Aaron Stump
email: aaron-stump@uiowa.edu

Towards Higher-Order Abstract Syntax in Cedille (Work in Progress)

Cedille is a relatively recent tool based on a Curry-style pure type theory, without a primitive datatype system. Using novel techniques based on dependent intersection types, inductive datatypes with their induction principles are derived. One benefit of this approach is that it allows exploration of new or advanced forms of inductive datatypes. This paper reports work in progress on one such form, namely higher-order abstract syntax (HOAS). We consider the nature of HOAS in the setting of pure type theory, comparing with the traditional concept of environment models for lambda calculus. We see an alternative, based on what we term Kripke function-spaces, for which Cedille confirms we have a weakly initial algebra. Progress extending this to support dependent elimination is described.

Introduction

Modern constructive type theory is based on a decades-long development of formal systems, culminating in current tools like Coq and Agda, to name two of the most widely used [START_REF]The Coq proof assistant reference manual[END_REF][START_REF]The Agda development team[END_REF]. To summarize the relevant history: in the 1980s Coquand and Huet proposed the Calculus of Constructions (CC) as a synthesis of impredicative type theory as independently proposed by Girard and Reynolds [START_REF] Girard | Interprétation functionelle et élimination des coupures dans l'arithmétique d'ordre supérieure[END_REF][START_REF] Reynolds | Towards a theory of type structure[END_REF], and dependent type theory as found in de Bruijn's Automath and further developed by Martin-Löf [START_REF] De Bruijn | A survey of the project Automath[END_REF][START_REF] Martin-Löf | An intuitionisitc theory of types, Predicative part[END_REF]. What was initially believed by researchers working on CC was confirmed in the early 2000s by Geuvers: induction is not derivable in CC (although note that technically, Geuvers's theorem is about just the second-order fragment of CC) [START_REF] Geuvers | Induction Is Not Derivable in Second Order Dependent Type Theory[END_REF]. So in the late 1980s and early 1990s, researchers explored various ways of adding primitive inductive datatypes to CC [START_REF] Paulin-Mohring | Inductive Definitions in the System Coq -Rules and Properties[END_REF][START_REF] Pfenning | Inductively Defined Types in the Calculus of Constructions[END_REF]. At the same time, Luo analyzed an extension of CC with an ω-indexed predicative hierarchy of universes [START_REF] Luo | An Extended Calculus of Constructions[END_REF], still found in Coq today. A practically viable solution to the problem of inductive datatypes was reached in Werner's development of the Calculus of Inductive Constructions (CIC), which added a specific class of inductive datatypes to CC (note that the predicative hierarchy is not included in CIC as analyzed by Werner) [START_REF] Werner | Une Théorie des Constructions Inductives[END_REF]. Subsequent work on the theory and practice of Coq has built upon these results, resulting in a tool that is both widely used and rightly generally considered a great success.

Despite these excellent achievements, there are two notable issues with CIC's solution to the problem of datatypes in type theory:

1. The class of datatypes is fixed as part of the definition of the theory.

2. The core theory upon which the complex edifice of the rest of the proof assistant is built must include support for that class of inductive datatypes, as they are primitive to the theory.

(1) is an issue because it means that subsequent discoveries and proposals for advanced forms of datatypes are excluded from CIC. One would have to rework the entire metatheory of CIC to add them. Or one could adopt the approach taken in Agda, which is to extend the datatype system without requiring full metatheoretic justification. While this facilitates exploration of advanced forms of datatypes, it comes at the risk of introducing inconsistency into the theory (through a novel form of datatype that would turn out to be logically unsound). (2) is an issue because it means that the trusted computing base of a tool like Coq is rather large. At present, for example, the kernel of Coq -the internal code which one must trust when the type-checker accepts a theorem (this does not count parsers and printers; cf. [START_REF] Wiedijk | Pollack-inconsistency[END_REF]) -is just over 30k lines of OCaml. This includes powerful features like byte-code compilation for faster conversionchecking, which could be excluded from the line count just for core typing; but even the files for inductive types (indtypes.ml and inductive.ml) total just under 2200 lines (see https://github.com/coq).

