A−1 , [G1 , A1] = 2A2 − 2A0 ,(3.10)

[G1 , A−1] = 2αA−1 + 2(1 + α′)A0 + 2αA1 + 2A2 ,(3.11)

[G1 , A2] = −2A−1 − 2αA0 − 2(1 + α′)A1 − 2αA2 ,(3.12)

[G2 , A0] = 2αA−1 + 2α′A0 + 2αA1 + 4A2 ,(3.13)

[G2 , A1] = −4A−1 − 2αA0 − 2α′A1 − 2αA2 ,(3.14)

[G2 , A−1] = 2(α′ − α2)A−1 + 2α(1− α′)A0 + 2(2− α2)A1 − 2αA2 ,(3.15)

[G2 , A2] = 2αA−1 + 2(α2 − 2)A0 + 2α(α′ − 1)A1 + 2(α2 − α′)A2 ,(3.16)

[G1 , G2] = 0 .(3.17)

Remark 7. As previously, a representation of O2 is obtained from the r-matrix as follows

(3.18) π(B
(2)
1 (u)) = r13(u,w1) + r14(u,w2)

with α = −w1 −w−1
1 −w2 −w−1

2 and α′ = w1w2 +w1w
−1
2 +2+w−1

1 w2 +w−1
1 w−1

2 . By expanding w.r.t. the
formal variable u, one gets a 4× 4 representation for A−1, A0, A1, A2, G1 and G2.

By analogy with the classical Askey-Wilson algebra aw(3) with defining relations (3.2), we call the algebra
generated by the 6 elements A−1, A0, A1, A2, G1, G2 subject to the relations (3.8)-(3.17) the generalized

classical Askey-Wilson aw(6). By construction, this algebra is isomorphic to O2.

By using Proposition 2.3 for N = 2, we get another presentation of the algebra O2
∼= aw(6) : it is

generated by A0 and A1 subject to the Dolan-Grady relation (2.23) with the additional following relations

[A0, [A1, [A0, [A1, A0]]]]− 16[A1, [A1, A0]]− 8α[A0, [A0, A1]] + 64(α′ + 2)A0 + 128αA1 = 0 ,(3.19)

[A1, [A0, [A1, [A0, A1]]]]− 16[A0, [A0, A1]]− 8α[A1, [A1, A0]] + 64(α′ + 2)A1 + 128αA0 = 0.(3.20)

By analogy with both previous examples, we define the generalization of the classical Askey-Wilson
algebra, denoted aw(3N), as the algebra ON generated by 3N generators {A−N+1, ..., AN} and {G1, ..., GN}
and subject to the relations projecting the FRT relation (2.7). The number of defining relations 3N(3N−1)/2
and we do not write them explicitly. Using the the FRT presentation, these relations can be easily extracted.
We can alternatively define aw(3N) with the help of Proposition 2.3, as the algebra generated by A0, A1

and subject to the Dolan-Grady relations (2.23) and relations (2.24). Finally, let us recall that a generating
function of elements of its commutative subalgebra is given in Proposition 2.5.

4. Another presentation of the Onsager algebra and its quotients

In this section, a Lie algebra denoted A is introduced. It is shown to be isomorphic with the Onsager
algebra. The corresponding FRT presentation is given, and polynomial expressions for the elements in A
are obtained in terms of the two fundamental generators using the automorphisms introduced in Section 2.
Then, we introduce the algebra AN as a quotient of A by the classical analog of the relations derived in
[BK07]. The FRT presentation of AN is given.

4.1. Another presentation of the Onsager algebra. In [BK07] (see also [BS09]), an infinite dimensional
quantum algebra denoted Aq has been introduced. Recently, it has been conjectured to be isomorphic to
the q−Onsager algebra3 [BB17]. We now introduce the classical analog of Aq (q = 1).

