
HAL Id: hal-02152302
https://hal.science/hal-02152302

Submitted on 22 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

The maximum clique interdiction problem
Fabio Furini, Ivana Ljubić, Sébastien Martin, Pablo San Segundo

To cite this version:
Fabio Furini, Ivana Ljubić, Sébastien Martin, Pablo San Segundo. The maximum clique in-
terdiction problem. European Journal of Operational Research, 2019, 277 (1), pp.112-127.
�10.1016/j.ejor.2019.02.028�. �hal-02152302�

https://hal.science/hal-02152302
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr

The Maximum Clique Interdiction Problem

Fabio Furini

Université Paris-Dauphine, Paris, France, fabio.furini@dauphine.fr

Ivana Ljubić1

ESSEC Business School, Cergy-Pontoise, France, ivana.ljubic@essec.edu

Sébastien Martin

Université de Lorraine, Metz, France, sebastien.martin@univ-lorraine.fr

Pablo San Segundo

Center of Automation and Robotics, Univ. Politécnica de Madrid, Spain, pablo.sansegundo@upm.es

Abstract

Given a graph G and an interdiction budget k, the Maximum Clique Interdiction Problem
asks to find a subset of at most k vertices to remove from G so that the size of the maximum
clique in the remaining graph is minimized. This problem has applications in many areas,
such as crime detection, prevention of outbreaks of infectious diseases and surveillance of
communication networks. We propose an integer linear programming formulation of the
problem based on an exponential family of Clique-Interdiction Cuts and we give necessary and
sufficient conditions under which these cuts are facet-defining. Our new approach provides a
useful tool for analyzing the resilience of (social) networks with respect to clique-interdiction
attacks, i.e., the decrease of the size of the maximum clique as a function of an incremental
interdiction budget level. On a benchmark set of publicly available instances, including
large-scale social networks with up to one hundred thousand vertices and three million edges,
we show that most of them can be analyzed and solved to proven optimality within short
computing time.

Keywords: Combinatorial Optimization, Interdiction Problems, Maximum Clique, (Social)
Network Analysis, Most Vital Vertices.

1. Introduction

1Corresponding author

Preprint submitted to European Journal of Operational Research April 29, 2020

© 2019 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0377221719301572
Manuscript_0dc732fcdfd5e7a89e4e46ba809cd6b9

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0377221719301572
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0377221719301572

Decision makers are often faced with the question of identifying the most vital (also called
most vulnerable or most critical) part of a network, which corresponds to a subset of vertices
(or edges) of limited size, whose malfunctioning prevents the functionality of the network as a
whole. Depending on the crucial property that needs to be maintained (or achieved) in the
network, different vertices may be perceived as the most important ones. In some applications,
we are looking for the most influential vertices (when it comes to spreading information in
the network, see, e.g. [24]). In other applications, we might ask for the most critical vertices
that may affect or destroy connectivity of the network, see, e.g. [20, 28].

In this work we are concerned with the cohesiveness property of a (social) network. Within
a network, there exist groups of individuals who interact with each other to such an extent
that they could be perceived as separate entities. Such “tightly knit” groups are frequently
identified using the notion of a clique, i.e., a subset of vertices that are pairwise connected.
Networks with large cliques are considered cohesive, as the cliques model the archetypal
structural pattern of the cohesion idea [32, 33]. The Maximum Clique Problem in a graph
G = (V,E) (or a network) is a well-studied problem in Graph Theory and Operations Research.
Its solution characterizes one of the most essential graph properties known as the clique
number ω(G) of a graph, i.e., the size of a maximum clique in G. The clique number is also
used as one of the measures of cohesiveness of a network [11].

In this article, we study the problem of identifying a most vital subset of vertices with
respect to the clique number, which is formally defined as follows: Given a graph G and an
interdiction budget k ≥ 1, the Maximum Clique Interdiction Problem (CIP) asks to find a
subset of at most k vertices to remove from G so that the clique number in the remaining
graph is minimized. The set of interdicted vertices is called an optimal interdiction strategy,
or equivalently, a set of the most vital vertices of the graph with respect to the clique number.

In the context of crime detection and prevention, large cliques have been identified as potential
origins of catastrophic events such as terrorist or hacker attacks [10, 42], as well as sources of
outbreaks of sexually transmitted diseases [38]. In the analysis of terrorist networks [see, e.g.,
14, 43], cliques are used to model communities due to their ability to encode the interactions
of groups of individuals who are all close friends with one another. Sageman [42] argues that
cliques commonly produce social cohesion and a collective identity due to the interactions
that foster solidarity and trust. Large cliques in a terrorist or crime network are capable
of designing sophisticated large-scale operations like those of the 9/11 attacks, the series of
coordinated terrorist attacks in Paris in 2014 and 2015, and numerous devastating coordinated
attacks throughout Europe, Middle East, Africa and Asia, see [2] for a detailed map on recent
attacks. More recents examples of security games in terrorist networks can be found e.g.,
in [23, 54]. Hence, the cohesiveness of a terrorist/criminal network is one of its important
features that needs to be carefully monitored and potentially reduced.

Applications of the CIP can also be found in other areas. For example, in modern telecommu-
nication networks, Service Functions (SFs) such as firewalls, deep packet inspections (DPIs),
web proxies, media gateways, etc. are used as middleboxes on the Service Provider Networks.
Network Function Virtualization permits to virtualize the SFs so that using Software Defined
Networks (SDNs), SFs can be disassociated from the physical elements of the network and

2

installed as a software. This allows for a centralized control of network resources in which
a centralized controller has visibility over the entire network, and has a complete view of
the network topology [25]. An optimal CIP strategy in an SDN network identifies a set of
vertices where SFs have to be installed so as to monitor and prevent suspicious activities
while keeping the size of the remaining non-monitored cliques as small as possible.

In Figure 1, we provide a synthetic example graph of 12 vertices. In this graph, the clique num-
ber is 4 and there are four maximum cliques, i.e., K1 = {v1, v2, v3, v4}, K2 = {v8, v9, v10, v11},
K3 = {v1, v3, v4, v5} and K4 = {v6, v8, v9, v11}. If the interdiction budget k is equal to 2, an
optimal interdiction strategy is shown in Figure 2. This strategy suggests that the pair of
vertices depicted in black is critical for maintaining the cohesiveness of the graph. After
removing vertices {v4, v11}, the clique number becomes 3 and there are six maximum cliques,
e.g., {v8, v9, v10} or {v6, v8, v9}. It is important to notice that the interdiction strategy is often
not unique. For instance, there are 3 · 3 optimal interdiction strategies obtained by choosing
one vertex from the set {v1, v3, v4} and one vertex from the set {v8, v9, v11}. Furthermore, we
can also observe in the graph of Figure 1 that the classical centrality measures (like degree,
closeness, betweenness or eigenvector centrality) rank the vertices {v5, v6} as the most central
ones. These two vertices are not the most critical ones for cohesiveness (i.e., the vertices
necessary to preserve the clique number of the graph). On the contrary, among the 9 optimal
CIP strategies (for k = 2), none contains v5 nor v6. The vertices identified as the most
critical ones for the cohesiveness are instead the ones belonging to the intersection of the two
maximum cliques K2 and K4 and to the intersection of the other two maximum cliques K1

and K3.

The CIP under investigation belongs to a family of Interdiction Problems (see e.g., [19, 53])
which are a special class of Bilevel Optimization Problems. The latter ask for a solution
of a two-level optimization problem in which the first level decisions affect the second-level
optimization problem. Bilevel optimization problems are also seen as two-player Stackelberg
games in which decisions of the first- and second-level are commonly denoted as leader’s,
respectively follower’s decisions (see, e.g. a recent survey on bilevel optimization in [16]). In
our setting, the leader first determines a subset of vertices V ′ to be removed from the network
using a limited interdiction budget. After that, the follower observes the set V ′ and chooses
a maximum clique in the remaining graph. Being able to anticipate the optimal follower’s
solution for each of the possible vertex-removal strategies, the goal of the leader is to choose
a strategy V ′ that results in the worst possible outcome for the follower. More precisely, the
goal of the leader is to find a best vertex-removal strategy so that the size of the maximum
clique on the remaining graph is minimized.

We refer the interested reader to [18, 30] for the most recent exact approaches in bilevel
combinatorial optimization. In the literature, different classical combinatorial optimization
problems have been studied in the bilevel context. Some of the most prominent examples
include studies in which the follower solves the knapsack problem, the shortest-path problem,
or the maximum flow problem on an interdicted network [19, 37, 53, 56, 15]. Interdiction
problems on networks have been widely studied in the stochastic setting as well, see, e.g., [52].
Some relevant applications of interdiction problems include the firefighting problem [3, 5, 21],
the control of infections in hospitals [4], the allocation of protective resources in shortest-path

3

v1 v2

v3v4

v5v6

v7v8

v9v10

v11

v12

Figure 1: An example graph G for the CIP. Before interdiction, the clique number is ω(G) = 4. One of the
four maximum cliques is shown in grey, i.e., the clique K2 = {v8, v9, v10, v11}.

v1 v2

v3v4

v5v6

v7v8

v9v10

v11

v12

Figure 2: The vertices of an optimal interdiction strategy of the CIP with a budget k = 2 are shown in black,
and one of the remaining maximum cliques of size 3 is shown in grey, i.e., the clique {v6, v8, v9}. Dashed lines
represent the edges which are incident to the interdicted vertices, as they cannot be used to build cliques in
G[V \ {v4, v11}].

networks [12], the protection and analysis of supply chain disruptions [51], or the detection of
drug smuggling [55]. Finally, knapsack interdiction problems are studied in [19, 13].

Article Contribution. To the best of our knowledge, this article provides the first comprehensive
theoretical and computational study on how to find the k most vital vertices of a graph with
respect to its clique number. We provide a computationally efficient framework for solving the
problem in large-scale realistic networks. The overall framework is constructed using building
blocks that are derived from both, theoretical and algorithmic results. These results can be
summarized as follows:

• The decision version of the CIP is ΣP
2 -complete (see Rutenburg [39, 40], Ko and Lin

[26]), but for a special class of graphs being a union of disjoint cliques, we show that the
CIP can be solved in polynomial time. We also provide a closed formula for calculating
the optimal solution for this special case.

• The latter result is then exploited for deriving a tight combinatorial lower bound `min

for solving the problem on general graphs.

• We provide conditions under which redundant vertices can be removed from the graph.
For the efficient reduction of the input graph, we show that the tight value of `min plays
a crucial role.

4

• Starting from a Bilevel Integer Programming model, we then derive a single-level
reformulation based on an exponential family of Clique-Interdiction Cuts.

• We provide necessary and sufficient conditions under which clique-interdiction cuts are
facet defining and we propose a fast lifting procedure.

• For the separation of clique-interdiction cuts, we develop a specially tailored combinato-
rial algorithm derived from one of the state-of-the-art approaches for finding maximum
cliques in interdicted graphs.

• We also derive a battery of heuristic algorithms, to obtain high-quality incumbent
solutions.

• All the above ingredients are combined in a computational framework which starts by
calculating `min and reducing the size of the input graph, before entering a branch-and-
cut phase (B&C) in which the efficient separation procedure and primal heuristics are
employed.

In an extensive computational study, we demonstrate the effectiveness of all the components of
our exact solution framework. The study is based on publicly available benchmark instances
from various sources, including large-scale graphs representing real-world (social) networks
with up to one hundred thousand vertices and three million edges. Most of these instances are
solved to provable optimality within a short computing time, thus significantly outperforming
the state-of-the-art generic bilevel mixed integer programming solver of Fischetti et al. [18].

Our new approach is a powerful tool for analyzing and assessing the graph resilience against
clique-interdiction attacks, i.e., the capacity of the graph of preserving a large clique (and
also its cohesiveness). For different classes of input graphs, we analyze the evolution of the
clique number as a function of the interdiction budget k. Our analysis reveals that social
networks are “vulnerable” to clique-interdiction attacks as their clique number can be easily
reduced by a large factor using a relatively low interdiction budget.

Finally, we point out that our exact solution framework can be extended to a more generic
interdiction problem in which the follower solves a relaxed clique problem with hereditary
property, such as s-plex, s-bundle, or s-defective clique (see [36] for a survey on clique
relaxations).

