
HAL Id: hal-02152319
https://hal.science/hal-02152319v1

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

The vertex k-cut problem
Denis Cornaz, Fabio Furini, Mathieu Lacroix, Enrico Malaguti, A. Ridha

Mahjoub, Sébastien Martin

To cite this version:
Denis Cornaz, Fabio Furini, Mathieu Lacroix, Enrico Malaguti, A. Ridha Mahjoub, et al.. The
vertex k-cut problem. Discrete Optimization, 2019, 31, pp.8-28. �10.1016/j.disopt.2018.07.003�. �hal-
02152319�

https://hal.science/hal-02152319v1
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

Last update: May 31, 2018

Abstract

Given an undirected graph G = (V,E), a vertex k-cut of G is a vertex subset of V
the removing of which disconnects the graph in at least k components. Given a graph G
and an integer k ≥ 2, the vertex k-cut problem consists in finding a vertex k-cut of G of
minimum cardinality. We first prove that the problem is NP-hard for any fixed k ≥ 3.
We then present a compact formulation, and an extended formulation from which we
derive a column generation and a branching scheme. Extensive computational results
prove the effectiveness of the proposed methods.

keywords: Vertex Cut, Mixed-Integer Programming Models, Branch and Price, Exact
Algorithms.

1. Introduction

A vertex cut of a graph G = (V,E) is a strict subset of vertices V0 ⊂ V such that the graph
obtained from G by removing V0 has at least two (non-empty and pair-wise disconnected)
components. If the number of components is at least k, the vertex cut V0 is called a vertex
k-cut.

Given G and an integer k ≥ 2, the vertex k-cut problem is to find, if it exists, a vertex
k-cut of minimum cardinality. Berger, Grigoviev and Zwaan [8] showed that the problem
is NP-hard (k being part of the input) but polynomial-time solvable for graphs of bounded
treewidth. Ben Ameur and Didi Biha [6] proved that, for k = 2, it is polynomial-time
solvable as it amounts to computing |V |2 maximum flows. A fixed-parameter algorithm for
the vertex k-cut problem, considering the parameter k, would be an algorithm solving the

1

The Vertex k-cut Problem

Denis Cornaz1, Fabio Furini1, Mathieu Lacroix2, Enrico Malaguti3, A. Ridha
Mahjoub1, Sébastien Martin4

1 PSL, Université Paris Dauphine, CNRS, LAMSADE UMR 7243 75775 Paris Cedex 16, France.
denis.cornaz@dauphine.fr

fabio.furini@dauphine.fr

ridha.mahjoub@dauphine.fr

2 Université Paris 13, Sorbonne Paris Cité, LIPN, CNRS, UMR 7030, 99, Avenue J.-B. Clément

93430 Villetaneuse, France. mathieu.lacroix@lipn.univ-paris13.fr
3 DEI, University of Bologna, Viale Risorgimento 2, 40136 Bologna, Italy.

enrico.malaguti@unibo.it

4 LCOMS, Université de Lorraine, Ile du Saulcy, 57045 Metz, France sebastien.martin@univ-

lorraine.fr

© 2018 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S1572528617302128
Manuscript_1d26ebb9c780ab28fd670136fa499813

https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S1572528617302128

problem with a running time of the form f(k) × poly(|V |) where f(k) is any function and
poly(|V |) is a polynomial in |V |. Marx [26] showed that such an algorithm is unlikely to
exist as he proved the W [1]-hardness of the problem. However, the complexity for fixed k
was an open question.

Despite its basic setting, the vertex k-cut problem has received limited attention according
to ILP approaches. Let us detail the literature on problem variants, where one wants to
minimize the number of vertices to be removed to partition a given graph. The k-separator
problem is a variant where cardinality bounds are required. It consists in finding a vertex
cut whose removal gives a graph where the size of each connected component is less than
or equal to k. In [7], the authors analyze the complexity on several classes of graphs. They
also propose approximation algorithms, a formulation and a polyhedral study. Another
variant of this problem exists where the cardinality constraints are not on the size of the
connected components but on vertex sets. More precisely, the problem consists in finding a
vertex cut V0 such that V \ V0 can be partitioned into two sets of cardinality less than or
equal to k, and no edge is incident to both sets. Remark that each set may contain several
connected components. This problem is NP-hard even for planar graphs [18] or maximum
degree 3 graphs [10]. A first polyhedral study on this problem is done in [2] from which
a Branch-and-Cut algorithm is derived [16]. In [9] the authors introduce valid inequalities
based on a lower bound given by the number of disjoint paths between all pairs of vertices.
For these inequalities, the authors analyze their facial structures and add these inequalities
in a Branch-and-Cut algorithm. In the q-balanced vertex k-separator problem, the bound is
not on the size of the sets but on their differences. More formally, one seeks for a vertex
k-cut V0 such that V \ V0 can be partitioned into k pairwise disconnected sets V1, . . . , Vk
and |Vi| − |Vj| is at most q for all i 6= j ∈ {1, . . . , k}. Different integer linear programming
formulations are given in [12]. The multi-terminal vertex k-cut problem consists, given a set
T ⊂ V of k terminals, in finding a vertex k-cut V0 of G containing no terminal such that
each component of G[V \ V0] contains at most one terminal. In [26] Marx shows also the
W[1]-hardness of this problem. A path-based formulation is given in [13] for solving this
problem and several inequalities are proposed. A polyhedral analysis is also performed and
an efficient Branch-and-Cut algorithm is developed.

Several variants of problems where one wants to disconnect a graph have been considered
where an edge set, instead of a vertex set, is removed. Among them, the most two famous
problems are the k-cut and the multiway cut problems. The first one is the edge counterpart
of our problem: it consists in finding a minimum set of edges the removing of which leads to at
least k-connected components [3, 22, 24]. In the multiway cut problem [11, 14, 15, 19, 20, 29],
a vertex subset S is given and one has to find minimum set of edges in order to separate
each pair of vertices of S. Some generalizations of this latter problem, such as minimum
0-extension of graph metrics (that also generalizes the minimum (s, t)−cut problem), have
been considered. In [25, 23] the classes of graphs for which the minimum 0-extension problem
is tractable are presented.

The first contribution of this paper improves on Marx’s results by showing that the vertex
k-cut problem is NP-hard for any fixed k ≥ 3. Our second contribution is to investigate the
hardness of the problem in practise, we report computational experiments on the problem
using Integer Linear Programming (ILP) tools to solve it on DIMACS instances.

2

The paper is organized as follows. Section 2 is devoted to the NP-hardness proof of the
vertex k-cut problem for any fixed k ≥ 3. In Section 3, we reformulate this problem as a
stable set problem with additional constraints. We deduce a compact integer linear program
based on this reformulation. In Section 4, we present a formulation with an exponential
number of variables and a polynomial number of constraints. We also give a column gener-
ation scheme to solve the linear relaxation. We prove the effectiveness of this approach by
showing that the subproblem is polynomial-time solvable by using flow techniques. Section 5
reports the experimental results we obtain by solving the two formulations, the first one by
a general-purpose ILP solver and the second by a Branch-and-Price algorithm. The rest of
this section is devoted to notation and assumption.

Notation. Throughout, K denotes the set of integers {1, ..., k} and G = (V,E) is a sim-
ple undirected graph with |V | = n and |E| = m. The complement of a node subset S is de-
noted S = V \S, and the complement of G is denoted G = (V,E), where E = {uv : uv /∈ E}.
We say that u and v are neighbours if there is an edge uv ∈ E. A subset W ⊆ V of vertices
is a clique of G, if any two vertices of W are neighbours, and it is a stable set of G if it is
a clique in G. The cardinality of the largest stable set of G is denoted by α(G). A subset
W ⊆ V of vertices is a vertex k-multiclique of G, if there is a k-partition π = {W1, ...,Wk}
of W such that any two vertices in different sets of π are adjacent in G, with Wi 6= ∅ for
all i ∈ {1, ..., k}. For each W ⊆ V , we indicate by δ(W) the subset of edges incident with
exactly one vertex in W (i.e., all edges uv with u ∈ W, v ∈ V \W), and with E(W) the
subset of edges incident with two vertices in W (i.e., all edges uv with u,w ∈ W). Finally,
we indicate by δ(v) ⊆ E the subset of edges incident with v.

Assumption. In the rest of the paper, we will assume that α(G) ≥ k. This is clearly
a necessary and sufficient condition for G to have a vertex k-cut. We assume that G is
connected. We will also use implicitely the basic property that a vertex k-cut V0 is a set
of vertices such that V \ V0 can be partitioned into k non-empty subsets V1, ..., Vk that are
pairwise disconnected, i.e., there is no edge between two subsets Vi and Vj for all i 6= j ∈
{1, . . . , k}.

