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Abstract

In this paper, we provide a one-to-one correspondence between the solution Y of a
BSDE with singular terminal condition and the solution H of a BSDE with singular
generator. This result provides the precise asymptotic behavior of Y close to the final
time and enlarges the uniqueness result to a wider class of generators.
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1 Introduction

This paper is devoted to the study of the asymptotic behavior of the solution of backward
stochastic differential equations (BSDEs) with singular terminal condition. We adopt from
[26] and [21] the notion of a weak (super) solution (Y, Z) to a BSDE of the following form

− dYt =
1

ηt
f(Yt)dt+ λtdt− ZtdWt (1)

where W is a d-dimensional Brownian motion on a probability space (Ω,F ,P) with a filtra-
tion F = (Ft)t≥0. The filtration F is the natural filtration generated by W and is supposed
to be complete and right continuous. The function f : R → R is called the driver (or
generator) of the BSDE. The particularity here is that we allow the terminal condition ξ to
be singular, in the sense that ξ = +∞ a.s.
∗This work began during the visit of P. Graewe to Le Mans. His stay was financially supported by the
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Since the seminal paper by Pardoux and Peng [23] BSDEs have proved to be a powerful
tool to solve stochastic optimal control problems (see e.g. the survey article [8] or the
book [25]). BSDEs with singular terminal condition provide a purely probabilistic solution
of a stochastic control problem with a terminal constraint on the controlled process. The
analysis of optimal control problems with state constraints on the terminal value is motivated
by models of optimal portfolio liquidation under stochastic price impact. The traditional
assumption that all trades can be settled without impact on market dynamics is not always
appropriate when investors need to close large positions over short time periods. In recent
years models of optimal portfolio liquidation have been widely developed, see, e.g. [1], [2],
[10], [11], [15], or [19], among many others. In [4], the following problem is considered:
minimizing the cost functional

J(X) = E
[∫ T

0
(µs|αs|p + λs|Xs|p) ds

]
(2)

over all progressively measurable processes X that satisfy the dynamics

Xs = x+

∫ s

0
αudu

with the terminal constraint that XT = 0 a.s. Here p > 1 and the processes µ and λ are
non-negative and progressively measurable. In this framework the state process X denotes
the agent’s position in the financial market. At each point in time t she can trade in the
primary venue at a rate αt which generates costs µt|αt|p incurred by the stochastic price
impact parameter ηt. The term γt|Xt|p can be understood as a measure of risk associated
to the open position. J(X) thus represents the overall expected costs for closing an initial
position x over the time period [0, T ] using strategy X. In [4], optimal strategies and the
value function of this control problem (2) are characterized with the BSDE

− dYt = −(p− 1)
Y q
t

µq−1
t

dt+ λtdt− ZtdWt (3)

with lim
t→T

Yt = +∞. Here q > 1 is the Hölder conjugate of p. The generator f is here a

polynomial function. Variants of the position targeting problem (2) have been studied in
[5], [12], [13] or [29]. Note that these problems are particular cases of the stochastic calculus
of variations (see [3]).

Let us explain the methodology to obtain a solution for the BSDE (3). The most common
approach in the literature is the so-called penalization approach, see, e.g., [26], [27], [4], [12],
[21], and the references therein. The idea of the penalization approach is to relax the binding
liquidation constraint by penalizing open position in the underlying liquidation problem. In
[4], as in [21] for more general driver, the authors use the penalization approach, replacing
the singular terminal by a constant n and letting n go to +∞. The convergence is obtained
by a comparison principle for solution of BSDEs (see [20] or [24]). In [13], the approach
consists in the study of the precise asymptotic behavior at time T of the solution Y of (3).
Roughly speaking, the major singular term of Y is then removed to obtain a non-singular
problem. The key of this asymptotic approach is to establish sharp a priori estimates of the
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singular solution at the terminal time. In [13], the authors consider a time-homogeneous
Markov setting and obtain the a priori estimates and uniqueness by establishing a general
comparison principle for singular viscosity solution to (3). This results are based on time-
shifting arguments, applied similar before in [26], which in general do not apply in a non-
time-homogeneous setting. However, it is outlined in [13] how the shifting argument may
be applied in non-Markov settings to obtain sharp a priori estimates of the singular solution
to (3). One major result of [13] is the uniqueness of the solution of (3) (under boundedness
assumptions on the coefficients µ and λ).

Let us outline in which directions our findings generalize some results from these papers.
In [21] the generator may depend also on Z in a non trivial way; here our generator has a
special form. However in the previously mentioned papers f is assumed to be a polynomial
function or of polynomial growth w.r.t. y, that is f(y) ≤ −y|y|q. Here we essentially assume
that 1/f is integrable on the neighborhood of +∞. If η and λ are deterministic, the BSDE
becomes an ODE and this condition is necessary and sufficient to ensure that the solution
can be equal to +∞ at time T , but finite at any time t < T . Under this condition (called
(C1)), we prove existence of a minimal solution (Y,ZY ) of the BSDE (1). The function
f(y) = −(y+1)| log(y+1)|q is an example satisfying (C1) but not covered by the preceding
papers.

Our second main result concerns the decomposition of this minimal solution. We prove
that Y is equal to:

Yt = φ

(
E
[∫ T

t

1

ηs
ds

∣∣∣∣Ft])+ ψ

(
T − t
η?

)
Ht, ∀t ∈ [0, T ], (4)

where

• φ solves the ODE: φ′ = f ◦ φ with initial condition φ(0) = +∞ and ψ = −φ′,

• η? is the deterministic upper bound on the process η.

The processH is the minimal non-negative solution of a BSDE with terminal condition 0 and
with a singular generator F in the sense of [17] (Theorem 1). As a consequence, we provide
a one-to-one correspondence between the BSDE (1) with singular terminal condition and a
BSDE with singular generator. We give a self-contained construction of the solution (H,ZH)

(without any reference to Y ) which extends the existence result of [17]. The asymptotic
behavior follows from the boundedness of the process ψH/φ on some neighborhood of T :

φ(At) = φ

(
E
[∫ T

t

1

ηs
ds

∣∣∣∣Ft]) ≤ Yt ≤ (1 + κ)φ

(
E
[∫ T

t

1

ηs
ds

∣∣∣∣Ft]) ,
where the constant κ depends on the coefficients η, λ and f . At this stage it is important to
note that there is some asymmetry in (4) since the first term with φ is random, whereas the
second with ψ is deterministic. However this method avoids assuming extra assumptions
on f .
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To deal with a symmetric expansion, we suppose that f is concave and we decompose
Y as follows: for any t ∈ [0, T ]

Yt = φ

(
E
[∫ T

t

1

ηs
ds

∣∣∣∣Ft])+ ψ

(
E
[∫ T

t

1

ηs
ds

∣∣∣∣Ft])Ht = φ(At) + ψ(At)Ht. (5)

Again H solves a BSDE with a singular generator. As in the case (4), one singularity comes
from the explosion at time T and creates trouble only close to time T . But since H is
multiplied now by a random process, there are extra linear terms including the martingale
part of the process A. These terms have to be controlled on the whole interval [0, T ], and
not only on a neighborhood of T . Nonetheless we prove that under a technical condition,
called (H), (H,ZH) is the unique solution of the BSDE with singular generator and as a
by-product, we obtain uniqueness of the solution of the BSDE (1). Let us emphasize that
there was only one result about uniqueness, namely [13, Theorem 6.3] for the power case.
Uniqueness was proved by showing that any solution (Y, ZY ) is the value function of the
control problem (2). Here the proof is only based on the comparison principle for BSDEs.

The condition (H) is a stronger Novikov condition. For a general process η, this assump-
tion may be false; some regularity on its Malliavin derivative is required in (H). Thereby,
assuming that η is an Itô process, we provide sufficient conditions under which (H) holds.
Under this Itô setting with bounded coefficients, we provide another decomposition of Y ,
where again H is the unique solution of a BSDE with a singular generator, but without the
troubling linear part.

Up to now, the construction of H is based on the comparison principle for BSDEs and
H is the monotone limit of a sequence of solutions of “standard” monotone BSDEs. In
the power case f(y) = −y|y|q, we follow the arguments of the paper [13] for a PDE and
show that the process H can be obtained by Picard iterations in the suitable space H. This
construction has two main advantages: first we have a more accurate behavior of H at time
T , secondly this construction is more tractable for numerical approximation.

In addition to the precise behavior of the solution Y , that is the behavior of the value
function of the control problem (2) in the power case, or the uniqueness result for (1), our
result establishes a link between Y and H. The main drawback for BSDE with singular
terminal condition is the lack of approximation scheme with some rate of convergence.
Moreover most of numerical schemes for BSDE are based on backward induction starting
at the terminal value. The correspondence between Y and H could be a promising solution
for numerical scheme, since the terminal value of H is zero. The singularity of the generator
of H is a serious obstacle. But if H is obtained by a fixed point argument in a weighted
space, we strongly believe that it could be a way to compute H, and thus Y . This point is
left for further research.

The paper is decomposed as follows. In the next section we explain our assumptions
on the coefficients η, λ and f of the BSDE (1). The reader finds here several examples
of functions f , for which the asymptotic behaviour of Y holds. Let us emphasize these
assumptions only imply the behaviour of f on an interval [R,+∞) for R sufficiently large.
In Section 3, we recall and extend several results concerning the existence of the solution
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(Y,ZY ) of the BSDE (1) with singular terminal condition +∞ and provide some a priori
estimates on this solution Y and on ZY . Section 4 is dedicated to the decomposition
(4), by proving the existence of the minimal non-negative solution of the BSDE (Equation
(21)) with a singular generator and with terminal condition 0 (Theorem 1) and the one-to-
one correspondence between the minimal solutions Y and H. In Section 5, we study the
symmetric decomposition (5) of Y and prove uniqueness of the solutions Y for BSDE (1)
and H for the BSDE (42). In the power case we prove that H can be constructed by a
Picard approximation scheme. In the last section, we briefly explain the relations between
the different expansions of Y . Let us emphasize that all results from Section 4 are ordered
from the more general to the less general drivers.

In the continuation, unimportant constants will be denoted by C and they could vary
from line to line.

2 Assumptions on the generator

In the BSDE (1), the generator is of the form:

(ω, t, y) 7→ 1

ηt(ω)
f(y) + λt(ω).

In the rest of the paper, the following conditions hold:

(A1) There exist three constants 0 < η? < η? and ‖λ‖ ≥ 0 such that a.s. for any t

η? ≤ ηt ≤ η?, 0 ≤ λt ≤ ‖λ‖.

(A2) The function f is continuous and non increasing, with f(0) = 0 and with continuous
derivative.

Supposing that f is continuous and non increasing1 is coherent with the existence and
uniqueness results concerning monotone BSDEs (see [24, Chapter 5.3.4]). Note that if
f(0) 6= 0, then

f(y)

ηt
+ λt =

f(y)− f(0)

ηt
+ λt +

f(0)

ηt
=
f̃(y)

ηt
+ λ̃t,

provided that λ̃t ≥ 0. The non-negativity of λ is natural for the control problem (2) and
leads to a more accurate expansion of Y . However it is not necessary (see Section 6.1 for
a short discussion on this point). Somehow and to summarize, the only stronger condition
on our type of generator is the regularity: f ∈ C1(R).

Now let us consider the ordinary differential equation (ODE): y′ = −f(y) with the
terminal condition y(T ) = +∞. There exists a solution if and only if the function G given
by:

G(x) :=

∫ ∞
x

1

−f(t)
dt

1For monotone BSDEs, the classical assumption is: for some µ ∈ R and any (y, y′) ∈ R2, (f(y) −
f(y′))(y − y′) ≤ µ(y − y′)2. By a very standard transformation (see [24, Proof of Corollary 5.26]) we may
assume w.l.o.g. that µ = 0, thus f is non increasing.
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is well-defined at least on some interval (κ,+∞), with κ = sup{y ≥ 0, f(y) = 0}, meaning
that f ≡ 0 on [0, κ]. Note that the function G is positive, strictly decreasing and convex,
such that G(∞) = 0 and the smoothness of f implies that G(κ) = +∞. Then the solution y
is given by: y(t) = G−1(T−t) on [0, T ]. Defining fκ(x) = f(x+κ), Gκ(x) = G(x+κ) yields
that Gκ is defined on (0,+∞). Moreover the solution y is given by: y(t) = G−1(T − t) =

(Gκ)−1(T − t) − κ and solves y′ = −fκ(y) together with y(T ) = +∞. Hence w.l.o.g. we
assume from on now that:

(A3) For any x > 0, the function

G(x) :=

∫ ∞
x

1

−f(t)
dt

is well-defined on (0,∞).

We define the two functions:

φ(x) := G−1 (x) > 0, ψ(x) := −φ′(x) > 0. (6)

The function φ being decreasing and C2 on (0,∞) solves φ′ = f ◦ φ.
Under the previous conditions, there exists a minimal non-negative solution (Y, ZY ) for

the BSDE (1) (Proposition 1), and Y verifies the a priori estimate (19). Note that we can
extend the result when the generator also depends in a particular way on Z (see Remark
1).

For the asymptotic behavior of Y , we also consider the next condition:

(C1) There exists a constant δ > 0 and R > 0 such that x 7→
(
G(x)−δ =

∫ ∞
x

1

−f(y)
dy

)−δ
is convex on [R,+∞).

Let us emphasize that this condition only involves the function f on some interval [R,+∞)

and the value of R may be large. From Lemma 5, Condition (C1) is equivalent to the

boundedness of x 7→ −xφ
′′(x)

φ′(x)
on a neighborhood of zero.

Example 1 If f(y) = −(y+1)| log(y+1)|q for some q > 1 and y ≥ 0, all conditions (A1),
(A2) and (A3) are verified and if p is the Hölder conjugate of q then

∀x > 0, G(x) =
1

q − 1
log(x+ 1)1−q.

Thereby
φ(x) = exp

(
((q − 1)x)1−p

)
− 1.

Direct computations show that

−φ
′′(x)

φ′(x)
x =

[
(p− 1)px−p + p

]
is not a bounded function near zero and for any δ > 0, G−δ is not convex. Somehow this
function f is “not enough non linear”.
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Example 2 Here we study several functions f , ordered by their “non linearity”. All of them
verify (C1).

• If f(y) = −y|y|q for some q > 0, then G(x) =
1

qxq
and φ(x) =

(
1

qx

) 1
q

. The

assumption (C1) holds for any δ > 0 and

−φ
′′(x)

φ′(x)
x =

q + 1

q
.

• If f(y) = −(exp(ay)− 1) for some a > 0, then

G(x) = −1

a
log
(
1− e−ax

)
= G−1(x) = φ(x).

And
−φ
′′(x)

φ′(x)
x =

axeax

eax − 1
∼
x→0

1,

is bounded near zero.

• If f(y) = − exp(ay2) for some a > 0 and y ≥ 0 (note that f(0) = −1 to simplify the
computations). Then

G(x) =

√
π

a

[
1−N (x

√
2a)
]
, φ(x) =

1√
2a
N−1

(
1− x

√
a

π

)
,

where N (·) is the cumulative distribution function of the normal law. Thereby

φ′(x) = − exp(aφ(x)2), φ′′(x) = 2aφ(x)(φ′(x))2,

and with
√
aφ(x) = z/

√
2

−φ
′′(x)

φ′(x)
x = 2axφ(x) exp(aφ(x)2) = z

√
2aG(z/

√
2a) exp(z2/2)

= z
√

2π exp(z2/2) [1−N (z)] ∼
z→+∞

1.

using the classical tail estimate of the normal law. Hence xφ′′(x)/φ′(x) is bounded
near zero and (C1) holds (again by Lemma 5).