The remainder of the paper is organized as follows: Section 2 concerns the literature review
and Section 3 provides the bilevel integer programming formulation and complexity results.
In Section 4, we provide theory and methodology behind our combinatorial lower bound and
the associated reduction procedure. The single-level reformulation along with the polyhedral
study is given in Section 5. The separation procedure is described in Section 6. Computational
results are provided in Section 7, and concluding remarks are given in Section 8.

2. Related Literature

To the best of our knowledge, and despite its relevance for analyzing the cohesiveness of
networks, the CIP is a new problem that has not been studied in the previous literature.
There are only three problems directly related to the CIP that we are aware of. The first one is

5

the Minimum Vertex Blocker Clique Problem, in which one searches for a subset of vertices of
minimum cardinality to be removed from a graph G, so that the maximum (weighted) clique
in the remaining graph is bounded from above by a given integer r ≥ 1. This problem has
been studied in Mahdavi Pajouh et al. [31], where an exact algorithm based on row-generation
has been proposed. In a computational study conducted on randomly generated graphs, the
authors report optimal solution values for sparse graphs with 100 and 200 vertices, whereas
most of the instances with density 0.5 or above remain unsolved.

The second related problem is the Edge Interdiction Clique Problem which has been introduced
in Tang et al. [53] and used as a case study for a generic exact approach for (the more general
class of) interdiction problems. In the edge interdiction clique problem, the leader interdicts
edges instead of vertices, and therefore the majority of results derived in this article are not
directly applicable to this problem. Nevertheless, it is worth mentioning that the largest
graphs considered in the computational study of Tang et al. [53] contain 15 vertices, and most
of them remained unsolved within an hour of computing time. Optimal solutions for these
instances have recently been provided by the state-of-the-art exact solver for bilevel mixed
integer programs of Fischetti et al. [18].

We also mention the recent work of [9], where the authors introduce the problem of finding
the most vital vertices with respect to the maximum independent set. This problem is closely
related to CIP, as finding a maximum independent set on a graph is equivalent to finding
a maximum clique on the complement graph. The authors of [9] provide some complexity
results by showing that their problem is polynomial-time solvable on unweighted bipartite
graphs, on cographs and graphs with bounded treewidth.

Finally, CIP also belongs to a larger family of Interdiction Games under Monotonicity,
which has been recently addressed in Fischetti et al. [19]. In this setting, the leader has
a limited interdiction budget for deleting a subset of items, whereas the follower solves a
maximization problem using the remaining items. The follower’s subproblem is assumed to
satisfy a monotonicity property, which is then exploited for deriving a single-level integer
linear programming reformulation. The authors also study several strengthening inequalities
which are of particular relevance for knapsack interdiction games. A computational study
conducted on (multidimensional) knapsack interdiction games shows that this new approach
significantly outperforms the previous state-of-the-art algorithm from [13].

3. Bilevel formulation and problem complexity

In this section we first introduce the notation used in this article, we then provide a Bilevel
Integer Linear Programming (ILP) formulation, after which we study the problem complexity.

3.1. Notation and definitions

Let G = (V,E) be a simple undirected graph with |V | = n and |E| = m. The complement
of G is denoted G = (V,E), so E = {uv : uv /∈ E}. Given a vertex set S, the subgraph of
G induced by S is denoted by G[S]. We say that u and v are neighbours if there is an edge
uv ∈ E. Neighbors of a vertex v are denoted by N(v). A subset S ⊆ V of vertices is a clique
of G, if any two vertices of S are neighbours, and it is a stable set of G if it is a clique in
G. The cardinality of the largest clique of G is denoted by ω(G), and the cardinality of the

6

largest stable set by α(G). The maximum clique problem (MCP) in G is to find a clique of
maximum size.

Given a vertex v ∈ V , the clique number of v, denoted by ωG(v) in the following, is the size of
the largest clique v is contained in. The κ-core of a graph G is a maximal subgraph in which
all vertices have degree at least κ. The coreness-number of a vertex v, denoted by coreness(v)
in the following, is equal to κ if v belongs to a κ-core but not to any (κ+ 1)-core. Obviously,
the following inequality holds:

ωG(v) ≤ coreness(v) + 1 ≤ |N(v)|+ 1 v ∈ V. (1)

For sparse graphs, the coreness-number of a vertex is often used as a rough approximation
of its clique number, as it can be computed in O(|E|) time for all vertices in G [for further
details, see 8, 48]. The maximum core number of a graph, denoted by core(G) in the following,
is the maximum of the core numbers of the vertices of G. So, we have

ω(G) ≤ core(G) + 1 ≤ max
v∈V

deg(v) + 1. (2)

A coloring C of G is a partition of V into p non-empty stable sets: C = {V1, . . . , Vp}, where
all vertices belonging to Vi are colored with the same color i (i = 1, . . . , p). A graph property
is called hereditary on vertex induced subgraphs if for any S ⊆ V we have that if the property
holds on G[S], then it also holds on G[S ′], for any S ′ ⊂ S, S ′ 6= ∅.

Let S̃ be the maximal stable set in G, i.e., α(G) = |S̃|, hence ω(G) ≤ |V | −α(G). For a given
interdiction budget k such that k ≥ |V | − α(G) (i.e., there is enough budget to interdict at
least all the vertices except those forming the maximum stable set), the optimal CIP solution
value is at most one. Hence, we discard this trivial case and without loss of generality, we
assume in the remainder of the paper that k < |V | − α(G).

3.2. Bilevel ILP formulation

The following binary decision variables are needed to model the problem as a bilevel integer
linear program:

wu =

{
1, if vertex u is interdicted by the leader,

0, otherwise
u ∈ V

xu =

{
1, if vertex u is used in the maximum clique of the follower,

0, otherwise
u ∈ V

Let W be the set of all feasible interdiction policies of the leader, i.e.:

W =

{
w ∈ {0, 1}n :

∑
u∈V

wu ≤ k

}
. (3)

Similarly, let K represent the set of incidence vectors of all cliques in the graph G, i.e.:

K =
{
x ∈ {0, 1}n : xu + xv ≤ 1, uv ∈ E

}
, (4)

7

where the constraints xu +xv ≤ 1 ensure that two vertices cannot be part of a clique if there is
no edge connecting them. With a slight abuse of notation, we will use both notations K ∈ K
and x ∈ K, where x is the incident vector of K. Given an interdiction strategy w∗ ∈ W, let
Vw∗ be the associated set of interdicted (deleted) vertices.

The CIP can be formulated as follows:

min
w∈W

max
K∈K

{
|K| −

∑
u∈K

wu

}
. (5)

In the objective function of (5) we express the min-max nature of the problem: the leader
controls (with the variables w) the outer minimization problem by interdicting at most k
vertices of the graph, while the inner problem consists of calculating the clique number in the
graph induced after the removal of the interdicted vertices. We call this inner problem the
follower’s subproblem). Observe that for the follower, the size of each clique K in G reduces
by the number of interdicted vertices from K, which follows from the hereditary property
of the clique (i.e., every vertex-induced subgraph of K is a clique itself). Therefore, the
value |K| −

∑
u∈K wu denotes the size of the clique K after applying the interdiction strategy

defined by w ∈ W . Hence, the formulation (5) states that the leader chooses a set of vertices
to interdict, so that among all possible cliques K ∈ K, the size of the maximum remaining
clique is the smallest possible.

The CIP can be equivalently stated as:

min
w∈W

max
x∈K

{∑
u∈V

(1− wu)xu

}
(6)

Indeed, we can rewrite the objective function of the follower in (6) as
∑

u∈V (1 − wu)xu =
|K| −

∑
u∈K wuxu. The latter sum corresponds to the objective function in (5) if and only

if wuxu = wu if u ∈ K and wuxu = 0, otherwise. The latter is always true, as the vector x
encodes the clique K, and hence xu = 1 if u ∈ K, and xu = 0, otherwise. Finally, the CIP
can also be reformulated as the following bilevel integer linear program:

min
w∈W

max
x∈K

{∑
u∈V

xu : xu ≤ 1− wu, u ∈ V

}
. (7)

Indeed, given an interdiction strategy w∗ ∈ W , the optimal solution of the follower’s subprob-
lem (5) and the optimal solution of the follower’s subproblem (7) are the same. Inequalities
xu ≤ 1− wu (u ∈ V) are the linking interdiction constraints, making sure that the follower
cannot chose a vertex u if it has been interdicted by the leader. They ensure that for a given
vector w∗, the follower searches for the maximum clique in the support graph in which the
vertices v such that w∗v = 1 have been removed. The bilevel ILP formulation (7) can be solved
by using a Benders-like decomposition approach (cf. Section 5).

8

3.3. Problem complexity

In the following, we address the complexity of the decision version of CIP (denoted by d-CIP),
stated as “Is there an interdiction strategy such that the maximum clique in the interdicted
graph is not greater than some given bound `?”. Obviously, d-CIP is most probably not in
NP for the following reason: Given a subset of k vertices to remove and a value of `, to test
whether the resulting graph does not contain a clique of size ` requires answering the decision
problem of the maximum clique problem, which is NP-complete. Rutenburg [39, 40] proved a
stronger result, namely that the d-CIP is complete for the complexity class Σp

2 (see Garey
and Johnson [22], Chapter 7, or Papadimitriou [35], Chapter 17 for further details on Σp

2). A
slightly stronger complexity result is given in [26].

The CIP is solvable in polynomial time if G is a bipartite graph, or if it is a cograph, or if its
complement graph Ḡ has a bounded treewidth. This result follows from the related study on
the most vital vertices with respect to the maximum independent set given in [9].

Proposition 1. Assume that the graph G = (K1, . . . , Kp) is a union of vertex-disjoint cliques
Ki (1 ≤ i ≤ p) which are given as part of the input and such that |K1| ≥ · · · ≥ |Kp| holds.
The optimal solution value of the CIP can be found in O(p) time, and an optimal solution
can be calculated in O(p+ k) time.

Proof. Let Qq = (K1, ..., Kq) be the subgraph induced by the first q cliques of G, 1 ≤ q ≤ p.
Let k(Qq) denote the size of an optimal interdiction strategy necessary to reduce the size of
all cliques in Qq to |Kq| − 1. One easily verifies that this number can be computed as:

k(Qq) = q +

q−1∑
i=1

i · (|Ki| − |Ki+1|).

In the following we must consider two cases:

k(Qp) > k: In order to compute the optimal solution value, it is then sufficient to find the
value q∗ and the associated subgraph Qq∗ such that k(Qq∗) > k and k(Qq∗−1) ≤ k. In
that case, the optimal solution value is obtained as:

OPT(G, k) = max

{
|Kq∗ |, |Kq∗−1| − 1−

⌊
k − k(Qq∗−1)

q∗ − 1

⌋}
. (8)

By definition, k(Qq∗−1) is the budget necessary to interdict all cliques in Qq∗−1 of size
|Kq∗−1| or more, so that the largest clique will be of size |Kq∗−1| − 1. Then, the value⌊
k−k(Qq∗−1)

q∗−1

⌋
provides the number of units by which the size of the largest clique in

Qq∗−1 can be further reduced using the remaining budget of k − k(Qq∗−1). Finally, if

|Kq∗| > |Kq∗−1| − 1 −
⌊
k−k(Qq∗−1)

q∗−1

⌋
, the optimal solution value will be |Kq∗|. Finding

the value of q∗ can be done in O(p) iterations, and each iteration has a constant time
complexity, given the clique sizes.

9

k(Qp) ≤ k: Using the same arguments, we can deduce

OPT(G, k) = |Kp| − 1−
⌊
k − k(Qp)

p

⌋
. (9)

To obtain an optimal solution, one has to (randomly) select |Ki| −OPT(G, k) vertices from
each of the cliques Ki (1 ≤ i ≤ q∗). This can be done in O(k + p) time.

In order to see how to compute OPT(G, k) using the formula (8), consider a graph G composed
by four cliques (p = 4) of size 10, 8, 5 and 5. Then, k(Qp) = 12 and this corresponds to the
budget k necessary to interdict all cliques of size 5 or more. Consider now a budget of k = 7,
so we have k(Q2) = 4 and k(Q3) = 11, hence q∗ = 3. The value of OPT(G, 7) is given as
max{5, 6}, where 6 represents the size of the maximum clique after interdicting 7 vertices in
the first two largest cliques. Consider now a budget of k = 11, in this case q∗ = 4. The second
term in formula (8) provides us the value of 4, as the size of the largest clique in Q3 after
interdicting 11 vertices from the three largest cliques, whereas the size of the fourth clique
provides the optimal solution value of 5 (as there is not sufficient budget to reduce its size).