2. Complexity

In this section, the NP-hardness of the vertex k-cut problem for any fixed k ≥ 3 is proved.
We start by observing that the problem is equivalent to the vertex k-multiclique problem

which consists, given an undirected graph G = (V,E) and k ≥ 2, in determining a vertex
k-multiclique of maximum cardinality.

Proposition 1 A vertex subset V0 of a graph G = (V,E) is a vertex k-cut if and only if
W = V \ V0 is a vertex k-multiclique in the complement graph G.

We now state our complexity result.

Theorem 1 For any fixed k ≥ 3, the vertex k-cut problem is NP-hard.

3

Proof. In order to prove the theorem, it suffices to prove that the vertex 3-cut problem is
NP-hard. Indeed, G has a vertex k-cut of size s if and only if G̃ has a vertex (k + 1)-cut of
size s, where G̃ is obtained by adding an isolated vertex to G. The basic idea of the proof is
to reduce an instance of the NP-hard maximum stable set problem in tripartite graphs [27]
into an instance of the vertex 3-cut problem.

By Proposition 1, it suffices to prove that the vertex 3-multiclique problem is NP-hard.
We actually prove that this problem is already NP-hard in the class of tripartite graphs. To
this end, we will use a reduction from the maximum stable set problem in tripartite graphs,
which is NP-hard by Lemma 6 in [27]. Let G = (V1 ∪ V2 ∪ V3, E) be a tripartite instance of
the maximum stable set problem. Since every isolated vertex belongs to all maximal stable
sets, it is still NP-hard to solve tripartite instances with additional isolated vertices, hence,
without loss of generality, we can suppose that Vi contains an isolated vertex vi for each
i ∈ {1, 2, 3}. We define the instance G̃ = (V1 ∪ V2 ∪ V3, Ẽ) of the 3-multiclique problem
where Ẽ = {uv : u ∈ Vi, v ∈ Vj, i 6= j, uv /∈ E}. (In Figure 2, the white vertices represent a
maximal stable set of G (left graph). The same set corresponds to a maximal 3-multiclique
on G̃ (right graph).)

u1
1

u1
2

u1
3

u1
4

v1

u2
1

u2
2

u2
3

v2

u3
1 u3

2 u3
3 u3

4 u3
5

v3

V1

V2

V3

u1
1

u1
2

u1
3

u1
4

v1

u2
1

u2
2

u2
3

v2

u3
1 u3

2 u3
3 u3

4 u3
5

v3

V1

V2

V3

Figure 1: Reduction from the maximum stable set problem in tripartite graphs to the 3-
multiclique problem.

We claim that a vertex subset S is a stable set of G containing {v1, v2, v3} if and only if
S is a vertex 3-multiclique of G̃ containing {v1, v2, v3}. Indeed, by construction, two vertices
u ∈ Vi ∩S and v ∈ Vj ∩S where i 6= j are adjacent in G̃. Thus S is a vertex 3-multiclique in
G̃. The converse is also true. Since any maximum stable set of G and any maximum vertex
3-multiclique of G̃ contain {v1, v2, v3}, the proof is done. �

4

3. Compact formulation

In this section, we show that the vertex k-cut problem can be reformulated as a maximum
stable set problem on a specific k-partite graph with additional requirements. We also derive
a compact integer linear program based on this reformulation.

Let G = (V,E) and k ≥ 2 be an instance of the vertex k-cut problem. As previously
noted, a subset V0 ⊂ V is a vertex k-cut of G if and only if V \ V0 can be partionned into
k nonempty pairwise disconnected sets. Hence, the vertex k-cut problem is equivalent to
finding k nonempty disjoint sets V1, . . . , Vk of V which are pairwise disconnected such that
|⋃i∈K Vi| is maximum.

We construct a k-partite graph G′ = (V ′, E ′) so that the vertex k-cut problem on G
reduces to the maximum stable set on G′. Figure 3 gives an illustration of this equivalence.
The graph on the left is G. The set V0 of white vertices corresponds to a 3-vertex cut and
{V1, V2, V3} with V1 = {v3}, V2 = {v4} and V3 = {v2, v5} is a partition of V \ V0 into 3
pairwise disconnected sets. The graph on the right corresponds to G′. The white vertices
form the stable set associated with {V1, V2, V3}.

v1

v2

v3

v4

v5

v6

G

v11

v12

v13

v14

v15

v16

v21

v22

v23

v24

v25

v26

v31 v32 v33 v34 v35 v36

V ′
1 V ′

2

V ′
3

G′

Figure 2: Transformation of the 3-vertex cut problem into a specific maximum stable set
problem.

Formally the construction of G′ is as follows. The set V ′ is obtained by considering k
copies v1, . . . , vk of every vertex v ∈ V . We define the k-partition of V ′ as π = {V ′1 , . . . , V ′k}

5

with V ′i = {vi : v ∈ V } for all i = 1, . . . , k. In other words, V ′i corresponds to a copy of V .
The edge set E ′ is the union of two sets E ′α and E ′β. E ′α = {vivj : i 6= j ∈ K} is the edge
set obtained by considering a clique between all the copies of a same vertex v ∈ V . For E ′β,
we consider for each uv ∈ E an edge between every copy of u and every copy of v. Hence,
E ′β = {uivj : uv ∈ E, i 6= j ∈ K}. There is a 1-to-1 correspondence between nonempty
pairwise disconnected disjoint sets V1, . . . , Vk of V and stable sets of G′ intersecting each V ′i ,
i ∈ K. Indeed, let V1, . . . , Vk satisfying the aforementioned requirements. Let S ⊆ V ′ be
the set obtained by taking in V ′i the copies of the vertices in Vi for all i ∈ K. S is a stable
set because no edge exists between Vi and Vj and Vi ∩ Vj = ∅ for i 6= j ∈ K. Moreover,
S intersects every V ′i , i ∈ K, since V1, . . . , Vk are nonempty. Finally S = |⋃i∈K Vi|. The
converse also holds which implies the result.

We now give a formulation of the vertex k-cut problem with an integer linear program.
By the previous reformulation, we look for a stable set S of G′ intersecting every V ′i of the
k-partition. For all vertices v ∈ V and for all integer i ∈ K, let us associate a binary variable
xiv such that:

xiv =

{
1 if copy vi ∈ V ′i of vertex v ∈ V belongs to S

0 otherwise
i ∈ K, v ∈ V.

The first natural compact ILP formulation (called ILPC) reads as follows:

(ILPC) max
∑
i∈K

∑
v∈V

xiv (1)∑
i∈K

xiv ≤ 1 v ∈ V, (2)

xiu +
∑

j∈K\{i}

xjv ≤ 1 i ∈ K, uv ∈ E, (3)

∑
v∈V

xiv ≥ 1 i ∈ K, (4)

xiv ∈ {0, 1} i ∈ K, v ∈ V. (5)

The objective function maximizes the size of S. Constraints (2) and (3) are the clique
constraints associated with cliques of E ′α and edges of E ′β, respectively. Constraints (4)
impose that S intersects each V ′i for i ∈ K.

By replacing constraints (5) with

xiv ≥ 0 i ∈ K, v ∈ V, (6)

we obtain the Linear Programming relaxation of ILPC, that will be denoted as LPC in what
follows. Descriptive natural ILP models are known to produce weak linear programming
relaxations as the following proposition shows:

Proposition 2 An optimal solution to LPC is xiv = 1
k
, i = 1, . . . , k, v ∈ V , and has value

n = |V |.

6

Proof. Constraints (2) impose a trivial upper bound of value n. By setting xiv = 1
k
, i =

1, . . . , k, v ∈ V , the objective function obtains exactly the value n and all the other con-
straints are satisfied by construction. �

In order to improve the strength of the linear programming relaxation, and to remove
the symmetry of ILPC, in the next section we design a new formulation for the vertex k-cut
problem.

4. Exponential-size formulation

In this section, we derive an alternative formulation for the vertex k-cut problem having an
exponential number of variables with respect to the input size. Let S = {S ⊆ V, S 6= ∅} be
the family of all non-empty subsets of vertices of V .

For all subsets S ∈ S , let us associate a binary variable ξS such that:

ξS =

{
1 if S corresponds to one of the k disconnected subsets of G

0 otherwise
S ∈ S .

