N

N

Asymptotic approach for backward stochastic
differential equation with singular terminal condition *

Paulwin Graewe, Alexandre Popier

» To cite this version:

Paulwin Graewe, Alexandre Popier. Asymptotic approach for backward stochastic differential equation
with singular terminal condition *. 2019. hal-02152177v1

HAL Id: hal-02152177
https://hal.science/hal-02152177v1

Preprint submitted on 11 Jun 2019 (v1), last revised 11 Mar 2020 (v2)

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-02152177v1
https://hal.archives-ouvertes.fr

Asymptotic approach for backward stochastic differential

equation with singular terminal condition*

Paulwin Graewe'! and Alexandre Popiert?

Deloitte Consulting GmbH, Kurfiirstendamm 23, 10719 Berlin, Germany
2Laboratoire Manceau de Mathématiques, Le Mans Université, Avenue O. Messiaen,
72085 Le Mans cedex 9, France

June 11, 2019

Abstract

In this paper, we provide a one-to-one correspondence between the solution Y of a
BSDE with singular terminal condition and the solution H of a BSDE with singular
generator. This result provides the precise asymptotic behavior of Y close to the final
time and enlarges the uniqueness result to a wider class of generators.
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1 Introduction

This paper is devoted to the study of the asymptotic behavior of the solution of backward
stochastic differential equations (BSDEs) with singular terminal condition. We adopt from
[26] and [2I] the notion of a weak (super) solution (Y, Z) to a BSDE of the following form

—av; = ;f(Yt)dt + Ndt — Z,dW, (1)
t
where W is a d-dimensional Brownian motion on a probability space (€2, F,P) with a filtra-
tion F = (F;)i>0. The filtration F is the natural filtration generated by W and is supposed
to be complete and right continuous. The function f : R — R is called the driver (or
generator) of the BSDE. The particularity here is that we allow the terminal condition £ to
be singular, in the sense that £ = +o00 a.s.
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Since the seminal paper by Pardoux and Peng [23] BSDEs have proved to be a powerful
tool to solve stochastic optimal control problems (see e.g. the survey article [8] or the
book [25]). BSDEs with singular terminal condition provide a purely probabilistic solution
of a stochastic control problem with a terminal constraint on the controlled process. The
analysis of optimal control problems with state constraints on the terminal value is motivated
by models of optimal portfolio liquidation under stochastic price impact. The traditional
assumption that all trades can be settled without impact on market dynamics is not always
appropriate when investors need to close large positions over short time periods. In recent
years models of optimal portfolio liquidation have been widely developed, see, e.g. [1], [2],
[10], [1I1], [15], or [19], among many others. In [4], the following problem is considered:
minimizing the cost functional

J(X)=E [ / (ol + A XofP) ds] @)

over all progressively measurable processes X that satisfy the dynamics
S
Xs=x+ / Q du
0

with the terminal constraint that X = 0 a.s. Here p > 1 and the processes p and A are
non-negative and progressively measurable. In this framework the state process X denotes
the agent’s position in the financial market. At each point in time ¢ she can trade in the
primary venue at a rate oy which generates costs p;|ay|P incurred by the stochastic price
impact parameter 7. The term 7| X;|P can be understood as a measure of risk associated
to the open position. J(X) thus represents the overall expected costs for closing an initial
position z over the time period [0,7] using strategy X. In [4], optimal strategies and the
value function of this control problem are characterized with the BSDE

q

Y,
—dY; = —(p — 1) —qdt + N\edt — ZdW, (3)
Hy

with tlin%Yt = +o0o. Here ¢ > 1 is the Holder conjugate of p. The generator f is here a
%

polynomial function. Variants of the position targeting problem have been studied in
[5], [12], [13] or [29]. Note that these problems are particular cases of the stochastic calculus
of variations (see [3]).

Let us explain the methodology to obtain a solution for the BSDE . The most common
approach in the literature is the so-called penalization approach, see, e.g., [26], [27], [4], [12],
[21], and the references therein. The idea of the penalization approach is to relax the binding
liquidation constraint by penalizing open position in the underlying liquidation problem. In
[4], as in [21I] for more general driver, the authors use the penalization approach, replacing
the singular terminal by a constant n and letting n go to +00. The convergence is obtained
by a comparison principle for solution of BSDEs (see [20] or [24]). In [13], the approach
consists in the study of the precise asymptotic behavior at time T' of the solution Y of .
Roughly speaking, the major singular term of Y is then removed to obtain a non-singular
problem. The key of this asymptotic approach is to establish sharp a priori estimates of the



singular solution at the terminal time. In [13], the authors consider a time-homogeneous
Markov setting and obtain the a priori estimates and uniqueness by establishing a general
comparison principle for singular viscosity solution to (3)). This results are based on time-
shifting arguments, applied similar before in [26], which in general do not apply in a non-
time-homogeneous setting. However, it is outlined in [13] how the shifting argument may
be applied in non-Markov settings to obtain sharp a priori estimates of the singular solution
to ([3). One major result of [I3] is the uniqueness of the solution of (under boundedness
assumptions on the coefficients p and \).

Let us outline in which directions our findings generalize some results from these papers.
In [2] the generator may depend also on Z in a non trivial way; here our generator has a
special form. However in the previously mentioned papers f is assumed to be a polynomial
function or of polynomial growth w.r.t. y, that is f(y) < —yl|y|?. Here we essentially assume
that 1/f is integrable on the neighborhood of +oc0. If n and A are deterministic, the BSDE
becomes an ODE and this condition is necessary and sufficient to ensure that the solution
can be equal to 400 at time T', but finite at any time ¢ < 7. Under this condition (called
, we prove ezistence of a minimal solution (Y, ZY) of the BSDE (). The function
fly) = —(y+1)|log(y+1)]7 is an example satisfying but not covered by the preceding
papers.

Our second main result concerns the decomposition of this minimal solution. We prove
that Y is equal to:

T
oo 2

e ¢ solves the ODE: ¢/ = f o ¢ with initial condition ¢(0) = 400 and ¢ = —¢/,

ftD + (Tn: t) H;, Vte|o,T], (4)

where

e 7* is the deterministic upper bound on the process 7.

The process H is the minimal non-negative solution of a BSDE with terminal condition 0 and
with a singular generator F' in the sense of [I7] (Theorem . As a consequence, we provide
a one-to-one correspondence between the BSDE (|1)) with singular terminal condition and a
BSDE with singular generator. We give a self-contained construction of the solution (H, Z)
(without any reference to Y) which extends the existence result of [I7]. The asymptotic
behavior follows from the boundedness of the process ¥ H/¢ on some neighborhood of T

o =o(e[ [ ] s om e [ el

where the constant x depends on the coefficients 7, A and f. At this stage it is important to

note that there is some asymmetry in since the first term with ¢ is random, whereas the
second with v is deterministic. However this method avoids assuming extra assumptions

on f.



To deal with a symmetric expansion, we suppose that f is concave and we decompose
Y as follows: for any t € [0, T

o el el o el 2

Again H solves a BSDE with a singular generator. As in the case , one singularity comes

]-"t]) Hy = ¢(Ay) + ¢ (As) Hy. (5)

from the explosion at time T and creates trouble only close to time T'. But since H is
multiplied now by a random process, there are extra linear terms including the martingale
part of the process A. These terms have to be controlled on the whole interval [0,T7], and
not only on a neighborhood of 7. Nonetheless we prove that under a technical condition,
called (H,Z™f) is the unique solution of the BSDE with singular generator and as a
by-product, we obtain uniqueness of the solution of the BSDE . Let us emphasize that
there was only one result about uniqueness, namely [13, Theorem 6.3| for the power case.
Uniqueness was proved by showing that any solution (Y, ZY) is the value function of the
control problem . Here the proof is only based on the comparison principle for BSDEs.

The Conditionis a stronger Novikov condition. For a general process 7, this assump-
tion may be false; some regularity on its Malliavin derivative is required in Thereby,
assuming that 7 is an [td process, we provide sufficient conditions under which holds.
Under this It6 setting with bounded coefficients, we provide another decomposition of Y,
where again H is the unique solution of a BSDE with a singular generator, but without the
troubling linear part.

Up to now, the construction of H is based on the comparison principle for BSDEs and
H is the monotone limit of a sequence of solutions of “standard” monotone BSDEs. In
the power case f(y) = —yly|?, we follow the arguments of the paper [13] for a PDE and
show that the process H can be obtained by Picard iterations in the suitable space H. This
construction has two main advantages: first we have a more accurate behavior of H at time
T, secondly this construction is more tractable for numerical approximation.

In addition to the precise behavior of the solution Y, that is the behavior of the value
function of the control problem in the power case, or the uniqueness result for (1), our
result establishes a link between Y and H. The main drawback for BSDE with singular
terminal condition is the lack of approximation scheme with some rate of convergence.
Moreover most of numerical schemes for BSDE are based on backward induction starting
at the terminal value. The correspondence between Y and H could be a promising solution
for numerical scheme, since the terminal value of H is zero. The singularity of the generator
of H is a serious obstacle. But if H is obtained by a fixed point argument in a weighted
space, we strongly believe that it could be a way to compute H, and thus Y. This point is
left for further research.

The paper is decomposed as follows. In the next section we explain our assumptions
on the coefficients 1, A and f of the BSDE (lf). The reader finds here several examples
of functions f, for which the asymptotic behaviour of Y holds. Let us emphasize these
assumptions only imply the behaviour of f on an interval [R, +00) for R sufficiently large.
In Section |3 we recall and extend several results concerning the ezistence of the solution



(Y, ZY) of the BSDE with singular terminal condition 400 and provide some a priori
estimates on this solution Y and on ZY. Section {4 is dedicated to the decomposition
, by proving the existence of the minimal non-negative solution of the BSDE (Equation
) with a singular generator and with terminal condition 0 (Theorem |1)) and the one-to-
one correspondence between the minimal solutions Y and H. In Section [5, we study the
symmetric decomposition of Y and prove uniqueness of the solutions Y for BSDE ([1))
and H for the BSDE . In the power case we prove that H can be constructed by a
Picard approximation scheme. In the last section, we briefly explain the relations between
the different expansions of Y. Let us emphasize that all results from Section [4] are ordered
from the more general to the less general drivers.

In the continuation, unimportant constants will be denoted by C' and they could vary

from line to line.

2 Assumptions on the generator

In the BSDE , the generator is of the form:

(w7t7y) = f(y> + /\t(w)'

1
ne(w)

In the rest of the paper, the following conditions hold:

(A1) There exist three constants 0 < n, < n* and ||\|| > 0 such that a.s. for anyt

<<y, 0 M <AL

(A2) The function f is continuous and non increasing, with f(0) = 0 and with continuous
derwative.

Supposing that f is continuous and non increasinﬂ is coherent with the existence and
uniqueness results concerning monotone BSDEs (see |24, Chapter 5.3.4]). Note that if
f(0) # 0, then
— £(0 0 ~
f0) ,,, _f0 =10 f0)_fo) 5
Mt Ug Nt UD
provided that Xt > 0. The non-negativity of A is natural for the control problem and

leads to a more accurate expansion of Y. However it is not necessary (see Section for

a short discussion on this point). Somehow and to summarize, the only stronger condition
on our type of generator is the regularity: f € C1(R).