Let us define

At = E
[∫ T

t

1

ηs
ds

∣∣∣∣Ft] (7)

together with2

φt = φ(At), ψt = ψ (At) . (8)

Let us emphasize that (t 7→ φt, t ≥ 0) and (t 7→ ψt, t ≥ 0) are processes. Remark that
from the boundedness of η

1

η?
(T − t) ≤ At = E

[∫ T

t

1

ηs
ds

∣∣∣∣Ft] ≤ 1

η?
(T − t). (9)

2In the following, Xt denotes a random process, whereas X(t) is a deterministic function.
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From the monotonicity of φ and ψ, we get

φ?(t) = φ

(
T − t
η?

)
≤ φt ≤ φ

(
T − t
η?

)
= φ?(t). (10)

and
ψ?(t) = ψ

(
T − t
η?

)
≤ ψt ≤ ψ

(
T − t
η?

)
= ψ?(t). (11)

We introduce our next condition on f :

(C2) For some p ≥ 1, some τ < T and for any r ≥ 0

E

[(∫ T

τ

f(φt + r)

ψ?(t)
dt

)p]
< +∞.

Since the process φ is bounded from above by φ?, (C2) holds if∫ T

τ

−f (φ?(t) + r)

ψ?(t)
dt < +∞

since this integral w.r.t. t is now deterministic. Hence (C2) depends only on the behavior
of f on a neighborhood of +∞. In particular if the function −f is submultiplicative:
−f(x+ y) ≤ C(−f(x))(−f(y)) for some fixed constant C, then

−f(φ?(t) + r)

ψ?(t)
≤ C(−f(r))

−f(φ?(t))

ψ?(t)
≤ C(−f(r)).

In Remark 3, we show that all functions of Example 2 verifying (C1), also satisfy (C2),
even if they are not submultiplicative.

In Section 5, we add several conditions on f :

(C3) f is concave and of class C2 on (0,+∞).

(C4) If F is the increasing and concave function F : x 7→ G−1(x−1/δ) for x > 0, then
(−f) ◦ F is also increasing and concave on a neighborhood of +∞.

From (C1), we know that F is increasing. Since f is concave, −f ′ is a non-decreasing
function and there exists a rank such that for any x greater than this rank, −f ′ > 0. In
other words (−f) ◦ F is an increasing function, at least on a neighborhood of ∞. Hence
the main assumption in (C4) is the concavity of −f ◦ F. We prove that all functions of
Example 2 satisfying (C1) also verify (C3) and (C4) (see computations after Lemma 11).

Finally our last condition on f is the following. Let us define for some ρ ∈ (0, 1), the
non-negative function h(y) = −f(y)G(y)1−ρ.

(C5) There exists ρ ∈ (0, 1) such that the function y 7→ y

h(y)
remains bounded on a neigh-

borhood of +∞.
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Again this property only depends on the behavior of f near +∞. Note that∫ +∞

y

1

h(t)
dt =

1

ρ
G(y)ρ,

thus 1/h is integrable on [1,+∞). It is known (see [14, Section 178]) that if h is non-
decreasing, then we have

lim
y→+∞

y

h(y)
= 0.

Thus (C5) holds. But since

h′(y) = G(y)−ρ
[
−f ′(y)G(y)− (1− ρ)

]
= G(y)−ρ

[
G′′(y)G(y) + (ρ− 1)(G′(y))2

(G′(y))2

]
,

the non-negativity of h′ is equivalent to the non-negativity of the second derivative of Gρ. In
other words h is non decreasing if and only if Gρ is convex. For all functions of Example 2,
direct computations show that limy→+∞

y

h(y)
= 0, for any ρ ∈ (0, 1). Hence (C5) holds.

3 BSDEs with singular terminal condition

In this section the assumptions (A1), (A2) and (A3), except for the last result (Lemma
4) where we suppose besides that f is concave and that (C1) is verified. Let us introduce
the following spaces for p ≥ 1.

• Dp(0, T ) is the space of all adapted càdlàg3 processes X such that

E

(
sup
t∈[0,T ]

|Xt|p
)
< +∞.

• Hp(0, T ) is the subspace of all predictable processes X such that

E

[(∫ T

0
|Xt|2dt

) p
2

]
< +∞.

• Sp(0, T ) = Dp(0, T )×Hp(0, T ) and S∞(0, T ) =
⋂
p≥1 Sp(0, T ).

From [21, Theorem 1], if f(y) ≤ −y|y|q for some q > 0, we know that the singular BSDE
(1) has a minimal solution (Y, ZY ), in the sense of the next definition:

Definition 1 (BSDE with singular terminal condition) The process (Y,ZY ) is a so-
lution of the BSDE (1) with terminal condition +∞ if:

• For any ε > 0, (Y,ZY ) ∈ S∞(0, T − ε);

• for any 0 ≤ s ≤ t < T ,

Ys = Yt +

∫ t

s

[
1

ηu
f(Yu) + λu

]
du−

∫ t

s
ZYu dWu;

3French acronym for right-continuous with left-limit
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• Yt ≥ 0 a.s. for any t ∈ [0, T ] ;

• a.s. lim
t→T

Yt = +∞.

Minimality means that for any other process (Ỹ , Z̃) satisfying the previous four items, a.s.
Ỹt ≥ Yt for any t. Moreover from [13, Theorem 6.3], if f(y) = −y|y|q, the solution is unique.

To obtain the existence of a solution, we need some a priori estimates on Y (see [4], [13]
or [21]). Using the arguments of [13, Proposition 6.1], we obtain that if f(u) ≤ −u|u|q, any
solution of the BSDE (1) satisfies:

Yt ≤
1

(T − t)q†
E

[∫ T

t

((
ηs
q

) 1
q

+ (T − s)q†λs

)
ds

∣∣∣∣Ft
]

(12)

where q† is the Hölder conjugate of q+1. Under our setting and from this estimate we have:

Yt ≤
(

η?

q(T − t)

) 1
q

+
(T − t)
(q† + 1)

‖λ‖ = φ

(
T − t
η?

)
+

(T − t)
(q† + 1)

‖λ‖.

The goal of this section is to extend these results to our class of drivers. Let us first
begin with a lower bound, similar to [4, Estimate 3.7], but for a more general driver f .

Lemma 1 The minimal solution Y satisfies a.s. for any t ∈ [0, T ],

Yt ≥ φt = φ (At) . (13)

Proof. Indeed the process A satisfies

− dAt =
1

ηt
dt+ ZAt dWt (14)

for some ZA ∈ H2(0, T ). For some L > 0, define ALt = 1
L +At. Since φ is a smooth function,

if UL = φ(AL), Itô’s formula leads to

−dULt = φ′(ALt )

[
1

ηt
dt+ ZAt dWt

]
− 1

2
φ′′(ALt )(ZAt )2dt

=
1

ηt
f(ULt )dt+ Θtdt+ ZU

L
dWt.

Note that φ′′(x) = f ′(φ(x))f(φ(x)) ≥ 0, thus Θt ≤ 0. Since ULT = φ(1/L), from the
comparison principle for monotone BSDE (see [24, Proposition 5.34]) and the construction
of Y by approximation, we obtain that Yt ≥ ULt . Passing through the limit on L leads to
the conclusion. �

Let us now give an upper bound on Y , similar to [13, Proposition 6.1] but again for a
general driver f . Let us consider the function

G(x) =

∫ ∞
x

−1

‖λ‖+ f(y)
η?

dy = η?
∫ ∞
x

1

−C− f(y)
dy

10



defined on the interval (Υ = f−1(−C),+∞) with C = ‖λ‖η?. Since f is a function with
continuous derivative, G(Υ) = +∞. If we define ϑ = G−1, this function is well-defined on
(0,+∞), with ϑ(0) = +∞ and satisfies:

ϑ′ = ‖λ‖+
f(ϑ)

η?
. (15)

Note that the function ϑ strongly depends on η?, ‖λ‖ and f .

Lemma 2 Assume that the process (U,ZU ) satisfies the dynamics: for any ε > 0 and
0 ≤ t ≤ T − ε

Ut + ζt = UT−ε +

∫ T−ε

t

[
λs +

1

ηs
f(Us)

]
ds−

∫ T−ε

t
Θsds−

∫ T−ε

t
ZUs dWs, (16)

where ζ and Θ are two non-negative processes. Then a.s. for all t ∈ [0, T ),

0 ≤ Ut ≤ ϑ(T − t). (17)

Proof. We proceed as in the proof of [13, Proposition 6.1], namely we shift the singularity.
Take any 0 < ε such that 0 ≤ T − ε < T . The function (ϑ (T − ε− t) , t ∈ [τ, T − ε]) solves
the ODE: y(T − θ) = +∞ and

y′ = −‖λ‖ − f(y)

η?
.

By the comparison principle again we have that Ut ≤ ϑ (T − ε− t) on [0, T − ε]. Since U
does not depend on ε, we obtain that a.s.

∀t ∈ [0, T ), Ut ≤ ϑ (T − t) .

This achieves the proof of the lemma. �
As a by-product, our proof implies that for any non-negative solution (Y,ZY ) of the

BSDE (1), we have a.s. on [0, T ]:

φ?(t) = φ

(
T − t
η?

)
≤ φt ≤ Yt ≤ ϑt = ϑ(T − t). (18)

The first inequality comes from (10). Compared to (12), in the power case f(y) = −y|y|q,
this estimate is less accurate. However it holds for functions without polynomial growth.
For the upper bound, note that if λ = 0, then ϑ = ψ?. In general we have

Lemma 3 For any ε > 0, there exists a deterministic time T ε ∈ [0, T ) such that a.s. for
any t ∈ [T ε, T ]

Yt ≤ φ
(

T − t
(1 + ε)η?

)
= φ?ε(t). (19)

Proof. We write

G(x) = η?
∫ ∞
x

1

−C− f(y)
dy = η?G(x) + η?C

∫ ∞
x

1

(−C− f(y))(−f(y))
dy.

11



Therefore η?G(x) ≤ G(x) and

G(x) ≤ η?G(x) + η?C
1

(−C− f(x))
G(x) = η?G(x)

(
−f(x)

−C− f(x)

)
.

We deduce that on the interval (f−1(−(1 + ε)C),+∞), η?G(x) ≤ G(x) ≤ (1 + ε)η?G(x),
and thereby on the neighborhood of zero (0, G−1(f−1(−(1 + ε)C)/η?)) = (0, Υ̃),

G−1(x/η?) ≤ ϑ(x) ≤ G−1(x/((1 + ε)η?)) = φ(x/((1 + ε)η?)).

Thus provided that T ε = T − Υ̃ ≤ t ≤ T

Yt ≤ ϑ(T − t) ≤ φ?ε(t).

�
Hence we deduce that there exists a constant τ ∈ [0, T ) such that a.s. for any t ∈ [τ, T ]

φ?(t) ≤ Yt ≤ φ?1(t)

with two deterministic functions φ? and φ?1 on a deterministic neighborhood4 of T .
Let us state the following result. Note that if f(y) ≤ −y|y|q, there is nothing new here.

But since we strength the integrability conditions on η and λ, we can remove this growth
condition on f . A typical example is f(y) = −(y + 1)| log(y + 1)|q for some q > 1.

Proposition 1 Under our setting, the BSDE (1) has a minimal non-negative solution
(Y, ZY ).

Proof. The existence of a non-negative solution can be obtained by the same penalization
arguments as in [4] or [21]. We use the a priori estimate (19) in order to obtain the conver-
gence of the penalization scheme on any interval [0, T − ε]. Minimality can be proved as in
[21, Proposition 4]. Thus we skip the details here. �

Remark 1 (Generator depending on Z) Assume that the generator has the form:

(t, ω, y, z) =
f(y)

ηt(ω)
+ λt(ω) + ζ(t, ω, z),

where there exists a constant C such that for any (t, ω, z, z′)

0 ≤ ζ(t, ω, 0) ≤ C, |ζ(t, ω, z)− ζ(t, ω, z′)| ≤ C|z − z′|.

Using the Girsanov theorem, existence of a solution can be derived directly from Proposi-
tion 1. Moreover all results in this paper remain valid under some probability measure Q
equivalent to P.

4Note that we can consider the solution ϑ̂ of the ODE (15) starting at the point φ?1(τ). Then defining
for t ∈ [0, τ ], φ?1(t) = ϑ̂(T − t), we can extend the estimate on the whole interval [0, T ].
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To finish this section, let us give an estimate of ZY . Let us also emphasize that this
upper bound is valid for any solution of the BSDE (1), since the proof only uses the dynamics
on [0, T ) and the a priori estimate (18) on Y , but not the construction by penalization of
Y . In the power case (f(y) = −y|y|q), it is known (see [6, 26]) that

E
[(∫ T

0
(T − s)2/q(ZYs )2ds

)]
< +∞.

Lemma 4 Assume that f is concave and that (C1) holds. Any solution (Y, ZY ) of (1)
satisfies for all p ∈ [1,+∞)

E

[(∫ T

0

1

(T − s)(ψ?(s))2
(ZYs )2ds

)p]
< +∞.

Let us immediately remark that this estimate is not optimal in the power case since we only
have

E
[(∫ T

0
(T − s)2/q+1(ZYs )2ds

)]
< +∞.

Nevertheless it is sufficient for our purpose in Section 5.
Proof. The following argument will be used several times through the paper. From the
definition of a solution, we have for any ε > 0

E

[(∫ T−ε

0
(ZYs )2ds

)p]
< +∞.

Since s 7→ 1
(T−s)(ψ?(s))2

is bounded on [0, T − ε], we have to prove only that

E

[(∫ T

τ

1

(T − s)(ψ?(s))2
(ZYs )2ds

)p]
< +∞

for some deterministic τ ∈ [0, T ).
From (18), Y remains bounded away from zero on [0, T ]. Thus let us apply the function

G to Y :

G(Yt)−G(Y0) =

∫ t

0

1

f(Ys)

(
− 1

ηs
f(Ys)− λs

)
ds+

∫ t

0

1

f(Ys)
ZYs dWs

+
1

2

∫ t

0

−f ′(Ys)
(f(Ys))2

(ZYs )2ds.

Hence

0 ≤ 1

2

∫ t

0

−f ′(Ys)
(f(Ys))2

(ZYs )2ds ≤ G(Yt) +

∫ t

0

(
1

ηs

)
ds−

∫ t

0

1

f(Ys)
ZYs dWs.

Now for p ≥ 1, there exists Cp such that

0 ≤
(∫ t

0

−f ′(Ys)
(f(Ys))2

(ZYs )2ds

)p
≤ Cp

(
(G(Yt))

p +
tp

ηp?
+ sup
u∈[0,t]

∣∣∣∣∫ u

0

1

f(Ys)
ZYs dWs

∣∣∣∣p
)
.