The vertices that do not appear in any selected subset are assigned to the vertex cut. In the
following we let C be an edge-covering family of cliques of G, that is, a family of cliques so
that for each edge uv ∈ E, there is at least one clique C ∈ C containing both u, v ∈ C. The
exponential-size ILP formulation for the vertex k-cut problem reads as follows

(ILPE) max
∑
S∈S

|S|ξS (7)∑
S∈S :v∈S

ξS ≤ 1 v ∈ V, (8)∑
S∈S :C∩S 6=∅

ξS ≤ 1 C ∈ C , (9)

∑
S∈S

ξS = k (10)

ξS ∈ {0, 1} S ∈ S . (11)

The objective function (7) maximizes the sum of the cardinalities of the selected subsets
S of vertices, which is equivalent to minimize the cardinality of the vertex cut. Constraints
(8) impose that each vertex i ∈ V does not appear in more than one of the selected subsets.
Constraints (9) impose that, for each clique C ∈ C , at most one subset containing any vertex
of the clique can be selected. Constraint (10) imposes that exactly k subsets are selected.
Constraints (11) impose the variables to be binary, so, finally, by relaxing the integrality of
constraints (11) to

ξS ≥ 0 S ∈ S , (12)

we obtain the Linear Programming relaxation of ILPE, that is denoted as LPE in what
follows.

7

4.1 A Branch-and-Price Algorithm

In this section we describe a Branch-and-Price algorithm which is designed to solve ILPE.
The exact algorithm is composed by two main components, i.e., a Column Generation (CG)
algorithm to solve LPE, and a branching scheme. We treat these two aspects in the next
sections.

4.1.1 Solving the Linear Programming Relaxation of ILPE

Model (7)–(11) has exponential size, thus a column generation procedure is necessary to
solve LPE.

The master problem (MP) can be initialized with the n subsets of V containing a single
vertex. Since we assumed that G contains a stable set of cardinality k, this initialization
assures the existence of a feasible solution to start the column generation. Additional vari-
ables needed to optimally solve the MP are then generated by separating the associated
dual constraints. The pricing problem (PP) (see, e.g., [17] for definition and more details on
column generation) can be solved efficiently as described in the following.

At each column generation step, the optimal values λ∗ ∈ RV
+, π∗ ∈ RC

+, γ∗ ∈ R (re-
spectively) of the dual variables associated with constraints (8), (9), (10) (respectively) are
given. The separation of a violated dual constraint is equivalent to find a non-empty subset
S∗ ∈ S such that ∑

v∈S∗
λ∗v +

∑
C∈C :C∩S∗ 6=∅

π∗C + γ∗ < |S∗|

which can be reformulated as ∑
v∈S∗

ν∗v −
∑

C∈C :C∩S∗ 6=∅

π∗C > γ∗, (13)

where ν∗v = 1− λ∗v.
If such a subset exists, the corresponding variable ξS∗ is added to the MP, and the

procedure is iterated; otherwise, the MP is solved to proven optimality. Hence PP amounts
to find a S∗ maximizing the left-term in (13) and to check whether or not it is bigger or
not than the right-term. It can be modeled as a Binary Linear Program using variables xv
(v ∈ V), which define S∗, and variables yC (C ∈ C), each of which takes value 1 if clique C
intersects set S∗, as follows:

max
∑
v∈V

ν∗vxv −
∑
C∈C

π∗CyC (14)

yC ≥ xv v ∈ C ∈ C , (15)∑
v∈V

xv ≥ 1 (16)

xv ∈ {0, 1} v ∈ V, (17)

yC ∈ {0, 1} C ∈ C . (18)

8

Constraints (15) impose yC = 1 (C ∈ C) if at least a vertex v of a clique C belongs to
S∗; while constraints (16) impose S∗ is not empty. If the value of the optimal solution of
the PP is larger than γ∗, S∗ = {v ∈ V, x∗v = 1}, and the associated variable zS∗ is added to
the MP. Note that, since πC ≥ 0 (C ∈ C) and variables xv (v ∈ V) are binary, we can relax
constraints (18) to yC ≥ 0 (C ∈ C).

The PP can be interpreted as follows: Given G = (V,E), a profit ν∗v for each v ∈ V
(possibly negative) and a penalty π∗C ≥ 0 for each C ∈ C , the problem aims at selecting
a non-empty subset of vertices of maximum profit; the penalty π∗C associated with a clique
C is paid if at least one of its vertices is selected. A vertex v with ν∗v ≤ 0 can be removed
together with its incident edges. If a clique C ∈ C is reduced to a single vertex u by the
removal, then, πC is subtracted from the profit ν∗u of vertex u. The procedure is iterated until
all vertices have positive profit. In case all vertices have negative profit ν∗, or all vertices are
removed, the PP problem reduces to finding the vertex u = arg maxv∈V {ν∗v −

∑
C∈C :v∈C π

∗
C}.

The following proposition characterises the complexity of the PP.

Proposition 3 The PP is polynomial-time solvable.

Proof. In the PP we are looking for a non-empty subset of vertices. Let us define PP∪∅ a
relaxation of the PP, where also the empty set is admitted as solution. Given a polynomial-
time algorithm for the PP∪∅, we can select a vertex v ∈ V which is forced to be in S∗,
and then apply the algorithm to the subgraph of G induced by V \ {v}. By applying this
procedure for each v ∈ V , in n iterations we obtain the optimal solution to the PP.

It remains to show that PP∪∅ is polynomially solvable. This can be done by observing
that the PP∪∅ can be formulated by removing constraint (16) from model (14)–(18). The
resulting model structure is the same as the generic structure described in [4], model (8).
A solution method for the latter model is given in [4]. (The latter consists in solving a
min-cut/max-flow problem on a network with one node associated with each variable, plus
a source and a sink node as explained below). �

In the case of our problem, we have a network N = (W,A), where the node set is
W = {s, t} ∪ V ∪ {uC , C ∈ C }, i.e., in addition to the vertex set V of G, there are a source
and a sink node, and a node uC for each clique C ∈ C .

The arc set is defined below:

• For each v ∈ V there is an arc (s, v) with capacity ν∗v ,

• For each C ∈ C there is an arc (C, t) with capacity π∗C ,

• For each C ∈ C and each v ∈ C, there is an arc (v, C) with infinite capacity.

There is a one-to-one correspondence between st-cuts of finite capacity in N , and feasible
solutions of (14)–(18). For a cut of capacity L, the responding solution of (14)–(18) has value∑

C∈C π
∗
C − L. Hence, an optimal solution to (14)–(18) can be obtained from a min-cut on

a network N having n+ |C |+ 2 nodes.

Corollary 1 An optimal solution to the linear relaxation LPE of the exponential-size integer
formulation ILPE of the minimum vertex k-cut problem can be computed in polynomial time.

9

Proof. Since the pricing problems PP ask for the solution of n = |V | min-cut problems,
then solving the master MP (and, eventually, LPE) is polynomial time solvable. �

In case C is exactly the set of edges of the graph G (which is the only possible form of
C for a triangle free graph), a solution method based on solving a min-cut problem on a
smaller network having n + 2 nodes is described in the Appendix. Finally, let us mention
that the constraint matrix of (15) is totally unimodular, as observed in [12] for the case of
edge constraints. This gives an alternative proof of polynomial-time solvability for the PP.

4.1.2 A branching scheme for ILPE

When the optimal solution of the master problem (MP) associated with the linear relaxation
of model ILPE for the min vertex k-cut problem is fractional, a branching scheme is necessary
in order to obtain an integer solution.

Let ξ∗ be the current (fractional) solution of the MP. A two-level branching scheme has
to be considered. First we branch by imposing that, for each vertex v ∈ V , either v is in the
vertex k-cut V0 or it belongs to the vertex-set S of some component of the subgraph of G
induced by V \ V0. This is in general not enough to define an integer solution, indeed, even
if the vertex k-cut V0 is well defined by

V0 =

{
v ∈ V :

∑
S∈S :v∈S

ξ∗S = 0

}
,

it does not imply that the solution is 0-1 valued. We impose a second level branching, where,
for two vertices u and v outside V0, we impose that either u and v are in the same component,
or they belong to different ones.

In the first branching, for each vertex v ∈ V , we check if it is partially included in the
components and the vertex cut, more precisely, if

0 <
∑

S∈S :v∈S

ξ∗S < 1. (19)

In case of multiple partially included vertices, we branch on the vertex v for which the sum
in (19) is closer to 1. Ties are broken randomly. Two subproblems are then created from
the current one:

• in the first subproblem, we impose that v is in the vertex cut, by modifying the asso-
ciated constraint (8) to ∑

S∈S :v∈S

ξS = 0;

we also modify the pricing procedure in order to forbid the selection of vertex v by
modifying the cost structure of the associated min-cut problem;

• in the second subproblem, we impose that v is not in the vertex cut, by modifying the
associated constraint (8) to ∑

S∈S :v∈S

ξS = 1;

the pricing procedure is unchanged.