3The q-Onsager algebra is defined in terms of generators and q-analogs of the Dolan-Grady relations (2.4), see [T99], [B05].
Note that the same relations showed up earlier in the context of polynomial association schemes [T93].
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Definition 4.1. A is a Lie algebra with generators {W−k,Wk+1, G̃k+1|k ∈ Z≥0} satisfying the following
relations, for k, l ≥ 0:

[
W−l,Wk+1

]
= G̃k+l+1 ,(4.1)

[
G̃k+1,W−l

]
= 16W−k−l−1 − 16Wk+l+1 ,(4.2)

[
Wl+1, G̃k+1

]
= 16Wl+k+2 − 16W−k−l ,(4.3)

[
W−k,W−l

]
= 0 ,

[
Wk+1,Wl+1

]
= 0 ,

[
G̃k+1, G̃l+1

]
= 0 .(4.4)

Remark 8. The generators W0,W1 satisfy the Dolan-Grady relations (2.4).

Indeed, inserting the relations (4.1) into (4.2), (4.3) for k = l = 0, from the first two equalities in (4.4)
for k = 1, l = 0 one gets:

[W0, [W0, [W0,W1]]] = 16[W0,W1], [W1, [W1, [W1,W0]]] = 16[W1,W0].(4.5)

Proposition 4.1. The non-standard classical Yang-Baxter algebra (2.7) for the r-matrix (2.5) and

(4.6) B(u) =
1

2

(
− 1

4 G̃(u) u−1W+(u)−W−(u)

−uW+(u) +W−(u)
1
4 G̃(u)

)

with, by setting U = (u+ u−1)/2,

W+(u) =

∞∑

k=0

W−kU
−k−1 , W−(u) =

∞∑

k=0

Wk+1U
−k−1 , G̃(u) =

∞∑

k=0

G̃k+1U
−k−1 ,(4.7)

provides an FRT presentation of the algebra A.

Proof. Insert (4.6) into (2.7) with (2.5). Define the formal variables U = (u+ u−1)/2 and V = (v + v−1)/2.
One obtains equivalently:

(U − V )
[
W+(u),W−(v)

]
= G̃(v)− G̃(u) ,

(U − V )
[
G̃(u),W±(v)

]
± 16

(
UW±(u)− VW±(v)−W∓(u) +W∓(v)

)
= 0 ,

[
W±(u),W±(v)

]
= 0 ,

[
G̃(u), G̃(v)

]
= 0 .

Expanding the currents as (4.7), the above equations are equivalent to (4.1)-(4.4). �

Theorem 2. The Onsager algebra O (see Definition 2.1) and the algebra A (see Definition 4.1) are iso-
morphic.

Proof. By Theorem 1 and Proposition 4.1, the Onsager algebra O and the algebra A have the same FRT
presentation (2.7) with the same r-matrix (2.5). Then, the isomorphism between O and A follows from the
fact that the power series of the entries in (2.8), (4.6) have same expansions w.r.t. the formal variable. �

The explicit relation between the generators {Ak, Gl|k ∈ Z, l ∈ Z≥0} of the Onsager algebra O and the

generators {W−k,Wk+1, G̃l+1|k, l ∈ Z≥0} of the algebra A is obtained as follows. By comparison between
(2.8) and (4.6), we get:

A+(u) ≡
1

2

(
− uW+(u) +W−(u)

)
, A−(u) ≡

1

2

(
u−1W+(u)−W−(u)

)
, G(u) ≡ −

1

8
G̃(u)(4.8)

with (2.9) and (4.7). Then, one can prove that one has the following expansion around u = 0, for k ≥ 0:

U−k−1 = 2

∞∑

p=0

c2p+k
p u2p+k+1 with ckp = (−1)p2k−2p (k − p)!

(p)!(k − 2p)!
.
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By direct comparison of the l.h.s and r.h.s in (4.8) it follows, for k ≥ 0,

Ak+1 =

[ k2 ]∑

p=0

ckpWk−2p+1 −

[ k−1
2 ]
∑

p=0

ck−1
p W−k+2p+1 ,(4.9)

A−k =

[ k2 ]∑

p=0

ckpW2p−k −

[ k−1
2 ]
∑

p=0

ck−1
p Wk−2p ,(4.10)

Gk+1 = −
1

4

[ k2 ]∑

p=0

ckpG̃k−2p+1 .(4.11)

Conversely, one has:

W−k =
1

2k

k∑

p=0

k!

p!(k − p)!
Ak−2p , Wk+1 =

1

2k

k∑

p=0

k!

p!(k − p)!
Ak+1−2p ,(4.12)

G̃k+1 =
1

2k−2

k∑

p=0

k!

p!(k − p)!
G2p−k−1 .(4.13)

Here [n] is the integer part of n (with the convention [−1/2] = −1). For small values of k, explicit relations
between the first few elements are reported in Appendix A.