13



Recall that φ?(t) ≤ Yt ≤ φ?(t) (Equation (19)). Since G is non-increasing

0 ≤ G(Yt) ≤ G(φ?(t))

and since −f ′ and φ? are non-decreasing (that is f is concave), for any s ∈ [0, T ]

0 ≤ 1

−f ′(Ys)
≤ 1

−f ′(φ?(T ))
< +∞

Taking the expectation and using BDG’s inequality we obtain

E
(∫ t

0

−f ′(Ys)
(f(Ys))2

(ZYs )2ds

)p
≤ Cp

(
(G(φ?(t)))

p +
tp

ηp?

)
+ CpE

(
sup
u∈[0,t]

∣∣∣∣∫ u

0

1

f(Ys)
ZYs dWs

∣∣∣∣p
)

≤ Cp

(
G(φ?(t))

p +
T p

ηp?

)
+ ĈpE

[(∫ t

0

−f ′(Ys)
(f(Ys))2

(ZYs )2ds

)p/2]
.

Therefore

E

[(∫ T

0

−f ′(Ys)
(f(Ys))2

(ZYs )2ds

)p]
< +∞.

Using the monotonicity of f and f ′, using (19) we get

E

[(∫ T

0

−ψ′?(s)
ψ?(s)(ψ?(s))2

(ZYs )2ds

)p]
=

1

η?
E

[(∫ T

0

−f ′(φ?(s))
(f(φ?(s)))2

(ZYs )2ds

)p]
< +∞.

Recall that under (C1), from Lemma 5, the function s 7→ −ψ′?(s)
ψ?(s) (T − s) is bounded. This

leads to the conclusion. �

4 Asymptotic behavior for a general driver f

In this section, we assume that the hypotheses (A1) to (A3), (C1) and (C2) hold. Recall
that

ψ(x) = −φ′(x) = −f(φ(x)) ≥ 0

and if φt = φ(At), assume that

Yt = φt + ψ

(
T − t
η?

)
Ht = φt + ψ?(t)Ht. (20)

Let us derive formally the dynamics of H. From the proof of Lemma 1

−dYt = φ′(At)

[
1

ηt
dt+ ZAt dWt

]
− 1

2
φ′′(At)(Z

A
t )2dt

+
1

η?
ψ′
(
T − t
η?

)
Htdt− ψ?(t)dHt

14



But we also know that
−dYt =

1

ηt
f(Yt)dt+ λtdt− ZYt dWt.

Then

−ψ?(t)dHt =

[
1

ηt
f(Yt)−

1

ηt
φ′ (At)

]
dt+

[
λt +

1

2
φ′′ (At) (ZAt )2

]
dt

− 1

η?
ψ′
(
T − t
η?

)
Htdt−

[
φ′ (At)Z

A
t + ZYt

]
dWt.

And we deduce

−dHt =
1

ψ?(t)ηt
[f(φt + ψ?(t)Ht)− f(φt)] dt−

1

η?ψ?(t)
ψ′
(
T − t
η?

)
Htdt

+
λt

ψ?(t)
dt+

1

2

ψ (At)

ψ?(t)

[
φ′′(At)

ψ(At)
At

]
(ZAt )2

At
dt

− 1

ψ?(t)

[
φ′ (At)Z

A
t + ZYt

]
dWt.

From Lemma 1, we know that Yt ≥ φt = φ(At), thus Ht ≥ 0 a.s. In other words H should
solve the BSDE:

Ht =

∫ T

t
F (s,Hs)ds−

∫ T

t
ZHs dWs, (21)

with generator

F (t, h) = αt
(ZAt )2

At
+ γt +

[
βt

T − t
h+

1

ψ?(t)ηt
[f(φt + ψ?(t)h)− f(φt)]

]
1h≥0 (22)

with

αt =
1

2

ψ (At)

ψ?(t)

[
φ′′(At)

ψ(At)
At

]
=

1

2

ψ (At)

ψ?(t)

[
−ψ

′(At)

ψ(At)
At

]
,

βt = −T − t
η?

ψ′

ψ

(
T − t
η?

)
,

γt =
λt

ψ?(t)
.

Let us emphasize that the generator is singular in the sense of [17], since∫ T

0

βt
T − t

dt = +∞.

Hence we will adopt their definition ([17, Definition 2.1]) of a solution.

Definition 2 (BSDE with singular generator) We say that (H,ZH) solves the BSDE
(21) if the relation (21) holds a.s. for any t ∈ [0, T ] and if

E

∫ T

0
|F (s,Hs)|ds+

(∫ T

0
(ZHs )2ds

) 1
2

 < +∞.

The aim of this section is to prove existence of a minimal non-negative solution (H,ZH) of
this BSDE (21), without using the existence of Y , such that the relation (20) holds a.s. on
[0, T ].
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4.1 Properties of the generator F

In order to construct the process H, let us describe the properties of the generator F given
by (22).

4.1.1 On the coefficients α, β and γ

Since φ′′ = (f ′◦φ)φ′ ≥ 0 and ψ′ = −φ′′ ≤ 0, the three processes α, β and γ are non-negative.
Moreover the functions φ and ψ = −φ′ are continuous and bounded on [η,+∞) for any η > 0

and ψ never reaches zero on compact subset on (0,∞). Thereby the coefficients α, β and γ
are bounded on any time interval [0, T − θ] for 0 < θ < T . The next result shows that they
are also bounded on the whole interval [0, T ].

Lemma 5 The next two assertions are equivalent.

1. There exists a constant δ > 0 and R > 0 such that x 7→ G(x)−δ is convex on [R,+∞)

(condition (C1)).

2. The functions φ and ψ verify the next property: there exists K > 1 and % > 0 such
that for all x ∈ (0, %] ∣∣∣∣xφ′′(x)

φ′(x)

∣∣∣∣+

∣∣∣∣xψ′(x)

ψ(x)

∣∣∣∣ ≤ K.
The constants are related by: % = 1/R and δ = K − 1.

Proof. Remark that
ψ′(x) = −φ′′(x)⇒ −ψ

′(x)

ψ(x)
x =

φ′′(x)

ψ(x)
x.

Moreover x
φ′′(x)

φ′(x)
≤ 0. Hence it is enough to show that there exists K > 0 such that

−xφ
′′(x)

φ′(x)
≤ K. W.l.o.g. we can assume that K > 1. Now let us define ϕ by ϕ(x) = φ(1/x)

for any x > 0. Then

φ′(x) = − 1

x2
ϕ′(1/x), φ′′(x) =

2

x3
ϕ′(1/x) +

1

x4
ϕ′′(1/x).

Thus
−xφ

′′(x)

φ′(x)
= 2 +

1

x

ϕ′′(1/x)

ϕ′(1/x)
.

Hence to establish Lemma 5 it is sufficient to prove that there exists K > 1 and % > 0 such
that for all t ≥ 1/% = R,

−tϕ
′′(t)

ϕ′(t)
≥ 2−K = −(K − 2).

Let us rewrite this condition in terms of the so-called Arrow-Pratt coefficient of absolute
risk aversion by interpreting ϕ as utility function,

αϕ(t) := −ϕ
′′(t)

ϕ′(t)
≥ −(K − 2)

t
=: αK−2(t), (23)

16



where the utility function to αK is given (up to positive affine transformations) by uK(t) =

tK−1. By a classical theorem due to Pratt ([28], see also [9, Proposition 2.44]), Condition
(23) holds if and only if

ϕ = F ◦ uK (24)

for a strictly increasing concave function F. As ϕ = G−1(1/·), Pratt’s condition is equivalent
to

F(t) := G−1

(
1

u−1
K (t)

)
= G−1

(
t−

1
K−1

)
.

defines a strictly increasing concave function. In other words x 7→ G(x)1−K is strictly
increasing and convex. This achieves the proof of the Lemma. �

Under the condition (C1), using the second assertion of the previous lemma, the process
βt is non negative and bounded provided that T−t ≤ η?% = η?/R, that is T−η?/R ≤ t ≤ T .
The process λ is bounded and since ψ tends to ∞ when x goes to zero, γ is bounded on
[0, T ].

Concerning the process α, using (9), At ≤ 1/R, if T − η?
R ≤ t ≤ T . Thus the process[

−ψ
′(A)

ψ(A)
A

]
is bounded on this interval. Since ψ is non increasing, ψ(At) ≤ ψ?(t). There-

fore we deduce that
ψ (A)

ψ?(t)
is also bounded. Finally under condition (C1) and with our

assumption (A1) on η and on λ, α, β and γ are bounded processes at least on some interval
[τ, T ] with

τ = max

(
T − η?

R
, T − η?

R
, 0

)
. (25)

For t ∈ [τ, T ]

|αt| ≤
(

1 +
K

2

)
max(1, ‖η‖K), |βt| ≤ K, |γt| ≤ ‖λ‖(ψ(T ))−1.

On the rest of the interval [0, τ ] these coefficients are also bounded due to the regularity of
f (Conditions (A1) and (A2)).

Remark 2 Using the previous lemma, integration leads to: for any y ∈ (0, 1/R) and a ≤ 1,

1 ≤ ψ(ay)

ψ(y)
≤ 1

aK
.

Hence for any δ > 1: 1 ≤
ψ?δ (t)

ψ?(t)
≤ δK . If we assume that for some δ > 1

Yt = φt + ψ

(
T − t
δη∗

)
Ĥt,

we have: Ĥt ≤ Ht ≤ δKĤt. Hence, up to some constant, this new development of Y is
equivalent to (20).
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4.1.2 Properties of ZA

In the generator F given by (22), we also have to control the process ZA. First note that the
martingale

(∫ t
0 Z

A
s dWs, t ∈ [0, T ]

)
is a BMO martingale (see [18]) and ZA ∈ Hq((0, T )),

q > 1, due to the assumption that η is bounded above and away from zero.

Lemma 6 For any ρ ∈ (0, 1) and p > 1, we have

E

[(∫ T

0

(ZAs )2

(As)1+ρ
ds

)p]
< +∞. (26)

Proof. Let us apply Itô’s formula to A1−ρ on [0, T − ε]:

A1−ρ
t = (AT−ε)

1−ρ +

∫ T−ε

t
(1− ρ)

(As)
−ρ

ηs
ds− 1

2

∫ T−ε

t
(1− ρ)(−ρ)

(ZAs )2

(As)1+ρ
ds

+

∫ T−ε

t
(1− ρ)(As)

−ρZAs dWs.

Hence,

(1− ρ)ρ

2

∫ T−ε

0

(ZAs )2

(As)1+ρ
ds = A1−ρ

0 − (AT−ε)
1−ρ − (1− ρ)

∫ T−ε

0

1

ηs(As)ρ
ds (27)

− (1− ρ)

∫ T−ε

0
(As)

−ρZAs dWs.

Taking the expectation and using (9) and the fact that t 7→ (T − t)−ρ is integrable at time
T , we can apply Lebesgue monotone convergence theorem to get

E
∫ T

0

(ZAs )2

(As)1+ρ
ds =

2

ρ
E
(

(A0)1−ρ −
∫ T

0

1

ηs(As)ρ
ds

)
< +∞.

Using (27) for any p > 1 we obtain for some constant Cp > 0,

1

Cp

∣∣∣∣∫ T−ε

0

(ZAs )2

(As)1+ρ
ds

∣∣∣∣p ≤ |(AT−ε)1−ρ|p + |(A0)1−ρ|p +

∣∣∣∣∫ T−ε

0

1

ηs(As)ρ
ds

∣∣∣∣p
+

∣∣∣∣∫ T−ε

0
(As)

−ρZAs dWs

∣∣∣∣p
≤ |(A0)1−ρ|p + |(T/η?)1−ρ|p +

1

ηp?

(∫ T

0

1

(As)ρ
ds

)p
+

∣∣∣∣∫ T−ε

0
(As)

−ρZAs dWs

∣∣∣∣p .
From the BDG and Hölder inequalities, taking the expectation leads to

1

Cp
E
∣∣∣∣∫ T−ε

0

(ZAs )2

(As)1+ρ
ds

∣∣∣∣p ≤ E

[
|(A0)1−ρ|p + |(T/η?)1−ρ|p +

1

ηp?

(∫ T

0

1

(As)ρ
ds

)p]

+

{
E

[∣∣∣∣∫ T−ε

0
((As)

−ρZAs )2ds

∣∣∣∣p
]}1/2

.
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The function x 7→ x1−ρ is bounded on [0, T/η?] by some constant C. Thus

1

Cp
E
∣∣∣∣∫ T−ε

0

(ZAs )2

(As)1+ρ
ds

∣∣∣∣p ≤ E

[
|(A0)1−ρ|p + |(T/η?)1−ρ|p +

1

ηp?

(∫ T

0

1

(As)ρ
ds

)p]

+ Cp/2

{
E

[∣∣∣∣∫ T−ε

0

(ZAs )2

(As)1+ρ
ds

∣∣∣∣p
]}1/2

.

In other words if γε = E
∣∣∣∫ T−ε0

(ZAs )2

(As)1+ρ
ds
∣∣∣p, then there exists C independent of ε such that

0 ≤ γε ≤ C(1 + (γε)
1/2),

which leads to the existence of some constant C such that γε ≤ C. Using the monotone
convergence theorem, we obtain the desired estimate. �

From this estimate on ZA, using (9), we have for any p > 1

E

[(∫ T

0

(ZAs )2

As
ds

)p]
≤
(
T

η?

)ρp
E

[(∫ T

0

(ZAs )2

(As)1+ρ
ds

)p]
< +∞. (28)

4.2 Construction of the process H

Recall that the generator F is given by:

F (t, h) = αt
(ZAt )2

At
+ γt +

[
βt

T − t
h+

1

ψ?(t)ηt
[f(φt + ψ?(t)h)− f(φt)]

]
1h≥0.

Let us summarize its properties.

• F (t, h) = F (t, 0) ≥ 0 for any h ≤ 0.

• F is continuous and monotone w.r.t. h: for any h and h′,

(h− h′)(F (t, h)− F (t, h′)) ≤ βt
T − t

(h− h′)2,

since f is itself monotone.

• For any |h| ≤ r,

|F (t, h)− F (t, 0)| ≤ βt
T − t

r − f(φt + ψ?(t)r)

ψ?(t)ηt
.

• The process F (·, 0) equal to

F (t, 0) = αt
(ZAt )2

At
+ γt

belongs to Lp([0, T ] × Ω) for any p > 1 (Inequality (28) and boundedness of the
coeffcients α, β and γ due to (C1)).
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Our aim is to prove that the BSDE (21) has a solution (H,ZH). However we cannot apply
directly the results of [24], since the previous functions t 7→ βt

T−t and t 7→ −
f(φt+ψ?(t)r)

ψ?(t)ηt
are

not necessarily integrable on [0, T ]. The cases of BSDEs with singular generator studied in
[16, 17] are also not adapted to our problem. In order to solve the problem, we modify the
generator F . Let us consider δ > 0 and ε > 0 and define

F δ,ε(t, h) = αt
(ZAt )2

At
+ γt +

[
βt

T + ε− t
h+

1

ψ?(t)ηt

[
f(φt + ψδ(t)h)− f(φt)

]]
1h≥0 (29)

with
ψδ(t) = ψ

(
T + δ − t

η?

)
= ψ?(t− δ).

We consider the following BSDE

Ht =

∫ T

t
F δ,ε(s,Hs)ds−

∫ T

t
ZHs dWs (30)

on the interval [0, T ].

Lemma 7 Assume that (C1) and (C2) hold. Define

µεt =

∫ t

τ

βs
T + ε− s

ds.