It would be very nice to have a core checker under, say, 1000 lines of functional code.

Cedille is a recently released proof assistant based on a novel minimalistic extension of CC, which allows derivation of inductive datatypes with their induction principles. So the core theory does not include a primitive notion of inductive datatype, and indeed can be checked in under 1000 lines of Haskell [START_REF] Stump | Syntax and Typing for Cedille Core[END_REF]. Cedille is briefly described in Section 2. The focus of the current paper is on work in progress deriving an advanced form of datatype in Cedille, namely higher-order abstract syntax (HOAS) [START_REF] Pfenning | Higher-Order Abstract Syntax[END_REF]. Section 3 discusses what HOAS should be taken to mean in the context of pure lambda calculus (where every term is encoded functionally), considering (and rejecting) the traditional environment models for algebraic semantics of lambda calculus. Section 4 presents an alternative implemented in Cedille, for which we have a weakly initial algebra. This approach uses what we term Kripke function spaces to allow construction of an encoded nested λ -abstraction. It turns out that for what has been achieved so far, the full power of Cedille is not needed, and the code can also be written in Haskell with a few language extensions (Section 5). Section 6 discusses a possible way to extend this to obtain induction, based on parametricity.

Cedille and its Type Theory

We briefly summarize the type theory of Cedille, called the Calculus of Lambda Eliminations (CDLE). The system has evolved from an initial version [START_REF] Stump | The Calculus of Dependent Lambda Eliminations[END_REF], to its current form [START_REF] Stump | Syntax and Semantics of Cedille[END_REF]. Several other works demonstrate applications of the theory to derivation of inductive datatypes [START_REF] Firsov | Efficient Mendler-Style Lambda-Encodings in Cedille[END_REF][START_REF] Firsov | Generic Derivation of Induction for Impredicative Encodings in Cedille[END_REF][START_REF] Stump | From realizability to induction via dependent intersection[END_REF], and to zero-cost coercions between related datatypes [START_REF] Diehl | Generic zero-cost reuse for dependent types[END_REF]. The main metatheoretic property proved in previous work is logical consistency: there are types which are not inhabited. All the code appearing in this paper can be checked using Cedille 1.0. (Cedille 1.1 adds datatypes which elaborate down to the pure type theory of CDLE, but we do not make use of this feature here.) CDLE is an extrinsic (i.e. Curry-style) type theory, whose terms are exactly those of the pure untyped lambda calculus (with no additional constants or constructs). The type-assignment system for CDLE is not subject-directed, and thus cannot be used directly as a typing algorithm. Indeed, since CDLE includes Curry-style System F as a subsystem, type assignment is undecidable [START_REF] Wells | Typability and Type Checking in System F are Equivalent and Undecidable[END_REF]. To obtain a usable type theory, Cedille combines bidirectional checking [START_REF] Benjamin | Local type inference[END_REF] with a system of annotations for terms, to obtain algorithmic typing. But true to the extrinsic nature of the theory, these annotations play no computational role, and are erased both during compilation and before formal reasoning about terms within the type theory, in particular by definitional equality. We summarize the central rules and clauses of the erasure function in Figure 1 and following text. As this is, by necessity of space, quite brief, please see a report for full details, including semantics and soundness results [START_REF] Stump | Syntax and Semantics of Cedille[END_REF].