Proposition 1 provides the optimal CIP solution value for the graphs composed by unions of
cliques, but it is particularly important for deriving a tight globally valid lower bound in the
most general case, without imposing any restrictions on G (cf. Section 4).

4. Combinatorial bounds, tighter gaps and preprocessing

We propose combinatorial algorithms for calculating tight global lower and upper bounds.
Besides being useful for exact branch-and-bound-based approaches, we also demonstrate how
these tight bounds help in reducing the size of the input graph. Let in the following `min, `max

denote the global lower and upper bound on the solution value, and let `opt be the optimal
solution value (i.e., the size of the maximum clique after applying an optimal interdiction
strategy).

4.1. Computing the global lower bound `min

In Section 3, we have shown that if graph G is composed by union of disjoint cliques, the
problem is polynomial-time solvable. We now exploit this result to derive a combinatorial
lower bound, which is obtained by removing edges from G. The following result allows us to
compute a global lower bound on the CIP value.

Proposition 2. Given a subgraph G′ = (V,E ′) with E ′ ⊂ E, an optimal CIP solution on G′

provides a valid lower bound for the optimal CIP solution on G.

Proof. Observe that ω(G′) ≤ ω(G). Let w ∈ W be a feasible interdiction strategy for G and
let Vw be the associated subset of interdicted vertices. The optimal CIP value on G is equal
to

min
w∈W

ω(G[V \ Vw]).

10

Let w̄ ∈ W be an optimal interdiction strategy on G. Then we have

ω(G′[V \ Vw̄]) ≤ ω(G[V \ Vw̄]) = min
w∈W

ω(G[V \ Vw]).

Since the most left expression corresponds to a feasible CIP solution on G′, and an optimal
one is obtained by minimizing over all w ∈ W , the result follows immediately.

The result of Proposition 2 is rather counter-intuitive, as it states that by reducing the input
graph, instead of obtaining a valid upper bound for a minimization problem, we obtain a
valid lower bound. The key issue here is that we are in fact not reducing the feasibility space
of the leader (as the set of vertices in G′ remains the same as in G), but only the feasibility
space of the follower (which is reduced from all cliques induced by E to all cliques induced by
E ′). Observe, furthermore, that in terms of the problem complexity, the result of Proposition
2 does not help us much in solving the problem, since we still have to solve the same CIP
problem, only on a smaller graph. However, this result can be particularly useful for special
classes of graphs on which solving the CIP on G′ is easier than on G. This is exploited by
the following result, where the proof for correctness of formula (10) follows from the proof of
Proposition 1.

Corollary 1. Given a set Qp+1 = (K1, . . . , Kp+1) of vertex-disjoint cliques of G, such that
|K1| ≥ · · · ≥ |Kp+1|, a valid lower bound `min for the CIP can be obtained by computing

`min =

max
{
|Kp+1|, |Kp| − 1−

⌊
k−k(Qp)

p

⌋}
, if k < k(Qp+1)

|Kp+1| − 1−
⌊
k−k(Qp+1)

p+1

⌋
, otherwise

(10)

The quality of this lower bound depends on the number of cliques p+ 1 and their sizes (see
Section 7 for the discussion on the empirical quality of the bounds and further implementation
details).

4.2. Reducing the input graph

We start by describing another important solution property that is exploited in our study.
Given a clique K and an interdiction strategy w∗ ∈ W, we say that K is covered by Vw∗ if
and only if at least one vertex from K is interdicted by w∗, i.e., iff K ∩ Vw∗ 6= ∅.

Property 1. If there exists a feasible interdiction strategy w∗ ∈ W, such that all cliques of
size `max + 1 in G are covered by Vw∗ and there exists at least one clique K∗ in G, |K∗| = `max

which is not covered by Vw∗, then `max is a valid (non-trivial) upper bound on the CIP.

The latter property suggests another way of seeing the CIP: find a feasible interdiction
strategy that minimizes the value of `max while making sure all cliques of size `max + 1 are
covered.

We say that an interdiction strategy w ∈ W is minimal, if for the associated set of interdicted
vertices Vw, we have:

ω(G[V \ Vw]) < ω(G[(V \ Vw) ∪ {v}]), ∀v ∈ Vw.

11

The following result identifies redundant vertices in the input graph G.

Proposition 3. Let v be an arbitrary vertex from V . If ωG(v) ≤ `opt, then v cannot be part
of a minimal optimal interdiction strategy.

Proof. By contradiction, assume that there exists a minimal optimal interdiction strategy
w∗ ∈ W such that w∗v = 1. We now construct a new feasible interdiction strategy w̄ ∈ W as
follows: w̄u := w∗u for all u ∈ V, u 6= v and w̄v := 0. It remains to show that

ω(G[V \ Vw̄]) = ω(G[V \ Vw∗]) = `opt.

Clearly, ω(G[V \ Vw̄]) ≥ `opt, since w̄ is a feasible interdiction strategy. By Property 1,
an optimal solution Vw∗ must cover all cliques of size ≥ `opt + 1. Since the largest cliques
containing v are of size ≤ `opt, then also the set Vw̄ = Vw∗ \ {v} covers all the cliques of size
≥ `opt + 1, which implies that ω(G[V \ Vw̄]) ≤ `opt and this concludes the proof.

Hence, by focusing on the minimal interdiction policies, which can be done without loss of
generality, one can preprocess the graph G and remove redundant vertices from it. To properly
exploit Proposition 3, instead of using the (unknown) value of `opt for removing the redundant
vertices, one can employ a tight lower bound `min. The following result gives a connection
between the optimal solution value and the solution value found on the preprocessed graph
from which redundant vertices are removed.

Proposition 4. Let Vprep = {v ∈ V : ωG(v) ≤ `min} be the set of vertices v satisfying the
(weakened) property of Proposition 3. Let Ṽ = V \ Vprep and G̃ = G[Ṽ] and let ˜̀

opt denote
the optimal CIP solution value on G̃. Then

`opt = max{˜̀opt, `min}.

Furthermore, an optimal interdiction strategy w̃ on G̃, is also optimal for G.

Proof. Let w̃ be an optimal interdiction strategy found on G̃. To show that w̃ is also optimal
for G, we distinguish between the following two cases:

1. ω(G[Ṽ \ Vw̃]) < lmin: In that case, w̃ is a feasible interdiction strategy on G, with the
follower’s optimal response on the remaining graph with value `min. This is due to the
facts that: (i) all vertices from Vprep cannot appear in a clique of size larger than `min,
(ii) `min is a valid lower bound and thus there exist at least one clique of size `min in the
graph G[V \ Vw̃]. Hence, `min is equal to the optimal solution value `opt.

2. ω(G[Ṽ \ Vw̃]) ≥ lmin: In that case, ˜̀
opt = `opt, due to the fact that interdicting any

of the vertices from Vprep will not result in a better interdiction strategy, because the
largest clique that can be covered by interdicting vertices from Vprep is of size `min. This
concludes the proof.

12

Observe that the latter result allows us not only to fix the binary decision variables wv to zero,
but also to modify the input graph G by removing its vertices, resulting into a smaller input
graph for solving the follower’s subproblem. This reduction preserves optimality, since the
removal of a vertex v ∈ Vprep only reduces the size of maximal cliques K such that |K| ≤ `min,
which are never going to constitute an optimal follower’s response to an optimal interdiction
strategy.

In a standard implementation, one would start with an arbitrary vertex, and solve the MCP
by fixing this vertex to one. If the size of the obtained clique K is smaller than `min, vertex v
is removed from G and the process is repeated for the remaining vertices. This procedure
can be time consuming, as the maximum clique algorithm has to be called per each vertex.
To overcome this drawback, the degree of a vertex can be used instead, as a trivial upper
bound on the clique number of a vertex v. However, according to inequality (1), a much
more accurate bound is the coreness-number of a vertex. Hence, in our implementation,
we pre-calculate the coreness-number for all vertices (in the initialization phase), and then
remove all vertices v such that coreness(v) ≤ `min.

4.3. Computing the global upper bound `max

We have implemented several construction heuristics in order to calculate a tight upper bound
`max and to create a pool of initial feasible solutions that are later given to the MIP solver. In
all heuristics, if a vertex has been fixed to zero (e.g., removed by the preprocessing described
above), it is not considered as a candidate for being interdicted. Our heuristics work in a
greedy fashion, based on four different criteria: vertices are interdicted one-by-one, until the
interdiction budget is exhausted. The chosen criteria are as follows:

• Vertex-degree: At the beginning, the vertices are sorted in non-increasing order according
to their degrees. We start by interdicting the vertices with the highest degree first, and
we stop once the interdiction budged is exhausted.

• Updated vertex-degree: The major difference to the “vertex-degree” heuristic is in the
fact that now we recompute the vertex degrees, each time a vertex is interdicted.

• Vertex-coreness-number: at the beginning, the vertices are sorted in non-decreasing
order according to their coreness number. Intuition behind this approach is that a vertex
with a high coreness value is likely to belong to large cliques and shall be interdicted
first. As mentioned above, coreness(v) + 1 is a rough upper bound on the size ωG(v) of
the maximum clique containing this vertex.

• Vertex-color-number: This heuristic exploits the well-known result that the size of
any feasible coloring gives an upper bound on the clique number of a graph [6]. We
first apply the greedy sequential coloring heuristic based on independent sets, where
color classes are obtained incrementally using bitmasks, see [45, 46]. This procedure
runs in O(|V |2) in the worst case and returns a feasible coloring. We then assign a
label (corresponding to the color number) to each vertex. In this sequential greedy
coloring heuristic, the higher the color associated to a vertex, the higher are the chances
that this vertex belongs to a large clique. Therefore, we interdict the vertices in the
non-increasing order with respect to their color numbers. Notice that the reordering of

13

vertices, based on their color number, once they have been interdicted, will not influence
the color number. So, there is no need to reorder the vertices after partially interdicting
them, as long as they are interdicted starting with the highest color number first. As it
will be shown in our computational study, vertex-color-number provides a very robust
measure that delivers excellent heuristic solutions for sparse social networks.

5. Single-level ILP reformulation

In this section we provide an ILP formulation of the problem in the natural space of leader
decision variables w. In addition, we provide a facial study of the underlying polytope,
discussing under which conditions the proposed inequalities are facet defining.

The following is a valid ILP formulation for CIP:

min θ (11)

θ +
∑
u∈K

wu ≥ |K| K ∈ K (12)∑
u∈V

wu ≤ k (13)

wu ∈ {0, 1} u ∈ V. (14)

To see that the model is valid, observe that for every feasible interdiction strategy w̄ ∈ W,
the follower’s problem boils down to maxx∈K

∑
u∈V xu(1− w̄u). Hence, the problem can be

restated so that the set of feasible solutions of the follower does not depend on the actions of
the leader anymore. Consequently, one can enumerate all cliques in G and optimize over the
set K. This is why the problem can be equivalently restated as

min
w∈W

{
θ : θ ≥

∑
u∈V

x̄u(1− wu), x̄ ∈ K

}
,

where x̄ represents an arbitrary incidence vector of a clique in G.

This single-level ILP formulation contains an exponential number of constraints of type
(12) that we will refer to as Clique Interdiction (CI) cuts. These constraints are NP-hard
to separate: for each vector w̄ and the associated θ̄ given by the current solution of the
formulation (12) and (13) , checking if there exists a violated interdiction cut requires finding
a maximum weighted clique on G with vertex-weights cu = 1− w̄u for all u ∈ V .

In a branch-and-cut algorithm applied to the above ILP formulation, it is sufficient to separate
integer infeasible points only (fractional points being cut off using standard branching and
general cutting plane mechanisms embedded in modern MIP solvers). Whenever w̄ is integer,
the separation problem consists in solving the MCP in the support graph G[V \ Vw̄]. Let K̄
be the maximum clique in G[V \ Vw̄]: if |K̄| > θ̄ then a violated CI cut associated to K̄ is
found and added to the model. This separation procedure can be a potential bottleneck for
using a branch-and-cut procedure, unless an efficient clique solver is used for the separation
of CI cuts. We have therefore implemented a tailored separation algorithm based on recent
state-of-the-art approaches for the MCP (see Section 6 for further details).

14

5.1. Valid inequalities and facial study

In the following, we study the polytope of the single-level CIP formulation (11)-(14). We
provide necessary and sufficient conditions under which the clique interdiction cuts (12)
are facet defining and we discuss heuristic lifting procedures designed to strengthen these
inequalities.