10

Once V0 is defined, then ξ∗ is still fractional if and only if we can find two vertices u, v
so that

0 <
∑

S∈S :u,v∈S

ξ∗S < 1. (20)

(It holds more generally for 0-1 constraints of the form Aξ∗ = 1, see [5]).
In case more than one such pair of vertices exist, we branch on the pair for which the

sum in inequality (20) is closer to 1. Ties are broken randomly. Two subproblems are then
created from the current one:

• in the first subproblem, we impose that u and v are in the same component; this
can be obtained by contracting {u, v} in the pricing subproblem, that is, creating
a supervertex w representing both u and v and such that δ(w) = δ(u) ∪ δ(v) (and
removing u, v);

• in the second subproblem, we impose that u and v are in different components; this
can be obtained by adding to the pricing subproblem an incompatibility constraint
between u and v. In this case the subproblem cannot be formulated as a min-cut/max-
flow problem, and we have to solve the MIP formulation (14)–(18) with the additional
constraint

xv + xu ≤ 1.

In this case the modified pricing problem might be NP-hard.

In our Branch-and-Price algorithm we first define the vertices in the vertex cut, i.e., we
apply the first branching rule. Then, in case the solution is still fractional, we apply the sec-
ond branching rule. After branching, the variables that are incompatible with the branching
decision are removed from the children nodes. The following proposition states that the two
proposed branching rules define a complete branching scheme for ILPE:

Proposition 4 The two branching rules applied in sequence provide a complete branching
scheme for model ILPE.

Proof. The rows of the constraints (8) associated with vertices forced out of the vertex cut,
after the application of the first branching rule, are equalities with binary coefficients and
right-and-side equal to 1. In this case, if a basic solution ξ∗ is fractional, then there exist
u and v such that (20) holds. This result allows to conclude that, if a solution is fractional
after the first branching rule is applied, then we can determine two vertices for applying the
second branching rule. �

4.2 Comparison of the strength of the LP relaxations of the two
formulations

This section discusses the relation between the two formulations proposed for the vertex
k-cut problem.

11

Proposition 5 Even when C = E, the bound for the vertex k-cut problem provided by the
optimal solution value of the extended formulation LPE strictly dominates the corresponding
bound provided by the compact formulation LPC.

Proof. Given a feasible solution ξ̃ of LPE, we can construct a feasible solution x̃ of LPC

with same objective function value as follow:

x̃iv =
1

k

∑
S∈S :v∈S

ξ̃S i ∈ K, v ∈ V.

We first show that the two solutions have the same objective function value:∑
i∈K

∑
v∈V

x̃iv =
∑
k∈K

1

k

∑
v∈V

∑
S∈S :v∈S

ξ̃S =
∑
S∈S

∑
v∈S

ξ̃S =
∑
S∈S

|S|ξ̃S.

It is straightforward to check that constraints (2) are satisfied. For each edge uv ∈ E and
for i 6= j ∈ K:

x̃iu +
∑

j∈K\{i}

x̃jv =

(
1

k

∑
S∈S :u∈S

ξ̃S +
k − 1

k

∑
S∈S :v∈S

ξ̃S

)
≤ 1,

i.e., constraints (3) are satisfied. Finally constraints (4) are satisfied since for each i ∈ K:∑
v∈V

x̃iv =
∑
v∈V

1

k

∑
S∈S :v∈S

ξ̃S ≥
1

k

∑
S∈S

ξ̃S = 1

To see that the domination can be strict, consider now solving the vertex k-cut problem
with k = 3 for a cycle of 6 vertices. An optimal solution to LPC is xiv = 1

3
, v ∈ V, i = 1, . . . , 3,

with value 6, while an optimal solution to LPE has value 3. �

In the remaining of this section we discuss with an example the quality of the linear
relaxation of ILPE, when constraints (9) are expressed for a family of cliques C or for the
edge set E, respectively.

Let us consider the graph G = (V,E) of Figure 3. The example graph has 6 vertices
(v1, v2, v3, v4, v5, v6) and 6 edges (v1v2, v1v3, v1v5, v3v4, v4v5, v5v6). One optimal solution to
the min vertex 3-cut problem is obtained by removing vertices v3 and v5, and the maximum
in ILPE is then 4. By defining the clique family C = {{v1, v3, v5}, {v1, v2}, {v3, v4}, {v5, v6}},
the optimal solution of LPE is integer of value 4 and it is given by ξS1 = ξS2 = ξS3 = 1
where S1 = {v4}, S2 = {v6}, S3 = {v1, v2}. If we consider instead C = E, the opti-
mal solution of LPE is not integer and has value 4.5. This second solution is given by
ξS1 = ξS2 = ξS3 = ξS3 = ξS4 = ξS6 = 0.5 where S4 = {v2}, S5 = {v5, v6}, S6 = {v3, v4}.
This example shows a case where a strictly better bound is obtained by considering maximal
cliques in C .

12

v4

v3

v2

v1

v5

v6

Figure 3: A graph G and an optimal solution to the vertex k-cut problem with k = 3.
Removing the white vertices disconnects G in 3 components.

5. Computational experiments

Despite the relevance of the vertex k-cut problem, to the best of our knowledge, no previous
computational study on exact approaches appeared in the literature. Thus, laking a previous
approach to compare the performance of our Branch-and-Price, with these experiments we
wish to assess what is the size of instances that can be tackled by a “standard” approach,
relying on the use of a state-of-the-art MIP solver, and whether an approach based on an
extended formulation can improve on the standard one, or can eventually be complementar to
the standard one, that is, by effectively solving instances with different features. Indeed, the
development of a tailored solution approach (as our Branch-and-Price algorithm) is justified
when it can enlarge the set of instances for which an optimal solution can be computed, or
at least can improve information on upper or lower bounds. With this in mind, we first tune
the performance of the two approaches on two sets of widely used graph instances from the
literature, and then consider a further set of instances specifically collected for variants of
vertex separator problems. In detail, in our experiments we evaluate:

• The computational performance of the compact formulation ILPC of Section 3, solved
via a general purpose ILP solver;

• The computational performance of the extended formulation ILPE of section 4, solved
via the Branch-and-Price algorithm described in Section 4.1;

• The size of solvable vertex k-cut problem instances, in terms of number of vertices of
the graph;

• The effect of the number of subsets k of the partition on the relative performance of
the two mentioned exact methods.

Experimental setting. The compact formulation ILPC is enhanced by a preprocessing
phase in which a subset of variables is removed so as to reduce the symmetry of the formu-
lation and to improve the quality of the associated linear programming relaxation. In this

13

preprocessing, we search for k − 1 vertex-disjoint cliques C1, . . . , Ci, . . . , Ck−1 of the graph
G, and remove the following variables

xhv , i = 1, . . . , k − 1, v ∈ Ci, h = i+ 1, . . . , k. (21)

Indeed, two vertices u, v of a clique cannot be in two different subsets Vi and Vj. Then for
all solutions we can reordering the sets V1, ..., Vk to ensure that each vertex of a clique Ci
must be in one set Vj j ≤ i or in the separator. Thus we can remove the variables (21) to
reduce the symmetry. The resulting model is then solved by using the MIP solver of Cplex
12.6.0 in single-thread mode and default parameter setting. The resulting solution method
is denoted as Cplex + reduction in what follows.

The extended formulation ILPE is solved via the Branch-and-Price algorithm, initialized
with n variables ξS, where S = {v}, v ∈ V . At each column-generation iteration, linear
programs are solved with Cplex 12.6.0. The pricing subproblem, formulated as a min-
cut/max-flow problem, is solved by means of the pre-flow algorithm by Goldberg and Tarjan
[21]. We very rarely observed a branching requiring to solve the subproblem as a MIP (i.e.,
introducing incompatibility constraints between vertices). The exploration of the branching
tree is performed in a depth-first fashion.

The experiments have been performed on a computer with a 3.40 Ghz 8-core Intel Core
i7-3770 processor and 16Gb RAM, running a 64 bits Linux operating system. Both exact
approaches were tested with a time limit of 3600 seconds of computing time.