CDLE extends the (Curry-style) Calculus of Constructions (CC) with a primitive intensional untyped equality, intersection types, and implicit products (in the following explanation we use tt fonts to introduce the concrete syntax, very close to the mathematical one, expected by Cedille):

Γ T ⇐ Γ t ⇒ T T ∼ = T Γ χ T -t ⇒ T Γ t ⇒ {t t } Γ t ⇔ T Γ φ t -t {t } ⇔ T |Λ x : T.t| = |t| |t -t | = |t| |β {t}| = |t| |ρ t -t| = |t| |φ q -t 1 {t 2 }| = |t 2 | |[t 1 ,t 2]| = |t 1 | |t.1| = |t| |t.2| = |t|
Figure 1: Introduction, elimination, and erasure rules for additional type constructs. Note that ⇐ is for checking mode, ⇒ is for synthesizing, and ⇔ refers to either mode.

• { t 1 t 2 }, an intensional equality type between terms t 1 and t 2 which need not be typable at all. We introduce this with a constant β {t} which erases to erasure of t (so our type-assignment system has no additional constants, as promised); β {t} proves { t' t' } for any term t' with free variables all in scope. Combined with definitional equality, β {t} proves { t 1 t 2 } for any β η-equal t 1 and t 2 whose free variables are all declared in the typing context. If the term t is omitted from β {t}, then it is assumed to be λ x. x. We eliminate the equality type by rewriting, with a construct ρ t' -t. Suppose t' proves { t 1 t 2 } and we are checking the ρ-term against a type T, where T has several occurrences of terms definitionally equal to t 1 . Then bidirectional typing proceeds by checking t against type T except with those occurrences replaced by t 2 . We also adopt a strong form of Nuprl's direct computation rules [START_REF] Constable | Implementing mathematics with the Nuprl proof development system[END_REF]: if we have a term t of type T and a proof t that {t t }, then we may conclude that t has type T by writing the annotated term φ tt {t }, which erases to t .

• ι x : T. T', the dependent intersection type of Kopylov [11]. This is the type for terms t which can be assigned both the type T and the type [t/x]T', the substitution instance of T' by t. There are constructs t.1 and t.2 to select either the T or [t.1/x]T' view of a term t of type ι x : T. T'. We introduce a value of ι x : T. T' by construct [t 1 , t 2], where t 1 has type T, t 2 has type [t 1 /x]T', and t 1 and t 2 must have the same erasure (as the intersection type is intended as to represent two typings of the same underlying erased term).

• ∀ x : T. T', the implicit product type of Miquel [START_REF] Miquel | The Implicit Calculus of Constructions Extending Pure Type Systems with an Intersection Type Binder and Subtyping[END_REF]. This can be thought of as the type for functions which accept an erased input of type x : T, and produce a result of type T'. There are term constructs Λ x. t for introducing an implicit input x, and t -t' for instantiating such an input with t'. This use of a dash in the notation should not be confused with the uses of dash in the notations for ρ and φ terms, where it is just punctuation intended to help separate subexpressions. The implicit arguments exist just for purposes of typing so that they play no computational role and equational reasoning happens on terms from which the implicit arguments have been erased. Note that similar notation is used for quantifications ∀ X : κ. T over types (more generally, type constructors), although we use notation t • T instead of t-T to indicate instantiating the quantified type of t with type T (that is, for ∀-elimination). These notations bind tighter than function space. If variable x is not free in T , we write just T ⇒ T for ∀ x : T. T .

HOAS and semantics

The well-known central idea of higher-order abstract syntax (HOAS) is to encode object-language binders, like λ in untyped λ -calculus, with meta-language binders. In a pure type theory, without introduction of special constructs explicitly for representation of binders (as in [START_REF] Miller | A proof theory for generic judgments[END_REF]), but rather using only λabstractions, some puzzles arise:

1. In pure type theory, all data must be λ -encoded (e.g., Church-encoded), and hence object-language binders would seem automatically to be transformed to λ -abstractions, since all data are. So it is not clear what could distinguish HOAS from a first-order approach to encoding binders.

2. Using λ -abstractions to encode object-language binders appears too strong, as the set of functions even under a strong typing discipline will be much larger than the set of weak functions intended to represent the bodies of object-language abstractions.