Given the graph G and the interdiction budget k, let P(G, k) denote the convex hull of
feasible solutions of the CIP formulation (11)-(14), that is,

P(G, k) = conv

{
w ∈ {0, 1}|V |, θ ≥ 0 : θ +

∑
u∈K

wu ≥ |K|, K ∈ K,
∑
u∈V

wu ≤ k

}
.

Let (V ′, q) denote a CIP solution where θ = q and the inderdiction strategy is defined by V ′.

Proposition 5. The polytope P(G, k) is full dimensional.

Proof. We will prove this result by contradiction. Suppose that P(G, k) is contained in a
hyperplane defined by the linear equation

∑
u∈V αuwu + βθ = γ, where α ∈ R|V |, β ∈ R,

(α, β) 6= 0, and γ ∈ R. We show that α = 0, β = 0 and thus P(G, k) cannot be included in
this hyperplane.

Let v ∈ V be an arbitrary vertex of the graph G. The three solutions (V1 = ∅, |V |),
(Vv = {v}, |V | − 1) and (Vv = {v}, |V |) are valid for P(G, k). We deduce that, αVv + β · |V | =
αVv + β · (|V | − 1) and thus β = 0. We also deduce that, αV1 + β · |V | = αVv + β · |V |, this
implies αv = 0 for all v ∈ V .

Proposition 6. Let u ∈ V .

1. The trivial inequality wu ≤ 1 defines a facet of P(G, k) if and only if k ≥ 2.

2. The trivial inequality wu ≥ 0 defines a facet of P(G, k).

Proof. 1. Let u ∈ V . If k = 1 then the inequality (13) dominates the inequality wu ≤ 1.
For k ≥ 2, consider the following |V |+ 1 feasible solutions that belong to P(G, k) and
satisfy the inequality wu ≤ 1 with equality: (V0 = {u}, |V |), (V1 = {u}, |V | − 1) and
(Vv = {u, v}, |V |) for all v ∈ V \ {u}. Clearly, these solutions are affinely independent,
which concludes the proof.

2. Consider the following |V |+ 1 feasible solutions from P(G, k) that satisfy wu ≥ 0 with
equality: (V0 = ∅, |V |), (Vv = {v}, |V |) for all v ∈ V \ {u} and (V1 = {v′}, |V | − 1) for
some v′ 6= u Clearly, these solutions are affinely independent, so wu ≥ 0 defines a facet.

Lemma 1. Let K ∈ K be an arbitrary clique in G. The associated clique interdiction
inequality (12) does not induce a facet if:

15

1. |K| ≤ `opt, or

2. K is not maximal.

Proof. 1. Observe that, by definition, we have θ ≥ `opt. Hence, for |K| < `opt the equality∑
u∈K

wu = |K| − θ

has a negative right-hand side, i.e., there is no feasible solution satisfying this equation.
On the other hand, for |K| = `opt, the CI cut θ +

∑
u∈K wu = |K| is dominated by

θ ≥ `opt.

2. Obvious.

Even though the value of `opt is not known in advance, the above result is useful for the
separation of clique interdiction cuts. The result states that the more promising inequalities
(in terms of improving the quality of lower bounds) are those with |K| ≥ `min, considering
thereby the value of `min as tight as possible. This is also in line with our preprocessing
procedure that removes all vertices from G whose clique number is not greater than `min. In
addition, without loss of generality, in the remainder of this section we focus on maximal
cliques only.

Lemma 2. Let K be a maximal clique and v ∈ K. If

ω(G[V \ V ′]) ≥ |K| − |V ′ ∩K|+ 1 ∀V ′ ⊆ V where v ∈ V ′ and |V ′| ≤ k, (15)

then there exists αv ≤ 0 such that the associated clique interdiction cut (12) can be down-lifted
to

θ +
∑

u∈K\{v}

wu + αvwv ≥ |K|.

Proof. Let K be a maximal clique and let v ∈ K. The inequality θ+
∑

u∈K wu ≥ |K| is valid.
Using a lifting procedure, see [34, p. 261], the coefficient αv of wv can be calculated as

αv = |K| −min

θ +
∑

u∈K\{v}

wu|(w, θ) ∈ P(G, k) and wv = 1

 . (16)

Recall that to any feasible interdiction strategy w, we can associate the set V ′ ⊂ V , |V ′| ≤ k
of vertices to be deleted from G. Hence the minimum value of the right hand side is equal
to minV ′{ω(G[V \ V ′]) + |K ∩ V ′| − 1} where the latter minimum is calculated over all
feasible interdiction policies V ′ that contain v. According to our condition (15), the size of
the maximum clique in the graph G[V \ V ′] plus the number of interdicted vertices which
are in K, including v, is greater or equal |K| + 1. Then, min{θ +

∑
u∈K\{v}wu|(w, θ) ∈

P(G, k) and wv = 1} ≥ |K| and therefore αv ≤ 0.

16

Corollary 2. Let K ⊂ V be a clique. If there exists v ∈ K satisfying (15) then the inequality
(12) cannot define a facet.

Finally, the following Proposition provides necessary and sufficient conditions under which the
CI cuts are facet defining. This is the major theoretical result of this section, which allows to
characterize the strength of the ILP formulation upon which our solution framework is built.

Proposition 7. Let K ∈ K be a maximal clique. Inequality (12) associated with K defines a
facet of P(G, k) if and only if

• |K| ≥ `opt + 1

• for all v ∈ K, there exists a subset V ′ ⊆ V such that v ∈ V ′, |V ′| ≤ k and ω(G[V \
V ′]) + |V ′ ∩K| ≤ |K|.

Proof. (⇒) See Lemma 1 and Corollary 2.

(⇐) Let us denote by α′w + β′θ ≥ γ′ inequality (12) associated with K. Let αw + βθ ≥ γ be
a facet containing an equality (12) such that {(w, θ) ∈ P(G, k) : α′w + β′θ = γ′} ⊆ {(w, θ) ∈
P(G, k) : αw + βθ = γ}. We will show that α = ρα′ and β = ρβ′ for some ρ ∈ R.

Let us first consider a set V ′ of vertices which is an optimal interdiction strategy such that
V ′ ∩K 6= ∅. Observe that such a set must exist, given that the optimal solution value is `opt

and |K| ≥ `opt + 1, so at least one vertex from K has to be interdicted. Let V ′′ = V ′ \K.

• We will first show that αv = 0 for all v ∈ V ′′. Let v ∈ V ′′. We consider the solution
(V1 = V ′′, |K|). This solution is feasible since ω(G[V \ V ′]) = `opt ≤ |K|. Consider a
second solution (V2 = V ′′\{v}, |K|). This solution is also feasible because by interdicting
one vertex less from V ′′, the size of the maximum clique in G[V \ (V ′′ \ {v})] is at
most `opt + 1 ≤ |K|. These two solutions satisfy (12) with the equality. We deduce
αV1 + β · |K| = αV2 + β · |K|. This implies αv = 0 for all v ∈ V ′′.

• We now show that αv = 0 for all v ∈ (V \ K) \ V ′′. Let v ∈ (V \ K) \ V ′′. Let us
consider the solution (V3 = V2 ∪ {v}, |K|). This solution is valid since we interdict an
additional vertex compared to V2, so ω(G[V \ (V2 ∪{v}]) ≤ ω(G[V \ V2]) ≤ |K|. Clearly
this solution satisfies (12) with equality. We deduce αV1 + β · |K| = αV3 + β · |K|. This
implies αv = 0 for all v ∈ (V \K) \ V ′′.

Let vk ∈ K. By the hypothesis there exists a set Vk of vertices which is a feasible interdiction
strategy (|Vk| ≤ k) such that vk ∈ Vk and ω(G[V \ Vk]) + |Vk ∩K| ≤ |K|. By the inequality
(12) (θ +

∑
u∈K wu ≥ |K|) we deduce that ω(G[V \ Vk]) + |Vk ∩K| = |K|. Let V ′k = Vk \K.

• We will show that β = αvk , for the given vk ∈ K. Consider two feasible solutions
(Vk, ω0 = ω(G[V \ Vk])) and (V1 = Vk \ {vk}, ω1 = ω(G[V \ Vk]) + 1) – they both satisfy
(12) with equality. This implies αVk + β · ω0 = αV1 + β · ω1 and thus αvk = β.

• Finally, we will show that αṽ = αvk , for all ṽ ∈ K, ṽ 6= vk. Let ṽ ∈ K and let Ṽ be
a feasible interdiction strategy such that ṽ ∈ Ṽ , and ω(G[V \ Ṽ]) + |Ṽ ∩ K| ≤ |K|.
Let Ṽ ′ = Ṽ \ K and V ′k = Vk \ K. We consider (V4 = V ′k ∪ {vk}, |K| − 1) and

17

(V5 = Ṽ ′∪{ṽ}, |K|−1) two valid solutions. Indeed, in the graph G[V \V ′k] there remains
the clique K and if we interdict one vertex of K plus the vertices of V ′k then the biggest
clique has a size at most |K|−1. The same argument holds for the solution (V5, |K|−1).
Hence we can deduce that these two solutions satisfy (12) with equality. This implies
αV4 + β · (|K| − 1) = αV5 + β · (|K| − 1). Since αv = 0 for all v ∈ V \K, it follows that
αṽ = αvk , for all ṽ, vk ∈ K.

To finish the proof, we set β = ρ and thus α = ρα′ and β = ρβ′.

5.2. Heuristic lifting procedure

According to the proof of Lemma 2, down-lifting coefficients of a clique interdiction cut
requires solving another optimization problem given by (16), which is again a CIP on a
smaller instance. We can apply some heuristic ideas instead, by underestimating the left-
hand-side and overestimating the right-hand-side of the condition (15).

Observe that the left-hand-side of this inequality can be calculated as:

`opt(v) = min{θ|(w, θ) ∈ P(G, k) and wv = 1}

which is the value of an optimal CIP solution, assuming vertex v is interdicted. The value
of `opt(v) can be underestimated by calculating `min(v), which is the lower bound obtained
using the formula provided in Corollary 1. However, a slight modification is needed, to ensure
this bound is valid for the case vertex v is interdicted. To obtain the value of `min(v), we first
remove vertex v from G, and then we compute vertex-disjoint cliques Qp on the fly, and stop
as soon as we find p∗ such that k(Qp∗+1) > k − 1 (as the vertex v already consumes one unit
of the interdiction budget). Notice that the values `min(v) need to be calculated only once in
the initialization phase, and they remain valid through the whole branch-and-cut procedure.

The right-hand-side of the condition (15) is simply overestimated by |K| (knowing that
v ∈ V ′ ∩K). This results in the following heuristic condition for down-lifting the coefficients
of the clique-interdiction cuts that can be perfomed in a computationally efficient way.

Proposition 8. Let K be a maximal clique and v ∈ K. Let LB be the lower bound in
the current node of the branch-and-bound tree. If max{`min(v), dLBe − 1} ≥ |K| then the
down-lifted clique-interdiction cut

θ +
∑

u∈K,u6=v

wu ≥ |K|

is valid.

Proof. The proof follows from the condition (15) which ensures that in that case αv, the
coefficient next to v in a valid clique-interdiction constraint is such that αv ≤ 0. The left-
hand-side of (15) is underestimated by max{`min(v), dLBe − 1}. We have to subtract the
value of 1 from LB, since we do not know if vertex v has been interdicted or not, when this
bound is calculated. The right-hand-side of this condition is overestimated by |K|.

Observe that such down-lifted clique interdiction cuts are only locally valid, and the globally
valid ones can be similarly obtained by considering a global lower bound LBg instead.

18

6. Solving the separation problem by tailoring a state-of-the-art clique solver

The separation problem requires solving the MCP in a number of induced subgraphs G[V \Vw],
where Vw is a feasible interdiction strategy. To solve each MCP exactly, we have designed a
specific branch-and-bound (B&B) algorithm inspired by the ideas described in [29, 48], using
a compact bitstring representation both for vertex sets and the adjacency matrix of the input
graph. This B&B, denoted by IMCQ in the following, is a purely combinatorial approach that
exploits tight lower and upper bounds for the clique number, along with efficient branching
rules.

Initialization. IMCQ starts with a preprocessing phase, where the vertices of the input graph are
reordered, a feasible solution K0 and a tight upper bound ub are calculated, and a branching
candidate set B0 is determined.

