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Abstract

Reefs and People at Risk

Increasing levels of carbon dioxide in the atmosphere put shallow, warm-water coral reef

ecosystems, and the people who depend upon them at risk from two key global environ-

mental stresses: 1) elevated sea surface temperature (that can cause coral bleaching and

related mortality), and 2) ocean acidification. These global stressors: cannot be avoided

by local management, compound local stressors, and hasten the loss of ecosystem ser-

vices. Impacts to people will be most grave where a) human dependence on coral reef

ecosystems is high, b) sea surface temperature reaches critical levels soonest, and c)

ocean acidification levels are most severe. Where these elements align, swift action will be

needed to protect people’s lives and livelihoods, but such action must be informed by data

and science.
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An Indicator Approach

Designing policies to offset potential harm to coral reef ecosystems and people requires a

better understanding of where CO2-related global environmental stresses could cause the

most severe impacts. Mapping indicators has been proposed as a way of combining natural

and social science data to identify policy actions even when the needed science is relatively

nascent. To identify where people are at risk and where more science is needed, we map

indicators of biological, physical and social science factors to understand how human

dependence on coral reef ecosystems will be affected by globally-driven threats to corals

expected in a high-CO2 world. Western Mexico, Micronesia, Indonesia and parts of Austra-

lia have high human dependence and will likely face severe combined threats. As a region,

Southeast Asia is particularly at risk. Many of the countries most dependent upon coral reef

ecosystems are places for which we have the least robust data on ocean acidification.

These areas require new data and interdisciplinary scientific research to help coral reef-

dependent human communities better prepare for a high CO2 world.

Introduction

Hundreds of millions of people worldwide depend on coral reef ecosystems[1]. Coral reef eco-
systems create natural barriers that protect shorelines from storm surge and erosion—defend-
ing villages, businesses, and coastal residents[2]. Coral reef ecosystems also support fisheries
that provide food [3], jobs, and income for local communities [4,5] as well as tourism and
recreation that contribute to jobs, profits, taxes, and foreign income[3]. The recreational and
cultural services provided by these ecosystems also benefit local communities and people.

Increasing levels of carbon dioxide in the atmosphere put shallow, warm-water coral reef
ecosystems, and the people who depend upon them at risk from two key global environmental
stresses: 1) elevated sea surface temperature (that can cause coral bleaching and related mortal-
ity), and 2) ocean acidification (OA). Bleaching and OA can compound local reef stresses that
will hasten the loss of the ecosystem services provided by reefs (Fig 1). Structural damage to
coral reefs can result in more severe coastal inundation that puts lives and property at risk [6].
These environmental stresses will also decrease coral ecosystem health and productivity [7,8],
which in turn could jeopardize nutrition, livelihoods, and local incomes that depend on reef
fisheries and could impact reef-related tourism[5].We acknowledge that coral reef ecosystems
are also threatened by other local stressors that include overfishing, destructive fishing, disease,
predators, pollution, eutrophication, sedimentation, and episodic de-oxygenation [9]. Never-
theless, we focus on elevated sea surface temperature and OA because these factors are largely
beyond the control of coastal communities, managers of marine protected areas, and other
management bodies that exist at the country level or smaller [10]. Coral reef countries have
four primary options to counter the threats to reefs caused by the emission of CO2 [11]: 1) urge
governments of major CO2-emitting nations (many of which are also home to coral reefs) to
reduce carbon emissions that cause both climate change and OA, 2) reduce damages to corals
caused by local environmental stressors that can make these problems worse, and 3) improve
and/or restore associated ecosystems (e.g. mangroves) to a state that could replace lost ecosys-
tem services and thus minimize impacts on people. Engineering responses, other than green
infrastructure and restoration, to counter these global threats have also been proposed [12,13],
but they are largely untested. Without these measures, countries dependent on coral reef
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ecosystemsmay need to cope with a world with greatly diminished coral reefs–a response that
could spur human migration.

The ecological and social impacts of CO2-related threats to reefs will not be the same across
the globe[4,5,14]. Increasing levels of atmospheric CO2 will cause the most immediate and seri-
ous problems where a) human dependence on coral reef ecosystems is high, b) sea surface tem-
perature reaches critical levels soonest, and c) OA levels are most severe.Where these elements
align, swift action will be needed to protect people’s lives and livelihoods, but such policy action
must be informed by data and science. Correspondingly, places where the threats of OA and
climate change are low may serve as potential refugia for coral reef organisms and larvae.