Now let us consider the ordinary differential equation (ODE): v/ = —f(y) with the
terminal condition y(7") = +oo. There exists a solution if and only if the function G given

by:
' G = 0071 dt
@= [ )

'For monotone BSDEs, the classical assumption is: for some y € R and any (y,y") € R? (f(y) —

FWN) @y —1vy) < puly—y')? By a very standard transformation (see [24, Proof of Corollary 5.26]) we may
assume w.l.o.g. that p =0, thus f is non increasing.



is well-defined at least on some interval (K, +00), with k = sup{y > 0, f(y) = 0}, meaning
that f = 0 on [0, k]. Note that the function G is positive, strictly decreasing and convex,
such that G(oco) = 0 and the smoothness of f implies that G(k) = +o00. Then the solution y
is given by: y(t) = G=Y(T —t) on [0, T]. Defining f*(x) = f(z+x), G*(x) = G(x+k) yields
that G* is defined on (0, +00). Moreover the solution y is given by: y(t) = G~HT —t) =
(GF) YT —t) — k and solves y' = —f"(y) together with y(T) = +o0o. Hence w.l.o.g. we
assume from on now that:

(A3) For any x > 0, the function

1
6@ = [
is well-defined on (0, 00).

We define the two functions:

o(x) = G ! (x) >0, P(x) = —¢'(x) > 0. (6)

The function ¢ being decreasing and C? on (0, c0) solves ¢’ = f o ¢.

Under the previous conditions, there exists a minimal non-negative solution (Y, Z¥) for
the BSDE (Proposition , and Y verifies the a priori estimate . Note that we can
extend the result when the generator also depends in a particular way on Z (see Remark

).

For the asymptotic behavior of Y, we also consider the next condition:

oo 1 =
(C1) There exists a constant § > 0 and R > 0 such that x — (G(ﬂv)_‘s = / I )dy>
z —J\Y

is convexr on [R,+00).

Let us emphasize that this condition only involves the function f on some interval [R, +00)
and the value of R may be large. From Lemma [5| Condition |(C1)|is equivalent to the
¢"(x)
¢'(z)
Example 1 If f(y) = —(y+1)|log(y+1)|? for some ¢ > 1 andy > 0, all conditions|(A1)|
[(A2)| and |(A3)| are verified and if p is the Hélder conjugate of q then

boundedness of x — —x

on a neighborhood of zero.

1
Ve >0, G(z)= 1 log(z + 1)1 4.

Thereby
o) = exp (((a = 1)2)' ) ~ 1.

Direct computations show that
¢"(z)
P

is not a bounded function near zero and for any § > 0, G0 is not convex. Somehow this

z=[(p—1)PzP + p]

function f is “not enough non linear”.



Example 2 Here we study several functions f, ordered by their “non linearity”. All of them

verify [(CT))
1 1\«
o If fly) = —yly|? for some ¢ > 0, then G(z) = — and o(z) = <> . The
qx qx
assumption |(C1)| holds for any 6 > 0 and

_¢'@) a1l
¢ () q

o If f(y) = —(exp(ay) — 1) for some a > 0, then

G(z) = —é log (1 —e ™) =G (2) = ¢(x).

And
¢//($) axeax

- ¢'(x) v i — 1 250

1,
1s bounded near zero.

o If f(y) = —exp(ay?) for some a > 0 and y > 0 (note that f(0) = —1 to simplify the
computations). Then

G(z) = \/Z {1—/\[(3} 22)|, ¢(z) = \/1271/\/‘1 (1 xﬁ)

where N(+) is the cumulative distribution function of the normal law. Thereby
¢'(x) = —exp(ag(x)®), ¢"(x) = 2a¢(x) (¢ (x))%,
and with \/ap(z) = z/\V/2

_2/:((;6))13 = 2ax¢(z) exp(ag(z)?) = 2v/2aG(2/V/2a) exp(+?/2)

— VImep(2/2)[1-N()] ~ L

z—r+00
using the classical tail estimate of the normal law. Hence x¢"(x)/¢'(x) is bounded

near zero and[(C1)| holds (again by Lemmal3).

Let us define

7 7)

together Witfﬂ

¢ =(Ar), Yr=1v(Ar). (8)
Let us emphasize that (t — ¢, t > 0) and (¢t — 4, t > 0) are processes. Remark that
from the boundedness of 5

T
i(T—t)gAt:E[/ L s !
t

.7-}] < —(T —1). 9)

n Nls Tx

2In the following, X; denotes a random process, whereas X (t) is a deterministic function.



From the monotonicity of ¢ and v, we get

bu(t) = 6 (Tn:t) < < ¢<

~

|
~
N———

I

<-

*

=

(10)

and

=0T su<v () = vw. (11)

We introduce our next condition on f:

(C2) For somep>1, some T <T and for any r > 0

([ Fe)

Since the process ¢ is bounded from above by ¢*, |(C2)|holds if

/T —f(@*(t) +7)
r P (t)
since this integral w.r.t. ¢ is now deterministic. Hence |(C2)|depends only on the behavior

of f on a neighborhood of +oco. In particular if the function —f is submultiplicative:
—flx+y) <C(—f(z))(—f(y)) for some fixed constant C, then

LSS0 1) _ g HEO) o
0 < C(=f(r)) (1) < C(=f(r)).

In Remark (3] we show that all functions of Example [2| verifying [(C1)| also satisfy |[(C2)]

even if they are not submultiplicative.

E < +o00.

dt < +o00

In Section 5, we add several conditions on f:
(C3) f is concave and of class C* on (0, +00).

(C4) If § is the increasing and concave function § : x — G~ Yz~ %) for x > 0, then
(—f) o & is also increasing and concave on a neighborhood of +oc.

From , we know that § is increasing. Since f is concave, —f’ is a non-decreasing
function and there exists a rank such that for any z greater than this rank, —f’ > 0. In
other words (—f) o § is an increasing function, at least on a neighborhood of co. Hence
the main assumption in is the concavity of —f o §F. We prove that all functions of
Example |2| satisfying also verify [(C3)| and [(C4)| (see computations after Lemma .

Finally our last condition on f is the following. Let us define for some p € (0,1), the

non-negative function h(y) = —f(y)G(y)'=*.

(C5) There exists p € (0,1) such that the function y — Y remains bounded on a neigh-

h(y)
borhood of +00.



Again this property only depends on the behavior of f near +oc. Note that

+o00 1 1 )
/y %dt = ;G(y) ;

thus 1/h is integrable on [1,4+00). It is known (see [14, Section 178|) that if h is non-
decreasing, then we have

. Y
lim —— =0.
ARy O

Thus |(C5)|holds. But since

L [G"W)G) + (p— 1) (G (y))?
(G'(y))? ’

the non-negativity of h’ is equivalent to the non-negativity of the second derivative of G°. In

W(y)=Gy)™" [-f(y)Gy) — (1 —p)] = G(y)

other words h is non decreasing if and only if G” is convex. For all functions of Example
% =0, for any p € (0,1). Hence |(C5)| holds.
(Y

direct computations show that lim,_,

3 BSDEs with singular terminal condition

In this section the assumptions (A1)} [(A2)|and [(A3)| except for the last result (Lemma
where we suppose besides that f is concave and that |(C1)|is verified. Let us introduce
the following spaces for p > 1.

e DP(0,T) is the space of all adapted cadlagﬂ processes X such that

E| sup | X¢P | < +o0.
te[0,7T

e HP(0,T) is the subspace of all predictable processes X such that

T £
([ )
0

o SP(0,T) =DP(0,T) x HP(0,T) and $%(0,T) = 5, S7(0, 7).

E < +o00.

From [2I, Theorem 1], if f(y) < —y|y|? for some g > 0, we know that the singular BSDE
has a minimal solution (Y, ZY), in the sense of the next definition:

Definition 1 (BSDE with singular terminal condition) The process (Y, ZY) is a so-
lution of the BSDE with terminal condition 400 if:

e Foranye >0, (Y,ZY) € S®0,T —¢);

o forany0<s<t<T,

t 1 t
Ys_Y;f‘f'/ [nf(yu)+/\u:| du_/ Z;/qu;

3French acronym for right-continuous with left-limit




e Y, >0 as. foranyte|0,T];
e a.s. limY; = +oo.
t—T
Minimality means that for any other process (17, Z ) satisfying the previous four items, a.s.
Y: > Y, for any ¢. Moreover from [13, Theorem 6.3], if f(y) = —y|y|?, the solution is unique.
To obtain the existence of a solution, we need some a priori estimates on Y (see [4], [13]

or [21I]). Using the arguments of |13 Proposition 6.1], we obtain that if f(u) < —ul|u|?, any
solution of the BSDE ([1|) satisfies:

Y, < (T—lt)q*E [/tT <<"q>; +(T—s)q*As> ds

where ¢ is the Holder conjugate of ¢+ 1. Under our setting and from this estimate we have:

7 \i (T —1) _(T—t (T —1)
Yis <q<T—t>> +<qf+1>“”‘¢< = >+<q*+1>””"

]:t] (12)

The goal of this section is to extend these results to our class of drivers. Let us first
begin with a lower bound, similar to [4, Estimate 3.7], but for a more general driver f.

Lemma 1 The minimal solution Y satisfies a.s. for any t € [0,T],
Yi> ¢ =9 (Ar). (13)

Proof. Indeed the process A satisfies
1
—dAy = —dt + Z{dW, (14)
Up

for some Z4 € H2(0,T). For some L > 0, define AF = %—i—At. Since ¢ is a smooth function,
if Ul = ¢(AL), Ito’s formula leads to

1 1
—dUf = ¢(AF) [mdwzz“dwt}—chs”(Af)(Z;“)?dt

_ ;f(UtL)dt 4Ot + 2V aw,.
¢

Note that ¢"(z) = f'(¢(2))f(¢(x)) > 0, thus ©; < 0. Since UL = ¢(1/L), from the
comparison principle for monotone BSDE (see |24, Proposition 5.34]) and the construction
of Y by approximation, we obtain that Y; > UF. Passing through the limit on L leads to
the conclusion. g

Let us now give an upper bound on Y, similar to [13, Proposition 6.1] but again for a
general driver f. Let us consider the function

*° -1 o 1
&(z) :/ dy:n*/ — 4y
= A+ 42 ()

10



defined on the interval (Y = f~1(—€),4+oc0) with € = ||\||n*. Since f is a function with
continuous derivative, &(Y) = +oo. If we define ¥ = &, this function is well-defined on
(0, +00), with ¥(0) = +o00 and satisfies:

f(9)

*

0 = A+ (15)

Note that the function ¢ strongly depends on n*, ||| and f.

Lemma 2 Assume that the process (U, ZY) satisfies the dynamics: for any € > 0 and
0<t<T —¢

T—e 1 T—e T—e
U+ G =Ur—c + / [)\5 + Uf(US)] ds — / Osds — / zYaws, (16)
t s t t
where ¢ and © are two non-negative processes. Then a.s. for all t € [0,T),
0< U <HT —1). (17)

Proof. We proceed as in the proof of [13, Proposition 6.1], namely we shift the singularity.
Take any 0 < e such that 0 < T —e < T. The function (9 (T —e —t), t € [7,T —¢]) solves
the ODE: y(T' — 6) = 400 and

v = - 22,

*

By the comparison principle again we have that Uy < ¢ (T'—e —t) on [0,7 — ¢]. Since U
does not depend on €, we obtain that a.s.

vte[0,T), U, <9(T—1).