Test-bed of instances. In the computational experiments, we considered one class of
classical graph instances from DIMACS challanges, divided into two sets, and an additional
class of instances specifically collected for variants of vertex separator problems, divided into
three sets. All considered instances having up to 150 vertices. For the first class of instances,
that are also used for tuning the solution approaches, we only consider graphs for which the
size of the largest stable α(G) is at least 5. For the latter class, we only consider instances
for which α(G) is at least 15. Instances are listed in Table 1. In the table, after the instance
name, we report the number of vertices n, the number of edges m, the density d, and the
size of largest stable set in the graph α(G). This last parameter determines whether a graph
instance is feasible for a given value of k, i.e., α(G) ≥ k; and the corresponding stable set
provides a feasible vertex k-cut problem solution.

The first class is composed by a set of 42 instances originally proposed for Maximum
Clique, Graph Coloring, and Satisfiability in the second DIMACS challenge [1]. They have
from 11 to 149 vertices, with densities varying from 3.35 to 96.79. The α(G) parameter
varies from 5 to 80. It includes a second set, composed by 7 instances originally proposed for
Graph Partitioning and Graph Clustering in the tenth DIMACS challenge [1]. They have
from 34 to 115 vertices, with densities varying from 6.84 to 22.94. The α(G) parameter
varies from 17 to 53.

The second class is composed by three sets of instance proposed in [16] and collects
intersection graphs of the coefficient matrices of systems of linear equations from different
applications, including Physics, Electrical Engineering, Meteorology, Economics and Math-
ematics. The intersection graph of a matrix has one vertex for each column of and an edge

14

between a pair of vertices if there exists an equation in the system where both variables have
a nonzero coefficient. When the linear system is solved by some decomposition method, it
will be divided into smaller subsystems that are solved separately. However, the solution of
the whole system asks for merging the solutions of the subsystems (i.e., the same variables
must take the same values in all the subsystems), and the cost of this tasks increases with
the number of variables that appear in more than one subsystem. If one wants to partition
the equations into k subsystems, the problem of minimizing the number of common variables
can be formulated as a vertex k-cut problem. The instances in the second class, denoted as
Intersection Graph Instances in the following, have from 49 to 136 vertices, with densities
varying from 5.03 to 59.72. The α(G) parameter varies from 15 to 45. For more details on
the second class, the reader is referred to [16].

Computational performance on the DIMACS instances. In Tables 2 and 3 we con-
sider values of k = 5, 10, 15, 20, and report, for Branch and Price and Cplex + reduction,
the CPU time is seconds (tl for time limit) and the associated number of explored nodes.
For each instance and for each value of k, we report in bold the fastest method. Missing
lines correspond to infeasible instances. At the end of each block, we report the number of
instances solved to optimality by each method, with respect to the total.

• For k = 5, there are 42 2nd-DIMACS and 7 10th-DIMACS instances, 49 feasible
instances in total. For 9 instances, no method could find the optimal solution within
time limit; the Branch and Price could solve 26 out of 49 instances and is the fastest
method in 9 cases; the Cplex + reduction could solve 40 out of 49 instances and is
the fastest method in 30 cases; 13 instances are solved by Cplex + reduction while
Branch and Price fails. For the solved instances, the number of nodes explored by
the Branch and Price is not larger than 9651 but typically smaller than 100, Cplex +

reduction in contrast tends to explore a much larger number of nodes (up to 365825),
and on average needs thousands of nodes.

• For k = 10, there are 31 2nd-DIMACS and 7 10th-DIMACS instances, 38 feasible
instances in total. For 10 instances, no method could find the optimal solution within
time limit; the Branch and Price could solve 24 out of 38 instances and is the fastest
method in 18 cases; the Cplex + reduction could solve 20 out of 38 instances and
is the fastest method in 10 cases; 8 instances are solved by Branch and Price while
Cplex + reduction fails; 4 instances are solved by Cplex + reduction while Branch

and Price fails. For the solved instances, the number of nodes explored by the Branch
and Price is not larger than 288, Cplex + reduction explores up to 405857 nodes,
and on average needs much more nodes to solve the same graph instance for k = 10
than for k = 5.

• For k = 15, there are 24 2nd-DIMACS and 7 10th-DIMACS instances, 31 feasible
instances in total. For 8 instances, no method could find the optimal solution within
time limit; the Branch and Price could solve 21 out of 31 instances and is the fastest
method in 20 cases; the Cplex + reduction could solve 13 out of 31 instances and
is the fastest method in 2 cases; 9 instances are solved by Branch and Price while
Cplex + reduction fails; 1 instance is solved by Cplex + reduction while Branch

15

n m d α(G) n m d α(G)

2nd-DIMACS 2nd-DIMACS

myciel3 11 20 36.36 5 myciel6 95 755 16.91 47

myciel4 23 71 28.06 11 queen8 12 96 1368 30.00 8

queen5 5 25 160 53.33 5 mug100 1 100 166 3.35 33

1-FullIns 3 30 100 22.99 14 mug100 25 100 166 3.35 33

queen6 6 36 290 46.03 6 queen10 10 100 1470 29.70 10

2-Insertions 3 37 72 10.81 18 4-FullIns 3 114 541 8.40 55

myciel5 47 236 21.83 23 games120 120 638 8.94 22

queen7 7 49 476 40.48 7 queen11 11 121 1980 27.27 11

2-FullIns 3 52 201 15.16 25 r125.1 125 209 2.70 49

3-Insertions 3 56 110 7.14 27 DSJC125.1 125 736 9.50 34

queen8 8 64 728 36.11 8 r125.5 125 3838 49.52 5

1-Insertions 4 67 232 10.49 32 DSJC125.5 125 3891 50.21 10

huck 74 301 11.14 27 r125.1c 125 7501 96.79 7

4-Insertions 3 79 156 5.06 39 miles250 128 387 4.76 44

jean 80 254 8.04 38 miles500 128 1170 14.39 18

3-FullIns 3 80 346 10.95 37 miles750 128 2113 26.00 12

queen9 9 81 1056 32.59 9 miles1000 128 3216 39.57 8

david 87 406 10.85 36 miles1500 128 5198 63.95 5

mug88 1 88 146 3.81 29 anna 138 493 5.22 80

mug88 25 88 146 3.81 29 queen12 12 144 2596 25.21 12

1-FullIns 4 93 593 13.86 45 2-Insertions 4 149 541 4.91 74

10th-DIMACS 10th-DIMACS

karate 34 78 13.90 20 polbooks 105 441 8.08 43

chesapeake 39 170 22.94 17 adjnoun 112 425 6.84 53

dolphins 62 159 8.41 28 football 115 613 9.35 21

lesmis 77 254 8.68 35

MM-I MM-HD

bcspwr02 49 177 15.05 16 L80.cavity01 80 1201 38.01 31

impcol 59 329 19.23 20 L80.wm1 80 1786 56.52 15

dwt 59 256 14.96 15 L100.cavity01 100 1844 37.25 36

can62 62 210 11.11 18 L100.wm1 100 2956 59.72 17

dwt72 72 170 6.65 24 L100.wm3 100 2934 59.27 15

ash219 85 219 6.13 29 L120.cavity01 120 2972 41.62 36

dwt87 87 726 19.41 16 L120.wm2 120 3387 47.44 23

MM-II MM-II

ash331 104 331 6.18 30 L125.gre 125 1177 15.19 19

gre 115 576 8.79 33 L125.lop163 125 1218 15.72 17

bcspwr03 118 576 8.34 32 L125.dwt 125 943 12.17 16

L125.will199 125 386 4.98 45 L125.can 125 1257 16.22 15

L125.west0167 125 444 5.73 39 west0132 132 560 6.48 39

L125.ash608 125 390 5.03 37 rw136 136 641 6.98 39

L125.can 125 1022 13.19 20

Table 1: Instance Features

16

and Price fails. For the solved instances, the number of nodes explored by the Branch
and Price is not larger than 82. Cplex + reduction needs to explore on average
several thousands of nodes.

• For k = 20, there are 22 2nd-DIMACS and 6 10th-DIMACS instances, 28 feasible
instances in total. For 8 instances, no method could find the optimal solution within
time limit; the Branch and Price could solve 20 out of 28 instances and is the fastest
method in 19 cases; the Cplex + reduction could solve 7 out of 28 instances and
is the fastest method in 1 case; 12 instances are solved by Branch and Price while
Cplex + reduction fails. For the solved instances, the number of nodes explored by
the Branch and Price is not larger than 249. Cplex + reduction needs to explore
on average several thousands of nodes and is able to solve only few instances. All
instances solved by Branch and Price require less than 12.23 CPU seconds, except
one that needs 460.07 seconds.