Sufficient indicator data exist to create preliminarymaps of the potential threats to coral
reef ecosystems posed by a high-CO2 world and the people and countries that will be affected.
Two previous studies examined the combined threats faced by coral reefs from local and global
stressors as well as an array of human dimensions that include human dependence and adap-
tive capacity [15,1]. We update and build on previous studies by developing an indicator analy-
sis that focuses specifically on the threats to coral reefs and people from a high-CO2 future.
Our analysis also differs from previous studies in that we focus on the dependence of people on
coral reef ecosystem serviceswithout attempting to assess their adaptive capacity. Adaptive
capacity, while an important factor in evaluating vulnerability and risk within a region, is often
represented with metrics that do not accurately convey conditions of coastal communities [16].
By focusing on fewer dimensions, we are able to: leverage data that allows us to increase the

Fig 1. A conceptual diagram linking stresses related to increased atmospheric CO2 (elevated sea surface temperature and ocean

acidification), storms, and local stressors to coral reef condition, selected ecosystem services provided by reefs, and human

dependence on these ecosystem services. Solid lines represent relationships evaluated in this study.

doi:10.1371/journal.pone.0164699.g001
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granularity of the analysis, increase the transparency of the analysis, and improve our ability to
link high-CO2 threats to human outcomes.

There still is much to be learned about the impacts of global change on coral reef ecosystems
and the people who depend on them.We need to better understand the ecological science
regarding how coral reefs are affected by both global and local environmental stressors and
how people, in turn, respond to these changes. Social and economic factors should be directly
considered in setting research priorities about locations for new science. An examination of
current human dependence on coral reef ecosystems and our current state of knowledge about
the large scale and unavoidable threats that will result from increasing concentrations of CO2

in the atmosphere can help us identify where new science and data are needed to help people
deal with these environmental changes and coral reef decline.

Why sea surface temperature and ocean acidification matter

Coral bleaching, mortality, and disease caused by elevated sea surface temperature, have
direct impacts on coral reef ecosystems [8]. Sustained bleaching events can cause coral reef
death [17]. Historically, the time betweenmass mortality events allowed coral reef ecosys-
tems to recover from the damage caused by coral bleaching as new coral larvae could settle
and grow in damaged areas. As these mortality events becomemore frequent, it is harder for
coral reef ecosystems to recover. Coral bleaching has been shown to damage coral reef eco-
systems [18,19] and can lead to bioerosion if corals die, eventually leading to the loss of reef
height and structural complexity, also known as rugosity [20]. Reef structure provides shore-
line protection [6,21]. Ferrario et al. [22] found that coral reefs can dissipate approximately
97% of wave energy. The reef crest is the most important attenuation factor, contributing to
86% of wave attenuation. Roughness or rugosity is the next most important attenuation fac-
tor [22]. Moreover, the three-dimensional structure of coral reefs also provide habitat for
reef fish and other organisms that support the livelihoods of coastal areas [23]. To maintain
these services, reefs must not only maintain their structure, but must keep pace with sea level
rise.

The ability of coral reef ecosystems to recover from damaging events is likely to be sup-
pressed by the elevated sea surface temperature and OA expected to occur in a high-CO2

world. Van Hooidonk et al. [24,25] used projections under the Intergovernmental Panel on Cli-
mate Change’s RCP8.5 emissions scenario to show the potential spatial distribution of sus-
tained, future high sea surface temperatures measured as the year when an area experiences at
least 8 degrees Celsius degree-heatingweeks (DHW) annually. A degree heating week is a stan-
dard measure of heat accumulation over the previous twelve weeks and represents the number
of weeks an area has experienced temperatures in excess of 1 degree Celsius above the highest
mean summer time temperature. Here we use this same threshold of 8 DHWs to indicate
where future increases in sea surface temperature will lead to sustained bleaching and a high
likelihoodof coral mortality. Changes in ocean carbonate chemistry due to increasing atmo-
spheric CO2, known as OA and often measured by aragonite saturation state (Oar), also poses a
severe threat to corals and reef ecosystems[4].While much of the research focus, and debate, to
date has been on the role of OA in the reduction of calcification rates on coral reefs [26–28],
OA can significantly impair other ecological and physiological functions. For instance, coral
larval success may be impaired at much more modest levels of OA. Oar levels of 3.1 or less, a
level some coral reefs will experience in the next decade, are known to impair larval recruit-
ment of some corals[29,30]. Similar levels of OA can also reduce growth rates in some corals
[31]. Experimental evidence shows that increasedOA and thermal stress combined have a
greater harmful effect on both larval success and growth rates than either factor alone [32],
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which could make coral recovery even more difficult when both stressors occur simultaneously
(and at less severe levels than those required to induce harm by either stressor alone). Addi-
tionally, a variety of other coral reef organisms have also been shown to suffer from thermal
stress and OA [7,33].

Materials and Methods

Where are the greatest potential risks to reefs and people in a high-CO2

world?