Washburn and Weirich proposed a solution to (2): use parametric polymorphism to ensure that, for example, the functions intended to represent bodies of object-language abstractions cannot patternmatch on their inputs (which would not correspond to any object-language abstraction under the usual approach to binding syntax) [START_REF] Washburn | Boxes go bananas: Encoding higher-order abstract syntax with parametric polymorphism[END_REF]. They connect their approach to an earlier work of Schürmann et al., which used modal types to enable similarly restricting the function space [START_REF] Schürmann | Primitive recursion for higher-order abstract syntax[END_REF]. We will adopt Washburn and Weirich's idea below (Section 4), though a twist is required to obtain a (weakly) initial algebra.

For (1), we may compare with the traditional approach to algebraic semantics of λ -calculus (as object language), based on what are sometimes called environment λ -models (see Definition 15.3 of [START_REF] Hindley | Lambda-Calculus and Combinators: An Introduction[END_REF], and cf. [START_REF] Selinger | The lambda calculus is algebraic[END_REF]). Such a model is a structure D, •, [[-]] -, where D is a set of cardinality at least two, consisting of some mathematical objects to be the interpretations of λ -terms; • is a binary operation on D intended to model application; and [[-]] -is an interpretation function mapping (object-language) terms t and valuations ρ ∈ Vars → D to D. The interpretation function is required to satisfy various conditions, which suffice to ensure that the usual equational theory λ β of λ -calculus is sound with respect to

[[-]] -: if t = β t , then [[t]] ρ = [[t]
] ρ for any valuation ρ. One of these conditions, central to soundness of the β axiom (scheme), is that semantic application of the interpretation of a λ -abstraction must be the same as evaluating the body with an updated environment:

[[λ x.t]] ρ • d = [[t]] ρ[x →d] .
If we are looking to universal algebra for ideas on λ -encoding HOAS -as indeed it is profitable to do for encoding first-order datatypes (see [START_REF] Wadler | Recursive types for free! Available at[END_REF] for a tutorial, or previous work using Cedille like [START_REF] Firsov | Generic Derivation of Induction for Impredicative Encodings in Cedille[END_REF])we will be misled at this point. For environment models presuppose a first-order approach to syntax, so that they can model instantiation of a λ -bound variable by environment update. And here, even if we functionally encode valuations, variables, and terms, we will have not achieved anything beyond usual first-order representations of terms. To λ -encode HOAS, we need a new approach to the semantics of λ -calculus that does not use environments.

Categorically, given a endofunctor F on a category C , it is standard to consider the category of Falgebras whose objects are as C -morphisms from F A to A for C -objects A (the carrier of the algebra), and whose morphisms are C -morphisms h from A to B that form a commuting square (in C) with the F A to A morphisms, and an F A to F B morphism derived from h. An initial algebra is then an initial object in this category, for which various appealing properties can be proved, in particular that its carrier C is the least carrier isomorphic to F C. From such developments induction principles are then readily derived. The difficulty with HOAS is that the type scheme F one wishes to use is not a functor, due to a negative occurrence of X in F X.

An encoding of lambda-terms in Cedille

The basic Church-encoding of inductive types can be carried out in a type theory like Cedille's, following the categorical perspective. Given a functorial type scheme F, define (within the type theory) the type Alg • A for algebras over type A as F A → A (recall that in Cedille we use center dot for applying an expression to a type). Then the carrier C of a weakly initial algebra has type ∀ A : . (F • A → A) → A. In the following discussion, let us write C A for the type (F • A → A) → A. As an example of the definition of C: if F is the functor for the type of natural numbers (and allowing ourselves infix notation for sum and later product types, and 1 for unit type), we obtain the type ∀ A : . (1 + A → A) → A (let us abbreviate this Nat), which is isomorphic to the usual type ∀ A : . A → (A → A) → A for Church-encoded natural numbers. The main effort is then to define the algebra itself (not just its carrier), which in general must have type Alg •C. In the case of Nat, we need something of type Alg • Nat, which is easily obtained: from 1 + Nat return Church-encoded zero in the first case, and Church-encoded successor of the given Nat in the second.