Then there exists a unique solution (Hδ,ε, ZH,δ,ε) to the BSDE (30) such that a.s. for all
t ∈ [0, T ]

|Hδ,ε
t | ≤ E

[∫ T

t
eµ

ε
s−µεt |F (s, 0)|ds

∣∣∣∣Ft] ,
and

E

[
sup
s∈[t,T ]

∣∣∣eµεsHδ,ε
s

∣∣∣p +

(∫ T

t
e2µεs |ZH,δ,εs |2ds

)p/2 ∣∣∣∣Ft
]
≤ CqE

[(∫ T

t
eµ

ε
s |F (s, 0)|ds

)p ∣∣∣∣Ft
]
.

Finally a.s. for any t ∈ [0, T ], Hδ,ε
t ≥ 0.

Proof. Let us check that all conditions of [24, Proposition 5.24] hold (we keep also the
same notations). First we have for all (h, h′)

(h− h′)(F δ,ε(t, h)− F δ,ε(t, h′)) ≤ βt
T + ε− t

(h− h′)2

and the process β is bounded. Moreover if |h| ≤ r

|F δ,ε(t, h)| ≤ |F (t, 0)|+ βt
T + ε− t

r − f(φt + ψδ(t)r)

ψ?(t)ηt

= |F (t, 0)|+ βt
T + ε− t

r − f(φt + ψ(δ)r)

ψ?(t)ηt
= Φ]

r(t).
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From our assumptions, in particular here Condition (C2), the definition of ψ and the
properties of η, using Inequality (28), we deduce that

E

[(∫ T

0
eµ

ε
sΦ]

r(t)ds

)p]
< +∞.

Using [24, Proposition 5.24], we deduce that there exists a unique solution (Hδ,ε, ZH,δ,ε)

satisfying the desired estimate. �

Remark 3 (Comments on (C2)) In Example 2, all functions are submultiplicative (and
thus (C2) holds), except f(y) = − exp(ay2). Nevertheless for this case

−f(φt + r)

ψ?(t)
≤ C exp(ar2) exp(2arφt) = exp(ar2) exp(2arG−1(At)).

And using (9)∫ T

τ

−f(φt + r)

ψ?(t)
dt = exp(ar2)

∫ T

τ
exp(2arG−1(At))dt

≤ exp(ar2)

∫ T

τ
exp

(
2arG−1

(
T − t
η?

))
dt

≤ η? exp(ar2)

∫ ∞
ζ

exp(2arz) exp(−az2)dz < +∞.

Thereby (C2) holds also in this case.

Let us begin with an a priori estimate on Hδ,ε. Recall that the function ϑ is defined just
before Lemma 2.

Lemma 8 For all t ∈ [0, T ),

0 ≤ Hδ,ε
t ≤

ϑ(T − t)
ψ?(t)

. (31)

In particular Hδ,ε is bounded on any interval [0, T − θ], 0 < θ < T .

Proof. For fixed δ and ε, the dynamics of φt + ψ?(t)Hδ,ε
t is given by:

−d(φt + ψ?(t)Hδ,ε
t ) = φ′(At)

1

ηt
dt− 1

2
φ′′(At)(Z

A
t )2dt

+
1

η?
ψ′
(
T − t
η?

)
Hδ,ε
t dt+ ψ?(t)F δ,ε(t,Hδ,ε

t )dt

+ φ′(At)Z
A
t dWt − ψ?(t)ZH,δ,εt dWt.

Recall that F δ,ε is given by (29). Therefore we obtain

−d(φt + ψ?(t)Hδ,ε
t ) =

[
λt +

1

ηt
f(φt + ψδtH

δ,ε
t )

]
dt

+
1

η?
ψ′
(
T − t
η?

)
1

(T − t)2

ε

T + ε− t
Hδ,ε
t dt

+
[
φ′(At)Z

A
t − ψ?(t)Z

H,δ,ε
t

]
dWt.
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In other words the process Ut = φt + ψδtH
δ,ε
t satisfies the BSDE:

Ut + (ψ?(t)− ψδt )H
δ,ε
t = UT−θ +

∫ T−θ

t

[
λs +

1

ηs
f(Us)

]
ds

−
∫ T−θ

t
Θsds−

∫ T−θ

t
ZUs dWs,

with a non negative Θ, (ψ? − ψδ)Hδ,ε ≥ 0. Using Lemma 2, we deduce that

∀t ∈ [τ, T ), Ut ≤ ϑ (T − t) .

This leads to the conclusion of the Lemma. �
Again as a by-product, our proof implies that for any solution (H,ZH) of the BSDE

(21)

0 ≤ Ht ≤
ϑ(T − t)
ψ?(t)

. (32)

Now by the comparison principle, for a fixed δ > 0, since βt ≥ 0, (Hδ,ε
t , ε > 0) is a

increasing sequence when ε decreases to zero, and for a fixed ε > 0, (Hδ,ε
t , δ > 0) is a

decreasing sequence when δ decreases to zero. Thereby for any ε1 < ε2 and δ1 < δ2 ≤ δ for
some δ > 0, we have the following inequalities: a.s.

0 ≤ Hδ1,ε1
t ≤ Hδ2,ε1

t ≤ Hδ
t ,

and
0 ≤ Hδ1,ε2

t ≤ Hδ1,ε1
t ≤ Hδ

t ,

where
Hδ
t = lim

ε↓0
Hδ,ε
t . (33)

Note that Hδ also satisfies (31). Now for a fixed ε > 0, we define

Hε
t = lim

δ↓0
Hδ,ε
t , (34)

and
Ht = lim

ε↓0
Hε
t . (35)

Since Hδ,ε
T = 0 a.s., we have immediately that a.s. HT = 0 and for all t ∈ [0, T ], Ht ≥ 0.

Proposition 2 There exists ZH ∈ Hp(0, T −θ) for any θ > 0, such that the couple (H,ZH)

solves the BSDE (21) with generator F on the interval [0, T − θ] for any 0 < θ < T .

Proof. Let us define cp = p(1 ∧ (p− 1)).
Step 1. Given ε1 < ε2 and δ1 < δ2, applying Itô’s formula to ∆H = Hδ1,ε1 −Hδ2,ε2 on the
interval [t, T − θ], θ > 0, leads to:

epµ̂t |∆Ht|p +
cp
2

∫ T−θ

t
epµ̂s |∆Hs|p−21∆Hs 6=0|∆ZHs |2ds

≤ epµ̂T |∆HT−θ|p

+p

∫ T−θ

t
epµ̂s |∆Hs|p−21∆Hs 6=0∆Hs(F

δ1,ε1(s,Hδ1,ε1
s )− F δ2,ε2(s,Hδ2,ε2

s ))ds

−p
∫ T−θ

t

(
βs
θ

+ 2
p− 1

p

)
epµ̂s |∆Hs|pds− p

∫ T−θ

t
epµ̂s |∆Hs|p−21∆Hs 6=0∆Hs∆Z

H
s dWs

22



with ∆ZH = ZH,δ1,ε1 − ZH,δ2,ε2 and

µ̂t =

∫ t

0

(
βs
θ

+ 2
p− 1

p

)
ds.

Remark that from the monotonicity of f :

∆Hs(F
δ1,ε1(s,Hδ1,ε1

s )− F δ2,ε2(s,Hδ2,ε2
s )) = ∆Hs

[
βs

T + ε1 − s
Hδ1,ε1
s − βs

T + ε2 − s
Hδ2,ε2
s

]
+

1

ψsηs
∆Hs

[
f(φs + ψδ1s H

δ1,ε1
s )− f(φs + ψδ2s H

δ2,ε2
s )

]
≤ ∆Hs

[
βs

T + ε1 − s
Hδ1,ε1
s − βs

T + ε2 − s
Hδ2,ε2
s

]
+

1

ψsηs
∆Hs

[
f(φs + ψδ1s H

δ2,ε2
s )− f(φs + ψδ2s H

δ2,ε2
s )

]
≤ βs
T + ε1 − s

(∆Hs)
2 + ∆HsH

δ2,ε2
s βs

ε2 − ε1

(T + ε1 − s)(T + ε2 − s)

+
1

ψsηs
∆Hs

[
f(φs + ψδ1s H

δ2,ε2
s )− f(φs + ψδ2s H

δ2,ε2
s )

]
.

We deduce that

epµ̂t |∆Ht|p +
cp
2

∫ T−θ

t
epµ̂s |∆Hs|p−21∆Hs 6=0|∆ZHs |2ds

≤ epµ̂T−θ |∆HT−θ|p + p

∫ T−θ

t
epµ̂s

[
βs

T + ε1 − s
− βs

θ
− 2

p− 1

p

]
|∆Hs|pds

+p

∫ T−θ

t
epµ̂s |∆Hs|p−21∆Hs 6=0∆HsH

δ2,ε2
s βs

ε2 − ε1

(T + ε1 − s)(T + ε2 − s)
ds

+p

∫ T−θ

t
epµ̂s |∆Hs|p−21∆Hs 6=0

∆Hs

ψsηs

[
f(φs + ψδ1s H

δ2,ε2
s )− f(φs + ψδ2s H

δ2,ε2
s )

]
ds

−p
∫ T−θ

t
epµ̂s |∆Hs|p−21∆Hs 6=0∆Hs∆Z

H
s dWs.

By Young’s inequality

p

∫ T−θ

t
epµ̂s |∆Hs|p−21∆Hs 6=0∆HsH

δ2,ε2
s βs

ε2 − ε1

(T + ε1 − s)(T + ε2 − s)
ds

≤ (p− 1)

∫ T−θ

t
epµ̂s |∆Hs|pds+

∫ T−θ

t
epµ̂s

[
Hδ2,ε2
s βs

ε2 − ε1

(T + ε1 − s)(T + ε2 − s)

]p
ds

and

p

∫ T−θ

t
epµ̂s |∆Hs|p−21∆Hs 6=0

∆Hs

ψsηs

[
f(φs + ψδ1s H

δ2,ε2
s )− f(φs + ψδ2s H

δ2,ε2
s )

]
ds

≤ (p− 1)

∫ T−θ

t
epµ̂s |∆Hs|pds

+

∫ T−θ

t
epµ̂s

[
1

ψsηs

∣∣∣f(φs + ψδ1s H
δ2,ε2
s )− f(φs + ψδ2s H

δ2,ε2
s )

∣∣∣]p ds.
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Recall that β, 1/η are bounded on [0, T ] whereas 1/ψ is bounded on [0, T − θ]. From
Estimate (31), on the interval [0, T − θ], Hε2,δ2 is also bounded and we have:

epµ̂t |∆Ht|p +
cp
2

∫ T−θ

t
epµ̂s |∆Hs|p−21∆Hs 6=0|∆ZHs |2ds

≤ epµ̂T−θ |∆HT−θ|p + C(ε2 − ε1)p

+C

∫ T−θ

t

∣∣∣f(φs + ψδ1s H
δ2,ε2
s )− f(φs + ψδ2s H

δ2,ε2
s )

∣∣∣p ds
−p
∫ T−θ

t
epµ̂s |∆Hs|p−21∆Hs 6=0∆Hs∆Z

H
s dWs. (36)

The constant C depends on all bounds of our coefficients and on θ. This constant explodes
when θ goes to zero.
Step 2. Let us fix ε = ε1 = ε2 > 0. Since for δ2 ≤ δ, Hδ2,ε ≤ Hδ and Hδ satisfies the
estimate (31), using the dominated convergence theorem

E
∫ T−θ

0
epµ̂s

∣∣∣f(φs + ψδ2s H
δ2,ε
s )− f(φs + ψδ1s H

δ2,ε
s )

∣∣∣p ds→ 0,

as δ1 and δ2 tend to zero. Therefore using (36) and taking the expectation we deduce that

E
∫ T−θ

0
epµ̂s |∆Hs|p−21∆Hs 6=0|∆ZHs |2ds

tends to zero when δ1 and δ2 go to zero. Moreover remark that if

Λt =

∫ t

0
epµ̂s |∆Hs|p−21∆Hs 6=0∆Hs∆Z

H
s dWs,

then the bracket [Λ]
1/2
T−θ can be handled as in [7]: for any C > 0

E
(

[Λ]
1/2
T−θ

)
≤ C

2
E

(
sup

t∈[0,T−θ]
epµ̂t |∆Ht|p

)

+
1

2C
E
(∫ T−θ

0
epµ̂s |∆Hs|p−21∆Hs 6=0|∆ZHs |2ds

)
.

Thereby (Hδ,ε, δ > 0) is a Cauchy sequence:

E

(
sup

t∈[0,T−θ]
epµ̂t |∆Ht|p

)
→ 0
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as δ1 and δ2 tend to zero. Finally

E
(∫ T−θ

0
e2µ̂s |∆ZHs |2ds

)p/2
= E

(∫ T−θ

0
e2µ̂s (∆Hs)

2−p (∆Hs)
p−2 1∆Hs 6=0|∆ZHs |2ds

)p/2
≤ E

( sup
t∈[0,T−θ]

eµ̂t |∆Ht|

)p(2−p)/2(∫ T−θ

0
epµ̂s (∆Hs)

p−2 1∆Hs 6=0|∆ZHs |2ds
)p/2

≤

{
E

(
sup

t∈[0,T−θ]
epµ̂t |∆Ht|p

)}(2−p)/2{
E
∫ T−θ

0
epµ̂s (∆Hs)

p−2 1∆Hs 6=0|∆ZHs |2ds
}p/2

≤ 2− p
2

E

[
sup

t∈[0,T−θ]
epµ̂t |∆Ht|p

]
+
p

2
E
∫ T−θ

0
epµ̂s (∆Hs)

p−2 1∆Hs 6=0|∆ZHs |2ds

where we have used Hölder’s and Young’s inequality with 2−p
2 + p

2 = 1.
Hence we obtain that (Hδ,ε, ZH,δ,ε) converges in Sp(0, T −θ) to some process (Hε, ZH,ε).

The process Hε is non negative and also satisfies the a priori estimate (31) with Hε
T = 0,

and we have for any 0 ≤ t ≤ T − θ < T

Hε
t = Hε

T−θ +

∫ T−θ

t

[
αs

(ZAs )2

As
+ γs

]
ds+

∫ T−θ

t

βs
T + ε− s

Hε
sds

+

∫ T−θ

t

1

ψ?(s)ηs
[f(φs + ψ?(s)Hε

s )− f(φs)] ds−
∫ T−θ

t
ZH,εs dWs.

Step 3. Let us prove the convergence of (Hε, ZH,ε) when ε tends to zero. The arguments
are almost the same as in the second step. Indeed the formula (36) becomes:

epµ̂t |∆Ht|p +
cp
2

∫ T−θ

t
epµ̂s |∆Hs|p−21∆Hs 6=0|∆ZHs |2ds

≤ epµ̂T−θ |∆HT−θ|p + C(ε2 − ε1)p

−p
∫ T−θ

t
epµ̂s |∆Hs|p−21∆Hs 6=0∆Hs∆Z

H
s dWs.

with ∆H = Hε1 −Hε2 and ∆ZH = ZH,ε1 − ZH,ε2 . The conclusion follows from the same
arguments as in step 2. �

Note that from (31), the arguments to prove (19) and the remark 2, we obtain that a.s.
on [0, T )

0 ≤ Ht ≤ C
1

ψ?(t)
φ?(t) = C

φ? (t)

−f (φ? (t))
, (37)

and
0 ≤ φt + ψ?(t)Ht ≤ φ?ε (t) . (38)

Since f is a non positive and non increasing function, from (A3), the function y 7→
−1/f(y) is an integrable, non-negative and non increasing function. Thereby we know that
(see [14, Section 178])

lim
y→+∞

y

−f(y)
= 0.
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Thereby using the a priori estimate (37), the process H satisfies a.s.

lim
t→T

Ht = 0.