We use an indicator approach to identify places where key environmental factors driven by a
high-CO2 world may put coral reef-dependent people most at risk [34]. Mapping indicators
has been proposed as a way of “integrating natural and social sciences to identify actions and
other opportunities while policy, stakeholders and scientists are still in relatively early stages of
developing research plans” to combat global environmental change [33]. As such, an indicator
approach allows for a focus on a spatial understanding of key characteristics of the social-eco-
logical system, even in the absence of a complete set of science and data that would be needed
to create more complex models of ecological processes and people’s responses to change in eco-
system conditions.

To identify where people are at risk from CO2-driven threats to coral reefs, we map indica-
tors of two key aspects of current human dependence on coral reefs (people who benefit from
the shoreline protection provided by reefs and reef-related fisheries) and two key indicators of
oceanic change in a high CO2 world (the onset of high thermal stress in terms of the year that
sea surface temperature reaches 8 DHW annually [24,25] and the expected level of OA in year
2050). Recent studies show that the precise role that increased sea surface temperature and OA
have on coral reef ecosystem conditions and health is complicated [27,35,36] and may vary
regionally [37]. With that in mind, these indicators are not intended to be predictive of coral
reef death. Instead, we use an indicator approach to reflect the spatial distribution of the inten-
sity of environmental stress on corals that could result from increased levels of atmospheric
CO2 that are projected to occur during the twenty first century, if emissions continue under
assumptions of business as usual [38].

We score and map two indicators of human dependence on coral reefs at the country level:
shoreline protection and coral reef fisheries.We map human dependence at the country level
so that our results are commensurate with similar country-level studies of coral reef vulnerabil-
ity conducted at a global scale [15,1,39]. To score the relative human dependence of each coun-
try in terms of the shoreline protection provided by reefs, we use calculations from Reefs at
Risk Revisited [40] of the number of people in 2007 who lived at less than ten meters above sea
level [41], near a shoreline that is within 3km of a coral reef and up to 4km inland (Table 1).
For each country, we create a normalized score of the people at risk by taking the Z-score of lg
(number of people) and rescaling [42] this from 0 to 10 (Table 1). To score and map the reli-
ance of countries on coral reef fisheries, we use data from Teh et al. 2013 [40] based on the Sea
Around Us project which estimates two components of reef-dependent fisheries landings in
2005: jobs and value (Table 1). Using the Sea Around Us data, we create similar normalized
scores of lg(jobs) (Z-score re-scaled from 0–10) associated with reef fisheries and the estimated
value of coral reef harvests (in real 2005 USD). (Value is also highly correlated with landed
weight of reef fish, r = 0.86). To create a summary score of human dependence, we take the
average score of: a) shoreline protection, and b) the higher score of reef fish jobs or value and
renormalize it to obtain a score of 0–10 (Fig 2). We use only one score for fisheries dependence
(the higher) in order to equally weight shoreline protection and fisheries dependence. These
estimates are not projected into the future.

Coral Reefs and People in a High-CO2 World
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Table 1. Raw data and results of the normalized scoring for human dependence, by country (only countries for which data are available are

shown). Ocean Provinces: Brazilian (B), Caribbean (C), Central Pacific (CP), Great Barrier Reef (GBR), Central Indian Ocean (CIO), Eastern Pacific (EP),

Middle East (ME), Polynesia (P), South East Asia (SEA), Western Australia (WA), Western Indian Ocean (WIO).

Country Population protected

by coral reefs, #

ofpeople (2007) [41]

# of Fishers involved

in coral reef

fisheries (2005) [40]

Value of reef fish

harvest (2005, in

real $) [40]

Normalized Score

Population

Protected (0–10)

Normalized Score

Maximum of Fishers,

Value (0–10)

Ocean

Province

Aruba 70,982 1,018 331,268 6.8 4.4 C

Anguilla 4,174 208 788,289 5.1 5.0 C

United Arab

Emirates

1,217,577 12,385 153,922,439 8.6 8.6 ME

American Samoa 33,296 1,847 121,901 6.4 3.7 CP, P

Antigua and

Barbuda

24,649 2,134 10,621,547 6.2 6.8 C

Australia 316,027 29,593 467,219,756 7.7 9.4 GBR, SEA,

WA

Bangladesh 1,318 230,498 N/A 4.4 8.0 SEA

Bahrain 575,191 7,200 63,046,838 8.1 8.0 ME

Bahamas 260,184 12,000 89,287,977 7.6 8.3 C

Belize 98,020 6,926 7,681,824 7.0 6.5 C

Bermuda 58,903 2,158 1,296,462 6.7 5.3 C

Brazil 1,239,637 144,433 180,174,864 8.6 8.8 B

Barbados 91,611 566 23,101 7.0 2.5 C

Brunei

Darussalam

0 920 N/A 0 2.4 SEA

Cambodia 8,000 14,364 N/A 5.5 5.2 SEA

Cocos (Keeling)