From these results we can conclude that Cplex + reduction has an average good perfor-
mance for k = 5, and has increasing difficulties for larger values of k. A partial explanation
can be found in the increase in the number of variables (n more variables for each incremental
value of k). For k = 5, Cplex + reduction outperforms Branch and Price. For Branch

and Price, an opposite behaviour is experienced when increasing the value of k. In this
case, the performance of the method is improved. For example, instance polbooks needs
2036.05 CPU seconds for k = 5, while 330.90, 25.94, and 3.13 CPU seconds are needed for
k = 10, 15 and 20, respectively. For k = 10, 15 and 20, Branch and Price outperforms then
Cplex + reduction.

Gaps. In Table 4 we report, for each value of k, the value of the optimal or best known
solution (column opt∗), and the linear relaxation and optimality gaps for the 10th-DIMACS
instances. The linear programming relaxation lp gap is computed with respect to the optimal
solution value opt as 100· lpval−opt

opt
, where lpval is the value of the linear programming relaxation

of the corresponding formulation (or the best know solution). For instances for which the
optimal solution value is not known, the lp gap is not reported. A “−” is reported when the
time limit is incurred before the linear relaxation is computed. The optimality gap opt gap
is computed as 100 · UBval−LBval

UBval
, where UBval and LBval are the values of the best upper

bound and of the incumbent solution of the corresponding method when the time limit
is reached (0.00 for solved instances). The same figures are omitted for the 2th-DIMACS
instances, because they have a similar pattern. For the ILPE, the opt gap is computed using
LBval = lpval since the bound is never updated during the search tree which is explored in
a depth-first fashion (LBval = UBval for the instances solved to proven optimality).

From the table we observe that the formulation ILPE is characterized by a much stronger
linear programming relaxation. The value of its lp gap is not affected by the value of k,
and ranges between 0.0 and 6.43. This explains the fact that Branch and Price explores
on average a much smaller number of nodes, and justifies the computational effort spent in
column generation. On the other hand, the quality of the lp gap of ILPC deteriorates when
k increases, and can be as large as 42.60. Clearly, computing this bound is associated with
a smaller computational effort, and many nodes can be explored in short CPU time. For

17

k = 5 k = 10

Branch and Price Cplex + reduction Branch and Price Cplex + reduction

time nodes time nodes time nodes time nodes

myciel3 0.00 5 0.00 41
myciel4 0.15 24 0.30 330 0.05 26 1.88 2241
queen5 5 0.05 34 0.01 0
1-FullIns 3 0.99 45 0.36 229 0.21 24 1.76 2464
queen6 6 0.92 304 1.18 577
2-Insertions 3 0.35 26 1.13 1210 0.03 2 60.79 43344
myciel5 782.73 38 2.50 1423 95.34 106 48.98 12739
queen7 7 1941.08 9651 40.04 17950
2-FullIns 3 tl 543 2.52 1481 66.57 117 235.00 160892
3-Insertions 3 6.59 38 9.78 5848 0.49 15 tl 1343150
queen8 8 tl 6729 904.87 365825
1-Insertions 4 1659.91 82 6.30 2139 12.74 29 1242.08 394816
huck 0.20 6 0.03 0 0.16 8 5.90 4745
4-Insertions 3 76.38 54 24.41 11224 6.11 32 tl 654743
jean 0.38 10 0.04 0 0.29 2 0.24 6
3-FullIns 3 tl 54 30.69 8351 tl 190 2621.40 405857
queen9 9 tl 3657 tl 692134
david 1927.06 10 0.03 0 21.26 5 0.08 0
mug88 1 0.44 1 54.96 39195 0.62 1 tl 1011301
mug88 25 1.45 12 30.55 20791 0.51 3 tl 1225319
1-FullIns 4 tl 8 33.70 3425 tl 8 tl 162882
myciel6 tl 4 72.64 7904 tl 3 2000.39 183177
queen8 12 tl 2768 tl 385175
mug100 1 2.09 14 113.58 99468 2.71 33 tl 810120
mug100 25 2.51 26 160.96 141665 1.35 7 tl 1081903
queen10 10 tl 2507 tl 374396 0.01 3 1.06 0
4-FullIns 3 tl 17 91.15 9053 tl 17 tl 92823
games120 tl 67 tl 763536 tl 690 tl 262064
queen11 11 tl 2120 tl 201943 tl 8639 tl 39063
r125.1 49.66 1 0.07 0 372.47 1 0.13 0
DSJC125.1 tl 14 tl 323047 tl 14 tl 44951
r125.5 tl 52 1992.94 178069
DSJC125.5 tl 14 tl 151754 tl 141 tl 5380
r125.1c tl 12 1.21 32
miles250 38.30 1 0.04 0 2.74 1 0.22 0
miles500 5.10 1 117.71 14803 873.90 200 tl 242578
miles750 tl 5 639.56 49132 tl 155 tl 188792
miles1000 tl 4 1012.08 200247
miles1500 tl 1 6.78 465
anna tl 8 0.15 0 tl 17 0.42 0
queen12 12 tl 1631 tl 96305 tl 7733 tl 11992
2-Insertions 4 tl 5 236.10 17285 tl 4 tl 46205

solved 21/42 34/42 19/31 15/31

karate 0.11 13 0.03 0 0.03 4 0.06 0
chesapeake 1.28 86 0.80 793 0.10 15 11.20 11755
dolphins 0.72 1 0.29 30 0.07 4 8.91 2887
lesmis 17.53 11 0.14 0 1.01 2 0.42 8
polbooks 2036.05 359 58.83 20170 330.90 288 tl 631201
adjnoun tl 1 1.88 40 tl 10 139.90 7030
football tl 35 tl 615634 tl 149 tl 189697

solved 5/7 6/7 5/7 5/7

Table 2: Formulation performance comparison on the DIMACS instances (k = 5 and k = 10)

18

k = 15 k = 20

Branch and Price Cplex + reduction Branch and Price Cplex + reduction

time nodes time nodes time nodes time nodes

2-Insertions 3 0.10 22 683.56 676931
myciel5 35.87 82 304.86 71515 1.71 33 2434.94 1105526
2-FullIns 3 1.03 25 191.99 29987 1.46 40 992.17 382558
3-Insertions 3 0.51 14 tl 783072 0.44 17 tl 766107
1-Insertions 4 36.48 49 tl 143540 12.33 50 tl 104232
huck 0.14 4 14.76 6619 0.07 2 4.98 1745
4-Insertions 3 4.29 29 tl 369502 3.13 38 tl 201377
jean 0.63 8 0.64 0 0.33 7 5.20 2085
3-FullIns 3 tl 79 tl 182041 460.07 249 tl 105272
david 0.27 2 14.75 4111 1.73 18 tl 2581828
mug88 1 1.14 21 tl 540602 0.85 13 tl 348214
mug88 25 0.49 1 tl 459082 1.10 33 tl 218404
1-FullIns 4 tl 14 tl 72206 tl 22 tl 25797
myciel6 tl 3 tl 59139 tl 6 tl 25128
mug100 1 1.73 14 tl 413118 1.51 12 tl 247039
mug100 25 1.97 22 tl 376089 1.64 18 tl 217955
4-FullIns 3 tl 14 tl 69442 tl 33 tl 16830
games120 tl 1779 tl 139497 tl 1 tl 81290
r125.1 0.96 1 275.62 35565 2.32 1 tl 526415
DSJC125.1 tl 15 tl 18733 tl 22 tl 4915
miles250 0.74 1 tl 614993 1.85 8 tl 397307
miles500 tl 1769 tl 156294
anna 57.52 7 0.78 17 84.68 7 2.06 30
2-Insertions 4 tl 8 tl 24929 tl 8 tl 6093

solved 16/24 8/24 16/22 5/22

karate 0.02 4 0.06 0 0.01 3 0.08 100
chesapeake 0.06 9 8.46 4903
dolphins 0.16 8 316.13 195342 0.10 4 tl 1688935
lesmis 0.58 6 1.23 804 0.41 4 7.44 2226
polbooks 25.94 44 tl 279125 3.13 11 tl 267568
adjnoun tl 12 2337.24 157113 tl 28 tl 90669
football tl 1544 tl 117103 tl 9228 tl 57614

solved 5/7 5/7 4/6 2/6

Table 3: Formulation performance comparison on the DIMACS instances (k = 15 and
k = 20)