This achieves the proof of the lemma. O
As a by-product, our proof implies that for any non-negative solution (Y, ZY) of the
BSDE (1)), we have a.s. on [0, T]:

T—1t
T

¢*(t)=¢( )g@gngmzw—n. (18)
The first inequality comes from (10). Compared to (12), in the power case f(y) = —y|y|4,
this estimate is less accurate. However it holds for functions without polynomial growth.
For the upper bound, note that if A = 0, then ¥ = ¥*. In general we have

Lemma 3 For any ¢ > 0, there exists a deterministic time T¢ € [0,T) such that a.s. for
any t € [T¢,T)
T—-1

mg¢<ﬂ+@w

) =0, (19)

Proof. We write

° 1

* oo# =Gz *
o) = o [ =g = e | e

11



Therefore n*G(x) < &(x) and

I P RO S A ) I
e e =160 (1)
We deduce that on the interval (f~1(—(1 + €)€), +o0), n*G(x) < &(z) < (1 + e)n*G(x),
and thereby on the neighborhood of zero (0, G~ (f~1(—(1 +£)€)/n*)) = (0, 1),

&x) < n°G(z)+n*€

G /") < I(x) <G Ha/(L+e)n™)) = o(a/((1+e)n)).
Thus provided that T¢ =T — T <t<T
Y < 9(T — 1) < 63(¢).

U
Hence we deduce that there exists a constant 7 € [0,7") such that a.s. for any ¢ € [, T]

du(t) <Yy < ¢1(t)

with two deterministic functions ¢, and ¢} on a deterministic neighborhoodﬁ of T.

Let us state the following result. Note that if f(y) < —yl|y|?, there is nothing new here.
But since we strength the integrability conditions on 7 and A, we can remove this growth
condition on f. A typical example is f(y) = —(y + 1)|log(y + 1)|? for some g > 1.

Proposition 1 Under our setting, the BSDE has a minimal non-negative solution
(Y, ZY).

Proof. The existence of a non-negative solution can be obtained by the same penalization
arguments as in [4] or [2I]. We use the a priori estimate in order to obtain the conver-
gence of the penalization scheme on any interval [0, T — ¢]. Minimality can be proved as in
[21, Proposition 4]. Thus we skip the details here. O

Remark 1 (Generator depending on Z) Assume that the generator has the form:

= M w w, 2
(tvwayvz) - Ut(w) +)‘t( )+C(t7 ) )7

where there exists a constant C such that for any (t,w, z,2")
0< ((t,w,O) < Ca |<(tawaz) - C(tawaz/” < C|Z - Z/|'

Using the Girsanov theorem, existence of a solution can be derived directly from Proposi-
tion [1 Moreover all results in this paper remain valid under some probability measure Q
equivalent to P.

“Note that we can consider the solution 9 of the ODE (15) starting at the point ¢i(7). Then defining

~

for t € [0, 7], ¢1(t) = H(T —t), we can extend the estimate on the whole interval [0, T].

12



To finish this section, let us give an estimate of Z¥. Let us also emphasize that this
upper bound is valid for any solution of the BSDE , since the proof only uses the dynamics
on [0,7") and the a priori estimate (18)) on Y, but not the construction by penalization of
Y. In the power case (f(y) = —yly|?), it is known (see [0, 20]) that

E K/OT(T - s)Q/Q(Z;”)?ds)] < 4o0.

Lemma 4 Assume that f is concave and that holds. Any solution (Y,ZY) of
satisfies for all p € [1,+00)

: [</0T T ? )st)p

Let us immediately remark that this estimate is not optimal in the power case since we only

E [(/OT(T - 5)2/‘1+1(Zf)2d5>} < +oo.

Nevertheless it is sufficient for our purpose in Section

< +00.

have

Proof. The following argument will be used several times through the paper. From the
definition of a solution, we have for any € > 0

(f i >2ds>p

Since s — ( L oL is bounded on [0,T — ], we have to prove only that

T=5) W )2
</TT T p )

for some deterministic 7 € [0,T).
From , Y remains bounded away from zero on [0, 7. Thus let us apply the function

E < 400.

p
E

< 400

GtoY:
. L U U W L R
¢l -6t = /om@)( ) A8>d v Fvy 2 M
L0 o
© s A
Hence

L[ —f(Ys) vy “(1 1y
03/ (Zs)dng(Y)+/ — ds/stWS.
2o (F(¥))? U\ o f(Y5)
Now for p > 1, there exists C), such that
p)

PO v ) v
o< (f Gyp@re) < <(G(Yt”“n£+ue[£ﬂ

o q
ZY aw,
[ 7%

13



Recall that ¢.(t) <Y; < ¢*(t) (Equation (19)). Since G is non-increasing
0<G(Yy) < Glex(t))

and since —f’ and ¢, are non-decreasing (that is f is concave), for any s € [0, 7]

1 1
0< < < 400

—f'(Ys) = —f(0.(T))
Taking the expectation and using BDG’s inequality we obtain

E (/0 (f{;é))) (2) )2ds )p < G <(G(¢*(t)>)p+ :;)
+ C,E <usel[10pt] / ' f()ZYdW’ )

& (cto.wp+ 1)
)

(/0 <f<Y(s>)2<Zs ) ds)ﬂ .

(F e ves)

Using the monotonicity of f and f’, using we get

| st | -5 (] Ghtpens)

Recall that under |(C1)| from Lemma the function s — :;i/*(s) (T — s) is bounded. This

leads to the conclusion. O

IN

~

+ G,F

Therefore

E

< +00.

< +00.

4 Asymptotic behavior for a general driver f

In this section, we assume that the hypotheses [(AT)|to[(A3)] [[C1)|and [(C2)| hold. Recall
that

and if ¢y = ¢(A;), assume that

Yi=o¢+ 9 <T77* t) Hy = ¢+ ¢*(t) Hy. (20)

Let us derive formally the dynamics of H. From the proof of Lemma []]

v, = (A [;dt+ZtAth] — S AN
t
1

+o— (T_t> Hydt — o (£)dH,
n n

14



But we also know that 1
—dY; = — f(Yy)dt + M\dt — Z) dW;.

Mt
Then
L ()dH, = [%(Y;)—W(At)] dt+[xt+1¢"<At><zf>2] i
Nt Nt 2
- ;wl(Tn*t>tht—[Qﬁ/(At)Z{q-i-ZtY]th.
And we deduce
LdH, = — [+ 6 (O H) — f(0)] dt — — w(T‘t)Hdt
T (S ! ! 7 (t) )
N 19 (A) [qb"(At) ]<Z;4>2
dt + — A d
Tt e Loy e

1
Y (t)
From Lemma [l} we know that Y; > ¢ = ¢(A¢), thus Hy > 0 a.s. In other words H should
solve the BSDE:

[0/ (Ap) Z{* + 2] W

T T
Ht—/ F(s,Hs)ds—/ zHawy, (21)
t t

with generator

AN2
P = D5 ok [P e o - f00] e (22

Ay Yr(t)ne
with
o = LY [ ] Ly (A) {W(At) At}
2 2/} (t) Lv(A vrt) [ () ]
_ Tty ( >
B 77* "
" w*( )
Let us emphasize that the generator is singular in the sense of [17], since
T
Be .
T tdt =

Hence we will adopt their definition (|17, Definition 2.1]) of a solution.

Definition 2 (BSDE with singular generator) We say that (H, Z") solves the BSDE
if the relation holds a.s. for any t € [0,T] and if

T T 3
E / |F(3,H5)\ds+</ (Zf)%) < o00.
0 0

The aim of this section is to prove existence of a minimal non-negative solution (H, Z) of
this BSDE , without using the existence of Y, such that the relation holds a.s. on
[0,T].

15



4.1 Properties of the generator F

In order to construct the process H, let us describe the properties of the generator F' given

by .

4.1.1 On the coefficients a, 5 and v

Since ¢ = (f'op)¢’ > 0 and ¢/ = —¢"” < 0, the three processes a, 8 and 7 are non-negative.
Moreover the functions ¢ and 1) = —¢' are continuous and bounded on [, +00) for any n > 0
and 1) never reaches zero on compact subset on (0, 00). Thereby the coefficients a, 5 and
are bounded on any time interval [0,7" — 6] for 0 < § < T". The next result shows that they
are also bounded on the whole interval [0, 7).

Lemma 5 The next two assertions are equivalent.

1. There exists a constant § > 0 and R > 0 such that x +— G(2)™% is convex on [R, +0o0)

(condition |(C1))).

2. The functions ¢ and 1 verify the next property: there exists K > 1 and o > 0 such
that for all x € (0, o]
/! /
A0 |5
¢ (z) ¥(z)

The constants are related by: o =1/R and § = K — 1.

<K.

Proof. Remark that

P(z) = —¢"(x) = — x x.
=== 5w )
¢"(z) - .
Moreover x 7(z) < 0. Hence it is enough to show that there exists K > 0 such that
/"
_$<:;((x)) < K. W.lo.g. we can assume that K > 1. Now let us define ¢ by ¢(x) = ¢(1/x)
x

for any z > 0. Then

o) =50 (1/a), &) = 5o (1) + —3o"(1/x).

e @)y 180
—x =2+ - .
¢' () z ¢'(1/x)
Hence to establish Lemma [5] it is sufficient to prove that there exists K > 1 and o > 0 such
that for all t > 1/p = R,

©"(t)
©'(t)

Let us rewrite this condition in terms of the so-called Arrow-Pratt coefficient of absolute

—t

>2-K=—(K-2).

risk aversion by interpreting ¢ as utility function,

apt) =~ > 2D o, )

16



where the utility function to ax is given (up to positive affine transformations) by ug (t) =

t{=1. By a classical theorem due to Pratt ([28], see also [9, Proposition 2.44]), Condition

holds if and only if
p=7Fouk (24)

for a strictly increasing concave function §. As ¢ = G~!(1/-), Pratt’s condition is equivalent

3(t) :=G7! <u1_;(t)) =Gt (t—ﬁ> :

defines a strictly increasing concave function. In other words x +— G(x)l_K is strictly

to

increasing and convex. This achieves the proof of the Lemma. g
Under the condition using the second assertion of the previous lemma, the process
By is non negative and bounded provided that T—t < n*p = n*/R, that is T—n*/R <t < T.
The process A is bounded and since 1 tends to co when = goes to zero, v is bounded on
[0, 7.
Concerning the process «, using @, A <1/R,if T — % <t <T. Thus the process
[_ Y'(A)
¥(A)

fore we deduce that

A] is bounded on this interval. Since v is non increasing, 1(A¢) < *(t). There-

Y (A)
P*(t)
assumption |(Al)|on n and on A, a, 5 and v are bounded processes at least on some interval
[1,T] with

is also bounded. Finally under condition |(C1)| and with our

n* T
= T——T—--=,0]. 25
T max< 7 R’) (25)

For t € [1,T]
ol < (14 ) maxLlal), 160 < K.l < IAIAT)

On the rest of the interval [0, 7] these coefficients are also bounded due to the regularity of
f (Conditions |(A1)|and [(A2))).

Remark 2 Using the previous lemma, integration leads to: for anyy € (0,1/R) and a <1,

Ylay) _ 1
bly) = ak

1<

<

< 6K If we assume that for some 6§ > 1

T—1t\ ~
Yt:¢t+¢<5*> H,
n

we have: ﬁt < H; < 5KfIt. Hence, up to some constant, this new development of Y is

equivalent to .