Islands

643 N/A N/A 3.9 N/A SEA

China 1,212,378 189,467 708,521,292 8.6 9.7 SEA

Cook Islands 13,919 3,971 430,936 5.8 4.5 CP, P

Colombia 345,743 12,188 4,930,352 7.8 6.2 C, EP

Comoros 334,444 12,077 N/A 7.8 5.0 WIO

Costa Rica 92,470 12,303 5,959,548 7.0 6.4 C, EP

Cuba 1,299,087 11,890 34,226,998 8.6 7.6 C

Curacao 82,604 N/A N/A 6.9 N/A C

Christmas Island 994 N/A N/A 4.2 N/A SEA

Cayman Islands 47,154 1,318 N/A 6.6 2.7 C

Djibouti 333,054 901 N/A 7.8 2.3 ME

Dominica 35,073 1,377 N/A 6.4 2.8 C

Dominican

Republic

790,588 9,000 13,812,145 8.3 7.0 C

Ecuador 3,100 10,439 N/A 4.9 4.8 EP

Egypt 571,170 205,260 32,826,014 8.1 7.9 ME

Eritrea 251,926 11,255 1,744,782 7.6 5.5 ME

Fiji 383,845 43,475 15,703,945 7.9 7.0 GBR,M, P

Federated States

of Micronesia

85,748 23,413 198,862 6.9 5.7 M

Guada-loupe 220,058 2,446 3,610,737 7.5 6.0 C

Grenada 42,931 1,953 1,585,918 6.5 5.4 C

Honduras 37,825 12,454 4,959,989 6.4 6.2 C

Haiti 1,475,746 55,045 3,973,142 8.7 6.5 C

Indonesia 12,198,508 1,657,757 107,542,434 10.0 10.0 SEA

India 6,555,868 958,530 274,882,625 9.6 9.4 SEA, CIO

(Continued )
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Table 1. (Continued)

Country Population protected

by coral reefs, #

ofpeople (2007) [41]

# of Fishers involved

in coral reef

fisheries (2005) [40]

Value of reef fish

harvest (2005, in

real $) [40]

Normalized Score

Population

Protected (0–10)

Normalized Score

Maximum of Fishers,

Value (0–10)