Let us emphasize that H solves the BSDE (21), in the sense that for any 0 ≤ t ≤ u < T

Ht = Hu +

∫ u

t
F (s,Hs)ds−

∫ u

t
ZHs dWs

=

∫ u

t

(
αs

(ZAs )2

As
+ γs

)
ds−

∫ u

t
ZHs dWs

+

∫ u

t

βs
T − s

Hsds+

∫ u

t

1

ψ?(s)ηs
[f(φs + ψ?(s)Hs)− f(φs)] ds. (39)

It is important to note that if we defineH by the relation (20) on the basis of the minimal
solution of the BSDE (1), then this process H satisfies all properties described previously.
Proposition 2 shows that H can be constructed “from scratch” if (C1) and (C2) hold.

Now we prove that this solution (H,ZH) is a solution of the BSDE (21) (in the sense of
Definition 2) and that this solution is minimal. The a priori estimate (37) is crucial here.
The processes α and γ are bounded and non-negative on [0, T ]. Hence using Inequality (28),
the integral ∫ T

t

(
αs

(ZAs )2

As
+ γs

)
ds

is well defined and is the increasing limit of the same integral on the interval [t, u] for u < T .
Since H is non-negative we also have∫ u

t

∣∣∣∣ βs
T − s

Hs

∣∣∣∣ ds =

∫ u

t

βs
T − s

Hsds,

and∫ u

t

1

ψ?(s)ηs
|f(φs + ψ?(s)Hs)− f(φs)| ds = −

∫ u

t

1

ψ?(s)ηs
[f(φs + ψ?(s)Hs)− f(φs)] ds.

Lemma 9 The process
(

βs
T − s

Hs, s ∈ [0, T )

)
is integrable on [0, T ].

Proof. Indeed using the very definition of βs we have

0 ≤ βs
T − s

Hs = − 1

η?
ψ′

ψ

(
T − s
η?

)
Hs ≤ −

1

η?
ψ′

ψ

(
T − s
η?

) φ
(
T−t
η?

)
ψ
(
T−t
η?

)
=

1

η?

(
φ′′φ

(φ′)2

)(
T − s
η?

)
.

Now ∫ u

t

1

η?

(
φ′′φ

(φ′)2

)(
T − s
η?

)
ds =

∫ (T−t)/(η?)

(T−u)/(η?)

(
φ′′φ

(φ′)2

)
(x) dx
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and our result follows if (φ′′φ)/(φ′)2 is integrable at zero. Remark that(
φ

φ′

)′
= 1− φ′′φ

(φ′)2
.

Hence the integrability is equivalent to the existence of the limit at zero of φ/φ′, that is the
limit at infinity of y 7→ y/(−f(y)), which is zero. This achieves the proof of the lemma. �

Coming back to (39) and taking the conditional expectation, we get:

Ht = E
[∫ u

t

(
αs

(ZAs )2

As
+ γs

)
ds

∣∣∣∣Ft]
+ E

[∫ u

t

βs
T − s

Hsds

∣∣∣∣Ft]+ E
[∫ u

t

1

ψ?(s)ηs
[f(φs + ψ?(s)Hs)− f(φs)] ds

∣∣∣∣Ft] .
From the previous lemma, we deduce that

E
[∫ T

t

1

ψ?(s)ηs
|f(φs + ψ?(s)Hs)− f(φs)| ds

]
< +∞.

In other words taking t = 0

E
[∫ T

0
|F (s,Hs)|ds

]
< +∞.

Then using again (39), we easily deduce that

E

[
sup

0≤u≤T

∣∣∣∣∫ u

0
ZHs dWs

∣∣∣∣
]
< +∞.

By Burkholder-Davis-Gundy’s inequality, we deduce that ZH is an element of H1(0, T ). Let
us summarize our results.

Theorem 1 Assume that (C1) and (C2) hold. There exists a process (H,ZH), which the
minimal non-negative solution of the BSDE (21), that is:

• H is non negative and essentially bounded: for any 0 ≤ t < T , 0 ≤ sups∈[0,t]Hs < +∞
a.s. and

E
∫ T

0
|F (s,Hs)|ds < +∞.

• The process ZH belongs to H1(0, T ) ∩Hp(0, T − θ) for any θ > 0 and p > 1.

• For any 0 ≤ t ≤ T

Ht =

∫ T

t
F (s,Hs)ds−

∫ T

t
ZHs dWs.

In particular
lim
t→T

Ht = 0 = HT .

• For any (Ĥ, Ẑ) solution of the BSDE (21), a.s. for any t ∈ [0, T ], Ĥt ≥ Ht.
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Proof. The only thing to prove is the minimality. Let (Ĥ, Ẑ) be another solution of the
BSDE (21). Let us first show that Ĥ is a non-negative process. Applying Itô’s formula for
the non-positive part of Ĥ and the very definition (22) of F leads to:(

Ĥt

)−
≤ −

∫ T

t
F (s, Ĥs)1Ĥs≤0

ds+

∫ T

t
(Ẑs)1Ĥs≤0

dWs

= −
∫ T

t

(
αs

(ZAs )2

As
+ γs

)
1
Ĥs≤0

ds+

∫ T

t
(Ẑs)1Ĥs≤0

dWs.

Since α and γ are non-negative, taking the conditional expectation knowing Ft yields to
the non-negativity of Ĥ.

Now for ε > 0, the process ∆H = Ĥ −Hε satisfies for any θ > 0:

∆Ht = ∆HT−θ +

∫ T−θ

t

[
F (s, Ĥs)− F ε(s,Hε

s )
]
ds−

∫ T−θ

t
(Ẑs − Zεs)dWs

= ∆HT−θ +

∫ T−θ

t

[
ε
βs

T − s
Ĥs +

(
βs

T + ε− s
+ κs

)
∆Hs

]
ds

−
∫ T−θ

t
(Ẑs − Zεs )dWs

where
κs =

1

ψ?(s)ηs

[
f(φs + ψ?(s)Ĥs)− f(φs + ψ?(s)Hε

s )
] 1

∆Hs
1∆Hs 6=0.

This process κ is bounded from above by zero since f is monotone. Thus if

Γt,s = exp

(∫ s

t

(
βu

T + ε− u
+ κu

)
du

)
,

by standard arguments concerning linear BSDE (see [20, Lemma 10] or [24, Proposition
5.31]), we have:

∆Ht = E
[
∆HT−θΓt,T−θ +

∫ T−θ

t
ε
βs

T − s
ĤsΓt,sds

∣∣∣∣Ft] ≥ E
[
∆HT−θΓt,T−θ

∣∣∣∣Ft] .
By Fatou’s lemma, letting θ going to zero, we obtain that for any ε > 0, Ĥt ≥ Hε

t . Hence
the minimality of H is proved. �

The process (H,ZH) solves a BSDE with singular driver in the sense of [17]. As men-
tioned in [17, Proposition 3.1], uniqueness is not an obvious property for such kind of BSDEs.
In our case assume that (Ĥ, Ẑ) be another non negative solution of the BSDE (21). Then

∆Ht =

∫ T

t

[
F (s, Ĥs)− F (s,Hs)

]
ds−

∫ T

t
(Ẑs − ZHs )dWs

=

∫ T

t
λs∆Hsds−

∫ T

t
∆ZsdWs.

Hence we have a linear BSDE with singular generator with

λs =
βs

T − s
+

1

ψ?(s)ηs

[
f(φs + ψ?(s)Ĥs)− f(φs + ψ?(s)Hs)

] 1

∆Hs
1∆Hs 6=0.

Nevertheless we cannot apply the result in [17, Propositions 3.1 and 3.5], since we don’t
know the sign of the drift λ.
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Remark 4 If Ĥt = lim
δ↓0

Hδ
t , then Ht ≤ Ĥt. The proof of the previous proposition shows that

Ĥ also satisfies the BSDE (21) (in the sense of the previous theorem). It seems difficult to
prove that these two processes are equal. In other words, as remarked above, we don’t have
any comparison or uniqueness result concerning the BSDE (21).

4.3 Asymptotics of the minimal solution

Let us consider the process Ŷt = φt + ψ?(t)Ht on [0, T ). Then from our heuristic study, for
any 0 ≤ t ≤ s < T , we have:

Ŷt = Ŷs +

∫ s

t

[
f(Ŷu)

ηu
+ γu

]
du−

∫ s

t
Z Ŷu dWu

and a.s. lim
t↑T

Ŷt = +∞. Note that this process (Ŷ , Z Ŷ ) belongs to any S∞(0, T − θ) for any

θ > 0.
If f(y) = −y|y|q, by uniqueness proved in [13], Ŷ = Y and thus

Yt =

(
1

qAt

) 1
q

+

(
η?

q(T − t)

) 1
q

+1

Ht

with 0 ≤ Ht ≤ C(T − t) (Inequality (37)). In other words, the non-negative process

Yt (At)
1
q = Yt

(
E
[∫ T

t

1

ηs
ds

∣∣∣∣Ft])
1
q

is bounded.
In general since (Y,Z) is the minimal non-negative solution of (1) (see Proposition 1),

we have a.s.
∀t ∈ [0, T ], φt ≤ Yt ≤ Ŷt = φt + ψ?(t)Ht.

But from our heuristic computations, we have Yt = φt+ψ?(t)H̃t. Thus 0 ≤ H̃t ≤ Ht and H̃
satisfies the same BSDE (21), at least on any interval [0, T −ε]. Since H̃ ≤ H, the preceding
arguments show that H̃ is also a solution of the same BSDE on the whole interval [0, T ].
Since H is the minimal solution, we have proved that H̃ = H and thus Y = Ŷ . In other
words:

Theorem 2 The minimal solution (Y, ZY ) of the BSDE (1) is given by (20):

Yt = φt + ψ

(
T − t
η?

)
Ht,

where (H,ZH) is the minimal solution of the BSDE (21).

Recall that from Inequality (38), on the interval [τ, T ] with τ given by (25),

ψ?(t)Ht

φt
≤ φ?1(t)

φ?(t)
.
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Lemma 10 There exists a constant κ depending on η? and η? such that for any t ∈ [τ, T ],

0 ≤ ψ?(t)Ht

φt
≤ κ.

Proof. Recall that since φ is non increasing, φ(y) ≤ φ(ay). Moreover from Lemma 5 we
know that for any y ∈ (0, 1/R) and 0 < a ≤ 1,

1 ≤ ψ(ay)

ψ(y)
≤ 1

aK
.

From the very definition of ψ, this inequality can be written as: −φ′(ay) ≤ −a−Kφ′(y).
Integrating this inequality (between y and η) leads to:

φ(ay) ≤ a1−Kφ(y) + C

for some constant C ≥ 0. Hence

1 ≤ φ(ay)

φ(y)
≤ a1−K +

C

φ(y)
.

Since φ(0) =∞, the conclusions follows from this inequality. �
Hence we have proved that the minimal solution Y of the BSDE (1) satisfies on the

interval [τ, T ]:
φt ≤ Yt ≤ φt(1 + κ).

5 The concave case

In the expansion (20) of Y , there is an asymmetry between ψt which is random, and the
deterministic ψ?(t). This asymmetry has the advantages to avoid the presence of ZH in the
generator of H and of an extra term with the second derivative of ψ. However it leads to
the fact that

f ′ (φ? (t)) ηt 6= f ′(φt) = f ′ (φ (At)) . (40)

Thereby we cannot interpret the bracket

βt
T − t

h+
1

ψ?(t)ηt
[f(φt + ψ?(t)h)− f(φt)]

=
1

ψ?(t)ηt

[
f(φt + ψ?(t)h)− f(φt)− f ′ (φ? (t)) ηtψ

?(t)h
]

as the reminder to the first Taylor polynomial of f at φt.
Here we study a possible workaround: define φt and ψt symmetrically, i.e. φt = ψ(At)

and ψt = ψ(At). Then (40) is satisfied. This, however, leads to an additional linear term
in the driver of H. This linear term creates some main difficulties. To overcome them, we
add several assumptions on f and on η.
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5.1 Symmetric development for general process η

Recall that A satisfies (14), φ verifies: φ′ = f ◦ φ and ψ = −φ′. Setting φt := φ(At) and
ψt := ψ(At) yields

dφt = −f(φt)

[
1

ηt
dt+ ZAt dWt

]
+

1

2
φ′′(At)(Z

A
t )2dt,

dψt = −f ′(φt)ψt
[

1

ηt
dt+ ZAt dWt

]
+

1

2
ψ′′(At)(Z

A
t )2dt.

Recall that (9) leads to (10):

φ?(t) = φ

(
T − t
η?

)
≤ φt ≤ φ

(
T − t
2η?

)
= φ?(t).

And since φ′ is non-decreasing, we also have: ψ?(t) ≤ ψt ≤ ψ?(t). For

−dYt =
1

ηt
f(Yt) dt+ λt dt− ZYt dWt

we make the ansatz Yt = φt +ψtHt and hence obtain the heuristic dynamics of H, namely:

−dHt =
1

ηtψt

[
f(φt + ψtHt)− f(φt)− f ′(φt)ψtHt

]
dt

+

[
λt
ψt
− φ′′(At)At

2φ′(At)

(ZAt )2

At

]
dt

+

[
ψ′′(At)(At)

2

2ψ(At)

(
ZAt
At

)2

Ht −
Atψ

′(At)

ψ(At)

ZAt
At

ZHt

]
dt− ZHt dWt

=
1

ηtψt

[
f(φt + ψtHt)− f(φt)− f ′(φt)ψtHt

]
dt

+

[
λt
ψt

+ κ1
t

(ZAt )2

At

]
dt+

[
κ2
t

(
ZAt
At

)2

Ht + κ3
t

ZAt
At

ZHt

]
dt− ZHt dWt (41)

where

κ1
t = −φ

′′(At)At
2φ′(At)

κ2
t =

ψ′′(At)(At)
2

2ψ(At)
=

(
−At

ψ′′(At)

ψ′(At)

)
κ1
t

κ3
t = −Atψ

′(At)

ψ(At)
.

Note that from (13), Ht ≥ 0 a.s. Under (C1), using Lemma 5, we deduce that κ1 and κ3

are bounded and non-negative.
Compared to the previous section and the BSDE (21), the dynamics (41) of H has a

new linear term, namely

(t, h, z) 7→ κ2
t

(
ZAt
At

)2

h+ κ3
t

ZAt
At

z.

In the next lemma we prove that under the additional conditions (C3) and (C4) of f , κ2

is bounded.
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Lemma 11 Assume that (C1), (C3) and (C4) hold. Then the term κ2(x) := x2ψ
′′(x)

ψ(x)
is

non-negative and bounded on a neighborhood of zero.

Proof. Indeed if f is concave, we have

ψ′′(x) = (−f ′′ ◦ φ)(x)(φ′(x))2 − (f ′ ◦ φ(x))φ′′(x) ≥ 0.