17



4.1.2 Properties of Z4

In the generator F' given by , we also have to control the process Z4. First note that the
martingale (f(f ZAdW, t € [O,T]) is a BMO martingale (see [I8]) and Z4 € H9((0,T)),
q > 1, due to the assumption that 7 is bounded above and away from zero.

Lemma 6 For any p € (0,1) and p > 1, we have

</0T (fffffp dsf

Proof. Let us apply Ito’s formula to A'=7 on [0,T — ¢]:

E < fo0. (26)

T—¢ - T—e 42
A = ey [ a0 a0 )
. Ns 2 t (AS)

T—e
v [ a-pa)rziaw,
t

Hence,

(L=pp (775 (2 - B T
2/0 (As)1+pd5 = Ay — (Ar_)? —(1—0)/0 Us(As)Pds (27)

~ (1-p) /O e zbaw,

Taking the expectation and using @D and the fact that ¢t — (T — t)~" is integrable at time
T, we can apply Lebesgue monotone convergence theorem to get

E/OT (Efj;fpds = iE ((Ao)lp B /OT ns(is)”d8> < +o0.

Using for any p > 1 we obtain for some constant C, > 0,

1 T-c (7AY2 P ) . T-= 1 P
L s A )—P|P ANL—PP
AT B e C e T A e
T—e p
. / (A) P 7AW,
0
. . 1 T 9 P
< (Ao) PP+ (T /)7 o (/0 (A,)7 ds)
T—e p
[ @yztaw,
0

From the BDG and Holder inequalities, taking the expectation leads to

e (Z?)2 1—p|p 1—p|p i T 1 3 P
e oy 12+ 5 ( <As>pd>]

}1/2

1 p

—E

< E
Cp

+{E

p

T—e
/ ((Aa) P Z2)2ds
0

18



The function z + 2!~ is bounded on [0, 7/n,] by some constant C. Thus

1 T—¢ (ZA)2 p 1 1 1 T 1 p
) E < E (A PP + |(T/n )PP + —
cE|[ B < |y ([ o)
T—e A2 p]) /2
/2 (Zs )
+ C {]E /0 (AS)1+PdS } .

. _ T—e (224)? p . .
In other words if 7. = E fo 115 ds| , then there exists C independent of € such that

(As)t

0<% <O+ ()"?),

which leads to the existence of some constant C' such that 7. < C. Using the monotone
convergence theorem, we obtain the desired estimate. O
From this estimate on Z*4, using @D, we have for any p > 1

[([ AT | < (2) e[ ([ L)

4.2 Construction of the process H

< +o0. (28)

Recall that the generator F' is given by:

B 1 N

ZA 2
P = a2 |
Ay
Let us summarize its properties.
o F(t,h) = F(t,0) >0 for any h <0.

e [ is continuous and monotone w.r.t. h: for any h and 1/,

B
Tt

(h = W) (F(t,h) = F(t, 1)) < (h—1)?,

since f is itself monotone.

e For any |h| <,

|F(t, h) — F(t,0)| < Bt r_ f(¢t + w*(t)r) '

T-—t Y*(t)me

e The process F(+,0) equal to

ZA 2
pt0) = a Ay,
Ay

belongs to LP([0,T] x Q) for any p > 1 (Inequality and boundedness of the
coeffcients o, § and 7 due to|(C1)).
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Our aim is to prove that the BSDE has a solution (H, Z™). However we cannot apply
directly the results of [24], since the previous functions ¢ — % and t — —W are
not necessarily integrable on [0,7]. The cases of BSDEs with singular generator studied in
[16], 17] are also not adapted to our problem. In order to solve the problem, we modify the

generator F. Let us consider § > 0 and € > 0 and define

ot =B ok [P [+ o) - 5(60)] | 1ze @9
) = O A, Vi T+e—t @D*(t)m t t h>0
with TS

R e A !
We consider the following BSDE

T T
H, = | F%(s,H)ds— | zZHaw, 30
o= [ P [ (30)

on the interval [0, 7.

Lemma 7 Assume that[(C1)| and [(C2)| hold. Define

B

£ S
= ——ds.
He /TT—i-e—sS

Then there exists a unique solution (H%¢, ZH:%¢) to the BSDE such that a.s. for all
te[0,T]

T
|H*| <E [/ eMSTHE| F(s,0)|ds
t

Ft:|7

(/tT eﬂiF(s,O)\ds>p

and

» T p/2
+< / 62”51Z§175’€\2ds>
t

Finally a.s. for any t € [0,T], Hf’s > 0.

Fi| <CE

E | sup ‘e“i H?*
s€[t,T)

EI

Proof. Let us check that all conditions of [24, Proposition 5.24] hold (we keep also the
same notations). First we have for all (h, h’)

/ \E £ I 515 /
(h — W) (F%(t,h) — F° (t,h))gm(h—h)Q

and the process 8 is bounded. Moreover if |h| < r

B f(¢e+ 90 ()r)

0, r—
P < R0+ g = RO
-~ B f(@e+9(0)r) _ o
= PO+ 70— > Om = ®h(t).

20



From our assumptions, in particular here Condition (C2)|, the definition of ¢ and the
properties of n, using Inequality , we deduce that

( /0 ! e“gCDE(t)ds)p

Using [24, Proposition 5.24], we deduce that there exists a unique solution (H%¢, ZH:%%)
satisfying the desired estimate. O

E < +o00.

Remark 3 (Comments on [(C2)) In Ezample[d all functions are submultiplicative (and
thus holds), except f(y) = —exp(ay?). Nevertheless for this case

—fetr) C exp(ar?) exp(2ar¢;) = exp(ar?) exp(2arG~" (Ay)).

) T
And using @D

/TWMdt = exp(ar2)/TeXp(2a7’G_1(At))dt

P (t)
< exp(ar?) /T ' exp <2arG_1 (Tn: t)) dt

o0
< n*exp(arQ)/ exp(2arz) exp(—az?)dz < +oo.
¢

Thereby [(C2)| holds also in this case.

Let us begin with an a priori estimate on H%¢. Recall that the function ¥ is defined just

before Lemma [21
Lemma 8 For allt €[0,7T),
(T —t)
0< H* < —. 31
R0 oy

In particular H%® is bounded on any interval [0,T — 6], 0 < 0 < T.

Proof. For fixed § and ¢, the dynamics of ¢; + w*(t)Hf’E is given by:
* d,e / 1 1 1 A2
—d(¢e +¢*(OH,") = ¢ (At)adt* §¢ (Ae)(Z{)7dt
1 T—1 5 N - s,
b (T s v e
+ (AN ZEaw, — (1) Z 0 aw,.

Recall that F¢ is given by . Therefore we obtain

—d(¢e + P (OH) = [N+ ;tf(qﬁt + zprfﬁ)] dt
1 ,/T—t 1 € b
oY < e ) TP Tre—tt @
+|¢(A)Z - w*(t)ZtH"s’e] AW,
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In other words the process Uy = ¢; + waf’E satisfies the BSDE:

5 T—6 1
Uy + () — eI = Upoo+ / [/\s+nf(Us)] ds
t s

T—6 T—6
— / O.ds — / zYaws,
t t

with a non negative O, (¢* — ¢°)H%¢ > 0. Using Lemma [2| we deduce that
vie[r,T), U <9(T—t).

This leads to the conclusion of the Lemma. O
Again as a by-product, our proof implies that for any solution (H,Z) of the BSDE

(21)
0< H: < M (32)
P (t)
Now by the comparison principle, for a fixed § > 0, since B; > 0, (Hf “ e >0)isa
increasing sequence when ¢ decreases to zero, and for a fixed € > 0, (Hf “. 5> 0)is a
decreasing sequence when § decreases to zero. Thereby for any €1 < g9 and §; < do < 4 for

some § > 0, we have the following inequalities: a.s.

0< Hfl,sl < Hf2’61 < HE?

and
O S H;SLEQ S Hfl:sl S Hg,
where
HY = lim H’*. 33
¢ = lim H; (33)
Note that H also satisfies (31). Now for a fixed € > 0, we define
HE = lim H%*¢ 34
¢ = Hm (34)
and
H; = lim HE. 35
t Elg]l t ( )

Since H%E = 0 a.s., we have immediately that a.s. Hy = 0 and for all ¢ € [0,T], H; > 0.

Proposition 2 There exists ZH € HP(0,T —6) for any 6 > 0, such that the couple (H, Z1)
solves the BSDE with generator F' on the interval [0,T — 6] for any 0 < 0 < T.

Proof. Let us define ¢, = p(1 A (p — 1)).
Step 1. Given €1 < ey and 61 < &2, applying Ito’s formula to AH = Hv1 — %22 on the
interval [¢t,T — 6], 6§ > 0, leads to:

T—-6
P AH P + czp/ P | AH P21 A 20| AZT P ds
t
< 6pﬁT|AHT—9\p

T—6
+p/ ep'us’AHS|p_21AHS7£OAHS(F6h€1 (S,Hgl,el) _ F§2’62(S,H§2’52))d8
t

T—0 B p— 1 =N -6
L / (9 N 2p> Vs | A H, Pds — p / P | A, P21 gy o AHAZH AW,
t t
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with AZH = zHde1 _ zHb2e2 gnd

)
Mt—/{)<0+2p )ds.

Remark that from the monotonicity of f:

AH. (FSve1 (g fo1ery — poze2(g [92:22)) — AH Bs Hoer _ Bs %252
S( (87 S ) (87 S )) ST—I-El—S S T+€2—SS

1 o1 r7d1,61\ _ 62 1702,€2
+¢s778 AI{S [f(¢8 + ws Hs ) f(¢5 + ws Hs )}

55 ) ﬁs )
< AH Hoer %262
- S[T+€1—S s T+e—s °

1
T
B
“TH+e —

1

+ A
T;Z)sns
We deduce that

H, [£(60 0 HE#) — (6, 02 H)]

9 — €1
(T+61*5)(T+82*8)

T, [0+ U3 HE) — f(gy+ 02 H2) .

(AH Y2+ AH H%#2 4,

T—6
PR AH [P + C2p/ P |AH P21 g 20| AZ]T [Pds
t

< ePPT—0| AHp_g|P +p/T_9 ePls _ BB 27 |AHPds
= =0 ¢ T+el—s 0 P

€2 — €1

d
(T+e1—s)(T+ex—5) ’

T—6
+P/ ep'us|AH5|p_21AHS¢OAHng27€2Bs
t

AH,
Vsl

T—0
—p / Pl | AH P21 apr, 20 AHsAZH AW
t

T—0
+p/ e’ | AH P2 1A, 20— [f(¢s+¢§1H§2’52) — f¢s + Y2 H2®2) | ds
t

By Young’s inequality

T—6
Pis| AHL P21 AH, H* 2l d
p/t elhs | s| AHs#0 sts BS(T+51_3)(T—1—52—8) s

e Phs | A F.|P e P 82,6 f2—¢&1 g
<(p—1 SIAH,Pd s | Foee d
Sp-1) [ emam Py [ [ 58<T+el—s><T+s2—s>} i

and

g (0 O HISE) = f(g e )| d

T—6
(p—1) / ePls | AH,|Pds

T—6 R 1
+ / epll/s |:
t 77bs77s

AH,
/ 6pus|AH |p— 1AH, 20—
<

Fls + U H) — f(s + Y2 HE®?)