Starting from Washburn and Weirich

The approach by Washburn and Weirich, which is not (directly) based on this perspective, does not allow definition of this algebra. Their separate definitions of constructor for object-language λ -abstractions and applications can be seen in our terms as constituting, for the functor F for λ -terms (which is λ X : . (X → X) + (X × X)), a function of type ∀ A: . F •C A → C A . But this is not the type needed for the weakly initial algebra, which instead should be ∀ A : . F •C → C. Without a definition of a weakly initial algebra, there is no hope, on the categorical perspective, to define an initial algebra with induction principle (nor is this claimed in [START_REF] Washburn | Boxes go bananas: Encoding higher-order abstract syntax with parametric polymorphism[END_REF]).

But we may still make use of the basic insight of Washburn and Weirich that parametricity can be used to restrict the function spaces intended to represent bodies of object-language abstractions. To simplify the discussion (and Cedille code), we consider from here on a reduced syntax of λ -terms that omits applications. So one may only form terms of the form λ x 1 . • • • λ x n . y (and closed terms require y ∈ {x 1 , . . . , x n }). This reduced syntax focuses attention on binding and variable occurrences; adding applications back in should be completely straightforward.

To return to parametricity: what should be the type of a function lam constructing the encoding of an object-language λ -abstraction? The more fundamental question is, what should the form Alg of algebras be, which will allow construction of a weakly initial algebra Alg • Trm, where Trm is the desired carrier for encodings of λ -terms (without applications)? It is almost immediately clear that we cannot use the same notion of algebra as for the Church encoding. The type scheme F (it is not a functor) in question is simply X → X, and thus to inhabit Alg • Trm we would have to construct a (meta-language) term of type (Trm → Trm) → Trm (corresponding to F •C → C in our general discussion above), and this seems to be impossible.

Drawing inspiration from Selinger's idea of adjoining indeterminates to an algebra to represent free variables [START_REF] Selinger | The lambda calculus is algebraic[END_REF], let us think of a binder as introducing a new constructor for the Trm datatype. So an algebra should be given, for an encoded lambda abstraction, not just a subterm for the body, but rather a subterm possibly using a new constructor. We use parametric polymorphism to enforce that this binder is abstract. So we would like to give our X-algebras a function f of type ∀Y : .Y → Trm Y , and obtain from the algebra then a value of type X. Note that this requires some form of recursive type so that the type for algebras for Trm can reference Trm. As will be described in a future work (but see also [START_REF] Firsov | Efficient Mendler-Style Lambda-Encodings in Cedille[END_REF]), these are derivable in Cedille. We elide calls to fold and unfold these in the following. The (candidate) weakly initial algebra would then have type

(∀Y : .Y → Trm Y) → Trm (1)
It turns out that from this definition of algebra we can indeed (with some further additions) derive a weakly initial algebra -but there is a problem. Another requirement we should impose for the encoding of any datatype is that elements of the datatype can be built up by successive applications of the constructors of the datatype (as 3 can be built by three applications of the successor constructor to zero). But if we use Type 1, we will not be able to represent object-language λ -terms like λ x. λ y. x. For Type 1 requires that the body of the abstraction construct a Trm Y from a Y , where Y is abstract. So the representation of λ y. x is not well-typed, because x has some first abstract type Y , while y has a second Z, and the body requires a Trm Z . There is no way to convert x of type Y to Z to embed in a Trm Z .