The vertex ordering is essential for the efficient use of cache memory for bitstring graph
representations and for reducing the size of the search tree, see [45, 46]. We distinguish
between two different categories of input graphs: large-scale sparse graphs and small or
middle-size (n < 5, 000) but dense graphs. In the remainder of the paper, these categories
will be referred to as sparse and non-sparse. For sparse graphs, vertices are sorted according
to non-decreasing coreness in a degeneracy ordering using the algorithm of Batagelj and
Zaversnik [8]. For non-sparse graphs, vertices are sorted according to their degrees, following
the approach from, e.g., San Segundo et al. [48].

In the case of sparse graphs, we use the fixed upper bound ub = 1+core(G) for all interdiction
strategies, where core(G) is the core number of G. In the case of non-sparse graphs, ub =
min{ω(G), 1 + core(G[V \Vw]}. For computing an initial solution K0, we use a simple greedy
heuristic (see San Segundo et al. [48]).

The last initialization step is to determine an initial branching set of vertices B0 ⊂ V \ Vw,
which are the candidate vertices which may belong to a clique larger than |K0|. B0 is then
determined by all the vertices v ∈ V \ Vw such that 1 + coreness(v) > |K0|, where coreness(v)
is the maximum core number of any subgraph that contains v.

Branching. We now describe the key ideas used to determine the candidates for branching,
which are applied at each node of the B&B procedure. Given an input graph G = (V,E)
and an integer q (corresponding to a valid lower bound on the MCP on G), it is possible to
partition V into two disjoint sets of vertices P and B = V \P such that ω(G[P]) ≤ q, so that
an optimal MCP solution can be found by branching on the vertices from B only. Reducing
the size of the set B is crucial for an efficient implementation of a B&B-based MCP solver,
see e.g., [44, 47, 49, 29]. Computing ω(G[P]) can be computationally expensive, and for this
reason, this value is often replaced by an upper bound.

For sparse graphs, this upper bound is provided by a feasible κ-coloring on G, see [45, 46]. If
κ is strictly greater than q, the branching set B is determined by the union of vertices in color
classes with a color number higher than q; otherwise no branching candidates exist and the
algorithm backtracks. For the non-sparse graphs, we further reduce such obtained set B by
an additional infrachromatic bounding function, see [47, 29]. This function takes as input the
feasible κ-coloring on G and reduces the upper bound κ by one unit each time a subset I of

19

independent sets of the coloring is found such that it cannot contain a clique of size |I|. Our
current implementation is inspired by the MaxSAT-based infrachromatic function described
in [29], and tailored for the bitstring representation of G.

The infrachromatic bounding function is applied incrementally at every search node as follows.
The P and B sets are initially determined by the greedy κ-coloring. Then, for every vertex
v ∈ B, the function is called to determine whether or not ω(G[P ∪ {v}]) ≤ q. Every time the
condition holds, v is added to P and the enlarged set P ′ = P ∪ {v} is taken as reference in
future iterations. After all the vertices in B have been processed, IMCQ will branch on the
(few) vertices remaining in B.

At the beginning, G = G[V \ Vw], and each time a vertex v ∈ B is selected for branching
(i.e., for inclusion into a clique under construction), the graph G is reduced by removing the
non-neighbor vertices of v. The value of q is then determined as the difference between the
size of the incumbent clique, and the size of the clique under construction.

7. Computational results

The purpose of this computational study is threefold: (1) to compare the exact solution
framework for CIP presented in this paper with the state-of-the-art method available for
general bilevel and interdiction problems; (2) to assess the practical applicability and the
limits of our framework on large-scale social networks, and (3) to use this framework to
analyze the resilience of (social) networks with respect to vertex-interdiction attacks, i.e.,
the decrease of the size of the maximum clique as a function of the incremental interdiction
budget levels k.

In the following we first summarize our exact solution framework, followed by the explanation
of benchmark instances and a detailed computational study. All the experiments have been
performed on a computer with a 3.40 Ghz 8-core Intel Core i7-3770 processor and 16Gb RAM,
running a 64-bit Linux operating system. The source codes were compiled with gcc 4.8.4

and -O3 optimizations. We used CPLEX 12.7.0 and the CALLABLE LIBRARIES framework to
implement our branch-and-cut algorithm. CPLEX was run in single-threaded mode and all
CPLEX parameters were set to their default values.

7.1. The exact solution framework CLIQUE-INTER

Our exact solution framework is based on the CIP formulation (11)-(14) of Section 5. It
is a branch-and-cut procedure combined with a preprocessing and efficient combinatorial
algorithms for the computation of lower and upper bounds, and for the separation procedure.
The framework is called CLIQUE-INTER in the remainder of the paper. These are its main
components:

(i) An effective separation procedure of the CI cuts (12): To this end we apply the specialized
combinatorial B&B algorithm (IMCQ) described in Section 6. IMCQ is an enhancement
of one of the state-of-the-art MCP algorithms of San Segundo et al. [48] capable of
effectively solving the MCP once the vertices of an interdiction strategy have been
removed from the graph G. In addition, sharper cuts are obtained by maximal cliques
(see Lemma 1); for this reason, before adding each CI cut, we make the associated clique
maximal, i.e., potentially enlarging it with vertices that have been interdicted.

20

(ii) Tight CIP upper and lower bounds (`min and `max): In order to initialize the lower
bound value of the variable θ of formulation (11)-(14), we used the global lower bound
`min presented in Section 4.1. We create the subset Qp+1 required by Corollary 1 by
iteratively extracting vertex-disjoint maximum cliques using IMCQ from G until we find
the first p∗ such that k(Qp∗+1) > k. In this way we minimize the number of times
the NP-hard maximum clique problem is solved. On the other hand, by focusing on
maximum (rather than random cliques), we preserve the quality of the bound `min in
a greedy fashion. By construction, the generated cliques are sorted in non-increasing
order by their size, as required by the formula (10).

The cliques from the set Qp∗+1 are also used to create an initial pool of CI cuts. In
order to define a high-quality feasible CIP solution of value `max to initialize formulation
(11)-(14), we apply a battery of sequential greedy heuristics presented in Section 4.3. If
it turns out that `min = `max, the instance is solved to optimality, before even starting
the B&C procedure.

(iii) The graph reduction: For large-scale real-world graphs, formulation (11)-(14) becomes
easily intractable, unless the input graph can be safely reduced to a smaller one. The
reduction technique presented in Section 4.2, which exploits the tight lower bound `min

and preserves the optimality of the solution, is applied before calculating an initial
upper bound `max and entering the B&C phase.

As later shown in this computational section, all three components are crucial and necessary
to guarantee an efficient computational performance of CLIQUE-INTER.

7.2. Test-bed of instances

In order to asses the performance of the newly proposed exact algorithm CLIQUE-INTER, we
consider three sets of benchmarks instances, called Set A, Set B and Set C :

Set A – Random graphs. We created a set of 55 Erdős-Rényi random G(n, p) graphs of
different sizes (n = |V | ∈ {50, 75, 100, 125, 150}) and edge densities (p ∈ {0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7, 0.8, 0.9, 0.95, 0.98}). We set k to four different percentages of |V |, i.e., k ∈ {d0.05 ·
|V |e, d0.1 · |V |e, d0.2 · |V |e, d0.4 · |V |e}. In this way, we created the Set A of 220 instances.

Set B – Synthetic graphs. This set contains 16 well known synthetic instances with |V | = 200
from the 2nd DIMACS challenge on Maximum Clique, Graph Coloring, and Satisfiability [17].
Most of them are still employed as test-bed by state-of-the-art exact MCP algorithms.

Set C – Real-world networks. These instances have been taken from the [1] and SNAP
database. We consider instances with up to ≈ 100, 000 vertices and ≈ 3, 200, 000 edges. The
reported 30 networks all fall into one of the following categories:

• Social Networks (with vertices representing individuals) such as: Interaction networks,
where the edges refer to interaction via message posts, for example e-mail, as in ia-
email-EU ; Recommendation networks, where the edges indicate communication in terms
of a recommendation or an opinion (e.g., rec-eachmovie related to movie opinions);
Collaboration networks, where edges represent scientific or other type of collaborations
(e.g., astro-ph refers to preprints in the astrophysics archive, and cond-mat-∗ refer to

21

the condensed matter archive www.arxiv.com). In some other social networks, edges
refer to relationships of different types, such as friendship (e.g. Facebook, socfb),
who-trusts-whom network (Soc-epinioins1), bloggers-interactions (soc-BlogCatalog), etc.

• Technological networks: In this case vertices are routers and edges represent communi-
cations between them, as in tech-internet-as.

• Scientific computing networks: These networks are meshes that are derived from
mathematical analysis in different fields of science, i.e. finite elements (fe-∗), and other
types (sc-∗ etc.).

7.3. Computational performance on random graphs of different size and densities

The purpose of this section is to demonstrate the effectiveness of the main components of
CLIQUE-INTER and to determine the relative impact on the computational difficulty of the
three main instance features, i.e., the number of vertices of a graph (|V |), the edge density of

a graph (µ = 2|E|
|V |·(|V |−1)

) and the amount of available interdiction budget (k). To this end, we
use 220 random instances of Set A and we set a time limit of 600 seconds of CPU time for
each run.

Recall that CLIQUE-INTER is the default setting of our exact framework, fully exploiting all
its components (see Section 7.1). We test four additional configurations of CLIQUE-INTER,
removing some of its components and measuring their impact on the computational perfor-
mance:

1. CLIQUE-INTER (no bounds): in this configuration, all the ingredients are turned on,
except for the calculation of combinatorial upper and lower bounds (`min and `max).

2. CLIQUE-INTER (no maximality): in this configuration, all the ingredients are turned on,
except that we did not make the cliques maximal before adding the corresponding CI
cuts.

3. Basic CLIQUE-INTER with IMCQ: in this configuration all components are removed, except
the use of IMCQ to separate CI cuts.

4. Basic CLIQUE-INTER with CPLEX: this configuration corresponds to the basic B&C
approach in which CI cuts are separated using CPLEX as a black-box clique solver applied
to the classical clique ILP formulation with constraints associated to non-neighbour
vertices. This configuration corresponds to the general implementation for interdiction
games under monotonicity as given in Fischetti et al. [19].

In order to give a graphical representation of the relative performance of the different
configurations of CLIQUE-INTER, we report a performance profile in Figure 3. For each
instance, we compute a normalized time τ as the ratio of the computing time of the considered
configuration over the minimum computing time for solving the instance to optimality. For
each value of τ in the horizontal axis, the vertical axis reports the percentage of the instances for
which the corresponding configuration spent at most τ times the computing time of the fastest
configuration. The curves start from the percentage of instances in which the corresponding
configuration is the fastest and at the right end of the chart, we can read the percentage

22

 0

 20

 40

 60

 80

 100

 1 10 100 1000

%
 o

f
in

s
ta

n
c
e
s

�

CLIQUE-INTER
CLIQUE-INTER (no bounds)

CLIQUE-INTER (no maximality)
Basic CLIQUE-INTER with IMCQ

Basic CLIQUE-INTER with CPLEX

Figure 3: Performance profile of the different configurations of CLIQUE-INTER.

of instances solved by a specific CLIQUE-INTER configuration. The best performances are
graphically represented by the curves in the upper part of Figure 3 and the horizontal axis is
represented in logarithmic scale.

Figure 3 clearly shows that each of the components is necessary to achieve the best computa-
tional performance. CLIQUE-INTER is the fastest for 40% of the instances and it manages to
solve to proven optimality almost 90% of the instances of Set A. From the figure, we can also
see that the impact of separating CI cuts using IMCQ is crucial. Disabling the improvements
based on `min and `max and not inserting “maximal” CI cuts have a remarkable detrimental
effect, which is why the basic CLIQUE-INTER with IMCQ has a very poor computational per-
formance. The computation cost of `min and `max is not negligible. For this reason, for the
very small instances which are easily solvable, removing this computation can be somehow
beneficial; for the most difficult instances, however, the update of the lower and upper bounds
is crucial. The effects of the graph reduction technique for Set A were rather moderate (so we
do not report these results separately), however this technique turns out to be inevitable for
large-scale real-world networks (cf. Table 3), which is why we have decided to keep it in the
default CLIQUE-INTER setting.