P
] ds.
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Recall that 5, 1/n are bounded on [0,7] whereas 1/ is bounded on [0,7 — 6]. From
Estimate , on the interval [0, — 6], H*>? is also bounded and we have:

T—0
Pt | AH, P + %” / ePts| AH, ]p*21AHS¢0\AZf|2dS
t
< epﬁT—e‘AHTig‘P + C(€2 — El)p

T—0
4 [ sk vl R g0+ e ds
t
T-0
—p/ ep”s]AHS\pleAHS;AOAHSAZdeS. (36)
t

The constant C depends on all bounds of our coefficients and on 6. This constant explodes
when 6 goes to zero.

Step 2. Let us fix ¢ = ¢1 = g9 > 0. Since for dy < 0, H%¢ < H% and HY satisfies the
estimate , using the dominated convergence theorem

T-60
E / ep,us
0

as 01 and Jo tend to zero. Therefore using and taking the expectation we deduce that

F(os + V2 H?E) = f(py + v HP)|" ds - 0,

T-6
E / Pl | AH P21, 20| AZF 2 ds
0
tends to zero when §; and do go to zero. Moreover remark that if

t
Ay = / PP | AH P21 p gy, 2o AH,AZF AWV,
0

then the bracket [AEF/EO can be handled as in [7]: for any C' > 0

1/2 < 9 Dt P
() < G5 g, o)

1 T—60
+ 55E ( / ePls | AH P21 ap, 20| AZE ]2ds> :
0

Thereby (H%¢, § > 0) is a Cauchy sequence:

E( sup ePP|AHP| —0
te[0,7—6]
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as 1 and Jo tend to zero. Finally

T—6 p/2 -0 p/2
E < / 275 | A ZSH|2ds> - ( / s (AHL)* 7P (AH )P * 1ap,20|AZH |2ds>
0 0

p/2

R p(2—p)/2 T-6
<E sup e |AH| </ ePHs (AHS)IF2 1AHS¢0|AZ§{|2dS)
t€[0,7—6) 0

(2-p)/2 -y /2
E( sup ePP|AH[P {E/ ePs (AH, )P 1AH5¢0!AZf|2d8}
te[0,7—6] 0

IN

92— _
pE[ sup  ePPt|AH, P

IN

T-6
+p]E/ Pl (AH )P 2 1am, 20| AZH 2ds
2 t€[0,7—0] 2 Jo

where we have used Holder’s and Young’s inequality with 22;77 +2=1

Hence we obtain that (H%¢, ZH:9¢) converges in SP(0, T — 6) to some process (H¢, ZH*).
The process H€ is non negative and also satisfies the a priori estimate (31)) with HZ = 0,
and we have forany 0 <t <T —-0<T

£ € e (Zf)Q =0 /65 €
Ht = HT—09 +l |:O[S AS + ’}/5:| ds +/t mHSdS

-0 4 T—0 "

b [ e G H)  folds— [ zitea.,
t Y*(s)ns t

Step 3. Let us prove the convergence of (H€, ZH’S) when € tends to zero. The arguments

are almost the same as in the second step. Indeed the formula becomes:

T—60
PR AHy|P + Czp/ P | AH P21 A 20| AZT [Pds
t
< epﬁT—9|AHT,9’p + 0(62 — 61)p

T—6
—p / Pl | AHg P21 apr, 20 AHAZH AW
t

with AH = H' — H®2 and AZH = ZHs1 — ZHe2  The conclusion follows from the same

arguments as in step 2. ]
Note that from , the arguments to prove and the remark [2| we obtain that a.s.

on [0,7)

1 9" (1)

F7 0= (37)

0= =C T @)

and
0 <+ 0¥ (O Hy < 67 (1) (38)

Since f is a non positive and non increasing function, from [(A3)| the function y
—1/f(y) is an integrable, non-negative and non increasing function. Thereby we know that
(see [14] Section 178])

. Y
lim —— =0.
y—too —f(y)
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Thereby using the a priori estimate , the process H satisfies a.s.

t—T

Let us emphasize that H solves the BSDE , in the sense that for any 0 <t <u<T

H, = Hu+/ F(s,Hs)ds—/ zHaw,
t t

v(Zh? > Y
/t (as A + s | ds /t ZgdWy
* P Hds + /“ . [f(¢s + 9" (s)Hs) — f(¢s)] ds. (39)
¢ T'—s ¢+ V*(s)ns

It is important to note that if we define H by the relation on the basis of the minimal
solution of the BSDE , then this process H satisfies all properties described previously.
Proposition [2] shows that H can be constructed “from scratch” if [[CT1)| and [(C2)| hold.

Now we prove that this solution (H, Z) is a solution of the BSDE (21)) (in the sense of
Definition [2|) and that this solution is minimal. The a priori estimate is crucial here.
The processes a and v are bounded and non-negative on [0,77]. Hence using Inequality ,

Tz
/t <as A, + '78) ds

is well defined and is the increasing limit of the same integral on the interval [t, u] for u < T.

the integral

Since H is non-negative we also have

/t” Bs

T —s
/ L f(Ge (9 Hy) — f()] ds = / F(6s + 0¥ (5)Hy) — F(4)] ds
. Pem S w* : ) = 1 (s

H ds:/ Bs Hds,
¢ IT'—s

Lemma 9 The process < Bs
T—5s

H, se€ [O,T)) is integrable on [0,T].

Proof. Indeed using the very definition of 85 we have

S) o< LY (T—S> o (5

P

0<

Ps H, = _1W<T:
n

T—s U
() ()
n* \(¢')? )
u ¢/l¢ T_ s (T—t)/(n (¢//¢)
il ds = d
/t n* ((¢')2>< n* ) ’ /(Tu)/(n*) (¢')? () de
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and our result follows if (¢”¢)/(¢')? is integrable at zero. Remark that

! "
(&) a2
¢ (¢)
Hence the integrability is equivalent to the existence of the limit at zero of ¢/¢’, that is the

limit at infinity of y — y/(—f(y)), which is zero. This achieves the proof of the lemma. [J
Coming back to and taking the conditional expectation, we get:

H, = E[/tu <a5(i{)2 +7$) ds
woB| [ maln] v | [ e 9 - o] ds

From the previous lemma, we deduce that

g

7.

o
E _ 1 o |
[A Ty, (P TV ﬂ@ﬂ“}<+m
In other words taking t =0
T
E| [ |F(s, Hold ‘
[P s < o

Then using again , we easily deduce that

/ zHaw,
0

E | sup < +00.

0<u<lT

By Burkholder-Davis-Gundy’s inequality, we deduce that Z is an element of H! (0,T). Let
us summarize our results.

Theorem 1 Assume that|[(C1)| and [(C2)| hold. There exists a process (H, Z™), which the
minimal non-negative solution of the BSDE , that is:

e H is non negative and essentially bounded: for any0 <t <T,0 < Sup,eo, Hs < +00
a.s. and

T
E/ |F(s, Hs)|ds < +00.
0

o The process ZH belongs to H'(0,T) NHP(0,T — 6) for any 6 >0 and p > 1.

o Forany0<t<T

T T
Ht:/ F(S,Hs)ds—/ zHaw.
t t

In particular
lim Ht =0= HT.
t—=T

e For any (H, Z) solution of the BSDE 1), a.s. for any t € 0,77, H, > H,.
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Proof. The only thing to prove is the minimality. Let (f[ , Z ) be another solution of the
BSDE . Let us first show that H is a non-negative process. Applying It6’s formula for
the non-positive part of H and the very definition (22)) of F' leads to:

_ T R T
(Ht) < _/ F(57H8)1ﬁ3<0d8+/ ( 5)1ﬁs<0dWs
t B t o

Tz T
= —/t <045 AL +’Ys) 1I§s§0ds+/t (Zs)lﬁsgodws-

Since o and « are non-negative, taking the conditional expectation knowing F; yields to

the non-negativity of H.
Now for € > 0, the process AH = H — H€ satisfies for any 6 > 0:

-6 . T-9
AH, = AHp g +/ [F(S,Hs) - Fs(s,Hg)} ds / (Zs — Z5)dW,
t t

T—6 5 . /B
= AHi 5 HS : S AHS d
Te—i—/t [ET_S +<T+€_S+H) ] ]

T—-6 _
- / (Zs — 22)aW,
t

where

1 NN * € 1
KRs = m [f((bs + (S)Hs) - f(¢s + (3)H5)1| AH, 1AH57$0'

This process k is bounded from above by zero since f is monotone. Thus if

B Bu
Fs: u d 5
t, exp(/t (T—i—a—u—i_% U

by standard arguments concerning linear BSDE (see [20, Lemma 10| or [24, Proposition

5.31]), we have:
]-"t] |

By Fatou’s lemma, letting 6 going to zero, we obtain that for any € > 0, fIt > H;. Hence

. Bs
T—s

T—6
A_Ht =K AHT_QFt,T_G +/ Hsrt7sd8
t

]:t} >E [AHT—QFt,T—G

the minimality of H is proved. O

The process (H, Z™) solves a BSDE with singular driver in the sense of [I7]. As men-
tioned in [I7, Proposition 3.1, uniqueness is not an obvious property for such kind of BSDEs.
In our case assume that (Ef , Z ) be another non negative solution of the BSDE ([21)). Then

AH, = /T [F(s, i) — F(s, Hs)} ds — /T(ZS — zH)aw,

T T
= / ASAHSds—/ AZydWs.
t t

Hence we have a linear BSDE with singular generator with

Bs -
T—s 1/} (8)773
Nevertheless we cannot apply the result in [17, Propositions 3.1 and 3.5], since we don’t
know the sign of the drift .

A= [F(60 44 () ) — (60 + 07 ()] s Lo,

AH,
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Remark 4 If fIt = l(SiJI})l Hf, then Hy < fIt. The proof of the previous proposition shows that

H also satisfies the BSDE (in the sense of the previous theorem). It seems difficult to
prove that these two processes are equal. In other words, as remarked above, we don’t have
any comparison or uniqueness result concerning the BSDE .

4.3 Asymptotics of the minimal solution

Let us consider the process Y; = ¢ + Y*(t)Hy on [0,T). Then from our heuristic study, for
any 0 <t <s < T, we have:

S

E=n+/

t
and a.s. limY; = +o0. Note that this process (17, Z?) belongs to any S*°(0,7 — ) for any

4T
6 > 0.
If f(y) = —y|y|?, by uniqueness proved in [I3], Y =Y and thus

1 1
1 a7 77* E+1
Yi=|{— — H,
f <th> +<q<T—t>> t

with 0 < H; < C(T —t) (Inequality (7). In other words, the non-negative process

ot o o]

In general since (Y, Z) is the minimal non-negative solution of (see Proposition [1]),

f(Y)
Nu

+%LM—/Z%WL
t

is bounded.

we have a.s.
Vvt € [0,T], ¢ <Yy <Yy =+ " (t)Hy.

But from our heuristic computations, we have Y; = ¢ +w*(t)ﬁt. Thus 0 < H; < Hy and H
satisfies the same BSDE , at least on any interval [0, —¢]. Since H < H, the preceding
arguments show that H is also a solution of the same BSDE on the whole interval [0, T].
Since H is the minimal solution, we have proved that H = H and thus Y = Y. In other
words:

Theorem 2 The minimal solution (Y, ZY) of the BSDE is given by :

Y, = 0+ (Tnjt) H,,

where (H,Z™) is the minimal solution of the BSDE (21)).
Recall that from Inequality (38), on the interval [r,7] with 7 given by (25)),

VO H: _ 41(t)
¢t o ¢*(t)
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Lemma 10 There exists a constant k depending on n* and ny such that for any t € [1,T],

o< YOH

on o

Proof. Recall that since ¢ is non increasing, ¢(y) < ¢(ay). Moreover from Lemma [5 we
know that for any y € (0,1/R) and 0 < a <1,

1< <

a¥’

From the very definition of v, this inequality can be written as: —¢'(ay) < —a 5¢/(y).
Integrating this inequality (between y and 7)) leads to:

d(ay) < a' Fo(y) +C
for some constant C' > 0. Hence

< al*K—FL

¢(y) o(y)

Since ¢(0) = oo, the conclusions follows from this inequality. O
Hence we have proved that the minimal solution Y of the BSDE satisfies on the

interval [r,T):

1<

¢t <Yy < (1 + K).