A solution using Kripke function spaces

Seen as just considered, we need a way to embed the type of some outer encoded binder into the types of inner ones. This is quite reminiscent of the Kripke semantics for intuitionistic logic, where implication is interpreted as a modal operator: for T → T to be true at the current world w, it must be the case that for all future worlds w where T holds, T also holds. An X-algebra needs the ability to move the body of the encoded λ -abstraction to any world reachable from X. To make the structure of the positiverecursive type more clear, let us first define a notion like C A above, but where the notion of algebra is also a parameter:

Trmga = λ Alg : → . λ X : . Alg • X → X
We may then give the following positive-recursive definition of algebra:

Alg = (∀Y : . (X → Y) → Y → Trmga • Alg •Y) → X (2)
What we are terming Kripke function space rooted at X is a type of the form ∀Y : . (X → Y) → T . It is the type for functions that can be moved to any type Y reachable from X. This is not the final definition of algebra, though, because as formulated so far, there is no support for iteration. So the encoding would be more like a Scott encoding than a Church encoding (see [START_REF] Stump | Efficiency of lambda-encodings in total type theory[END_REF] for a comparison). To support iteration, the algebra must be given a way to evaluate the value of type Trmga • Alg •Y returned by its input. For this, we use Mendler's technique of polymorphically abstracting problematic type occurrences, to allow an algebra to take in a type-abstracted version of itself [START_REF]Inductive types and type constraints in the second-order lambda calculus[END_REF].

Alg = ∀ Alga : → . (∀Y : . (X → Y) → Y → Trmga • Alga •Y) Alga • X → (Cast2 • Alg • Alga) ⇒ X (3)
Here, we have introduced a universal quantification over the type Alga of algebras (one may think of these as algebra candidates, similar to Girard's reducibility candidates). This allows an algebra to be given an input of type Alga • X; with just Alg • X this would not be possible as it occurs at a negative position in the recursive definition of Alg. The final input to an algebra is a second-order cast from Alg to Alga. Eliding the details, this allows us to embed any Alg • X to an Alga • X. This provides the critical ability for an algebra to interpret encoded terms it is given, possibly using a different algebra. Finally, we define the following weakly initial algebra with carrier Trm defined as ∀ X : . Alg • X → X: lamAlg : Alg • Trm = Λ Alga. λ f . Λ emb. λ talg. Λ X. λ alg. alg • Alga (ΛY. λ mx. f •Y (λ t. mx (t alg))) -emb (cast2 -emb alg).

All the components discussed above are required here. We use the ability to change algebras to invoke alg at abstract type Alga, and to make use of alg rather than talg. We can notice that talg is not even used (note that in the application mx (t alg), we have t applied to alg, not talg). So rather than recursing through the body of the encoded λ -abstraction as given by f using the algebra which is being given to lamAlg, lamAlg instead switches algebras to use the one being given to the Trm which it (lamAlg) is being asked to produce. A cast changes the type of alg to the instance Alga • X of the abstracted algebra.

For use in nested construction of terms, the following variant of lamAlg is needed:

lam : ∀ X : . (∀Y : . (X → Y) → Y → Trmga • Alg •Y) → Trmga • Alg • X = Λ X. λ f . λ alg. alg • Alg f -(castId2 • Alg) alg
The difference from lamAlg is that here the Kripke function space is rooted at any type X, where lamAlg is rooted at Trm. Quantifying over the root of the Kripke function space allows nested applications of lam, as in the encoding of the second-projection function (first defining a convenience function place):

place : ∀ X : . X → Trmga • Alg • X = Λ X. λ x. λ algx.
proj2 : Trm = Λ O. lam (Λ X. λ mo. λ x. lam (ΛY. λ mx. λ y. place (mx x)))

Notice how the outer meta-language bound variable x is used inside the (meta-language) binding of y, using mx to move it from X to Y . Using the definitions given, we can write simple example programs like one to compute the size of a term. The algebra in question erases to λ f . λ alg. suc (f (λ x. x) (suc zero) alg), where the function f representing the body of the object-language abstraction is applied to 1 as well as to the algebra itself (under the abstracted type, not visible here in the erasure). This algebra indeed computes 3 for the size of proj2 (counting one each for the λ -binders and the sole use of the first bound variable).