Hence xψ′′(x)/ψ′(x) ≤ 0. The conclusion of the lemma is equivalent to the boundedness
from below of −xψ̂′′(x)/ψ̂′(x) in the neighborhood of ∞ with ψ̂(x) = ψ(1/x). From the
proof of Lemma 5, we have

ψ̂(x) = (−f)(F ◦ uK) = F̂ ◦ uK

where F and F̂ are increasing and concave. Note that we can assume w.l.o.g. that the
constant K is the same. Indeed if (C1) holds for some δ > 0, the same condition holds
for any δ′ ≥ δ. Hence boundedness is equivalent to the existence of K > 1 such that
F : x 7→ G−1(x−1/(K−1)) (condition (C1)) and (−f) ◦ F are increasing and concave. �

Remark 5 Note that under (C3), the boundedness of κ2 is equivalent to condition (C4).

Let us consider again the functions of Example 2.

• If f(y) = −y|y|q for some q > 0, then we can take

F(x) =

(
1

q

) 1
q

x
1
q+1 , ((−f) ◦ F)(x) =

(
q + 1

q

) 1
q

x

and K = 2 + 1/q.

• If f(y) = −(exp(ay) − 1) for some a > 0, then φ(x) = − 1
a log (1− e−ax) and ψ(x) =

−φ′(x) =
1

eax − 1
. Hence

−φ
′′(x)

φ′(x)
x =

axeax

eax − 1
∼
x→0

1, −ψ
′′(x)

ψ′(x)
x =

ax(1 + eax)

eax − 1
∼
x→0

2,

are bounded near zero.

• If f(y) = − exp(ay2) for some a > 0, then

φ(x) =
1√
2a
N−1

(
1− x

√
a

π

)
, ψ(x) = −φ′(x) = exp

(
−aφ(x)2

)
.

And

ψ′(x) = −φ′′(x) = −2aφ(x)ψ(x)2, ψ′′(x) = 2a(ψ(x)3)− 4aφ(x)ψ(x)ψ′(x).

Thus
−ψ

′′(x)

ψ′(x)
x = x

ψ(x)

φ(x)
− 2x

ψ′(x)

ψ(x)
.

From (C1) and Lemma 5, the second term is bounded. Arguing as at the end of
Example 2 yields to:

x
ψ(x)

φ(x)
=

√
2a

z
G

(
z√
2a

)
e−z

2/2 −→
z→+∞

0.
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In other words all functions considered in Example 2 verify (C3) and (C4).
However the preceding lemma is not sufficient to obtain existence of a solution. Indeed

if we consider this BSDE (41) with f ≡ 0, we get a linear BSDE. From our best knowledge,
existence of a solution is proved only under some exponential moment condition on the
coefficients (see [24, Proposition 5.31]). Even if we avoid the final time T , then 1/A is
bounded on [0, T−ε] (Inequality (9)), but ZA is only BMO. Hence the stochastic exponential
of the martingale M =

∫ ·
0 Z

A
s dWs is uniformly integrable. But controlling the exponential

of the bracket of M is more difficult. If ξ =
∫ T

0 1/ηsds is Malliavin differentiable, then
we require that its Malliavin derivative has exponential moments. Finally, if we do not
control the quantity (ZA)2/A2, then from [17, Proposition 3.1], we may have infinitely
many solutions.

First we show that any solution (H,ZH) of (41) on [0, T ) is a solution of the BSDE on
[0, T ], that is:

Proposition 3 Under the hypotheses (C1) to (C5), there exists a non-negative process
(H,ZH) solution (in the sense of Definition 2) of: for any t ∈ [0, T ],

Ht =

∫ T

t

1

ηsψs

[
f(φs + ψsHs)− f(φs)− f ′(φs)ψsHs

]
1Hs≥0 ds

+

∫ T

t

[
λs
ψs

+ κ1
s

(ZAs )2

As
+ κ2

s

(
ZAs
As

)2

Hs + κ3
s

ZAs
As

ZHs

]
ds−

∫ T

t
ZHs dWs. (42)

Proof. Here we do not construct (H,ZH) from scratch, but we use the existence of a
minimal solution (Y,ZY ) of (1). Indeed our previous computations show that if H =

(Y − φ)/ψ, then the process (H,ZH) verifies:

• It satisfies the dynamics given by (41) on any interval [0, T − ε].

• H verifies an a priori estimate similar to (32):

0 ≤ Ht ≤
φ?(t)

ψt
≤ φ?(t)

ψ?(t)
≤
(

2η?

η?

)K φ?(t)

ψ?(t)

(we use again Remark 2).

• ZH belongs to Hp(τ̂ , T − ε) for any p > 1.

Thus we only have to extend the assertions on [0, T ].
Compared to Section 4 and the discussion above Lemma 9, we need to control the

additional term: [
κ2
t

(
ZAt
At

)2

Ht + κ3
t

ZAt
At

ZHt

]
.

We already know that κ2 and κ3 are bounded and that ZA satisfies the inequality (26). Let
us precise the relation between ZH and ZY . Since Y = φ+ ψH, we have:

ZYt = −f(φt)Z
A
t − f ′(φt)ψtHtZ

A
t + ψtZ

H
t = ψtZ

A
t − f ′(φt)ψtHtZ

A
t + ψtZ

H
t
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thus
ZHt =

[
−1 + f ′(φt)Ht

]
ZAt +

1

ψt
ZYt

and

ZHt
(At)(1−ρ)/2

=
[
−1 + f ′(φt)Ht

] ZAt
(At)(1−ρ)/2

+
1

ψt(At)(1−ρ)/2
ZYt

=

[
−(At)

ρ − κ3
t

Ht

(At)1−ρ

]
ZAt

(At)(1+ρ)/2
+

1

ψt(At)(1−ρ)/2
ZYt . (43)

Using (9), (26) and Lemma 4, for any p > 1,

E

[(∫ T

0

(ZAt )2

(At)1+ρ
dt

)p
+

(∫ T

0

(ZYt )2

(ψt)2(At)(1−ρ)
dt

)p]
< +∞.

Combining (43) together this estimate, we have

E
∫ T

0

[
κ2
t

(
ZAt
At

)2

Ht +

∣∣∣∣κ3
t

ZAt
At

ZHt

∣∣∣∣
]
< +∞

if we can prove that for some p > 1

E

[(
sup
t∈[0,T ]

Ht

(At)1−ρ

)p]
< +∞.

We know that

0 ≤ Ht

(At)1−ρ ≤ (η?)1−ρ Ht

(T − t)1−ρ ≤ (η?)1−ρ
(

2η?

η?

)K φ?(t)

ψ?(t)(T − t)1−ρ .

The last term is deterministic and if we prove that this term remains bounded on [0, T ], the
result follows. Note that

(2η?)1−ρφ?(t)

ψ?(t)(T − t)1−ρ =
φ?(x)

ψ?(x)x1−ρ =
φ?(x)

−f(φ?(x))x1−ρ =
y

−f(y)G(y)1−ρ =
y

h(y)
.

with x = (T − t)/(2η?) and y = φ?(x). From Condition (C5), we deduce that (H,ZH) is a
solution of our BSDE on [0, T ]. �

Let us point out again that in the BSDE (42), the driver has a triple singularity:

• (s, h) 7→ 1

ηsψs
f ′(φs)ψsh (as in Lemma 9);

• (s, z) 7→ ZAs
As

z, which can be controlled if we can apply Girsanov’s theorem, that is if

we control the martingale
(
t 7→

∫ t

0

ZAs
As

dWs, t ∈ [0, T ]

)
;

• (s, h) 7→
(
ZAs
As

)2

h, which requires to control the quadratic variation of the previous

martingale.

34



Hence we add the next condition:

(H) There exist a deterministic time τ̂ < T and a positive constant C > 1
2 ∨‖κ

2‖∞∨‖κ3‖2∞
such that

E

[
exp

(
C

∫ T

τ̂

(
ZAs
As

)2

ds

)]
< +∞.

Assuming that (C1) to (C4) and (H) hold and arguing as in the proof of Proposition 2 in
Section 4, we construct directly a process (H,ZH) solving the dynamics (41) on any interval
[τ̂ , T − ε]. To get the existence result similar to Lemma 7, we use [24, Theorem 5.30] and
Condition (H) is designed to fulfill the assumptions of this theorem.

More important than the existence, we obtain also uniqueness under (H)5.

Proposition 4 Under the hypotheses (C1) to (C5) and (H), there exists a unique non-
negative process (H,ZH) solution (in the sense of Definition 2) of the BSDE (42).

Proof. Let us show first that any solution (Ĥ, Ẑ) of (42) is non-negative. From the Itô
formula for the non-positive part of Ĥ we obtain for t ∈ [τ̂ , T ]:(

Ĥt

)−
≤ −

∫ T

t
F (s, Ĥs)1Ĥs≤0

ds+

∫ T

t
(Ẑs)1Ĥs≤0

dWs

= −
∫ T

t

[
λs
ψs

+ κ1
s

(ZAs )2

As
+ κ2

s

(
ZAs
As

)2

Ĥs + κ3
s

ZAs
As

Ẑs

]
1
Ĥs≤0

ds

+

∫ T

t
(Ẑs)1Ĥs≤0

dWs

≤
∫ T

t
κ2
s

(
ZAs
As

)2 (
Ĥs

)−
ds−

∫ T

t
κ3
s

ZAs
As

Ẑs1Ĥs≤0
ds+

∫ T

t
(Ẑs)1Ĥs≤0

dWs.

From the condition (H), the martingale

E(ZA)t = exp

(∫ t

τ̂
κ3
s

ZAs
As

dWs +
1

2

∫ t

τ̂
(κ3
s)

2

(
ZAs
As

)2

ds

)
, t ∈ [τ̂ , T ],

is uniformly integrable. Using Girsanov’s theorem and the expression of the solution of a

linear BSDE (see [24, Proposition 5.31]), we get that a.s. for any t ∈ [τ̂ , T ],
(
Ĥt

)−
= 0.

The arguments used in Section 4 show that the process (H,ZH) is the minimal non-negative
solution of (42), that is if (Ĥ, Ẑ) is another solution of (42), then Ĥt ≥ Ht.

Now we prove uniqueness of the solution. Since f is concave, and if ∆H = Ĥ − H,
5Without (H), even the existence of a minimal solution for the BSDE (42) is unclear.
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∆Z = Ẑ − ZH , then

(∆Ht)
+ ≤

∫ T

t

1

ηsψs

{
f(φs + ψsĤs)− f(φs + ψsHs)− f ′(φs + ψsHs)ψs∆Hs

}
1∆Hs≥0ds

+

∫ T

t

1

ηs

{
f ′(φs + ψsHs)− f ′(φs)

}
∆Hs1∆Hs≥0ds

+

∫ T

t

[
κ2
s

(
ZAs
As

)2

∆Hs + κ3
s

ZAs
As

∆ZHs

]
1∆Hs≥0 ds−

∫ T

t
∆ZHs 1∆Hs≥0dWs

≤
∫ T

t

1

ηs

{
f ′(φs + ψsHs)− f ′(φs)

}
1Hs≤0(∆Hs)

+ds

+

∫ T

t

[
κ2
s

(
ZAs
As

)2

∆Hs + κ3
s

ZAs
As

∆ZHs

]
1∆Hs≥0 ds−

∫ T

t
∆ZHs 1∆Hs≥0dWs

=

∫ T

t

[
κ2
s

(
ZAs
As

)2

(∆Hs)
+ + κ3

s

ZAs
As

∆ZHs 1∆Hs≥0

]
ds−

∫ T

t
∆ZHs 1∆Hs≥0dWs,

since H is non-negative and f ′ is non-increasing. Arguing as before yields that (∆H)+ is
equal to zero. Then uniqueness holds on [τ̂ , T ].

Let us extend uniqueness on the whole time interval [0, T ]. If (Ĥ, Ẑ) still denotes another
solution, then the two processes solve the same BSDE (42) on [0, τ̂ ] with the same terminal
condition Hτ̂ = Ĥτ̂ . Since the generator of (42) remains singular on the whole interval (due
to the linear term), uniqueness on the rest of the time interval [0, τ̂ ] is not trivial. But if we
define

Ŷt = φt + ψtĤt,

then Ŷ is the first part of the solution of the BSDE (1) on [0, τ̂ ] with the bounded terminal
condition φτ̂ + ψτ̂ Ĥτ̂ . Since uniqueness holds for the BSDE (1), we deduce that Ĥ = H

also on [0, τ̂ ]. �

Theorem 3 Under the hypotheses (C1) to (C5) and (H), the BSDE (1) has a unique
solution (Y,ZY ). This solution is given by: Yt = φt +ψtHt a.s. for any t ∈ [0, T ], where H
is the unique solution of the BSDE (42).

Proof. Let us consider (Ŷ , Ẑ) solution of the BSDE (1) (in the sense of Definition 1). Then
it satisfies (18) and the property of Lemma 4. Therefore if we define Ĥ = (Ŷ − φ)/ψ, then
this process Ĥ and the related ẐH solve the BSDE (42) (in the sense of Definition 2). From
the previous proposition, we obtain the desired result. �

5.2 About Condition (H)

The condition (H) is very strong and seems difficult to be checked in general. However in

the Itô setting on the process η, this assumption may hold. Let us suppose that
1

η
=: γ is

an Itô process
dγt = dγt dt+ σγt dWt. (44)

Note that with Condition (A1), it is equivalent to assume that η is an Itô process.
First of all the next result holds.
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Lemma 12 For p > 2, if dγ and σγ belong to L2p((0, T )×Ω), the process ZA/A belongs to
H2p(0, T ), that is

E

[(∫ T

0

(
ZAs
As

)2

ds

)p]
< +∞. (45)

Proof. We consider the process Āt := At/(T − t), which satisfies the BSDE

−dĀt =
1/ηt − Āt
T − t

dt− ZĀ dWt, ĀT = 1/ηT .

Since ZĀt = ZAt /(T − t), to verify (45) it is sufficient to establish ZĀ ∈ H2p(0, T ). For the
later again it is sufficient to establish that the driver to Ā is in L2p. (Here we used frequently
that η is bounded above and away from zero.)

To establish (1/η − Ā)(T − ·) ∈ L2p we first check Kolgomorov’s criterion for 1/η: For
0 ≤ t ≤ s ≤ T , by Jensen and BDG inequality,

E[|1/ηs − 1/ηt|2p] ≤ C|s− t|p−1E
[∫ s

t

(
|dγr |2p + |σγr |2p

)
dr

]
.

Hence, by Kolgomorov’s criterion, for any α ∈ (0, p−2
2p ) there exits a random variable ξ ∈

L2p(Ω) such that
|1/ηt − 1/ηs| ≤ ξ|t− s|α, t, s ∈ [0, T ].

Therefore, using the mean value theorem,

E

[(∫ T

0

∣∣∣∣1/ηt − ĀtT − t

∣∣∣∣ dt)2p
]
≤ E

[(∫ T

0

ξ(T − t)α

T − t
dt

)2p
]
≤ CE[ξ2p],

which completes the proof. �
The coefficients in the linear part of the BSDE (41) are in H2p(0, T ). However it is not

sufficient to get (H). Let us remark that:

At = E
[∫ T

t

1

ηs
ds

∣∣∣∣Ft] = E
[∫ T

t
γsds

∣∣∣∣Ft]
= E

[∫ T

t

(
γt +

∫ s

t
dγudu+

∫ s

t
σγudWu

)
ds

∣∣∣∣Ft]
= γt(T − t) + E

[∫ T

t
(T − u)dγudu

∣∣∣∣Ft] . (46)

If we denote

Ãt = E
[∫ T

t
(T − u)dγudu

∣∣∣∣Ft] ,
then

ZAt = σγt (T − t) + ZÃt , with − dÃt = (T − t)dγt dt+ ZÃt dWt.