5 The concave case

In the expansion of Y, there is an asymmetry between 1; which is random, and the
deterministic ¢*(t). This asymmetry has the advantages to avoid the presence of Z! in the
generator of H and of an extra term with the second derivative of ). However it leads to
the fact that

(" @) # ['(¢) = ' (¢ (Ar)). (40)
Thereby we cannot interpret the bracket
B 1

T — th + 7/1*(75)7% [f(¢t + w*(t)h) - f(¢t)]

= [FOk 9N OR) — F(60) — I (8" (6) m* ()]
Yr(t)m
as the reminder to the first Taylor polynomial of f at ¢y.

Here we study a possible workaround: define ¢; and 1)y symmetrically, i.e. ¢ = ¥(A;)
and ¢y = 1(A;). Then is satisfied. This, however, leads to an additional linear term
in the driver of H. This linear term creates some main difficulties. To overcome them, we
add several assumptions on f and on 7.
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5.1 Symmetric development for general process 7

Recall that A satisfies (14), ¢ verifies: ¢/ = fo ¢ and ¢ = —¢'. Setting ¢ := ¢#(4;) and
Y1 = Y(A) yields

déy = — f(¢y) udt + Z;‘dwt] + %¢//(At)(Z£A)2dt,
dipy = — f' (e ) [;tdt + Z{‘th] + %w”(At)(Zz“)Zdt

Recall that @D leads to (|10):
o) =0 (T ) sa <o () =

T
And since ¢ is non-decreasing, we also have: 1, (t) < 1y < ¥*(t). For

1
—dY; = —f(Y) dt + \edt — Z) dW;

Mt
we make the ansatz Y; = ¢¢ + ¢ H; and hence obtain the heuristic dynamics of H, namely:
1
—dH; = p— [f (b + eHy) — f(de) — f'(dpr) e Hy] di

A ¢ (A A (Zf‘)z]
" [wt 2w(Ay) A |

W (A)A)? (ZPN A4 Z g H
" w<At><Att> == AttZ dt = 2 dWe
= L[ ) — (60— [ (G0untt) d
AN 2 A
+ [2 %ZAt ]dt+ <i) Ht+n§ittzgf dt — zHaw, (41
where
Kl = ¢/I(At)At
! 29/ (Ay)
2 U(A)(A)? <_ 4 w”(fh)) .
! 29(Ay) Py )t
3o A4
! (A

Note that from , H; > 0 a.s. Under using Lemma , we deduce that ! and x>
are bounded and non-negative.

Compared to the previous section and the BSDE , the dynamics of H has a
new linear term, namely

ZA\ 2 G 74
t.h 2(ZL)
(7 7Z)'_>K:t(At> +tAt

In the next lemma we prove that under the additional conditions [(C3)|and |(C4)|of f, x?
is bounded.
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V(@)

Lemma 11 Assume that|(C1)|, [((C3)| and|(C4)| hold. Then the term r*(z) := x° o)
x

non-negative and bounded on a neighborhood of zero.
Proof. Indeed if f is concave, we have
V"(x) = (—f" 0 d)(2)(¢'(2))” = (f 0 ¢(a))¢"(a) = 0.

Hence z¢”(z)/¢'(x) < 0. The conclusion of the lemma is equivalent to the boundedness
from below of —z¢)”(x)/v¢'(x) in the neighborhood of co with ¥ (z) = ¢(1/x). From the
proof of Lemma [5, we have

d(x) = (—f)(F oux) = Foux

where § and § are increasing and concave. Note that we can assume w.l.o.g. that the
constant K is the same. Indeed if holds for some § > 0, the same condition holds
for any &’ > §. Hence boundedness is equivalent to the existence of K > 1 such that
5z = G Yz~ /E=D) (condition and (—f) o § are increasing and concave. O

Remark 5 Note that under|(C3)|, the boundedness of ko is equivalent to condition |(C4)|
Let us consider again the functions of Example [2]
o If f(y) = —yly|? for some g > 0, then we can take

() = (1)x (heme - (1)

q q
and K =2+ 1/q.

e If f(y) = —(exp(ay) — 1) for some a > 0, then ¢(z) = —Llog (1 — ) and (z) =

1
—¢/(z) = S 1 Hence
¢ (x) azre®™” ) V() ax (1l + e*) 5
— xr = ~ —_ xr = ~
@' () e — 1 z—0 Y (x) e —1 20"

are bounded near zero.

o If f(y) = —exp(ay?) for some a > 0, then

o) = =N (1m0 [2) . vle) = ~6(0) = exp (asa)).

And

W (x) = —¢"(x) = —2a¢(x)p(x)?, "(x) = 2a(P(x)?) — dag(x)y(x)) (z).

Thus
Y'@) @) ()

rT=2x x .
V' () ¢(z) ()

From [(C1)| and Lemma [f] the second term is bounded. Arguing as at the end of

Example 2] yields to:

— 0.
Z—+00

U() _Vaa, (2 )e
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In other words all functions considered in Example [2] verify [(C3)] and [(C4)}

However the preceding lemma is not sufficient to obtain existence of a solution. Indeed
if we consider this BSDE (41)) with f = 0, we get a linear BSDE. From our best knowledge,
existence of a solution is proved only under some exponential moment condition on the
coefficients (see [24, Proposition 5.31]). Even if we avoid the final time 7', then 1/A is
bounded on [0, T—¢] (Inequality (9)), but Z 4 is only BMO. Hence the stochastic exponential
of the martingale M = fo Zdes is uniformly integrable. But controlling the exponential
of the bracket of M is more difficult. If & = fOT 1/nsds is Malliavin differentiable, then
we require that its Malliavin derivative has exponential moments. Finally, if we do not

control the quantity (Z4)2/A2, then from [I7, Proposition 3.1], we may have infinitely
many solutions.

First we show that any solution (H, Z) of on [0,7) is a solution of the BSDE on
[0, T, that is:

Proposition 3 Under the hypotheses [(C1)| to [(C5)], there exists a non-negative process
(H,Z™) solution (in the sense of Definition 2} of: for any t € [0, T,

T
H, = /t ! [f(¢s + ¢5Hs) — f(¢s) — f’(%)%Hs] 1p,>0ds

Nss
T A\2 AN 2 A T
As 1(Z%) 2 (Z 325 o / H
— s =5 | H, S 780\ ds — Z0dWs. (42
+ /t Q,Z)S + K’S As + K/S As + K/S As S S ' S W ( )

Proof. Here we do not construct (H, ZH) from scratch, but we use the existence of a
minimal solution (Y, ZY) of . Indeed our previous computations show that if H =
(Y — ¢) /1, then the process (H, ZH) verifies:

e It satisfies the dynamics given by on any interval [0, T — ¢].

e H verifies an a priori estimate similar to (32)):

oY) _ () _ 2n*>K o" (1)

O=Hi=— wt)(m (1)

(we use again Remark [2)).
e Z" belongs to HP(7,T — ¢) for any p > 1.

Thus we only have to extend the assertions on [0, 7).
Compared to Section [4] and the discussion above Lemma [9) we need to control the
additional term:

7% 74
2 (i) He+ 2|

We already know that x2 and s are bounded and that Z4 satisfies the inequality . Let
us precise the relation between ZH and ZY. Since Y = ¢ + 1 H, we have:

Zy = —f(o0)Z{ — f ()0 HLZE + 0 Zf = 0 Z — fo) v Z{ + 0 ZF
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thus 1
z{h = [—1+ f'(¢¢)Hy) Z{ + *tZtY
and
zZ{
(Ay)A=r)/2

A
= [l o] L

H; zZA 1
= [_(At)p — H? (At)l_p:| (At) 1+p)/ wt( ) (1—p)/2

Using @, and Lemma for any p > 1,

zy. (43)

T (ZA)2 p T (ZY)Z p
E / : dt) +</ tdt> < +o0.
( o (A)ttr o (¥)2(A)1=0)
Combining together this estimate, we have
T ZA 2 ZA
E/O 2 <Att) Ho 27| < oo

if we can prove that for some p > 1
p
H,
E sup ————
[(te[o 7] (A1~ )
Hi

*\1— Ht *\1— 277* K ¢*(t)
0= ayis S g g =00 ( n ) FOT D&

The last term is deterministic and if we prove that this term remains bounded on [0, 7], the
result follows. Note that

M) | @) ey oy
YT =)t =r Yr(@)atmr —f(gr(@))atr —f(y)G(y)'P h(y)
with z = (T'—t)/(2n*) and y = ¢*(x). From Condition we deduce that (H,ZH) is a

solution of our BSDE on [0, 7. O
Let us point out again that in the BSDE , the driver has a triple singularity:

< +o0.

We know that

e (s,h) — I (¢ps)bsh (as in LemmaH};

S¢S

A

e (s,2)—~ A—sz, which can be controlled if we can apply Girsanov’s theorem, that is if
S

tzA
we control the martingale | ¢ — —dW,, t €[0,7T] );
0 As

ZA
e (s,h) — < AS ) h, which requires to control the quadratic variation of the previous
S

martingale.
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Hence we add the next condition:

(H) There exist a deterministic time T < T and a positive constant € > %\/ 152 ]|l0o V[|53]1%

such that
T ZA 2
exp (Q/? <AZ) ds)

Assuming that [(C1)|to [(C4)] and [(H)| hold and arguing as in the proof of Proposition [2]in
Section 4} we construct directly a process (H, Z7) solving the dynamics on any interval
[7,T —€]. To get the existence result similar to Lemma [} we use [24, Theorem 5.30] and
Condition is designed to fulfill the assumptions of this theorem.

More important than the existence, we obtain also uniqueness under |(H)P|

Proposition 4 Under the hypotheses |(C1)| to |(C5)| and ((H)|, there exists a unique non-
negative process (H, ZH) solution (in the sense of Deﬁm'tion@ of the BSDE .

E < 400.

Proof. Let us show first that any solution (f[ , 2) of is non-negative. From the Itd
formula for the non-positive part of H we obtain for ¢ € [7,T7:

_ T R T
(Ht) < —/ F(S,Hs)lﬁs<0ds+/ (Z5)1ﬁ5<0dWs
t = ¢ <
T AN2 AN 2 A
As 1(Z ) 2 <Z ) 77 3Z =
- 5. T hs . + K > Hs"‘/‘isisZs
/t 1/15 As As As
T —~
+/ (Zs)1g,<0dWs
+ <
/ Kg <A ) (Hs) dS — / KSTZslﬁSSOdS + / (Zs)lﬁSSOdWS
¢ s t s t

From the condition |(H)| the martingale

t ZA 1 t ZA 2
E(ZA)t = exp / ng’ AS dW + 2/ (E§)2 <AS> ds |, telr,T],

is uniformly integrable. Using Girsanov’s theorem and the expression of the solution of a
linear BSDE (see [24, Proposition 5.31]), we get that a.s. for any ¢t € [T, T/, (ﬁt) = 0.