Ocean

Province

Iran 257,039 15,953 50,506,029 7.6 7.9 ME

Israel 0 400 3,370,972 0 6.0 ME

Jamaica 617,623 20,000 16,599,802 8.1 7.1 C

Jordan 33,519 90 59,792 6.4 3.2 ME

Japan 623,273 30,576 234,793,089 8.1 8.9 SEA

Kenya 521,948 12,938 5,338,532 8.0 6.3 WIO

Kiribati 94,244 14,260 11,241,006 7.0 6.8 CP, M, P

St. Kitts and

Nevis

19,664 488 2,156,335 6.0 5.7 C

Kuwait 148,967 3,566 2,541,630 7.3 5.8 ME

St. Lucia 96,101 1,040 192,170 7.0 4.0 C

Sri Lanka 944,093 22,417 4,752,304 8.4 6.2 CIO

Madagascar 833,698 30,000 3,991,132 8.3 6.1 WIO

Maldives 223,017 30,223 990,466 7.5 5.9 CIO

Mexico 425,711 64,705 231,700,594 7.9 8.9 C, EP

Marshall Islands 50,258 21,743 N/A 6.6 5.6 M

Myanmar 180,331 123,746 N/A 7.4 7.4 SEA

Northern

Mariana Islands

53,678 603 N/A 6.6 1.9 M

Mozambique 253,243 50,326 126,557 7.6 6.4 WIO

Montserrat 1,715 N/A N/A 4.5 N/A C

Martinique 146,793 2,500 5,793,451 7.3 6.4 C

Mauritius 265,262 7,127 18,934,530 7.6 7.2 WIO

Malaysia 1,142,333 83,720 248,586,246 8.5 9.0 SEA

Mayotte 147,666 1,005 8,594 7.3 2.5 WIO

New Caledonia 136,153 23,539 3,542,389 7.2 6.0 GBR

Nicaragua 5,814 6,755 29,463,860 5.3 7.5 C

Niue 827 607 N/A 4.1 1.9 P

Nauru 6,916 292 653 5.4 1.2 M

Oman 314,288 10,287 90,832,869 7.7 8.3 ME

Panama 84,304 6,551 53,387,993 6.9 7.9 C, EP

Philippines 12,963,664 911,754 705,110,034 10.0 9.7 SEA

Palau 13,043 3,795 109,462 5.8 3.8 M

Papua New

Guinea

609,016 107,952 2,420,370 8.1 7.2 GBR

Puerto Rico 897,188 1,163 11,208,717 8.4 6.8 C

French Polynesia 221,276 21,495 1,765,467 7.5 5.6 P

Qatar 42,443 4,505 30,795,948 6.5 7.5 ME

Reunion 109,925 1,060 375,123 7.1 4.4 WIO

Saudi Arabia 2,190,247 24,500 132,227,485 8.9 8.5 ME

Sudan 3,555 27,254 50,237 5.0 5.8 ME

Singapore 78,342 1,529 803,050 6.9 5.0 SEA

Solomon Islands 307,616 58,390 N/A 7.7 6.6 GBR

Somalia 176,955 3,694 4,509,732 7.4 6.2 ME, WIO

Sint Maarten 26,959 N/A N/A 6.2 N/A C

Seychelles 59,299 2,000 5,485,708 6.7 6.3 WIO

(Continued )
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To understand where humans may bemost exposed to changes in coral reef health caused by
increased atmospheric CO2, we combine our map of scores for combined human dependence
on coral reefs with a) projections that show when sea surface temperature may reach levels that
will cause bleaching (Fig 3) and the intensity of OA (Fig 4) in the near future (2050) [43].

Specifically, we use published projections [25] of the year when sea surface temperature is
expected to reach 8 DHW on an annual basis. These previously published projections are
based on an ensemble of models that are included in the IPCC Fifth Assessment Report
(CMIP5) for the emission scenario RCP8.5, OISST V2 1982–2005 climatology [4]. Corals are
known to bleach when 6 DHW occur [17]. The annual occurrence of 8 DHW has been cited as
a level of thermal stress that will lead to significant coral mortality [24,25]. (Other measures of
elevated sea surface temperature could be used, but give the same spatial distribution.) The
numerical data for the projected year when 8 DHW are predicted to first occur annually are
presented in the supplementary materials (S1 Data). To understand where high thermal stress
will put people at risk, we overlay maps of 8 DHWwith the indicator scores of human depen-
dence (Fig 3).

OA will affect a number of physiological and even behavioral processes that are important
to coral reef ecosystems [7], each affected differently by changes in ocean carbon conditions.
As a result, there is no agreed-upon, single threshold that represents when coral reefs will be
compromised by OA. So, we do not set a given threshold and map when that threshold will be

Table 1. (Continued)

Country Population protected

by coral reefs, #

ofpeople (2007) [41]

# of Fishers involved

in coral reef

fisheries (2005) [40]

Value of reef fish

harvest (2005, in

real $) [40]

Normalized Score

Population

Protected (0–10)

Normalized Score

Maximum of Fishers,

Value (0–10)

Ocean

Province

Turks and Caicos

Islands

20,480 2,524 38,212,573 6.1 7.7 C

Thailand 233,667 99,807 568,253,338 7.5 9.6 SEA

Tokelau 1,250 179 N/A 4.4 0.7 CP

Timor Leste 97,846 5,415 11,354 7.0 4.2 SEA

Tonga 84,729 7,170 249,913 6.9 4.5 P

Trinidad and

Tobago

27,285 6,005 2,335,424 6.2 5.7 C

Tuvalu 9,611 2,708 N/A 5.6 3.5 M

Taiwan 186,430 26,516 100,911,037 7.4 8.3 SEA

United Rep. of

Tanzania

1,612,870 108,789 28,586,374 8.7 7.5 WIO

United States 1,983,056 29,596 N/A 8.9 5.9 C, CP

St. Vincent & the

Grenadines

42,323 587 33,632 6.5 2.8 C

Venezuela 396,002 21,291 160,788,383 7.9 8.7 C

British Virgin

Islands

17,678 1,579 2,682,973 6.0 5.8 C

US Virgin Islands 34,003 981 6,598,431 6.4 6.4 C

Viet Nam 1,581,789 204,546 N/A 8.7 7.9 SEA

Vanuatu 112,666 9,410 67,499 7.1 4.7 GBR

Wallis & Futuna

Islands

12,037 10,357 18,776 5.7 4.8 M, P

Samoa 110,024 3,586 704,204 7.1 4.9 P

Yemen 553,291 20,993 106,057,336 8.1 8.4 ME

South Africa 17 N/A N/A 1.8 N/A WIO

doi:10.1371/journal.pone.0164699.t001

Coral Reefs and People in a High-CO2 World

PLOS ONE | DOI:10.1371/journal.pone.0164699 November 9, 2016 8 / 21



Fig 2. Scores of human dependence on coral reef ecosystem services, by country. Panel A provides the

normalized scores for human dependence on shoreline protection, Panel B shows the normalized scores for

dependence on reef fisheries, and Panel C shows combined human dependence. All scores are normalized on

a scale from 0–10. Higher scores reflect higher human dependence. Countries are binned by quintile in the

legend.