We now discuss the impact on the CPU time of the instance features using the best configu-
ration of CLIQUE-INTER. In Figures 4 and 5, we report the box plots of the computational
times grouping the instances by edge density (Figure 4) and by graph size (|V |) and by
interdiction budget (k) (Figure 5). In these figures, we graphically represent the computing
times (in logarithmic scale) through their quartiles; the lines extending vertically from the
boxes indicate the variability outside the upper and lower quartiles. Finally the outliers
are plotted as individual points. In the upper part of both figures, we report the number
of instances solved to proven optimality (#OPT) for each group of instances with similar
characteristics and the number of instances solved by preprocessing (#PREP), i.e., when
`min = `max. In the latter case, an optimal solution is computed without tackling formulation

23

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

0.
95

0.
98

1e−04

1e−02

1e+00

1e+02

density [%]

t [
s]

#OPT#OPT
#PREP#PREP

2020
1111

2020
55

2020
44

1818
44

1818
33

1717
11

1616
11

1515
00

1515
00

1616
44

1818
1010

Figure 4: The total CPU times on the random graphs of Set A, grouped by the edge density.

(11)-(14). The number of instances solved by preprocessing is a proxy of the quality of both
the CIP upper and lower bounds proposed in this paper.

In Figure 4, we have 11 groups of 20 instances each. We can observe that the computational
time increases with the edge density up to a density value of 0.9 and then it starts to decrease.
All instances with up to density 0.3 can be solved to proven optimality within the given time
limit of 600 seconds by CLIQUE-INTER. The hardest instances are the ones with density 0.8
and 0.9, where CLIQUE-INTER is able to solve 15 out of 20 instances in each group. Several
instances with low density can be solved by preprocessing, e.g., 11 for density 0.1 and 5 for
density 0.2. None of the instances of density 0.8 and 0.9 can be solved by preprocessing.
All instances with up to density 0.3 can be solved with an average CPU time less than 0.1
seconds. For all the other density classes the average CPU times of the solvable instances do
not outmatch 100 seconds, but some instances can take up to several hundreds seconds.

In Figure 5, we have 20 groups of 11 instances each. As expected, we can observe that the
computational time increases according to the number of vertices (|V |). In addition, the
computational time is also directly correlated with the level of interdiction budget (k). All the
instances with 50 and 75 vertices can be solved to proven optimality, independently of k. The
figure shows that more instances can be solved by preprocessing for low levels of interdiction
budget, e.g., for instances with 50 vertices, 7 instances can be solved by preprocessing when
k = d0.05 · |V |e and only 2 when k = d0.4 · |V |e. All the instances with 50 vertices are solved
in less than 1 second and all the instances with 75 vertices are solved in less than 100 seconds.
All instances with low values of k (k = d0.05 · |V |e and k = d0.1 · |V |e) can be solved to proven
optimality in less than 1 and 100 seconds, respectively.

24

5 10 20 40 5 10 20 40 5 10 20 40 5 10 20 40 5 10 20 40

1e−04

1e−02

1e+00

1e+02

t [
s]

k [%]k [%]

|V||V| 5050 7575 100100 125125 150150

#OPT#OPT
#PREP#PREP

1111

77

1111

66

1111

44

1111

22

1111

55

1111

44

1111

11

1111

11

1111

22

1111

22

1111

11

44

00

1111

44

1111

11

99

11

44

00

1111

22

1111

00

77

00

44

00

Figure 5: The total CPU times on the random graphs of Set A, grouped by the network size and the
interdiction budget.

CLIQUE-INTER BILEVEL

|V | # # solved time exit gap root gap # solved time exit gap root gap

50 44 44 0.01 - 0.16 28 68.58 6.44 8.50

75 44 44 1.45 - 0.41 14 120.19 9.47 10.91

100 44 37 9.30 1.00 0.98 7 164.42 12.65 13.11

125 44 35 13.43 1.33 1.20 2 135.33 13.88 14.73

150 44 33 27.23 1.91 1.43 1 397.52 16.42 16.39

Table 1: Comparison with state-of-the-art bilevel solver (BILEVEL) from [18] and our approach (CLIQUE-INTER).

7.4. Comparison with a state-of-the-art bilevel solver

In Table 1, we compare the results of the state-of-the-art bilevel and interdiction game solver
from [18] (called BILEVEL) with our new approach CLIQUE-INTER. Each row corresponds to
44 instances of Set A grouped by the number of vertices |V | ∈ {50, 75, 100, 125, 150}. For this
test we used the same time limit of 600 seconds for each run. For each of the two solvers, we
report the following values: the number of solved instances per group (#solved), the average
computing time in seconds for those instances that were solved to optimality, the average
exit gap after the time limit is reached (considering only those instances which were not
solved to optimality) and the average root gap (over all instances). The exit gap is calculated
as exit gap = UB − dLBe, where UB refers to the global upper bound computed by the
corresponding method, and LB refers to the global lower bound of the same method. In order
to measure the quality of lower bounds at the root node of the B&C tree (denoted by LBr), we
compute them with respect to the best known solution (BKS) as root gap = BKS −dLBre.

25

Table 1 demonstrates that our new approach greatly outperforms the general-purpose bilevel
solver of [18] by several orders of magnitude. All instances with 50 and 75 vertices are solved
to optimality in less than 2 seconds on average by CLIQUE-INTER, whereas the bilevel solver
manages to solve only 2/3 and 1/3 of the instances, respectively. Similar behavior can be
observed for larger instances, where, for example, for graphs with 150 vertices the bilevel
solver manages to solve only a single instance in more than 5 minutes, whereas we solve 70%
of them, in less than 1/2 minute on average. These results can be easily explained by the
quality of root bounds: whereas the average absolute gaps at the root node for our approach
are between 0.16 and 1.4, those of BILEVEL range between 8.5 and 16.4. This has a strong
impact on the size of the B&C tree. For example, for 28 instances of size 50 solved by both
approaches, CLIQUE-INTER requires an average number of 1.5 B&C nodes, compared to 1960
nodes required by BILEVEL.

7.5. Performance of CLIQUE-INTER on DIMACS2 graphs and large real-world networks

In Table 2, we show the performance of CLIQUE-INTER on the dense graphs of Set B. All
these instances have 200 vertices and the table reports their density (µ), the size of maximum
cliques (ω(G)) and the CPU time necessary to compute it using IMCQ (timeω). We test two
levels of interdiction budget, i.e., k = 20 and k = 40. For these tests we set a time limit of
3600 seconds and T.L. is reported for the instances not solved to proven optimality. For each
value of k, we report the value of the final lower and upper bounds (LB and UB), the total
CPU time spent in solving formulation (11)-(14) and the values of the initial lower and upper
bounds (`min and `max). In case an instance is solved to proven optimality then LB=UB, in
case an instance is solved during the preprocessing `min = `max. In this latter case, we do
not report the CPU time since it is not necessary to tackle formulation (11)-(14), and the
time necessary to compute `min and `max is negligible. The time taken by IMCQ to find ω(G)
for the instances of Set B is often negligible, except for sanr200 0.9 , where it takes 1.9
seconds. CLIQUE-INTER is able to solve 12 and 8 instances out of 14 instances, for k = 20 and
k = 40, respectively. From the table, we can see that the gap between `min and `max is small
for all instances except in a few cases, e.g., for san200 0.9 1 and san200 0.9 2 and k = 40
where the gap is 10 and 8, respectively. In most of the remaining instances the initial gap
is less than 3, showing that also for this set of instances `min and `max provide good-quality
lower and upper bounds. For k = 20, three instances can be solved to proven optimality by
preprocessing alone and, for k = 40, two instances are solved by preprocessing. As already
observed on the instance Set A, increasing the level of budget increases the computational
difficulty as well.

In Table 3, we show the performance of CLIQUE-INTER on the large real-world networks of
Set C. As discussed in Section 7.2, this set is composed by 30 sparse graphs with up to 100K
vertices and 3200K edges. The table reports for each instance the number of vertices (|V |),
the number of edges (|E|), the size of maximum clique (ω(G)) and the CPU time necessary
to compute it using IMCQ (timeω). For these tests, we used a time limit of 3600 seconds for
each run. Since these graphs are large, to test realistic levels of interdiction budget, we set
k = d0.005 · |V |e and k = d0.01 · |V |e. For this set of instances the time to compute `min is
not always negligible and we report it in the column timep. As explained in Section 4.1, `min

is computed starting from a set Qp = (C1, . . . , Cp) of p vertex-disjoint cliques of G and the

26

CLIQUE-INTER k = 20 CLIQUE-INTER k = 40

µ ω(G) timeω LB UB time `min `max LB UB time `min `max

brock200 1 0.75 21 0.2 18 18 938.2 16 18 15 17 T.L. 13 17
brock200 2 0.50 12 0.0 9 9 0.1 8 10 8 9 T.L. 7 9
brock200 3 0.61 15 0.0 12 12 1.0 11 13 11 11 160.6 9 12
brock200 4 0.66 17 0.0 14 14 2421.8 12 15 12 13 T.L. 10 13
c-fat200-1 0.08 12 0.0 10 10 - 10 10 9 9 - 9 9
c-fat200-2 0.16 24 0.0 20 20 - 20 20 18 18 - 18 18
c-fat200-5 0.43 58 0.0 52 52 0.0 51 52 46 46 0.0 44 46
san200 0.7 1 0.70 30 0.0 17 17 5.4 16 18 15 15 134.4 14 17
san200 0.7 2 0.70 18 0.0 14 14 16.7 13 15 12 12 5.6 11 15
san200 0.9 1 0.90 70 0.0 50 50 - 50 50 40 40 13.3 39 49
san200 0.9 2 0.90 60 0.1 41 41 3.2 41 42 34 34 2266.9 33 41
san200 0.9 3 0.90 44 0.0 33 34 T.L. 32 37 28 31 T.L. 26 34
sanr200 0.7 0.70 18 0.1 15 15 29.2 14 16 13 14 T.L. 11 15
sanr200 0.9 0.90 42 1.9 33 35 T.L. 31 35 28 32 T.L. 25 33
gen200 p0.9 44 0.90 44 0.1 34 34 674.4 32 38 29 31 T.L. 26 36
gen200 p0.9 55 0.90 55 0.1 38 38 62.4 37 41 32 33 T.L. 29 40

Table 2: Computational results obtained by the CLIQUE-INTER on the instances with |V | = 200 from the 2nd
DIMACS Challenge [17].

minimum p, which provides the best `min, is determined by the level of interdiction budget k.
In the table, we only report the CPU time necessary to compute `min for k = d0.01 · |V |e, the
time to compute `min for the k = d0.001 · |V |e is smaller. The table reports for each instance
the optimal solution value (OPT ∗) and, in case the time limit is reached, we report T.L. and
OPT ∗ is the best known UB. As for Table 2, the total CPU time spent in solving formulation
(11)-(14) is reported in the column “time”. In the column |Vprep|, we report the number of
vertices that can be removed from the graph, as explained in Section 4.2. We report the value
of the initial upper and lower bound `min and `max and the number of CI cuts separated and
the number of B&C nodes explored solving formulation (11)-(14). CLIQUE-INTER is able to
solve to proven optimality 28 out of 30 instances for both levels of interdiction budget. In the
preprocessing phase, 6 and 4 instances are solved for k = d0.005 · |V |e and k = d0.01 · |V |e,
respectively. The gap between `min and `max is relatively small also for this set of instances,
with a few exceptions, e.g, for socfb-UF and k = d0.01 · |V |e the gap is 15 or for socfb-UIllinois
and k = d0.01 · |V |e the gap is 11. The graph reduction technique is crucial for these set of
large instances. The table shows that huge reductions can be achieved, i.e., if we compare the
size of the initial set of vertices |V | and the number of vertices that can be discarded |Vprep|,
we can see that formulation (11)-(14) is actually solved on a small fraction of vertices. This
reduction is more effective for small values of interdiction budget k. Finally, the columns
“cuts” and “nodes” reveal that the number of CI cuts separated and B&C nodes explored is
often small. Only in some cases, several hundreds of cuts are separated using IMCQ and the
number of explored nodes is typically smaller that 500. In some rare cases the number of
explored nodes can be high, as in Slashdot0902, which requires 14105 nodes.

27

7.6. Clique-interdiction curve of a graph

We define the resilience of (social) networks with respect to clique-interdiction attacks as the
relative decrease of the size of the maximum clique in function of the interdiction budget.
This can also seen as the ability of the network to survive a clique-interdiction attack.