The arguments used in Section show that the process (H, Z!) is the minimal non-negative
solution of (42)), that is if (H, Z) is another solution of (42), then H; > H;.

Now we prove uniqueness of the solution. Since f is concave, and if AH = H-H ,

1 ds

H.<0

IN

5SWithout , even the existence of a minimal solution for the BSDE is unclear.
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AZ =7 — ZH  then

T ~
(AHt)+ < /t ns];ps {f(¢8 + wsHS) - f(¢s + wSHS) - f/(¢s + ¢5H5)1/15AH5} ]-AHSZOdS

T
b [Pt ) - (60} AH s z0ds
t s

T ZAN 2 7A T

1 / K2 <A8 ) AH + K} 1 AZ] | 1am,>0 ds—/ AZLam20dW,
t s s t
1

= / o (@0 Ha) = f(90)} 1a,<o(AHL) ds
t s
T ZA 2 ZA T

i / Iﬂg <As ) AH, + Hg As AZSH 1AH320 ds _/ AZSHlAHSZOdWS
t s s t

74\ 2
n§< ) (AH)" + k3
Ag

:/tT

since H is non-negative and f’ is non-increasing. Arguing as before yields that (AH)* is

ZA T
2 AZ§1AH520] ds—/ AZBE1ag, 50dWs,
s t

equal to zero. Then uniqueness holds on [7, T'.

Let us extend uniqueness on the whole time interval [0, . If (H, Z) still denotes another
solution, then the two processes solve the same BSDE on [0,7] with the same terminal
condition H» = PAI?. Since the generator of remains singular on the whole interval (due
to the linear term), uniqueness on the rest of the time interval [0, 7] is not trivial. But if we
define

i}t = ¢+ ¢tﬁta
then Y is the first part of the solution of the BSDE on [0, 7] with the bounded terminal
condition ¢z + zﬂ?ﬁ?. Since uniqueness holds for the BSDE (1)), we deduce that H=H
also on [0, 7]. O

Theorem 3 Under the hypotheses [(C1)| to [(C5)| and [(H)|, the BSDE has a unique
solution (Y, ZY'). This solution is given by: Y; = ¢ + e Hy a.s. for any t € [0,T), where H
is the unique solution of the BSDE .

Proof. Let us consider (Y, Z ) solution of the BSDE (1f) (in the sense of Deﬁnition. Then
it satisfies and the property of Lemma . Therefore if we define H = (17 — @)/, then
this process H and the related Z# solve the BSDE (42) (in the sense of Definition . From
the previous proposition, we obtain the desired result. O

5.2 About Condition |(H)|

The condition is very strong and seems difficult to be checked in general. However in
the Ito setting on the process 7, this assumption may hold. Let us suppose that — =: v is
an It6 process !

dy = 0] dt + o] dW;. (44)

Note that with Condition |(A1)| it is equivalent to assume that 7 is an It6 process.
First of all the next result holds.
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Lemma 12 Forp > 2, if 07 and o” belong to L2P((0,T) x ), the process Z* /A belongs to

H2P(0,T), that is
T ZA 2 p
/ <s) ds
0 As

Proof. We consider the process A; := A;/(T — t), which satisfies the BSDE

E < +00. (45)

1 /m— A 7 _
—dA; = /;t_tt dt — 24 dw, Ar =1/n7p.

Since Z& = ZA/(T — t), to verify it is sufficient to establish Z4 € H2(0,T). For the
later again it is sufficient to establish that the driver to A is in L?. (Here we used frequently
that 7 is bounded above and away from zero.)

To establish (1/n — A)(T — ) € L* we first check Kolgomorov’s criterion for 1/n: For
0<t<s<T, by Jensen and BDG inequality,

s
t
p—2

F—=) there exits a random variable £ €

E[[1/ns — 1/ne|**] < Cls — t/'E U (100 + |07 1) dr| .
0,2

Hence, by Kolgomorov’s criterion, for any a € (
L?P(Q) such that

|1/77t_1/775| Sf‘t—s‘a, l,s € [OvT]
Therefore, using the mean value theorem,

([Pt e[ ey

Tt
which completes the proof. ]
The coefficients in the linear part of the BSDE are in H?P(0,T). However it is not
sufficient to get [(H)| Let us remark that:

T 1 T
E[/ ds]-"t] :E[/ vsds}}]
t s t
T s s
= E [/ ("yt +/ 0 du +/ alqu) ds
t t t

— W(T—1D+E [/tT(T—u)agdu ]—"t]. (46)

E <E < CE[¢*],

Ay

g

If we denote

~ T
A =E [/ (T — w)d)du
t

ft )
then B B
ZA = o) (T —t)+ Z{#, with —dA; = (T —t)o]dt + Z{dW;.

If the quantity & = fOT(T — uw)djdu is in D2 (see [22] for the notations concerning the
Malliavin calculus), then by the Clark-Ocone formula, we have

T

Zfl:ag(T—t)—l—/

t

.7-}] du.
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In the next two lemmas we give sufficient conditions on the coefficients of such that

((H)| holds.
Lemma 13 If 07 and o” are essentially bounded, then Condition|(H)| holds.

Proof. In this setting, Condition [(H)|holds if and only if

[T Z;{ 2
Eexp QZ/ AS ds| < +o0, (47)

for some € > €. Since ?7 is essentially bounded, then

~ T . AR e
A <E| [ (T —w) 7] du|F;| = 4T — 1),
t
1t6’s formula leads to
A, A, ZA
—d = —— _dt+0)dt L dw,.
QT—ﬂ> @ - Tyt

. u ZA
Hence we obtain that the martingale (Mu = / L dW;, uelo, T]) is a BMO mar-
0

T -9
tingale:

Yu € [0,T), |My — M,| < 2[[0"|(T — u) = sup E[\MT—Mu|
u€(t,T]

.a]szMT—w

Therefore we can choose 7 very close to T such that the BMO norm of M on [7,T] is as
small as required. Using the Nirenberg inequality (see [I8, Theorem 2.2]), there exists a
constant C depending on the BMO norm of M, such that

T ZAV 2
E |exp C/ == | ds < +o0.
¢\ As

Precisely C should be smaller than the inverse of the BMO norm of M. Thereby choosing
7 sufficiently close to T, we get Condition and the conclusion of the lemma. O
Let us now assume that the process v = 1/n solves a SDE:

dye = 3(ye) dt + o () AWy (48)

where 9 and o are Lipschitz continuous functions defined on R. From [22, Theorems 2.2.1
and 2.2.2], the coordinate v; belongs to D> for any t € [0, T]. Moreover for any p > 1

sup E( sup \Drfyt|p> < +o0. (49)
0<r<T r<t<T
The derivative D, satisfies the following linear equation:
¢ ¢
Dy = o) +/ 7 (8)DyysdWs +/ 0(s)Dyysds
T T
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for r <t a.e. and D,y; = 0 for r > t a.e., where d(s) and &(s) are two bounded processes,
such that if 9 and o are of class C', they are given by:

2(s) = (0:0)(7s),  (s) = (820) ().

In this case £ = fOT(T — u)dgdu is in DY? and by the Clark-Ocone formula, we have

Z{ = /t T(T —u)E [Dtag ]—“t} du = /t T(T —u)E [5(u)Dt7u

.7-}] du.

Lemma 14 If v is a diffusion process solution of a SDE with Lipschitz continuous coeffi-
cients and a bounded diffusion coefficient, then Condition |(H)| holds.

Proof. Since (, = D,~, satisfies the linear one-dimensional SDE:

u

G=atn)+ [ F)6db.+ [ 3s)ds,
t t
an explicit formula for |(,| reads

Gl = o)l exp [ [ aan-1 [ "a(s>2ds] exp [ / “5<5>d5] |

Since the function ? is supposed to be Lipschitz continuous, 0 is essentially bounded.
Thereby

~ T
2 < Bl [ - wE| 1D |7 du
t
= HDH|0(%)|/ (T —uw)E [exp [/ D(s)ds] ]:t] du
t t
1 ~ ~
< SRl o (T — )% = O(T — £)%/o] |
Finally it implies that
Z£4 v v
T~ C 1+ (T -1)s),
where ¢7 is a bounded process. O

Therefore by Lemma (for (44)) or Lemma (for (48)), using Proposition [4 we
deduce that the BSDE (42)) with singular generator has a unique solution (H,Z") and,

using Theorem (3] that the BSDE with singular terminal condition has also a unique
solution (Y, ZY).

5.3 A different asymptotic development under the bounded It6 setting

If 1/n is given by with essentially bounded coefficients, we can change our approach.
Coming back to , we deduce also that

[l

Ay ST = 1) + (T = t)*.
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Therefore since ¢ is non increasing, we have

. I |1 PSS

H(Ag) > ¢y =@ | (T —t) + 5 (T —1)° ).

Define
dv; = <a§ ”02 ”> dt + o) dW; =] dt + o] dW; (50)
leads to
P(Ar) > ¢p = ¢ ((T —t)) .

Setting

¢ = d(W(T —t)) and Py = p(W(T — 1))
yields

A6y = 306! (T — 1)) dit + (T — )6 (T ~ ) 3 + (T — 06" Gu(T — 1)) (o7
= =Fef (@) dt + {0} (T = )¢/ Gu(T = 1)) + 5(07)*(T = 1)*¢" (T — 1)) } dt
407 (T = )6/ (T — 1)) W
= =S () dt + 1T = )¢} + 3 (o)X (T = )¢ } dt + o] (T — )0}, AW,
and
At = 30! Gl(T — 1)) i + (T — 000/ (T 1)) 5 + 3 (T — 14" Gi(T — 1)) (o7 Ve
= A (6n) dt + {3(T = 1001 + 307 2T = 76} dt + o] (T — )0} dIW,

For (Y, ZY) solution of , we make the ansatz Y; = ¢; + ¥ H; and hence obtain that
Ht > 0 and:

A H, 7
CdH, = L pvydt+ 2 dt+ - gy + 2 g+ — 2t aw,

1/1 Py Py Uy (o
T A @ eH) = F(60) = /(6o i+ :;dt - ”°2”<T bt
{0 T —t)¢y + 5 (o)) (T—t)2¢;’}dt+at (T—t)z/;thdt
t

M

(T = 0w = I~y 4 5] = 020t fa - 2t aws

¢t
= % {f(de +VeHy) — f(¢¢) — [ (de)pe Hy ) dt + ;\idt
+ (T =) {d] + (07)?k} } dt + o)k} ZF dt + H, {0] K} + (0])?k7} dt — Z[ aw,

where
0 = o — |7
1 ST )T 1)
! 2¢'(m(T 1))
o _ YT =t)(T 1) V(T =)
T 2¢(n (T —t)) _<(T )W( (T — ))) '
o _ T —)

Y(n(T — 1))
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Using Lemma we obtain that k!, k? and x? are bounded. Under|(C1)} [(C3)|and |(C4)|
we deduce that

_dH, = ;— [ (¢ + VeHy) — f(60) — [/ (6e)tbeHe] iz, >0dt

A U ~
+ {J + (T = t)f; + Ry Hy + KE’ZtH} dt = 2, AW, (51)
t

where the coefficients &', %2, % are essentially bounded. Compared to , the linear term
has now bounded coefficients and thus the new BSDE can be solved without any reference

to the singular BSDE (|1]).
As in Section 4.2 we may define the generator

Ptz = JE{f(octuih) = f(80 } = f@)wh

A 1 o~ —~

+ (t + (T — t)R} +nfh+/£§’z> .
(o

The terminal condition is again equal to zero. From [24, Theorem 5.30|, there exists a

unique solution (H%¢, ZH92) € SP(0,T), p > 1, to the BSDE:

T T
Ht:/ F57E(3,H5,Z5)ds—/ ZsdWs.
t t

From Lemma [, we deduce that H is non-negative. The upper bound of Lemma [§] holds
since the proof is based on a control on ¢; + thf ° which satisfies the same dynamics.