According to Theorem 2, (4.12), (4.13) and (4.4), the following three lemmas are easily shown.

Lemma 4.1. The following subsets form a basis for the same subspace of O:

(i) A0, A1 +A−1, A2 +A−2, A3 + A−3, · · ·

(ii) W0, W−1, W−2, W−3, · · ·

Lemma 4.2. The following subsets form a basis for the same subspace of O:

(i) A1, A2 +A0, A3 +A−1, A4 +A−2, · · ·

(ii) W1, W2, W3, W4, · · ·

Lemma 4.3. The following subsets form a basis for the same subspace of O:

(i) G1, G2, G3, G4, · · ·

(ii) G̃1, G̃2, G̃3, G̃4, · · ·

4.2. Automorphisms of the algbra A. In view of the isomorphism between O and A, the action of the
automorphisms τ0, τ1,Φ introduced in Proposition 2.1 is now described in the alternative presentation A.
Inverting the correspondence (4.8), one has:

W+(u) ≡
2

(u−1 − u)

(
A+(u) +A−(u)

)
, W−(u) ≡

2

(u−1 − u)

(
u−1A+(u) + uA−(u)

)
,(4.14)

G̃(u) ≡ −8G(u) .

Using (2.20), it yields to:

τ0(W+(u)) = W+(u) , τ0(W−(u)) = 2UW+(u)−W−(u)− 2W0 ,

τ1(W−(u)) = W−(u) , τ1(W+(u)) = 2UW−(u)−W+(u)− 2W1 ,

τ0(G̃(u)) = τ1(G̃(u)) = −G̃(u) .

Using (4.7), it follows:

Proposition 4.2. The action of the automorphisms τ0, τ1 on the elements of A is such that:

τ0(W−k) = W−k , τ0(Wk+1) = 2W−k−1 −Wk+1 ,(4.15)

τ1(Wk+1) = Wk+1 , τ1(W−k) = 2Wk+2 −W−k ,(4.16)

τ0(G̃k+1) = τ1(G̃k+1) = −G̃k+1 .(4.17)
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From (4.2), (4.3) note that

W−k−1 =
1

16
[G̃k+1,W0] +Wk+1 , Wk+2 =

1

16
[W1, G̃k+1] +W−k .

Inserting G̃k+1 = [W0,Wk+1] in the first equation above, from (4.15), (4.17) one recovers the classical (q = 1)

analogs of the formulae given in Proposition 7.4 of [T17]. Similarly, G̃k+1 = [W−k,W1] can be inserted into
the second equation above in order to rewrite (4.16).

Combining above relations, one gets:

(τ0 + τ1)(W+(u)) = 2UW−(u)− 2W1 , (τ0 + τ1)(W−(u)) = 2UW+(u)− 2W0 .

From the expansions (4.7), it follows (note that W1 = τ1Φ(W0)):

Proposition 4.3. In the algebra A, one has:

W−k =

(
τ0Φ+ τ1Φ

2

)k

(W0) , Wk+1 =

(
τ0Φ + τ1Φ

2

)k

(W1) and G̃k+1 =
[
W0,

(
τ0Φ + τ1Φ

2

)k

(W1)
]
.

Remark 9. Φ(W−k) = Wk+1, Φ(G̃k+1) = −G̃k+1.

Note that the polynomial expressions for the elements {W−k,Wk+1, G̃k+1} computed here using the action
of the automorphisms can be viewed as the classical (q = 1) analogs of the expressions computed in [BB17],
where the elements of the algebra Aq are derived as polynomials of the fundamental generators W0,W1

satisfying the q−deformed version of (4.5).

4.3. Quotients of the Lie algebra A and of the Onsager algebra. By analogy with the analysis of
the previous section, we now introduce certain quotients of the algebra A. These quotients can be viewed
as the classical analogs of the quotients of algebra Aq considered in [BK07, eq. 11].