doi:10.1371/journal.pone.0164699.g002
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Fig 3. Country-level dependence on coral reef ecosystem services and future risk of coral bleaching. Bleaching risk is

indicated by the year when DHW8 is first reached annually, under RCP8.5 scenario [24,25]. Ocean Provinces are indicated in each

panel in bold. Earlier years indicate increased bleaching risk.

doi:10.1371/journal.pone.0164699.g003
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Fig 4. Country-level dependence on coral reef ecosystem services and future risk of ocean acidification as omega

aragonite level in 2050 based on GLODAP, CARINA and PACIFICA data, [43]. Ocean Provinces present in each panel in

bold. Lower omega aragonite levels reflect higher ocean acidification risk.

doi:10.1371/journal.pone.0164699.g004
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reached (as we did for bleaching risk). Instead, to understand where the contribution of CO2-
driven OA to reef conditions may be severe in the future, we map projections of omega arago-
nite (Oar) for the year 2050 under the business-as-usual (RCP8.5) emissions scenario [43]. Oar

is a measure of carbonate chemistry, related to OA, that reflects the level of carbon saturation
of ocean water. It is a measure originally intended to reflect the challenge that OA poses for
organisms with calcium carbonate skeletons. Lower levels of aragonite indicate more severe
OA. To calculate Oar in year 2050, we use the same technique provided by [43] based on data
from the global data from the sites included in the Global Ocean Data Analysis Project (GLO-
DAP), Carbon in Atlantic Ocean (CARINA), and Pacific Ocean Interior Carbon (PACIFICA)
datasets.We calculate projectedΩar in 2050 using the projected atmospheric pCO2 and sea sur-
face temperature in 2050 under the RCP8.5 emissions scenario, in-situ total alkalinity (assum-
ing total alkalinity does not change), as well as the salinity, silicate, and phosphate data, as well
as calculated surface water pCO2 from the base year 2000. Data regarding the predictedOar lev-
els for 2050 are available in the supplementary materials (S2 Data).

We use these projected Oar levels in 2050 as broadly indicative of OA severity, noting that
biological processes on the reef can significantly alter Oar up or down relative to the oceanic
value [27,44,45] and that bio-regulation of pH in the face of OA is energetically costly for corals
[46,47]. As before, to understand where OA risk couldmost affect people, we overlay projected
Oar in 2050 with indicator scores for human dependence (Fig 4).

Model projections of OA often extend to cover all waters of the world [4]. These projections,
however, can only be verified using existing data to calibrate the correspondence of the projec-
tion with current and past conditions. These data are limited to a large set of collection points,
which are not distributed across all coral reef areas and thus do not necessarily reflect OA con-
ditions at all coral reefs [43], especially for coastal areas. To show areas where data are scarce,
we use hatched areas that represent marine ecoregions as defined by Spalding [48] for which
there are fewer than 3 collection sites that are used in current OA projections (Fig 4) [43].

Results

Country-level results

Not all coral reef ecosystems or the human communities that depend upon them will experi-
ence the same effects as a consequence of a higher-CO2 world. First, countries differ substan-
tially in how much they depend on coral reef ecosystems and services (Table 1, Fig 2). Because
we focus on country-level dependence on coral reefs, countries with long coastlines that are
bordered by coral reefs tend to have higher than average dependence. For instance, Australia,
much of Southeast Asia, Brazil, and Mexico all have high combined human dependence scores
when both low elevation coastal population and fisheries are considered. It is noteworthy that a
number of smaller countries (e.g. Cuba, Kenya, Fiji, and Madagascar) still have high combined
dependence scores owing to their long coastlines and the high density of people in coastal
areas.

Figs 3 and 4 show the juxtaposition of human dependencewith exposure to future sea sur-
face temperature (and thus widespread coral bleaching) and CO2-driven OA, respectively. The
countries of Oceania are predicted to suffer frommass coral bleaching soonest, followed by the
Coral Triangle countries of Southeast Asia and Australia. All of these areas have high human
dependence on coral reefs. van Hooidonk et al. [25] show that changing patterns of sea surface
temperature and OA differ spatially, particularly by latitude, due to increasing gas solubility
(which affects OA) with colder temperature. As a result, the countries most likely to experience
severe OA are generally different from those that will experience the earliest onset of coral
bleaching. Baja California (Mexico), Japan, China, and southern Australia are projected to be
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most exposed to future OA partly because they are at the upper and lower latitudinal bounds of
coral reef distribution (and thus generally in cooler waters). Countries that span large ranges of
latitude will be exposed to a range of future ocean conditions. For instance, the coastline of
Australia most at risk from OA (southeast) is different from that most at risk from bleaching
(northwest). The Great Barrier Reef spans areas of high future bleaching and OA.