The inspiration of Kripke semantics for semantics of lambda calculus may also be found in works like Mitchell and Moggi's [START_REF] Mitchell | Kripke-style models for typed lambda calculus[END_REF]. In their work, explicit environments are used to interpret terms, and so the semantics fails to be a suitable basis for a higher-order encoding, for the reasons discussed above.

Haskell listing

The above development actually does not make use of the special features of Cedille beyond (derivable) positive-recursive types. In fact, it can be carried out in any language supporting impredicative quantification and positive recursive types, such as Haskell (impredicativity has to be mediated by inductive datatypes in a certain way, but is essentially present). To aid the reader more familiar with Haskell than Cedille, Figure 2

Conclusion

We have seen how to use the intricate typing features of Cedille to derive a weakly initial algebra for a very simple datatype using higher-order abstract syntax. Actually, we did not consider the requirements on the homomorphisms of algebras needed to claim a weakly initial algebra, but those have been worked out right as this paper has been finalized (and cannot be included for space reasons). Further examples should also be considered, such as converting terms to strings or to de Bruijn representation.

The crucial next step of this work in progress is to extend the development to derive induction for the Trm datatype. The strategy I am following for this is to form a dependent intersection of Trm as defined above with a statement of unary parametricity [START_REF] Reynolds | Types, Abstraction and Parametric Polymorphism[END_REF]. It should be possible to do this for any type (and hence for Trm), as studied by Bernardy and Lasson [START_REF] Bernardy | Realizability and Parametricity in Pure Type Systems[END_REF]). And with a reflection principle that can hopefully be baked into the definition of the datatype, unary parametricity implies induction. Assuming all this can be done (and it is in progress at present), the next bigger step is to try to give a generic development of induction with HOAS, for any type scheme satisfying certain (as yet to be delineated) restrictions.

 gives a Haskell listing of the functions discussed above. This requires module WeaklyInitialHoas where type Trmga alg x = alg x -> x newtype Alg x = MkAlg { unfoldAlg :: forall (alga :: * -> *) . (forall (y :: *) . (x -> y) -> y -> Trmga alga y) -> (forall (z :: *) . Alg z -> alga z) -> alga x -> x} newtype Trm = MkTrm { unfoldTrm :: forall (x :: *) . Alg x -> x} lamAlg :: Alg Trm lamAlg = MkAlg (\ f embed talg -> MkTrm (\ alg -> unfoldAlg alg (\ mx -> f (\ t -> mx (unfoldTrm t alg))) embed (embed alg))) lam :: forall (x :: *) . (forall (y :: *) . (x -> y) -> y -> Trmga Alg y) -> Trmga Alg x lam = \ f alg -> unfoldAlg alg f (\ x -> x) alg size :: Trm -> Int size = \ t -> unfoldTrm t (MkAlg (\ f embed alg -> 1 + f id 1 alg))

Figure 2 :

 2 Figure 2: Haskell definitions for the Cedille code above

Γ, x : T t ⇐ T x ∈ FV(|t|) Γ Λ x.t ⇐ ∀ x : T . T Γ t ⇒ ∀ x : T . T Γ t ⇐ T Γ t -t ⇒ [t /x]T Γ FV(t) ⊆ dom(Γ) Γ β {t } ⇐ {t t} Γ t ⇒ t 1 t 2 Γ t ⇔ [t 1 /x]T Γ ρ tt ⇒ [t 2 /x]T Γ t ⇐ T Γ t ⇐ [t/x]T |t| = β η |t | Γ [t,t] ⇐ ι x : T. T Γ t ⇒ ι x : T. T Γ t.1 ⇒ T Γ t ⇒ ι x : T. T Γ t.2 ⇒ [t.1/x]T Γ T ⇐ Γ t ⇐ T T ∼ = T Γ χ Tt ⇐ T

Acknowledgments. I gratefully acknowledge NSF support under award 1524519, and DoD support under award FA9550-16-1-0082 (MURI program). Many thanks to the anonymous LFMTP '19 reviewers for very helpful feedback, incorporated into the final version. AMDG.