If the quantity ξ =
∫ T

0 (T − u)dγudu is in D1,2 (see [22] for the notations concerning the
Malliavin calculus), then by the Clark-Ocone formula, we have

ZAt = σγt (T − t) +

∫ T

t
(T − u)E

[
Dtd

γ
u

∣∣∣∣Ft] du.
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In the next two lemmas we give sufficient conditions on the coefficients of (44) such that
(H) holds.

Lemma 13 If dγ and σγ are essentially bounded, then Condition (H) holds.

Proof. In this setting, Condition (H) holds if and only if

E exp

Ĉ∫ T

τ

(
ZÃs
As

)2

ds

 < +∞, (47)

for some Ĉ > C. Since dγ is essentially bounded, then∣∣∣Ãt∣∣∣ ≤ E
[∫ T

t
(T − u) ‖dγ‖ du

∣∣∣∣Ft] =
‖dγ‖

2
(T − t)2.

Itô’s formula leads to

−d

(
Ãt

(T − t)

)
= − Ãt

(T − t)2
dt+ dγt dt+

ZÃt
(T − t)

dWt.

Hence we obtain that the martingale

(
M̃u =

∫ u

0

ZÃt
(T − t)

dWt, u ∈ [0, T ]

)
is a BMO mar-

tingale:

∀u ∈ [0, T ], |M̃T − M̃u| ≤ 2‖dγ‖(T − u)⇒ sup
u∈[t,T ]

E
[
|M̃T − M̃u|

∣∣∣∣Fu] ≤ 2‖dγ‖(T − t).

Therefore we can choose τ̂ very close to T such that the BMO norm of M̃ on [τ̂ , T ] is as
small as required. Using the Nirenberg inequality (see [18, Theorem 2.2]), there exists a
constant C depending on the BMO norm of M̃ , such that

E

exp

C ∫ T

t

(
ZÃs
As

)2

ds

 < +∞.

Precisely C should be smaller than the inverse of the BMO norm of M̃ . Thereby choosing
τ̂ sufficiently close to T , we get Condition (47) and the conclusion of the lemma. �

Let us now assume that the process γ = 1/η solves a SDE:

dγt = d(γt) dt+ σ(γt) dWt (48)

where d and σ are Lipschitz continuous functions defined on R. From [22, Theorems 2.2.1
and 2.2.2], the coordinate γt belongs to D1,∞ for any t ∈ [0, T ]. Moreover for any p ≥ 1

sup
0≤r≤T

E

(
sup
r≤t≤T

|Drγt|p
)
< +∞. (49)

The derivative Drγt satisfies the following linear equation:

Drγt = σ(γr) +

∫ t

r
σ̃(s)DrγsdWs +

∫ t

r
d̃(s)Drγsds
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for r ≤ t a.e. and Drγt = 0 for r > t a.e., where d̃(s) and σ̃(s) are two bounded processes,
such that if d and σ are of class C1, they are given by:

d̃(s) = (∂xd)(γs), σ̃(s) = (∂xσ)(γs).

In this case ξ =
∫ T

0 (T − u)dγudu is in D1,2 and by the Clark-Ocone formula, we have

ZÃt =

∫ T

t
(T − u)E

[
Dtd

γ
u

∣∣∣∣Ft] du =

∫ T

t
(T − u)E

[
d̃(u)Dtγu

∣∣∣∣Ft] du.
Lemma 14 If γ is a diffusion process solution of a SDE with Lipschitz continuous coeffi-
cients and a bounded diffusion coefficient, then Condition (H) holds.

Proof. Since ζu = Dtγu satisfies the linear one-dimensional SDE:

ζu = σ(γt) +

∫ u

t
σ̃(s)ζsdBs +

∫ u

t
d̃(s)ζsds,

an explicit formula for |ζu| reads

|ζu| = |σ(γt)| exp

[∫ u

t
σ̃(s)dBs −

1

2

∫ u

t
σ̃(s)2ds

]
exp

[∫ u

t
d̃(s)ds

]
.

Since the function d is supposed to be Lipschitz continuous, d̃ is essentially bounded.
Thereby ∣∣∣ZÃt ∣∣∣ ≤ ‖d̃‖

∫ T

t
(T − u)E

[
|Dtγu|

∣∣∣∣Ft] du
= ‖d̃‖|σ(γt)|

∫ T

t
(T − u)E

[
exp

[∫ u

t
d̃(s)ds

] ∣∣∣∣Ft] du
≤ 1

2
‖d̃‖eT‖d̃‖|σ(γt)|(T − t)2 = C(T − t)2|σγt |.

Finally it implies that
ZAt
T − t

= σγt (1 + (T − t)ςγt ) ,

where ςγ is a bounded process. �
Therefore by Lemma 13 (for (44)) or Lemma 14 (for (48)), using Proposition 4, we

deduce that the BSDE (42) with singular generator has a unique solution (H,ZH) and,
using Theorem 3, that the BSDE (1) with singular terminal condition has also a unique
solution (Y, ZY ).

5.3 A different asymptotic development under the bounded Itô setting

If 1/η is given by (44) with essentially bounded coefficients, we can change our approach.
Coming back to (46), we deduce also that

At ≤ γt(T − t) +
‖dγ‖

2
(T − t)2.
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Therefore since φ is non increasing, we have

φ(At) ≥ φt := φ

(
γt(T − t) +

‖dγ‖
2

(T − t)2

)
.

Define
dγ̃t =

(
dγt −

‖dγ‖
2

)
dt+ σγt dWt = d̃γt dt+ σγt dWt (50)

leads to
φ(At) ≥ φt = φ (γ̃t(T − t)) .

Setting
φt := φ(γ̃t(T − t)) and ψt := ψ(γ̃t(T − t))

yields

dφt = −γ̃tφ′(γ̃t(T − t)) dt+ (T − t)φ′(γ̃t(T − t)) dγ̃t +
1

2
(T − t)2φ′′(γ̃t(T − t))(σγt )2dt

= −γ̃tf(φt) dt+
{
d̃γt (T − t)φ′(γ̃t(T − t)) + 1

2(σγt )2(T − t)2φ′′(γ̃t(T − t))
}
dt

+ σγt (T − t)φ′(γ̃t(T − t)) dWt

:= −γ̃tf(φt) dt+
{
d̃γt (T − t)φ′t + 1

2(σγt )2(T − t)2φ′′t
}
dt+ σγt (T − t)φ′t dWt

and

dψt = −γ̃tψ′(γ̃t(T − t)) dt+ (T − t)ψ′(γ̃t(T − t)) dγ̃t +
1

2
(T − t)2ψ′′(γ̃t(T − t))(σγt )2dt

:= −γ̃tψtf ′(φt) dt+
{
d̃γt (T − t)ψ′t + 1

2(σγt )2(T − t)2ψ′′t
}
dt+ σγt (T − t)ψ′t dWt.

For (Y,ZY ) solution of (1), we make the ansatz Yt = φt + ψtHt and hence obtain that
Ht ≥ 0 and:

−dHt =
γt
ψt
f(Yt) dt+

λt
ψt
dt+

1

ψt
dφt +

Ht

ψt
dψt +−Zt

ψt
dWt

=
γt
ψt

{
f(φt + ψtHt)− f(φt)− f ′(φt)ψtHt

}
dt+

λt
ψt
dt− ‖d

γ‖
2

(T − t)dt

+
1

ψt

{
d̃γt (T − t)φ′t +

1

2
(σγt )2(T − t)2φ′′t

}
dt+ σγt (T − t)ψ

′
t

ψt
ZHt dt

+
Ht

ψt

{
d̃γt (T − t)ψ′t −

‖dγ‖
2

(T − t)ψ′t +
1

2
(σγt )2(T − t)2ψ′′t

}
dt− ZHt dWt

=
γt
ψt

{
f(φt + ψtHt)− f(φt)− f ′(φt)ψtHt

}
dt+

λt
ψt
dt

+ (T − t)
{
d̂γt + (σγt )2κ1

t

}
dt+ σγt κ

3
tZ

H
t dt+Ht

{
d̂γt κ

3
t + (σγt )2κ2

t

}
dt− ZHt dWt

where

d̂γ = dγt − ‖dγ‖

κ1
t =

φ′′(γt(T − t))(T − t)
2φ′(γt(T − t))

κ2
t =

ψ′′(γt(T − t))(T − t)2

2ψ(γt(T − t))
=

(
(T − t)ψ

′′(γt(T − t))
ψ′(γt(T − t))

)
κ1
t

κ3
t =

(T − t)ψ′(γt(T − t))
ψ(γt(T − t))

.
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Using Lemma 11, we obtain that κ1, κ2 and κ3 are bounded. Under (C1), (C3) and (C4),
we deduce that

−dHt =
γt
ψt

[
f(φt + ψtHt)− f(φt)− f ′(φt)ψtHt

]
1Ht≥0dt

+

{
λt
ψt

+ (T − t)κ̂1
t + κ̂2

tHt + κ̂3
tZ

H
t

}
dt− ZHt dWt, (51)

where the coefficients κ̂1, κ̂2, κ̂3 are essentially bounded. Compared to (42), the linear term
has now bounded coefficients and thus the new BSDE can be solved without any reference
to the singular BSDE (1).

As in Section 4.2, we may define the generator

F δ,ε(t, h, z) =
γt
ψt

{
f(φt + ψδth)− f(φt)

}
− f ′(φεt )γth

+

(
λt
ψt

+ (T − t)κ̂1
t + κ̂2

th+ κ̂3
t z

)
.

The terminal condition is again equal to zero. From [24, Theorem 5.30], there exists a
unique solution (Hδ,ε, ZH,δ,ε) ∈ Sp(0, T ), p > 1, to the BSDE:

Ht =

∫ T

t
F δ,ε(s,Hs, Zs)ds−

∫ T

t
ZsdWs.

From Lemma 1, we deduce that H is non-negative. The upper bound of Lemma 8 holds
since the proof is based on a control on φt + ψtH

δ,ε
t , which satisfies the same dynamics.

Hence we can pass to the limit and define

Ht = lim
ε↓0

(
lim
δ↓0

Hδ,ε
t

)
.

The sequence Zδ,ε also converges to ZH and clearly (H,ZH) satisfies the desired dynamics
on any interval [0, T ): for any 0 ≤ t ≤ u < T

Ht = Hu +

∫ u

t

γs
ψs

{
f(φs + ψsHs)− f(φs)− f ′(φs)ψsHs

}
1Hs≥0 ds

+

∫ u

t

{
λs
ψs

+ (T − s)κ̂1
s + κ̂2

sHs

}
ds−

∫ u

t
ZHs dW

Q
s ,

where the probability measure Q is equivalent to P with density E(
∫
κ̂3
sds) and WQ =

W −
∫
κ̂3 is a Brownian motion under Q. Using Lemma 9, we deduce that

EQ
[∫ T

0
(−f ′(φt))γt(Ht)dt

]
< +∞.

Indeed our upper bound on H is deterministic and thus does not depend on a particular
choice of Q equivalent to P. The monotonicity of f leads to

γt
ψt
{f(φt + ψtHt)− f(φt)} ≤ 0.
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Taking the expectation under Q and letting u go to T , we obtain

EQ
[∫ T

0

γt
ψt

∣∣f(φt + ψtHt)− f(φt)− f ′(φt)ψtHt

∣∣ dt] < +∞

and thus

EQ

[
sup

0≤t≤T

∣∣∣∣∫ T

t
ZHs dW

Q
s

∣∣∣∣ dt
]
< +∞.

We have proved that (H,ZH) verifies for any 0 ≤ t ≤ T :

Ht =

∫ T

t

γs
ψs

{
f(φs + ψsHs)− f(φs)− f ′(φs)ψsHs

}
1Hs≥0 ds

+

∫ T

t

{
λs
ψs

+ (T − s)κ̂1
s + κ̂2

sHs + κ̂3
sZ

H
s

}
ds−

∫ T

t
ZHs dWs. (52)

Adapting the arguments of the proof of Proposition 4, (H,ZH) is the unique solution of
(52).

5.4 The power case f(y) = −y|y|q

In this case recall that φ(x) =

(
1

qx

)1/q

and ψ(x) =

(
1

qx

)1+1/q

and we assume that η is

an Itô process,
dηt = dηt dt+ σηt dWt, (53)

such that dη ∈ L∞([0, T ]× Ω;R) and ση ∈ L2([0, T ]× Ω;Rd). Then the process φt is equal
to

φt :=

(
ηt

q(T − t)

)1/q

=
ζt

(q(T − t))1/q
= ζtφ(t)

and again from condition (A1), ζ is an Itô process with drift dζ ∈ L∞([0, T ] × Ω;R) and
diffusion matrix σζ ∈ L2([0, T ]× Ω;Rd).

We assume
Yt = ζtφ(t) + ψ(t)Ht = (ηt)

1/q φ(t) + ψ(t)Ht. (54)

and formally obtain the dynamics for H:

−dHt = ψ(t)−1
{
λt + φ(t)dζt

}
dt− ZHt dWt

+
1

ψ(t)ηt

[
f(ζtφ(t) + ψ(t)Ht)− f(ζtφ(t))− f ′(ζtφ(t))ψ(t)Ht

]
dt

=: F (t,Ht) dt− ZHt dWt, (55)

where F can be rewritten as

F (t,H) =
λt
ψ(t)

+
φ(t)

ψ(t)
dζt +

ψ(t)H2

ηt

∫ 1

0
f ′′(ζtφ(t) + aψ(t)H)(1− a) da

= F (t, 0)− (q + 1)q
ψ(t)H2

ηt

∫ 1

0
|ζtφ(t) + aψ(t)H|q−1 sign(ζtφ(t) + aψ(t)H)(1− a) da

= F (t, 0)− q + 1

ηt

H2

(T − t)2

∫ 1

0

(
ζt + a

H

T − t

)q−1

sign
(
ζt + a

H

T − t

)
(1− a) da.
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Let us remark that this generator is again singular and that the second derivative of f is
not well-defined at zero if 0 < q < 1.

To establish local existence for (55), we don’t use monotonicity arguments (as in the
preceding sections). But instead, we proceed very similar as in [13] and carry out the Picard
iteration in the space

Hδ := {H ∈ L∞(Ω;C([T − δ, T ];R)) : ‖H‖Hδ < +∞}

endowed with the weighted norm

‖H‖Hδ =

∥∥∥∥∥ sup
t∈[T−δ,T )

(T − t)−2|Ht|

∥∥∥∥∥
∞

.

Lemma 15 Let R > 0 and δ ∈ (0, (η?)
1/q/R) then for every H ∈ BHδ(R) we have

(F (t,Ht))t∈[T−δ,T ] ∈ L∞([T − δ, T ]× Ω;R).