19

k = 5 k = 10

Branch and Price Cplex + reduction Branch and Price Cplex + reduction

opt∗ lp gap opt gap lp gap opt gap opt∗ lp gap opt gap lp gap opt gap

karate 32 1.42 0.00 5.25 0.00 30 1.76 0.00 10.99 0.00

chesapeake 32 6.43 0.00 17.54 0.00 27 4.26 0.00 30.13 0.00

dolphins 60 0.00 0.00 3.22 0.00 55 0.00 0.00 11.29 0.00

lesmis 76 0.56 0.00 1.26 0.00 75 0.88 0.00 2.57 0.00

polbooks 97 3.21 0.00 7.61 0.00 90 4.50 0.00 14.28 4.63

adjnoun 110 - 52.68 1.77 0.00 106 0.00 50.00 5.34 0.00

football 94 10.88 6.40 71 22.09 30.00

k = 15 k = 20

Branch and Price Cplex + reduction Branch and Price Cplex + reduction

opt∗ lp gap opt gap lp gap opt gap opt∗ lp gap opt gap lp gap opt gap

karate 28 1.75 0.00 16.49 0.00 23 1.43 0.00 28.31 0.00

chesapeake 22 0.90 0.00 42.60 0.00

dolphins 49 1.41 0.00 20.97 0.00 43 2.16 0.00 30.64 6.32

lesmis 74 0.80 0.00 3.85 0.00 72 0.69 0.00 6.41 0.00

polbooks 86 2.57 0.00 18.08 6.88 80 2.79 0.00 23.79 11.26

adjnoun 101 0.00 47.52 9.81 0.00 96 1.04 3.87

football 54 37.04 42.75 44 23.76 39.25

Table 4: LP relaxations and optimality gaps (DIMACS-10 instances).

k = 5, the generic cuts embedded in the cplex MIP solver compensate the poor quality of
the linear relaxation, while starting from k = 10 the increasing lp gap cannot be effectively
reduced and Cplex + reduction struggles in solving the associated instances.

Computational performance on Intersection Graph instances. For the Intersection
Graph instances from [16] we concentrate on the values of k = 15, 20, where, according to
the results of the previous section, the use of the Branch-and-Price algorithm showed to be
more advisable. Results are summarized in Table 5 where we report, for Branch and Price

and Cplex + reduction, the CPU time is seconds (tl for time limit) and the associated
number of explored nodes. For each instance and for each value of k, we report in bold the
fastest method. Missing lines correspond to infeasible instances.

• For k = 15 we considered 27 Intersection Graph instances in total. For 10 instances,
no method can find the optimal solution within time limit; the Branch and Price

can solve 11 out of 27 instances and is the fastest method in 9 cases; the Cplex +

reduction can solve 11 out of 27 instances and is the fastest method in 10 cases; 7
instances are solved by Branch and Price while Cplex + reduction fails; 7 instances
are solved by Cplex + reduction while Branch and Price fails. For the solved in-
stances, the number of nodes explored by the Branch and Price is not larger than
6069. Cplex + reduction needs to explore on average several thousands of nodes.

• For k = 20, there are 16 feasible Intersection Graph instances. For 6 instances, no
method can find the optimal solution within time limit; the Branch and Price can
solve 6 out of 16 instances and is the fastest method in all the 6 cases; the Cplex +

20

k = 15 k = 20

Branch and Price Cplex + reduction Branch and Price Cplex + reduction

time nodes time nodes time nodes time nodes

bcspwr02 1.38 1 0.78 381
impcol 23.85 181 22.49 29240 25.89 689 380.80 717423
dwt 22.19 253 154.07 63767
can62 22.09 7 tl 1118811
dwt72 121.35 6069 tl 903196 466.80 50711 tl 685004
ash219 114.16 779 tl 358161 258.45 1974 tl 174120
dwt87 tl 4587 202.22 43774

solved 6/7 4/7 3/3 1/3

ash331 tl 2026 tl 237020 tl 5112 tl 143100
gre tl 261 tl 137169 tl 574 tl 69700
bcspwr03 1853.68 2292 tl 260470 tl 3175 tl 187362
L125.will199 44.21 41 tl 186330 31.37 23 tl 95182
L125.west0167 37.49 5 tl 324965 30.43 2 tl 217315
L125.ash608 tl 128 tl 173467 tl 507 tl 99585
L125.can tl 1495 tl 66494 tl 15705 tl 24735
L125.gre tl 492 tl 28888
L125.lop163 tl 346 tl 25323
L125.dwt tl 11848 tl 55178
L125.can tl 2430 tl 45321
west0132 41.57 12 tl 335734 110.40 269 tl 225030
rw136 tl 102 tl 33405 tl 274 tl 14098

solved 4/13 0/13 3/9 0/9

L80.cavity01 tl 1 4.96 2107 tl 1 4.41 1189
L80.wm1 85.64 1 0.40 39
L100.cavity01 tl 1 5.50 2093 tl 1 5.74 641
L100.wm1 tl 1 1.49 215
L100.wm3 tl 12 4.21 1528
L120.cavity01 tl 1 5.44 542 tl 1 8.04 1163
L120.wm2 tl 1 0.71 0 tl 1 46.99 17695

solved 1/7 7/7 0/4 4/4

Table 5: Formulation performance comparison on the Intersection Graph Instances (k = 15
and k = 20)

reduction can solve 5 out of 16 instances and is the fastest method in 4 cases; 5 in-
stances are solved by Branch and Price while Cplex + reduction fails, 4 instances
are solved by Cplex + reduction while Branch and Price fails. For the solved in-
stances, the number of nodes explored by the Branch and Price can be as large as
50711, while Cplex + reduction can need one order of magnitude additional nodes
for solved instances.

From these results we can conclude that for the Intersection Graph instances Cplex +

reduction and Branch and Price have similar performance. However, the two solution
methods are highly complementar: there are 23 instances that can be solved to optimality
by one method only.

Gaps. In Table 6 we report, for each value of k, the value of the optimal or best known
solution (column opt∗), and the linear relaxation and optimality gaps for the Intersection
Graph instances. From the table we observe that, also for the Intersection Graph instances,

21

k = 15 k = 20

Branch and Price Cplex + reduction Branch and Price Cplex + reduction

opt∗ lp gap opt gap lp gap opt gap opt∗ lp gap opt gap lp gap opt gap

bcspwr02 25 3.43 0.00 47.74 0.00

impcol 36 7.57 0.00 38.26 0.00 21 27.12 0.00 63.07 0.00

dwt 18 24.63 0.00 69.22 0.00

can62 35 2.23 0.00 43.47 13.27

dwt72 46 6.06 0.00 36.11 27.62 36 10.94 0.00 49.99 34.77

ash219 59 5.57 0.00 30.59 24.57 51 6.16 0.00 40.00 34.72

dwt87 33 22.81 34.50 61.17 0.00

ash331 69 9.49 18.67 33.65 28.14 55 16.58 21.13 47.12 38.29

gre 77 10.24 12.57 33.01 26.30 63 16.39 20.37 45.19 35.54

bcspwr03 83 3.11 0.00 29.66 20.58 69 6.58 18.76 41.51 29.06

L125.will199 105 1.50 0.00 16.00 10.79 98 1.61 0.00 21.60 14.91

L125.west0167 108 0.31 0.00 13.60 9.70 101 0.66 0.00 19.20 13.84

L125.ash608 95 2.74 8.88 24.00 20.21 81 7.61 14.46 35.20 31.50

L125.can 42 37.96 46.83 66.40 57.96 23 51.31 57.66 81.60 67.38

L125.gre 38 48.77 67.65 69.59 66.75

L125.lop163 28 61.65 76.72 77.60 75.70

L125.dwt 45 32.35 75.95 64.00 53.41

L125.can 23 61.86 75.12 81.58 76.80

west0132 111 1.07 0.00 15.90 10.86 103 1.15 0.00 21.96 16.19

rw136 101 4.91 7.73 25.73 23.10 86 8.99 54.49 36.76 33.23

L80.cavity01 60 - - 23.96 0.00 49 - - 37.64 0.00

L80.wm1 31 3.07 0.00 53.96 0.00

L100.cavity01 79 - - 20.19 0.00 68 - - 31.05 0.00

L100.wm1 52 - - 44.55 0.00

L100.wm3 47 4.90 4.90 47.99 0.00

L120.cavity01 97 - - 17.95 0.00 88 - - 25.39 0.00

L120.wm2 107 - - 9.76 0.00 79 - - 32.02 0.00

Table 6: LP relaxations and optimality gaps (Intersection Graph Instances).

the formulation ILPE is characterized by a much stronger linear programming relaxation,
although the gap appears to be increasing with the value of k. The strong linear programming
relaxation explains the fact that Branch and Price explores on average a much smaller
number of nodes, and justifies the computational effort spent in column generation. Again,
the quality of the lp gap of ILPC deteriorates when k increases, but instances with a lp gap
as large as 63.07% can still be solved to optimality, thanks to the capability of the cplex

MIP solver to process a large number of nodes in short computing time.