Many of the countries most dependent upon coral reefs are also the countries for which we
have the least robust data on OA (hatched areas in Fig 4). Southeast Asia, India, the Coral Tri-
angle, theWestern Caribbean, and northern Australia stand out as areas of high human depen-
dence on coral reefs and possibly low confidence in OA projections due to the scarcity of
regular OA data collection points [43].

To understand where coastal communities will face high combined stress from both
increased bleaching and more intense OA, we rescale [42] each global threat from 1 (lowest
score) to 10 (highest score), sum the normalized scores of both elevated sea surface tempera-
ture and Oar, and map these (Fig 5). Areas that face the highest combined threats from both
CO2-driven stressors (thermal stress and OA) are highly concentrated, mostly in theWestern
and Eastern Tropical Pacific. BecauseOA and increasing sea surface temperature follow differ-
ent latitudinal gradients [25], no area experiences both the worst possible sea surface tempera-
ture and OA conditions (a score of 20). Also, there are no coral reef areas that are completely
free from both global stressors (a score of 2) and thus there are no perfect coral reef refuges
from the impacts of climate change and OA.

Human dependence on coral reefs and a high combined score for stress from both OA and
coral bleaching (e.g. scores approaching 15) are projected to occur along the coasts of much of
Western Mexico and Micronesia as well as the coastlines of Indonesia and Australia on the
Timor Sea and parts of Southeast Asia. These places may require swift action to protect people
from the combined impacts of warming seas and increasingly acidified oceans (e.g. many parts
of Southeast Asia).

Regional results

The ecological response of coral reefs is likely to vary regionally due to different species compo-
sition, varying rates of change in temperature and acidification conditions, and differences in
the conditions that promote coral reef resilience [37] (bottom panel of Fig 6). To visualize the
regional threats to coral-reef dependent communities from a high CO2 world, we merge coral
reef areas into the biological ocean provinces proposed by both Donner [49] and Maina [50].
Within these provinces, we focus only on sea surface temperature (year 8 DHW, S1 Table) and
OA (Oar, S2 table, S3 Data) conditions that spatially co-occurwith coral reefs within the prov-
ince (lower panel Fig 6). Using the same data developed for the country level analysis, we also
present province-level results for the total regional human dependence on coral reef ecosystem
services (S3 Table, upper panel Fig 6). (Note that when a country’s Exclusive Economic Zone
falls withinmore than one ocean province, we assign human dependence values to each ocean
province separately if data were available, e.g. Hawaii and Florida, or we proportionally assign
the human dependence data to each province using the same proportion with which reef area
was distributed across provinces.) Two of the biological oceanic provinces that will likely face
mass, climate-related coral bleaching soonest (e.g. the Micronesian and Brazilian Ocean Prov-
inces) will be exposed to aragonite levels that are less severe than the average across all prov-
inces. Meanwhile, places facing the most severe future OA conditions tend to face a later onset
of bleaching (e.g.Middle East). Southeast Asia faces both a rapid projected onset of bleaching
(by 2042) and an above average risk fromOA (Oar = 3.07, which is below the level known to
cause reduced growth and recruitment in some corals [30,29]). Southeast Asia also stands out as
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Fig 5. Country-level dependence on coral reef ecosystem services and future combined normalized scores (2–20) for

CO2-related threats (e.g. ocean acidification and thermal stress). Ocean Provinces are indicated in each panel in bold.

Higher scores indicate higher dependence and higher ecological risk.

doi:10.1371/journal.pone.0164699.g005
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the biological ocean province that has, by far, the greatest overall dependence on coral reef eco-
system services as measured by total number of people in the region who live at low elevations
that are protected by reefs, by number of fishers, and value of fisheries. The Caribbean, the Mid-
dle East, and both Indian oceanic provinces also have high human dependence. The Middle
East has a high human dependence and faces an above average threat of OA, but a low relative
risk of future coral bleaching compared to other regions. The Caribbean faces an above average
threat of onset of coral bleaching, but an OA risk that is somewhat below average (note, though,
the level of confidence for the Caribbeanmay be low due to the low number of data collection
sites). Similarly, several regions face threats that are above average for one threat and near aver-
age for another (e.g. Polynesia and Central Pacific) or near average for both threats including
the both Indian Ocean provinces which have high human dependence on coral reefs.