We plot the size of an optimal CIP solution (as a percentage of the size of a maximum clique
on the original graph) for different values of the interdiction budget k. Figure 6 depicts this
relation for two quite different types of networks: very sparse social networks (taken from
the DIMACS10 data set) versus very dense graphs (taken from the DIMACS2 data set). On
the x axis we plot the percentage of the total number vertices (representing the interdiction
budget k). On the y axis, we provide the relative size of the optimal CIP solution compared
to the value of ω(G). Not surprisingly, the obtained results indicate that significantly higher
interdiction budget is needed for dense networks. With the interdiction budget of only 1%
of vertices, one can reduce the size of the maximum clique between 40% and 95% in case of
social networks (see astro-ph and memplus), whereas dense networks are much more resistant
to this kind of attacks. With the 1% of interdiction budget, the size of the maximum clique
can be reduced only by a few percent in most of the cases shown in Figure 6.

The obtained results, both in terms of CPU times and the size of networks that can be solved
to optimality, indicate that our solver can be used as a powerful decision making tool for
analyzing and assessing the network resilience against clique-interdiction attacks. Measuring
the clique-interdiction number can provide to decision makers an important information about
the structure of the network concerning its densely connected components. Our exact solver
can also be used for simulation purposes, to find out which vertices need to be protected (in
case of a clique-interdiction attack).

8. Extensions and conclusions

In this article we studied the interdiction problem in a network in which the leader chooses
up to k vertices to delete, so as to minimize the clique number determined by the follower
in the resulting network. We studied the problem complexity for special graphs, and we
derived a single-level ILP formulation with an exponential number of constraints called clique-
interdiction cuts. In a polyhedral study of the underlying polytope, we provided necessary
and sufficient conditions for these cuts to be facet defining and we designed effective lifting
procedures. The separation of these cuts required development of an efficient exact solver
for the maximum clique problem, which we tailored for the clique interdiction problem. The
deep understanding of the underlying problem allowed us to derive tight combinatorial lower
and upper bounds, along with an efficient preprocessing phase for drastically reducing the
problem size. Our framework is the first one being able to solve to proven optimality real-
world large-scale (social) networks from various publicly available resources, thus, drastically
outperforming the state-of-the-art general purpose bilevel solver from Fischetti et al. [18]. This
shows that significant improvements (in terms of the size of input networks and computing
times) can be achieved by tailored exact algorithms for particular classes of interdiction
problems. The code will be made available online (after the revision process is finished), to
help decision makers analyze the resilience of networks to maintain a large clique after a
clique-interdiction attack.

28

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10

O
P
T
 /

�

(G
)

k [%]

netscience
power
hep-th

PGPgiantcompo
astro-ph

cond-mat
memplus

as-22july06
cond-mat-2003
cond-mat-2005

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10

O
P
T
 /

�

(G
)

k [%]

brock200_2
brock200_3
brock200_4

c-fat200-1
c-fat200-2
c-fat200-5

san200_0.7_1
san200_0.7_2
san200_0.9_1
san200_0.9_9

Figure 6: Clique-interdiction curves for social networks (up) and dense graphs (down).

29

C
L
I
Q
U
E
-
I
N
T
E
R

k
=
d0
.0

0
5
·|
V
|e

C
L
I
Q
U
E
-
I
N
T
E
R

k
=
d0
.0

1
·|
V
|e

|V
|

|E
|
ω

(G
)

ti
m

e ω
ti

m
e p

O
P

T
∗

ti
m

e
|V

p
r
e
p
|
` m

in
` m

a
x

cu
ts

n
o
d

es
O

P
T

∗
ti

m
e
|V

p
r
e
p
|
` m

in
` m

a
x

cu
ts

n
o
d

es

P
G
P
g
i
a
n
t
c
o
m
p
o

10
,6

80
24

,3
16

25
0
.0

0
.0

1
3

0
.0

1
0
,4

0
9

1
3

1
6

11
0

9
0
.0

1
0
,0

4
7

9
1
2

3
1

2

a
s
t
r
o
-
p
h

16
,7

06
12

1,
25

1
57

0
.0

0
.1

4
0

0
.0

1
6
,2

0
6

4
0

4
1

0
0

3
4

0
.0

1
5
,8

7
2

3
4

3
5

4
0

m
e
m
p
l
u
s

17
,7

58
54

,1
96

97
0
.0

0
.1

1
8

0
.0

1
7
,5

6
9

1
8

3
2

1
0

4
0
.0

1
5
,0

3
0

4
5

9
0

a
s
-
2
2
j
u
l
y
0
6

22
,9

63
48

,4
36

17
0
.0

0
.7

3
-

-
3

3
-

-
3

-
-

3
3

-
-

c
o
n
d
-
m
a
t
-
2
0
0
5

40
,4

21
17

5,
69

1
30

0
.0

0
.8

1
4

0
.1

3
8
,2

7
0

1
3

1
5

12
0

1
1

0
.3

3
6
,8

6
6

1
1

1
3

4
7

3

C
i
t
-
H
e
p
P
h

34
,5

46
42

0,
87

7
19

0
.0

4
.3

1
1

2
.8

1
5
,4

9
3

1
1

1
4

60
0

9
5
2
.4

1
2
,5

0
1

9
1
3

5
2
5

2
1
8
8

S
o
c
-
E
p
i
n
i
o
n
s
1

75
,8

79
40

5,
74

0
23

0
.1

1
7
.6

8
6
2
.7

6
4
,8

5
9

8
1
2

3
39

1
3
8

6
1
1
4
.2

6
1
,9

6
8

6
9

7
1
9

1
2
6

S
l
a
s
h
d
o
t
0
9
0
2

82
,1

68
50

4,
23

0
27

0
.0

3
7
.9

4
9
2
1
.5

5
0
,7

3
6

4
6

2
0
3
5

1
4
1
0
5

4
9
2
.5

5
0
,7

3
6

4
5

3
8
0

0

s
o
c
f
b
-
U
I
l
l
i
n
o
i
s

30
,7

95
1,

26
4,

42
1

57
0
.5

7
.9

3
3

2
4
.4

1
0
,4

5
6

3
3

4
2

5
7

1
3

2
7

4
1
.6

8
2
9
0

2
7

3
8

1
0
6

4
4

i
a
-
e
m
a
i
l
-
E
U

32
,4

30
54

,3
97

12
0
.0

0
.5

4
0
.6

3
0
,3

7
5

4
6

1
7
8

4
7

3
0
.5

2
9
,2

1
2

3
4

1
6
5

3

r
g
g
n
2
1
5
s
0

32
,7

68
16

0,
24

0
13

0
.0

0
.7

1
0

-
-

1
0

1
0

-
-

9
0
.2

3
0
,8

4
8

9
1
0

3
5

0

i
a
-
e
n
r
o
n
-
l
a
r
g
e

33
,6

96
18

0,
81

1
20

0
.0

1
.5

9
2
.2

2
7
,7

9
1

8
1
2

81
1
5

7
2
9
.5

2
6
,6

5
1

7
1
0

9
5
7

2
8
2
7

s
o
c
f
b
-
U
F

35
,1

11
1,

46
5,

65
4

55
0
.3

7
.2

3
7

1
7
.8

1
4
,2

6
4

3
7

4
8

7
4

1
8

2
9

8
7
.8

1
0
,7

0
8

2
9

4
4

2
7
2

2
3
4

s
o
c
f
b
-
T
e
x
a
s
8
4

36
,3

64
1,

59
0,

65
1

51
0
.3

8
.5

3
0

2
4
.6

1
0
,7

0
6

3
0

4
3

6
6

1
9

2
5

7
4
.3

8
,7

0
4

2
5

3
6

1
6
8

1
0
4

t
e
c
h
-
i
n
t
e
r
n
e
t
-
a
s

40
,1

64
85

,1
23

16
0
.0

2
.8

3
1
.4

3
1
,7

8
3

3
4

1
5
2

4
3

-
-

3
3

-
-

f
e
-
b
o
d
y

45
,0

87
16

3,
73

4
6

0
.1

5
.4

4
1
.8

2
,2

5
9

4
5

2
7

0
4

1
.8

2
2
5
9

4
5

2
7

0

s
c
-
n
a
s
a
s
r
b

54
,8

70
1,

31
1,

22
7

24
0
.1

7
.3

2
4

-
-

2
4

2
4

-
-

2
3

1
4
5
.5

1
,1

9
5

2
3

2
4

1
2
4
9

2
5
4

s
o
c
-
b
r
i
g
h
t
k
i
t
e

56
,7

39
21

2,
94

5
37

0
.0

3
.7

7
1
5
.6

4
7
,1

5
9

7
1
1

4
82

3
1
4

6
1
1
.2

4
4
,9

1
9

6
8

3
2
2

1
8

s
o
c
-
l
o
c
-
b
r
i
g
h
t
k
i
t
e

58
,2

28
21

4,
07

8
37

0
.0

4
.0

7
1
1
.9

4
8
,6

4
0

7
1
1

3
90

1
6
9

6
1
2
.6

4
6
,3

8
4

6
8

3
4
7

1
8

t
e
c
h
-
p
2
p
-
g
n
u
t
e
l
l
a

62
,5

61
14

7,
87

8
4

0
.1

1
5
.4

3
-

-
3

3
-

-
3

-
-

3
3

-
-

d
e
l
a
u
n
a
y
n
1
6

65
,5

36
19

6,
57

5
4

0
.2

7
0
.9

4
-

-
4

4
-

-
4

-
-

4
4

-
-

r
g
g
n
2
1
6
s
0

65
,5

36
34

2,
12

7
14

0
.0

5
.1

1
0

0
.3

6
3
,6

3
7

1
0

1
1

26
0

9
1
.5

5
9
,5

3
4

9
1
0

5
7

0

s
o
c
-
t
h
e
m
a
r
k
e
r

69
,4

13
1,

64
4,

84
3

22
2
.1

6
8
.0

8
T

.L
.

3
5
,6

7
8

7
1
0

1
6
8
5

4
8
0
6

6
T

.L
.

3
1
,1

0
1

5
8

2
1
2
4

1
3
1
1

r
e
c
-
e
a
c
h
m
o
v
i
e

74
,4

24
1,

63
4,

74
3

12
0
.7

1
8
.5

3
-

-
3

3
-

-
2

3
6
7
.3

1
3
6
6
9

2
3

3
8
5
4

5
6
9

f
e
-
t
o
o
t
h

78
,1

36
45

2,
59

1
5

0
.5

5
8
.0

4
1
8
.9

7
4

5
30

0
4

1
9
.0

7
4

5
3
0

0

s
c
-
p
k
u
s
t
k
1
1

87
,8

04
2,

56
5,

05
4

36
1
.1

5
4
.9

2
4

7
0
.7

2
,7

1
2

2
4

3
0

6
2

4
2
4

5
7
.1

2
,7

1
2

2
4

3
0

5
1

0

s
o
c
-
B
l
o
g
C
a
t
a
l
o
g

88
,7

84
2,

09
3,

19
5

45
1
1
.7

1
4
9
.8

1
1

T
.L

.
5
1
,6

0
7

8
1
2

1
3
2
7

1
3
7
6

8
T

.L
.

4
6
,2

4
0

6
9

2
2
8
1

1
6
3
7

i
a
-
w
i
k
i
-
T
a
l
k

92
,1

17
36

0,
76

7
15

0
.2

1
6
.6

5
4
9
.2

7
2
,6

7
8

4
6

3
4
5

2
3

4
8
7
.4

7
2
,6

7
8

4
5

7
1
1

1
4

s
c
-
p
k
u
s
t
k
1
3

94
,8

93
3,

26
0,

96
7

36
1
.3

3
1
0
.0

3
5

7
2
4
.9

2
,3

6
0

3
5

3
6

5
35

8
0

3
4

8
7
9
.2

2
,3

5
4

3
4

3
6

6
1
3

3
8

f
e
r
o
t
o
r

99
,6

17
66

2,
43

1
5

1
.0

1
8
2
.8

4
2
0
0
.5

0
4

5
1
8
4

0
4

2
0
0
.2

0
4

5
1
8
4

0

T
ab

le
3:

C
om

p
u

ta
ti

on
al

re
su

lt
s

o
b

ta
in

ed
b
y

th
e
C
L
I
Q
U
E
-
I
N
T
E
R

o
n

se
le

ce
te

d
la

rg
e-

sc
a
le

re
a
l-

w
o
rl

d
n

et
w

o
rk

s.