Hence we can pass to the limit and define

H, = lim <hm Hf’€> .
el0 \ 4]0

The sequence Z%¢ also converges to Z and clearly (H, Z™) satisfies the desired dynamics
on any interval [0,7): forany 0 <t <u <T

H — Hy+ / ' 22 {0+ ) = £(6) = PG00 ds

u AS . =R u
+ / {w+(T—s)/€;—|—/{§Hs} ds—/ zHaw@,
t s ¢

where the probability measure Q is equivalent to P with density &([%3ds) and we =
W — [ %3 is a Brownian motion under Q. Using Lemma |§|7 we deduce that

5| [ T(—f’(@))%(Ht)dt] < +oo.

Indeed our upper bound on H is deterministic and thus does not depend on a particular

choice of Q equivalent to P. The monotonicity of f leads to

% {f(pe +eHy) — f(ér)} < 0.
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Taking the expectation under Q and letting u go to 7', we obtain

T
EY [/ e |f (b + eHr) — f(0) — f'(¢0) i Hy dt} < 400
0o Yt

and thus

T
EQ [ sup / ZHawl|dt| < +oo.
t

0<t<T

We have proved that (H, ZH) verifies for any 0 <t < T
Ty
S
Hy = / Q/T {f(¢8 + wsHs) - f(¢s) - f/((z)s)wsHs} 1g.>0 ds
t S
T A T
+ / {J+(Ts)2;+R§HS+2§Zf} ds/ zHaw,. (52)
¢ s ¢
Adapting the arguments of the proof of Proposition {4, (H,ZH) is the unique solution of

[©2).

5.4 The power case f(y) = —yl|y|?

1

1+1/q
) and we assume that 7 is
qx

1 1/q
In this case recall that ¢(z) = <) and ¥ (z) = (
qr

an It6 process,
d?’]t = Dg dt + O'? th, (53)

such that 97 € L>=([0,T] x ©;R) and o7 € L2([0,T] x ;RY). Then the process ¢; is equal
to

L Ui 1a - Gt .
P = <q<T - t)) = (- oye ~ W

and again from condition ¢ is an Itd process with drift 9¢ € L>°([0,7] x ;R) and
diffusion matrix o¢ € L2([0,T] x Q;R9).
We assume

Yy = Go(t) + Y(t)Hy = ()9 () + ¢ (t) Hy. (54)

and formally obtain the dynamics for H:

—dH, = )] {At +¢(t)a§} dt — ZH dw,
e GO + V() = F(Go(D) - F(Go)eo ;] di
= F(t,H;)dt — ZEdw;, (55)

where I’ can be rewritten as

_ At (1) ¢ ¢(t)H2 ! " a —a)da
P ) = s+ 2+ PO [ o) + avin(1 - a)a
0L

:F(t,O)—(q—i—l)q

1
[ ot + v sign(@ott) + av( )1~ 0)da

B g+1 H> [ H \"" H
_F(t70)—77t(T_t)2/0 <<t+aT—t) s1gn<(t+aT_t> (1 —a)da.
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Let us remark that this generator is again singular and that the second derivative of f is
not well-defined at zero if 0 < g < 1.

To establish local existence for , we don’t use monotonicity arguments (as in the
preceding sections). But instead, we proceed very similar as in [I3] and carry out the Picard

iteration in the space
HO = {H € L®°(%C(IT — 6, T;;R)) : ||H|2s < +00}

endowed with the weighted norm

sup (T —t)7?|Hy|
te[T-6,T)

[H 35 =

Lemma 15 Let R > 0 and § € (0,(n,)/9/R) then for every H € Bys(R) we have
(F(t, He))ierr-sm) € L=(T = 6, T] x 5 R).
Proof. From our assumptions, the first part of F(¢, Hy)

(a(T =)0\ + (T — 1)0;

is bounded and thus in L>®([0,T] x Q;R). By definition if H € By;s(R), then a.s. for any
te|T—06,T]

R262.

’q—i—l H? L+l

ne (T—1)2 " n

Note that & € (0, (1,)'/9/R) ensures that ;4 aH;/(T —t) > 0 for allt € [T'—6,T], a € [0,1].
H;

And
1
| farors

The lemma is now proved. O

q—1

G+a (1—-a)da < ((n*)l/uRa)q_l.

The preceding lemma allows to define by

I'(H) = (E [/tT F(s,Hy,)ds

)
te[T—6,T]

the operator I' : Bys (R) — L¥(;C([T — 6, T); R)).

Lemma 16 For every R > 0 there exists a constant L > 0 independent of § € (0, ni/q/R)
such that

|F(t,H;) — F(t,H])| < L|H, — H{| Vte[T—-6,T|VH,H € Bys(R), a.s.

Proof. We have for g # 1

dF 20¢+1) H ! H \7!
ag = (T—t)2/0<Ct ‘o) o

_|_
_(g+ D14 H? /1< Lo >“a(1—a>da
(@—Lme (T—1)2 )y - '
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Hence, there exists L > 0 such that

dFr
——(t,(T —t)* <L T -45,T).
[Spe@—n| <r wewr-am
The assertion then follows by the mean value theorem. O

We are now ready to prove that I' maps By (R) contractiv into itself (for appropriate
R and 0 € (O,Ui/q/R)): For R > 0 specified below choose L > 0 as in Lemma For
H,H' € Bys(R) it then holds for all t € [T — §, T

T
|HH»—NEMSEL[rﬂaH9—Hamnw

7|
(T — P LI — H' |
This yields, as long as 0 < § < 1/(2L),
IPCH) = T s < Sl H — '
Hence, T is an 1/2-contraction on By (R) if § < 1/(2L). Furthermore, for H € Bys(R),
[T(H)¢| < [D(H)e = T(0)¢] + [T'(0)¢]
R

< (T—t)5 +E UtT [(q(T — 5)) AN 4+ ¢(T — s)|ag\] ds

7|
R
< (T =025 + (T = 1)°(0 1" YA + g0 |oc)-

Thus, choosing R = 2(¢"/7||A||+q|[0¢||os) and § = min{1,1/2L, n/?/R} yields |T'(H)||;s <
R.

Theorem 4 The BSDE has a unique solution (H,ZH) on [0,T] such that:

sup (T —t) 2|Hyl|| < 4o0.

tel0,T)

o0

Moreover fo ZHAW is a BMO-martingale.

Proof. Using the property of the map I', we deduce that there exists § > 0 such that there
exists a unique process H € H° such that a.s. for any ¢ € [T — 6, T

T
H =E U F(s, Hy)ds
t

7.

By the martingale representation, we obtain Z# and since H € H%, from Lemma E we
deduce that the martingale fT_ sZ HAW is a BMO martingale.

In particular the random variable Hp_s is bounded. If we consider the BSDE (j55|) start-
ing at time 7' — ¢ from the terminal condition Hy_g5, we can apply directly [24] Proposition
5.24] to obtain a unique solution (H, Z) on [0, T — §] such that H is bounded. O
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6 Comparison of the asymptotics and extension

Let us summarize our results.

e Under [(C1)|and [(C2)| Y and H are related by :

T—t
Y = ¢(A) + 9 (77*> H,
where H is the minimal solution of the BSDE :
T T
Hy = / F(s, Hy)ds — / zHaw,,
t t

with a singular generator F' given by .

e Under the additional assumptions [(C3)| to [(C5)| and [(H)| Y can be developed as
follows:

Yi = ¢(Ay) + v (Ar) Hy
where H is the unique solution of the BSDE with singular generator (42]).
e In the It6 setting with bounded coefficients, we get
— Uniqueness for H , since holds.
— Another possible decomposition of Y:
Y, = 6T — 1) + bG(T — ) H,
where H is the unique solution of the BSDE (52) and 7 solves (50)).

— In the power case f(y) = —y|y|?, we can use (H4):

1
Yi=o¢(n(T—1t)+ mﬂﬁ

where H# solves the BSDE .

First let us remark that if  or 1/n is an It process, then using :

7))
]-'t] /01 y <%(T — )+ aE [/tT(T — u)ldu ]-'tD da.

From Remark [2| and Condition [(A1)|and for a bounded process 97, we deduce that there
exists a constants C' such that

$(Ar)

¢ <%(T —t)+E [/tT(T — u)0)du
= ¢(u(T —1))
+ E [/tT(T— )0 du

éz/z(T —t) <4 (fyt(T —t)+aE {/tT(T —u)0)du

}"tD < Cp(T —t).
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Thus
$(Ar) = ¢(n(T — 1)) + »(T — t)ra(T — 1)
with a bounded process k. In other words, in the 1t setting, all developments coincide.
The second point we want to stress is the behavior in the power case f(y) = —y|y|?
under the Ito setting. From the construction of H#, we know that \Ht#| < C(T - t)%
Using our different asymptotics, the previous development of ¢(A) and uniqueness of the

(minimal) solution, we obtain that H, H and H verify also this estimate, which is better
than . However if we use the estimate , we have
;t]

1 T s % qt
(T —t).

k[ ((2)) ol

gt +1
where ¢f is the Holder conjugate of ¢ + 1. Using that # = n'/9 is an Itd6 process with

_|_

essentially bounded drift 97, we have

o ()]
< (;) i E[/T <ﬁt+/tSOZ’qdu> dsft]+qw1(T—t)
_ (q >; ( ) jt)qTE[/tT(T—u)OZ”du ft]+qyi”1(T—t>
< (o ) + (o ))q“< 7 - opfor) + -
= T — 1)) + (T — )T — 2 ore) + 2L )

d+1

Thus we have the desired result

0< H; <CO(T—1t)%

6.1 Non-negativity of A

From the comparison principle for monotone BSDE (see [24], Proposition 5.34|), any solution
of with a non-negative terminal condition is bounded from below by the solution (Y, Z)
of the BSDE with generator

f*(wa ta y) =

(f(y) = f(0)) = (F(0) + Ag(w))™

and terminal condition 0. Y is non-positive and if X is bounded, Y is also bounded. Thus
the negative part of Y is bounded and we can consider only the positive part of the solution.

If the sign of A is unknown, then LemmalI]does not hold. However the minimal solution
of (1)) is bounded from below by the minimal solution (Y, Z¥*) of the BSDE with generator
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f+ and terminal condition +00. And we can adapt the proof of Lemma [2] in order to prove
that there exist two functions 9, and 9* = ¥ such that:

ﬁ*(T - t) < (Y*)t < Y;b < ﬁ*(T - t)?

where 9, is the solution of the ODE:

with Ay < f(0) + At(w) < ||| and 9,(0) = +o00. Arguing as in the proof of Lemma [3| we
get that for any 0 < e < 1, on some deterministic and non-empty interval [T¢,T], a.s.

(=om) =4= (avaw)
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