Discussion

While we are now able to identifymany places where coral reefs and the people dependent upon
themwill be threatened by global environmental changes caused by increased atmospheric CO2,
we need to domore. Our analysis shows, however, that in many places (see Fig 4) we lack suffi-
cient, routine data collectionon OA factors that is needed to identify with confidence the full set
of coral reef communities at greatest risk from the combined threats of global environmental

Fig 6. Regional dependence, by ocean province [49], on ecosystem services and average CO2-related threats (ocean

acidification measured as projected Ωar levels at coral reefs in 2050 and elevated sea surface temperature as

measured by year that 8 DHW are projected to occur annually). The horizontal line in the threats panel represents the

mean threat for all regions (scores above this line indicate above average severity of threat). The scales for the reef fish

dependence scores are broken to reduce the size of the graph. Note that the Great Barrier Reef Ocean Province includes, but

is not limited to, the Great Barrier Reef.

doi:10.1371/journal.pone.0164699.g006
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change. Areas that have high human dependence and face future stresses from coral bleaching
and OA (e.g. Southeast Asia and the Caribbean) also would benefit from data that could better
monitor global and local threats to reef health and could be used to design policies to react to reef
decline. Also, better human dependence data are needed: data on ecosystem servicesprovided by
coral reefs are not regularly collected and no future projections of these data exist.

Model projections about OA in coastal areas, where most coral reefs exist, require data on a
large number of local factors (including strong primary production, upwelling, fresh water
input, and nutrient overloading [36]). Collectingdata everywherewould be infeasible. Not all
new data would be equally valuable for decisionmakers. Therefore, we propose a global strat-
egy, using indicators of human dependence and potential future global climate threats, in order
to geographically target areas where new data collection and science will have high social rele-
vance. These are areas where new science and data are needed to inform decisionmakers about
the potential future impacts of bleaching and OA on coral reefs and the people who depend
upon them. Similarly, without better data on localizedOA conditions, it is difficult to know
where future marine protection could most effectively protect potential reef refugia–areas
where corals will naturally avoid the stresses of a high CO2 world.

The Global Ocean Acidification ObservingNetwork (GOA-ON) was established to better
achieve “socially relevant” OA monitoring (Goal 3) [51], and could help focus effort on these
areas for better data collection and scientific capacity building.We also need to do more to col-
lect local-level data on the many other environmental stressors that will exacerbate the effects
of global environmental change. There are no fully global databases of coral bleaching or the
conditions that cause widespread coral mortality.

We focus only on two key stressors associated with increased atmospheric CO2, but we rec-
ognize that the ecological health of coral reefs depends on many factors [8,35]. Coral death and
loss of coral reef cover already is being experienced in many places around the globe (e.g. see
estimates of coral reef loss in the Great Barrier Reef [52,53]). Knowing how coral reefs and
reef-dependent human communities will fare in a world of rapidly changing global and local
environmental conditions will require a better scientific understanding of how combined envi-
ronmental change affects coral reefs, how coral reef ecosystemsmay change, and how these
reef changes ultimately impact people. Regionally targeted, mesocosm-level or larger field
experiments are needed to study the combined effects of global stressors in a way that reflects
the regional variation of coral ecology, local human uses, and local environmental stressors.

Finally, we needmore and better social and economic science to understand how humans
will respond to projected environmental changes in coral reef ecosystems (e.g. the Capturing
Coral Reef and related Ecosystems Project, CCRES, project funded by theWorld Bank and
Global Environmental Facility is one such example). New research on human responses to
coral reef change is emerging [54–58]. While the literature focuses on the vulnerability and
resilience of coral reef ecosystems and the people that depend on them, more empirical study is
needed to identify solutions to the socio-economicvulnerability posed by projected changes in
coral reef health [59,60]. Human dependence on coral reef ecosystem services is only partially
characterized for the present, and rarely projected into the future. The factors that may deter-
mine how people will adapt to coral reef decline remain poorly understood [61–63]. Because
planning for a high-CO2 world has already started, for example through the UNFCCCprocess
[64], science needs to improve fast enough to prevent locking-in approaches that are ineffective
or worse. To this aim, empirical research looking at the human responses to ecological changes
in coral reefs (e.g. protection, restoration, and socio-economic adaptation planning) and the
barriers that impede effective strategies is needed.

To expedite action to combat the changes corals may experience in a high CO2 world, new,
interdisciplinary science should be conducted in regions where the likely social and economic
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impacts of bleaching and OA on humans could be high, and thus the potential societal rele-
vance of such science could also be high. Unfortunately, carrying out science and data collec-
tion in many of the coral reef regions most at risk of global environmental change is a
challenge. Many of these regions lack the financial or human capacity to carry out large-scale
experiments and routine data collection. It is often difficult for scientists to obtain permission
to sample in coastal ocean areas or where national maritime jurisdictions are disputed. Both
international and regional efforts are needed to overcome the impediments to obtaining data
in these areas. GOA-ON and other international bodies (e.g. the United Nations Environment
Program) should begin to facilitate such cooperationwithout delay because elevated sea surface
temperatures and critical levels of OA are upon us. While reducing atmospheric CO2 should
remain a primary goal, a portion of international climate change funding that will become
available for developing countries in the coming years should go towards supporting this
research.
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