30

Extensions. In some applications where the concept of clique may be too restrictive to define a
community, clique-relaxations can be used instead, see [7, 36]. Clique-relaxations are obtained
by relaxing some of the clique defining properties, and our exact solution framework can
be extended to the interdiction problems in which the follower solves the maximum relaxed
clique problem, as long as the latter one satisfies the hereditary property. Relaxed cliques
with hereditary properties are obtained by relaxing: the degree of the vertices (s-plex), the
distance between the vertices (s-clique), the density of the edges (s-defective clique) and the
connectivity between the vertices (s-bundle). Precise definition of these problems can be
found in e.g., [36]. One can show that our single-level reformulation (and accordingly the
branch-and-cut algorithm) can be extended for solving this class of interdiction problems. The
key element of the B&C implementation would be an efficient exact solver for the maximum
relaxed clique problem at hand. We point out however that the theory and methodology
derived in this paper does not directly carry over to solving interdiction problem in which the
follower maximizes a weighted hereditary problem on a network. These problems deserve a
special attention and will be subject of our future studies.

Other interesting problem extensions concern the introduction of multiple leaders (that
could act in a collaborative or competitive way), multiple followers, or both (see, e.g., [50]).
Similarly, a multi-period setting could be worthy of investigation, as well as allowing incomplete
information (like, e.g., in Stackelberg security games, [23, 27]).

Finally, it would be interesting to combine other centrality measures with the clique number
for measuring the cohesiveness of a network. That way, one could capture vertices which
are the most vital ones with respect to different measures simultaneously (as for example in
[41], where the authors combine maximum cliques with the betweenness centrality). A very
interesting line of research would be to take into consideration the cohesiveness of a network
and, at same time, its connectivity. Studying the most vital vertices with respect to such
new measures of cohesiveness would certainly provide some new and relevant insights for the
analysis of (social) networks.

Acknowledgment

Valuable comments of four anonymous reviewers are highly appreciated.
Ivana Ljubić is partially funded by the Vienna Science and Technology Fund (WWTF) through
project ICT15-014. Pablo San Segundo is funded by the Spanish Ministry of Economy and
Competitiveness (grants DPI 2014-53525-C3-1-R, DPI2017-86915-C3-3-R).

References

References

[1] 10th DIMACS Implementation Challenge - Graph Partitioning and Graph Clustering,
Nov 20, 2017. URL https://www.cc.gatech.edu/dimacs10/.

[2] 2017 Terrorist Attacks, Nov 20, 2017. URL http://storymaps.esri.com/stories/

terrorist-attacks/.

31

[3] D. Adjiashvili, A. Baggio, and R. Zenklusen. Firefighting on trees beyond integrality gaps.
In P. N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 2364–2383. SIAM, 2017.

[4] N. Assimakopoulos. A network interdiction model for hospital infection control. Com-
puters in Biology and Medicine, 17(6):413 – 422, 1987.

[5] A. Baggio. Towards Optimal Approximations for Firefighting and Related Problems. PhD
thesis, ETH Zürich, 2016.

[6] E. Balas and C. S. Yu. Finding a maximum clique in an arbitrary graph. SIAM J.
Comput, 15(4):1054–1068, 1986.

[7] B. Balasundaram, S. Butenko, and I. V. Hicks. Clique relaxations in social network
analysis: The maximum k-plex problem. Operatons Research, 59(1):133–142, 2011.

[8] V. Batagelj and M. Zaversnik. Fast algorithms for determining (generalized) core groups
in social networks. Adv. Data Analysis and Classification, 5(2):129–145, 2011.

[9] C. Bazgan, S. Toubaline, and Z. Tuza. The most vital nodes with respect to independent
set and vertex cover. Discrete Applied Mathematics, 159:1933 – 1946, 2011.

[10] N. Berry, T. Ko, T. Moy, J. Smrcka, J. Turnley, and B. Wu. Emergent Clique Formation
in Terrorist Recruitment. In The AAAI-04 Workshop on Agent Organizations: Theory
and Practice, July 25, 2004, San José, California. National Conference on Artificial
Intelligence, 2004.

[11] S. Borgatti, M. Everett, and J. Johnson. Analyzing Social Networks. Sage, 2018.

[12] P. Cappanera and M. P. Scaparra. Optimal allocation of protective resources in shortest-
path networks. Transportation Science, 45(1):64–80, 2011.

[13] A. Caprara, M. Carvalho, A. Lodi, and G. J. Woeginger. Bilevel knapsack with interdiction
constraints. INFORMS Journal on Computing, 28(2):319–333, 2016.

[14] H. Chen, W. Chung, J. J. Xu, G. Wang, Y. Qin, and M. Chau. Crime data mining: A
general framework and some examples. Computer, 37(4):50–56, 2004.

[15] K. Cormican, D. Morton, and K. Wood. Stochastic network interdiction. Operations
Research, 46(2):184 – 197, 1998.

[16] S. Dempe. Bilevel optimization: theory, algorithms and applications. Optimization Online,
2018. Preprint 2018-11, Fakultät für Mathematik und Informatik, TU Bergakademie
Freiberg.

[17] DIMACS2. 2nd DIMACS Implementation Challenge - NP Hard Problems: Maximum
Clique, Graph Coloring, and Satisfiability, Nov 20, 2017. URL http://dimacs.rutgers.

edu/Challenges/.

32

[18] M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. A new general-purpose algorithm for
mixed-integer bilevel linear programs. Operations Research, 65(60):1615–1637, 2017.

[19] M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. Interdiction games under monotonicity.
INFORMS Journal on Computing, 2018. To appear.

[20] F. Furini, I. Ljubić, E. Malaguti, and P. Paronuzzi. On integer and bilevel formulations
for the k-vertex cut problem. submitted.

[21] C. Garćıa-Mart́ınez, C. Blum, F. Rodriguez, and M. Lozano. The firefighter problem:
Empirical results on random graphs. Computers & Operations Research, 60:55 – 66, 2015.

[22] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory
of NP-completeness. W.H. Freeman, San Francisco, 1979.

[23] Q. Guo, B. An, Y. Vorobeychik, L. Tran-Thanh, J. Gan, and C. Miao. Coalitional
security games. In Proceedings of the 2016 International Conference on Autonomous
Agents & Multiagent Systems, AAMAS ’16, pages 159–167, Richland, SC, 2016.
International Foundation for Autonomous Agents and Multiagent Systems.

[24] D. Kempe, J. Kleinberg, and É. Tardos. Influential nodes in a diffusion model for social
networks. In L. Caires, G. F. Italiano, L. Monteiro, C. Palamidessi, and M. Yung, editors,
Automata, Languages and Programming, pages 1127–1138, Berlin, Heidelberg, 2005.
Springer Berlin Heidelberg. ISBN 978-3-540-31691-6.

[25] H. Kim and N. Feamster. Improving network management with software defined net-
working. IEEE Communications Magazine, 51(2):114–119, 2013.

[26] K.-I. Ko and C.-L. Lin. On the Complexity of Min-Max Optimization Problems and their
Approximation, pages 219–239. Springer US, Boston, MA, 1995.

[27] F. Lagos, F. Ordóñez, and M. Labbé. A branch and price algorithm for a Stackelberg
security game. Computers & Industrial Engineering, 111:216–227, 2017.

[28] M. Lalou, M. A. Tahraoui, and H. Kheddouci. The critical node detection problem in
networks: A survey. Computer Science Review, 28:92 – 117, 2018. ISSN 1574-0137.

[29] C. Li, H. Jiang, and F. Manyà. On minimization of the number of branches in branch-
and-bound algorithms for the maximum clique problem. Computers & OR, 84:1–15,
2017.

[30] L. Lozano and J. Smith. A value-function-based exact approach for the bilevel mixed
integer programming problem. Operations Research, 65(3):768–786, 2017.

[31] F. Mahdavi Pajouh, V. Boginski, and E. L. Pasiliao. Minimum vertex blocker clique
problem. Networks, 64(1):48–64, 2014.

[32] J. Moody and J. Coleman. Clustering and Cohesion in Networks: Concepts and Measures,
pages 906–912. 2015.

33

[33] J. Moody and D. R. White. Structural cohesion and embeddedness: A hierarchical
concept of social groups. American Sociological Review, 68(1):103–127, 2003.

[34] G. L. Nemhauser and L. A. Wolsey. Integer and Combinatorial Optimization, volume 18.
Wiley New York, 1988.

[35] C. Papadimitriou. Computational Complexity. Addison-Wesley, Reading, MA, 1994.

[36] J. Pattillo, N. Youssef, and S. Butenko. On clique relaxation models in network analysis.
European Journal of Operational Research, 226(1):9–18, 2013.

[37] H. D. Ratliff, G. T. Sicilia, and S. H. Lubore. Finding the n most vital links in flow
networks. Management Science, 21(5):531–539, 1975.

[38] R. B. Rothenberg, J. J. Potterat, and D. E. Woodhouse. Personal risk taking and
the spread of disease: Beyond core groups. The Journal of Infectious Diseases, 174:
S144–S149, 1996.

[39] V. Rutenburg. Complexity classification of truth maintenance systems. In C. Choffrut
and M. Jantzen, editors, STACS 91: 8th Annual Symposium on Theoretical Aspects of
Computer Science Hamburg, Germany, February 14–16, 1991 Proceedings, pages 372–383.
Springer Berlin Heidelberg, 1991.

[40] V. Rutenburg. Propositional truth maintenance systems: Classification and complexity
analysis. Annals of Mathematics and Artificial Intelligence, 10(3):207–231, 1994.

[41] M. Rysz, F. M. Pajouh, and E. L. Pasiliao. Finding clique clusters with the highest
betweenness centrality. European Journal of Operational Research, 271(1):155–164, 2018.

[42] M. Sageman. Understanding Terrorist Networks. University of Pennsylvania Press,
Philadelphia, PA, USA, 2004.

[43] R. J. Sampson and W. B. Groves. Community structure and crime: Testing social-
disorganization theory. American Journal of Sociology, 94(4):774–802, 1989.

[44] P. San Segundo and C. Tapia. Relaxed approximate coloring in exact maximum clique
search. Computers & OR, 44:185–192, 2014.

[45] P. San Segundo, D. Rodriguez-Losada, and A. Jimenez. An exact bit-parallel algorithm
for the maximum clique problem. Computers & OR, 38(2):571–581, 2011.

[46] P. San Segundo, F. Matia, D. Rodriguez-Losada, and M. Hernando. An improved bit
parallel exact maximum clique algorithm. Optimization Letters, 7(3):467–479, 2013.

[47] P. San Segundo, A. Nikolaev, and M. Batsyn. Infra-chromatic bound for exact maximum
clique search. Computers & OR, 64:293–303, 2015.

[48] P. San Segundo, A. Lopez, and P. M. Pardalos. A new exact maximum clique algorithm
for large and massive sparse graphs. Computers & OR, 66:81–94, 2016.

34

[49] P. San Segundo, A. Nikolaev, M. Batsyn, and P. M. Pardalos. Improved infra-chromatic
bound for exact maximum clique search. Informatica, Lith. Acad. Sci., 27(2):463–487,
2016.

[50] A. Sinha, P. Malo, A. Frantsev, and K. Deb. Finding optimal strategies in a multi-period
multi-leader–follower Stackelberg game using an evolutionary algorithm. Computers &
Operations Research, 41:374 – 385, 2014.

[51] L. V. Snyder, Z. Atan, P. Peng, Y. Rong, A. J. Schmitt, and B. Sinsoysal. OR/MS
models for supply chain disruptions: a review. IIE Transactions, 48(2):89–109, 2016.

[52] Y. Song and S. Shen. Risk averse shortest path interdiction. INFORMS Journal on
Computing, 28(3):527–539, 2016.

[53] Y. Tang, J.-P. P. Richard, and J. C. Smith. A class of algorithms for mixed-integer
bilevel min–max optimization. Journal of Global Optimization, 66(2):225–262, 2016.

[54] Z. Wang, Y. Yin, and B. An. Computing optimal monitoring strategy for detecting
terrorist plots. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence,
AAAI’16, pages 637–643. AAAI Press, 2016.

[55] A. Washburn and K. Wood. Two-person zero-sum games for network interdiction.
Operations Research, 43(2):243–251, 1995.

[56] R. K. Wood. Bilevel Network Interdiction Models: Formulations and Solutions. John
Wiley & Sons, Inc., 2010.

35