Definition 4.2. Let {βn|n = 0, ..., N} be non-zero scalars with N any non-zero positive integer. The algebra
AN is defined as the quotient of the algebra A by the relations

N∑

k=0

βkW−k = 0 and
N∑

k=0

βkWk+1 = 0 .(4.18)

According to Proposition 4.3, introduce the operator:

S′
N =

N∑

n=0

βn(τ0Φ+ τ1Φ)
n .(4.19)

Then, eqs. (4.18) simply read S′
N (W0) = 0 and S′

N (W1) = 0, respectively. Furthermore, one has [(τ0Φ +

τ1Φ)
p, S′

N ] = 0 for any p ∈ Z. It follows:

Remark 10. The relations (4.18) imply:

N∑

k=0

βkW−k−p = 0,

N∑

k=0

βkWk+1+p = 0,

N∑

k=0

βkG̃k+1+p = 0 for any p ∈ Z≥0.(4.20)

The algebra AN has 3N generators {W−k,Wk+1, G̃k+1|k = 0, 1, ..., N − 1}.

Note that above relations (4.20) can be derived using the commutation relations (4.1)-(4.3).

Theorem 3. The algebra AN is isomorphic to the quotient of the Onsager algebra ON with the identification

β2k =
22k

(2k)!

[N2 ]∑

p=k

2p(−1)p−k (k + p− 1)!

(p− k)!
α2p ,(4.21)

β2k+1 =
22k+1

(2k + 1)!

[N+1
2 ]
∑

p=k+1

(2p− 1)(−1)p−k−1 (k + p− 1)!

(p− k − 1)!
α2p−1 .(4.22)
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Proof. By Theorem 2, O and A are isomorphic, and the isomorphism is given by (4.9), (4.10), (4.11). To

show that AN and ON are isomorphic, it is necessary and sufficient to show that (2.21) and (4.18) are
equivalent if relations (4.21)-(4.22) hold. By inserting (4.9) and (4.10) in (2.21), one gets equivalently (4.18)
by using (4.21)-(4.22). �

The corresponding class of solutions of the non-standard Yang-Baxter algebra (2.7) is now considered.

Proposition 4.4. Let {βp|p = 0, ..., N − 1} be non-zero scalars with N ∈ N≥1. Then, the non-standard
classical Yang-Baxter algebra (2.7) for the r-matrix (2.5) and
(4.23)

B(N)(u) =
1

2p̃(N)(U)

(

− 1
4 G̃(N)(u) u−1W

(N)
+ (u)−W

(N)
− (u)

−uW
(N)
+ (u) +W

(N)
− (u) 1

4 G̃(N)(u)

)

, p̃(N)(U) =

N∑

p=0

βpU
p ,

where

W
(N)
+ (u) =

N−1∑

k=0

f̃
(N)
k (U)W−k , W

(N)
− (u) =

N−1∑

k=0

f̃
(N)
k (U)Wk+1 , G̃(N)(u) =

N−1∑

k=0

f̃
(N)
k (U)G̃k+1(4.24)

and

f̃
(N)
k (U) =

N∑

p=k+1

βpU
p−k−1,(4.25)

provides an FRT presentation of the algebra AN .

Proof. The proof is similar to the one of Proposition 2.4 by replacing the relations (2.8) and (2.21) by (4.6)
and (4.18). �

Remark 11. Note that (4.23) can be interpreted as the classical analog of the Sklyanin’s operators constructed
in [BK07] satisfying the reflection algebra.

Acknowledgements: We thank S. Belliard for discussions, P. Terwilliger and A. Zhedanov for comments
and suggestions. P.B. and N.C. are supported by C.N.R.S. N.C. thanks the IDP for hospitality, where part
of this work has been done.

Appendix A.

From (4.9)-(4.11), for k = 0, 1, 2 one has:

A0 = W0 , A1 = W1 , G1 = −
1

4
G̃1 ,

A−1 = 2W−1 −W1 , A2 = 2W2 −W0 , G2 = −
1

2
G̃2 ,

A−2 = 4W−2 −W0 − 2W2 , A3 = 4W3 −W1 − 2W−1 , G3 = −G̃3 +
1

4
G̃1 .

Conversely, from (4.12)-(4.13) for k = 1, 2 one has:

W−1 =
A1 +A−1

2
, W2 =

A0 +A2

2
, G̃2 = −2G2 ,

W−2 =
A2 + 2A0 +A−2

4
, W2 =

A3 + 2A1 +A−1

4
, G̃3 = −G3 − 2G1 .
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