6. Conclusions

In this paper we considered the minimum vertex k-cut problem, a variant of graph parti-
tioning which consists in finding a vertex k-cut of minimum cardinality. We studied two
alternative ILP formulations and analysed their properties in terms of linear programming
relaxation. The first formulation is a natural compact formulation while the second one is an
exponential-size formulation which requires Column Generation techniques to be effectively
solved. We proposed a Branch-and-Price algorithm and we showed how to solve the Linear
Programming relaxation of the exponential-size formulation in polynomial time via a series

22

of Min-Cut Max-Flow problems. We computationally compared the performances of the two
formulations on benchmark instances from the literature. The outcome of these experiments
is that the Branch-and-Price algorithm outperforms the direct use of a general-purpose ILP
solver on the compact formulation for large values of k (high number of disconnected subsets
of the partition). For small values of k instead, directly tackling the compact formulation
remains the best option.

References

[1] Dimacs implementation challenges. http://http://dimacs.rutgers.edu/

Challenges/. Accessed: 2017-07-01.

[2] E. Balas and C. C. de Souza. The vertex separator problem: a polyhedral investigation.
Mathematical Programming, 103(3):583–608, 2005.

[3] F. Barahona. On the k-cut problem. Operations Research Letters, 26(3):99 – 105, 2000.

[4] F. Barahona and D. Jensen. Plant location with minimum inventory. Mathematical
Programming, 83(1):101–111, 1998.

[5] C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.
Branch-and-price: Column generation for solving huge integer programs. Operations
Research, 46(3):316–329, 1998.

[6] W. Ben-Ameur and M. Didi Biha. On the minimum cut separator problem. Networks,
59(1):30–36, 2012.

[7] W. Ben-Ameur, M.-A. Mohamed-Sidi, and J. Neto. The k-separator problem. In Com-
puting and Combinatorics, pages 337–348, 2013.

[8] A. Berger, A. Grigoriev, and R. v. d. Zwaan. Complexity and approximability of the
k-way vertex cut. Networks, 63(2):170–178, 2014.

[9] M. D. Biha and M.-J. Meurs. An exact algorithm for solving the vertex separator
problem. Journal of Global Optimization, 49(3):425–434, 2011.

[10] T. N. Bui and C. Jones. Finding good approximate vertex and edge partitions is np-
hard. Information Processing Letters, 42(3):153–159, 1992.

[11] S. Chopra and M. R. Rao. On the multiway cut polyhedron. Networks, 21(1):51–89,
1991.

[12] D. Cornaz, F. Furini, M. Lacroix, E. Malaguti, A. R. Mahjoub, and S. Martin. Mathe-
matical formulations for the balanced vertex k-separator problem. Conference on Con-
trol, Decision and Information Technologies (CODIT14), pages 176–181, 2014.

[13] D. Cornaz, Y. Magnouche, A. R. Mahjoub, and S. Martin. The multi-terminal vertex
separator problem: Polyhedral analysis and branch-and-cut. Conference on Computers
& Industrial Engineering (CIE45), pages 857–864, 2015.

23

[14] M. Cygan, M. Pilipczuk, M. Pilipczuk, and J. O. Wojtaszczyk. On multiway cut pa-
rameterized above lower bounds. In Parameterized and Exact Computation, pages 1–12,
2011.

[15] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, P. D. Seymour, and M. Yannakakiss.
The complexity of multiterminal cuts. SIAM Journal on Computing, 23(4):864–894,
1994.

[16] C. de Souza and E. Balas. The vertex separator problem: algorithms and computations.
Mathematical Programming, 103(3):609–631, 2005.

[17] G. Desaulniers, J. Desrosiers, and M. Solomon, editors. Column generation, volume 5.
Springer Science & Business Media, 2006.

[18] J. Fukuyama. Np-completeness of the planar separator problems. Journal of Graph
Algorithms and Applications, 10(2):317–328, 2006.

[19] N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in directed and node
weighted graphs. In Automata, Languages and Programming, pages 487–498, 1994.

[20] N. Garg, V. V. Vazirani, and M. Yannakakis. Multiway cuts in node weighted graphs.
Journal of Algorithms, 50(1):49–61, 2004.

[21] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM, 35:921–940, 1988.

[22] O. Goldschmidt and D. S. Hochbaum. A polynomial algorithm for the k-cut problem
for fixed k. Mathematics of Operations Research, 19(1):24–37, February 1994.

[23] H. Hirai. Discrete convexity and polynomial solvability in minimum 0-extension prob-
lems. Mathematical Programming, 155(1):1–55, 2016.

[24] D. R. Karger and R. Motwani. An nc algorithm for minimum cuts. SIAM Journal on
Computing, 26(1):255–272, 1997.

[25] A. V. Karzanov. Minimum 0-extensions of graph metrics. European Journal of Combi-
natorics, 19(1):71 – 101, 1998.

[26] D. Marx. Parameterized graph separation problems. Theoretical Computer Science,
351(3):394–406, 2006.

[27] C. Phillips and T.J. Warnow. The asymmetric median tree: a new model for building
consensus trees. Combinatorial Pattern Matching, pages 234–252, 1996.

[28] A. Schrijver. Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003.

[29] M. Thorup. Minimum k-way cuts via deterministic greedy tree packing. In Proceedings
of the fortieth annual ACM symposium on Theory of computing, 23:159–166, 2008.

24

Appendix

6.0.1 Pricing as submodular function minimization

The PP∪∅ (i.e., the relaxation of the PP where also the empty set is admitted as solution) can
also be tackled as the minimization of a submodular function and hence is polynomial-time
solvable [28]. A list of submodular functions is reported in a list in [28] (section 44.1a).

First, given S ⊆ V , let us define the two following clique families:

I(S) := {C ∈ C : C ∩ S 6= ∅} and C(S) := {C ∈ C : C ⊆ S}.

Second, we use the short-hand notation:

ν∗(S) :=
∑
v∈S

ν∗v π∗(C ′) :=
∑
C∈C ′

π∗C .

The PP∪∅ can be formulated as

max
S⊆V

ν∗(S)− π∗(I(S)).

Observe that C ∈ I(S) if and only if C /∈ C(S). Hence a set S maximizes ν∗(S)− π∗(I(S))
if and only if its complementary set minimizes the set function

f(S) := ν∗(S)− π∗(C(S)). (22)

Proposition 6 implies that the set function f(·) is both submodular and supermodular.

Proposition 6 f(S) + f(T) = f(S ∩ T) + f(S ∪ T), for every S, T ⊆ V .

Proof. Obviously, ν∗(S) + ν∗(T) = ν∗(S ∩T) + ν∗(S ∪T). Clearly, π∗(C(S)) +π∗(C(T)) =
π∗(C(S ∩ T)) + π∗(C(S ∪ T)). �

6.0.2 Pricing as a min-cut on a smaller network

In case C is exactly the set of edges of the graph G (which, for instance, the only possible
form of C for a triangle free graph), a solution method based on solving a min-cut problem
on a smaller network can be exploited. First observe that, since the cliques in C are in fact
the edges of G, then I(S) \ C(S) = δ(S) for all S ⊆ V . Furthermore, (22) can be rewritten
in standard notation as f(S) = ν∗(S)− π∗(E(S)), and since

2π∗(E(S)) + π∗(δ(S)) =
∑
v∈S

π∗(δ(v)),

the PP∪∅ is equivalent to minimizing 2ν∗(S) + π∗(δ(S))−∑v∈S π
∗(δ(v)). Observe that the

equation below holds where the third term in the last expression is a constant:

2ν∗(S) + π∗(δ(S))−
∑
v∈S

π∗(δ(v)) = 2ν∗(S) + π∗(δ(S))−
∑
v∈V

π∗(δ(v)) +
∑
v∈S

π∗(δ(v))

25

Hence, actually, the PP∪∅ amounts to

min 2ν∗(S) + π∗(δ(S)) +
∑
v∈S

π∗(δ(v)).

This problem can be solved as a min-cut problem on network with source node s, sink node
t, one node for each v ∈ V and the arc set defined below:

• For each v ∈ V , there is an arc (s, v) with capacity 2ν∗v ;

• For each edge uv ∈ E, there are an arc uv and an arc vu with capacity π∗uv;

• For each node v ∈ V , there is an arc (v, t) with capacity π∗(δ(v)).

In this case, the PP∪∅ can be solved in polynomial-time as a min-cut problem (equivalent
to max-flow) on the above described network, having n+ 2 nodes.

26