Proof. From our assumptions, the first part of F (t,Ht)

(q(T − t))1+1/qλt + q(T − t)dζt

is bounded and thus in L∞([0, T ] × Ω;R). By definition if H ∈ BHδ(R), then a.s. for any
t ∈ [T − δ, T ] ∣∣∣∣q + 1

ηt

H2
t

(T − t)2

∣∣∣∣ ≤ q + 1

η?
R2δ2.

Note that δ ∈ (0, (η?)
1/q/R) ensures that ζt+aHt/(T −t) > 0 for all t ∈ [T −δ, T ], a ∈ [0, 1].

And ∫ 1

0

∣∣∣∣ζt + a
Ht

T − t

∣∣∣∣q−1

(1− a) da ≤
(

(η?)1/q +Rδ
)q−1

.

The lemma is now proved. �
The preceding lemma allows to define by

Γ(H) =

(
E
[∫ T

t
F (s,Hs) ds

∣∣∣∣Ft])
t∈[T−δ,T ]

the operator Γ : BHδ(R)→ L∞(Ω;C([T − δ, T ];R)).

Lemma 16 For every R > 0 there exists a constant L > 0 independent of δ ∈ (0, η
1/q
? /R)

such that

|F (t,Ht)− F (t,H ′t)| ≤ L|Ht −H ′t| ∀t ∈ [T − δ, T ] ∀H,H ′ ∈ BHδ(R), a.s.

Proof. We have for q 6= 1

dF

dH
(t,H) = −2(q + 1)

ηt

H

(T − t)2

∫ 1

0

(
ζt + a

H

T − t

)q−1

(1− a) da

−
(q + 1)1q 6=1

(q − 1)ηt

H2

(T − t)2

∫ 1

0

(
ζt + a

H

T − t

)q−2 a(1− a)

T − t
da.
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Hence, there exists L > 0 such that∥∥∥∥ dFdH (t, (T − t)2R)

∥∥∥∥
∞
≤ L ∀t ∈ [T − δ, T ].

The assertion then follows by the mean value theorem. �
We are now ready to prove that Γ maps BHδ(R) contractiv into itself (for appropriate

R and δ ∈ (0, η
1/q
? /R)): For R > 0 specified below choose L > 0 as in Lemma 16. For

H,H ′ ∈ BHδ(R) it then holds for all t ∈ [T − δ, T ]

|Γ(H)t − Γ(H ′)t| ≤ E
[∫ T

t
|F (s,Hs)− F (s,H ′s)| ds

∣∣∣∣Ft]
≤(T − t)3L‖H −H ′‖Hδ .

This yields, as long as 0 < δ ≤ 1/(2L),

‖Γ(H)− Γ(H ′)‖Hδ ≤
1

2
‖H −H ′‖Hδ .

Hence, Γ is an 1/2-contraction on BHδ(R) if δ ≤ 1/(2L). Furthermore, for H ∈ BHδ(R),

|Γ(H)t| ≤ |Γ(H)t − Γ(0)t|+ |Γ(0)t|

≤ (T − t)2R

2
+ E

[∫ T

t

[
(q(T − s))1+1/qλs + q(T − s)|dζs|

]
ds

∣∣∣∣Ft]
≤ (T − t)2R

2
+ (T − t)2(δ1/qq1+1/q‖λ‖+ q‖dζ‖∞).

Thus, choosingR = 2(q1+1/q‖λ‖+q‖dζ‖∞) and δ = min{1, 1/2L, η1/q
? /R} yields ‖Γ(H)‖Hδ ≤

R.

Theorem 4 The BSDE (55) has a unique solution (H,ZH) on [0, T ] such that:∥∥∥∥∥ sup
t∈[0,T )

(T − t)−2|Ht|

∥∥∥∥∥
∞

< +∞.

Moreover
∫ ·

0 Z
HdW is a BMO-martingale.

Proof. Using the property of the map Γ, we deduce that there exists δ > 0 such that there
exists a unique process H ∈ Hδ such that a.s. for any t ∈ [T − δ, T ]:

Ht = E
[∫ T

t
F (s,Hs) ds

∣∣∣∣Ft] .
By the martingale representation, we obtain ZH and since H ∈ Hδ, from Lemma 15, we
deduce that the martingale

∫ ·
T−δ Z

HdW is a BMO martingale.
In particular the random variable HT−δ is bounded. If we consider the BSDE (55) start-

ing at time T − δ from the terminal condition HT−δ, we can apply directly [24, Proposition
5.24] to obtain a unique solution (H,ZH) on [0, T − δ] such that H is bounded. �
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6 Comparison of the asymptotics and extension

Let us summarize our results.

• Under (C1) and (C2), Y and H are related by (20):

Yt = φ(At) + ψ

(
T − t
η?

)
Ht

where H is the minimal solution of the BSDE (21):

Ht =

∫ T

t
F (s,Hs)ds−

∫ T

t
ZHs dWs,

with a singular generator F given by (22).

• Under the additional assumptions (C3) to (C5) and (H), Y can be developed as
follows:

Yt = φ(At) + ψ (At) Ĥt

where Ĥ is the unique solution of the BSDE with singular generator (42).

• In the Itô setting with bounded coefficients, we get

– Uniqueness for Ĥ, since (H) holds.

– Another possible decomposition of Y :

Yt = φ(γ̃t(T − t)) + ψ(γ̃t(T − t))H̃t,

where H̃ is the unique solution of the BSDE (52) and γ̃ solves (50).

– In the power case f(y) = −y|y|q, we can use (54):

Yt = φ (γt(T − t)) +
1

(T − t)1+1/q
H#
t ,

where H# solves the BSDE (55) .

First let us remark that if η or 1/η is an Itô process, then using (46):

φ(At) = φ

(
γt(T − t) + E

[∫ T

t
(T − u)dγudu

∣∣∣∣Ft])
= φ (γt(T − t))

+ E
[∫ T

t
(T − u)dγudu

∣∣∣∣Ft] ∫ 1

0
ψ

(
γt(T − t) + aE

[∫ T

t
(T − u)dγudu

∣∣∣∣Ft]) da.
From Remark 2 and Condition (A1) and for a bounded process dγ , we deduce that there
exists a constants C such that

1

C
ψ(T − t) ≤ ψ

(
γt(T − t) + aE

[∫ T

t
(T − u)dγudu

∣∣∣∣Ft]) ≤ Cψ(T − t).
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Thus
φ(At) = φ(γt(T − t)) + ψ(T − t)κt(T − t)2

with a bounded process κ. In other words, in the Itô setting, all developments coincide.
The second point we want to stress is the behavior in the power case f(y) = −y|y|q

under the Itô setting. From the construction of H#, we know that |H#
t | ≤ C(T − t)2.

Using our different asymptotics, the previous development of φ(A) and uniqueness of the
(minimal) solution, we obtain that H, Ĥ and H̃ verify also this estimate, which is better
than (37). However if we use the estimate (12), we have

φt ≤ Yt ≤
1

(T − t)q†
E

[∫ T

t

((
ηs
q

) 1
q

+ (T − s)q†λs

)
ds

∣∣∣∣Ft
]

≤ 1

(T − t)q†
E

[∫ T

t

((
ηs
q

) 1
q

)
ds

∣∣∣∣Ft
]

+
‖λ‖
q† + 1

(T − t).

where q† is the Hölder conjugate of q + 1. Using that η̂ = η1/q is an Itô process with
essentially bounded drift dη,q, we have

φt ≤ Yt ≤
1

(T − t)q†
E

[∫ T

t

((
ηs
q

) 1
q

)
ds

∣∣∣∣Ft
]

+
‖λ‖
q† + 1

(T − t)

≤
(

1

q

) 1
q 1

(T − t)q†
E
[∫ T

t

(
η̂t +

∫ s

t
dη,qu du

)
ds

∣∣∣∣Ft]+
‖λ‖
q† + 1

(T − t)

=

(
ηt

q(T − t)

) 1
q

+

(
1

q

) 1
q 1

(T − t)q†
E
[∫ T

t
(T − u)dη,qu du

∣∣∣∣Ft]+
‖λ‖
q† + 1

(T − t)

≤
(

ηt
q(T − t)

) 1
q

+

(
1

q(T − t)

) 1
q

+1

(T − t)2‖dη,q‖+
‖λ‖
q† + 1

(T − t)

= φ(γt(T − t)) + ψ(T − t)(T − t)2‖dη,q‖+
‖λ‖
q† + 1

(T − t).

Thus we have the desired result

0 ≤ Ht ≤ C(T − t)2.

6.1 Non-negativity of λ

From the comparison principle for monotone BSDE (see [24, Proposition 5.34]), any solution
of (1) with a non-negative terminal condition is bounded from below by the solution (Ȳ , Z̄)

of the BSDE with generator

f?(ω, t, y) =
1

ηt(ω)
(f(y)− f(0))− (f(0) + λt(ω))−

and terminal condition 0. Ȳ is non-positive and if λ is bounded, Ȳ is also bounded. Thus
the negative part of Y is bounded and we can consider only the positive part of the solution.

If the sign of λ is unknown, then Lemma 1 does not hold. However the minimal solution
of (1) is bounded from below by the minimal solution (Y?, Z

Y?) of the BSDE with generator
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f? and terminal condition +∞. And we can adapt the proof of Lemma 2 in order to prove
that there exist two functions ϑ? and ϑ? = ϑ such that:

ϑ?(T − t) ≤ (Y?)t ≤ Yt ≤ ϑ?(T − t),

where ϑ? is the solution of the ODE:

y′ = λ? −
f(y)

η?

with λ? ≤ f(0) + λt(ω) ≤ ‖λ‖ and ϑ?(0) = +∞. Arguing as in the proof of Lemma 3 we
get that for any 0 ≤ ε < 1, on some deterministic and non-empty interval [T ε, T ], a.s.

φ

(
T − t

(1− ε)η?

)
≤ Yt ≤ φ

(
T − t

(1 + ε)η?

)
.

References

[1] R. Almgren. Optimal trading with stochastic liquidity and volatility. SIAM Journal
on Financial Mathematics, 3(1):163–181, 2012.

[2] R. Almgren and N. Chriss. Optimal execution of portfolio transactions. Journal of
Risk, 3:5–40, 2001.

[3] S. Ankirchner, A. Fromm, T. Kruse, and A. Popier. Optimal position targeting via
decoupling fields. HAL preprint, April 2018.

[4] S. Ankirchner, M. Jeanblanc, and T. Kruse. BSDEs with Singular Terminal Condition
and a Control Problem with Constraints. SIAM J. Control Optim., 52(2):893–913,
2014.

[5] S. Ankirchner and T. Kruse. Optimal position targeting with stochastic linear-quadratic
costs. In Advances in mathematics of finance, volume 104 of Banach Center Publ., pages
9–24. Polish Acad. Sci. Inst. Math., Warsaw, 2015.

[6] P. Bank and M. Voß. Linear quadratic stochastic control problems with stochastic
terminal constraint. SIAM J. Control Optim., 56(2):672–699, 2018.

[7] Ph. Briand, B. Delyon, Y. Hu, E. Pardoux, and L. Stoica. Lp solutions of backward
stochastic differential equations. Stochastic Process. Appl., 108(1):109–129, 2003.

[8] N. El Karoui, S. Peng, and M. C. Quenez. Backward stochastic differential equations
in finance. Mathematical finance, 7(1):1–71, 1997.

[9] H. Föllmer and A. Schied. Stochastic finance. Walter de Gruyter & Co., Berlin,
extended edition, 2011. An introduction in discrete time.

[10] P. A. Forsyth, J. S. Kennedy, S.T. Tse, and H. Windcliff. Optimal trade execution:
a mean quadratic variation approach. Journal of Economic Dynamics and Control,
36(12):1971–1991, 2012.

47



[11] J. Gatheral and A. Schied. Optimal trade execution under geometric brownian motion
in the almgren and chriss framework. International Journal of Theoretical and Applied
Finance, 14(03):353–368, 2011.

[12] P. Graewe, U. Horst, and J. Qiu. A non-Markovian liquidation problem and backward
SPDEs with singular terminal conditions. SIAM J. Control Optim., 53(2):690–711,
2015.

[13] P. Graewe, U. Horst, and E. Séré. Smooth solutions to portfolio liquidation problems
under price-sensitive market impact. Stochastic Process. Appl., 128(3):979–1006, 2018.

[14] G. H. Hardy. A course of pure mathematics. Cambridge University Press, Cambridge,
centenary edition, 2008. Reprint of the tenth (1952) edition with a foreword by T. W.
Körner.

[15] U. Horst and F. Naujokat. When to cross the spread? trading in two-sided limit order
books. SIAM Journal on Financial Mathematics, 5(1):278–315, 2014.

[16] M. Jeanblanc, T. Mastrolia, D. Possamaï, and A. Réveillac. Utility maximization with
random horizon: a BSDE approach. Int. J. Theor. Appl. Finance, 18(7):1550045, 43,
2015.

[17] M. Jeanblanc and A. Réveillac. A note on BSDEs with singular driver coefficients. In
Arbitrage, credit and informational risks, volume 5 of Peking Univ. Ser. Math., pages
207–224. World Sci. Publ., Hackensack, NJ, 2014.

[18] N. Kazamaki. Continuous exponential martingales and BMO. Berlin: Springer, 1994.

[19] P. Kratz and T. Schöneborn. Portfolio liquidation in dark pools in continuous time.
Mathematical Finance, 2013.

[20] T. Kruse and A. Popier. BSDEs with monotone generator driven by Brownian and
Poisson noises in a general filtration. Stochastics, 88(4):491–539, 2016.

[21] T. Kruse and A. Popier. Minimal supersolutions for BSDEs with singular terminal
condition and application to optimal position targeting. Stochastic Process. Appl.,
126(9):2554–2592, 2016.

[22] D. Nualart. The Malliavin calculus and related topics. Probability and its Applications
(New York). Springer-Verlag, Berlin, second edition, 2006.

[23] E. Pardoux and S. G. Peng. Adapted solution of a backward stochastic differential
equation. Systems Control Lett., 14(1):55–61, 1990.

[24] E. Pardoux and A. Rascanu. Stochastic Differential Equations, Backward SDEs, Par-
tial Differential Equations, volume 69 of Stochastic Modelling and Applied Probability.
Springer-Verlag, 2014.

[25] H. Pham. Continuous-time stochastic control and optimization with financial applica-
tions, volume 61. Springer Science & Business Media, 2009.

48



[26] A. Popier. Backward stochastic differential equations with singular terminal condition.
Stochastic Process. Appl., 116(12):2014–2056, 2006.

[27] A. Popier. Backward stochastic differential equations with random stopping time and
singular final condition. Ann. Probab., 35(3):1071–1117, 2007.

[28] J. W. Pratt. Risk aversion in the small and in the large. Econometrica, 32(1/2):122–136,
1964.

[29] A. Schied. A control problem with fuel constraint and dawson–watanabe superpro-
cesses. The Annals of Applied Probability, 23(6):2472–2499, 2013.

49


	Introduction
	Assumptions on the generator
	BSDEs with singular terminal condition
	Asymptotic behavior for a general driver f
	Properties of the generator F
	On the coefficients ,  and 
	Properties of ZA

	Construction of the process H
	Asymptotics of the minimal solution

	The concave case
	Symmetric development for general process 
	About Condition (H)
	A different asymptotic development under the bounded Itô setting
	The power case f(y)=-y|y|q

	Comparison of the asymptotics and extension
	Non-negativity of 


