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Abstract
The paper studies the behaviour of selection algorithms that are based on dichotomy principles. On
the entry formed by an ordered list L and a searched element x 6∈ L, they return the interval of the
list L the element x belongs to. We focus here on the case of words, where dichotomy principles lead
to a selection algorithm designed by Crochemore, Hancart and Lecroq, which appears to be “quasi-
optimal”. We perform a probabilistic analysis of this algorithm that exhibits its quasi-optimality on
average.
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1 Introduction

The dichotomic search [18] is one of the most basic tool for locating the position of a
target value x within a sorted list of n elements. This scheme, that has a classical “divide-
and-conquer” flavour, is a good algorithmic compromise in many situations, because it is
straightforward to implement and nonetheless guarantees a Θ(logn) number of comparisons
between x and the n elements of the list.
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General context. In this paper, we are interested in the case when the list and the target
values are words, that are emitted by a source. Then, the comparison between two words is
the usual (lexicographic) comparison, and the performance of the dichotomic selection on
words is measured by the total number of symbol comparisons. More precisely, we study
algorithms that are designed in the book of Crochemore, Hancart, and Lecroq [7, chapter 4].
In this context, the list is fixed and many target values are searched: it is then natural to
consider the list sorted (thanks to a precomputation step), and use dichotomic principles1.
Such algorithms are notably the basis for efficient implementations of searching in the suffix
array [19, 2, 22, 16, 21], which is a widely used index structure in text algorithmics [14, 7].

We focus on a particular algorithm described in [7, Chapter 4], and called here clever-
dicho-select. The authors explain there that the sorting precomputation is not actually
sufficient to build an efficient search procedure: one needs to use a supplementary structure,
called the lcp–array in [17, 20, 15, 12, 10] that stores the length of longest common prefixes
between consecutive strings of the list2. The precomputation step which determines the
lcp–array has a worst-case complexity linear in the total number of symbols of all words in
the list. With these two precomputation steps at hand (the sorting precomputation and the
lcp–array precomputation), the technique becomes very efficient for searching for a string of
length m in a list of n strings with O(m + logn) symbol comparisons (in the worst-case).
Remark that the usual algorithm that reads the word x and uses a lexicographic tree or trie
for finding the longest common prefix of the target value x within the list of strings (which is
the minimal information needed to locate the position of x) yields O(m) symbol comparisons.

Motivations. There are three motivations for such a work.
(a) We wish to perform a precise analysis of variants of the dichotomic search algorithm on

strings in the following framework described with four features : (i) the performance is
measured in terms of the number of symbol comparisons; (ii) we adopt a probabilistic or
average-case point of view which is significantly different from the worst-case one; (iii)
we are interested in the asymptotics, when the number n of strings become large, and
accordingly choose to deal with infinite words (to be detailed later); (iv) finally, we wish
to determine the precise constants involved in the analysis.

(b) A main motivation is also to better understand how the structure of data influence the
performance of algorithms. In many real applications, such data, of highly composite
nature, are often aggregates of elementary symbols, (such as bits, bytes, characters...).
It is then legitimate to consider such data as words, and the elementary cost is now the
comparisons between symbols. This present work follows a series of recent works of the
authors [27, 6, 4] where they revisited the probabilistic analysis of a panel of some classic
sorting and selecting algorithms from this point of view (for instance Quicksort). Here we
take the same perspective and wish to analyze the general dichotomic strategy, from the
basic algorithm to the more clever version of [7, Chapter 4], when it operates on complex
data.

(c) Our probabilistic modelling first involves the concept of a source, that describes how
the input words (the elements of the list L, and the searched element x) are emitted.
Such a source denoted byM extends the notion of a numeration process (see [25]), and

1 Other strategies are possible apart from the dichotomic principles for the problem searching in a sorted
list of strings (see [1, 11]).

2 The used structure is in fact the lcp–table which is a slight variation of the usual lcp–array, as we will
describe later.
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any (infinite) word emitted by the sourceM can be viewed as the expansion of a real
number of the unit interval in “base”M. Besides this sourceM, that emits the input
words, there appears also a second implicit source (the regular binary source B), which
models the dichotomy process. The interplay of these two sources is then central in our
analyses. Even though such an interplay between two sources often arises in numeration
contexts, and is well studied there (see for instance [3, 8]), notably in relation to the
various Changing Base algorithms, it came as a surprise for us that it also arises in our
analyses.

Main results. In the context of our analysis, defined by the four features described in
(a), we analyze in Theorem 9 the clever-dicho-select algorithm. We first analyze the
precomputation step, that builds (and stores) the lcp–table (an integer array of length 2n+1
which is a slight variation of the usual lcp–array), and prove that the mean complexity
cost for building the table is of order Θ(n). Then, we analyse the mean complexity cost
of the algorithm itself and prove that it is of order Θ(logn). It is thus quasi-optimal3 on
average. We precisely study the constants hidden in the Θ, and relate them to the main
characteristics of the source, and, in particular, to the interplay between the two sources
described in (c): the input source that emits the words, and the dichotomic source which
models the dichotomic process.

Methodology. We first exhibit the main costs for evaluating the time complexity of the
algorithm, that are not highlighted in the previous work [7]. These costs are read on the two
main structures, the dichotomic tree D(L) which underlies the partitioning process, together
with trie T (L) built on the list L (which was not explicit in [7]). We also introduce another
strategy for computing the lcp–table related to an original parameter called dic. Then,
we perform the average-case analysis of the main costs: we mainly deal with what we call
costs with toll on the trie T (L) (defined in Eq. (5)), and we adapt the analytic combinatorics
methodology for such an analysis, as described both in [5] and [26].

Plan of the paper. Section 2 first recalls the general framework of the dichotomic strategy.
Then, Section 3 focuses on the selection problems on words; it presents the clever-dicho-
select algorithm, and exhibits its main costs of interest. Finally, Section 4 is devoted to
the probabilistic analysis of these costs, and proves the quasi-optimality (on average) of the
clever-dicho-select algorithm.

2 Basic Dichotomic Selection

Let us consider an ordered set X . The problem Select (L, x) takes as input a list L of n
distinct elements of X , together with an element x 6∈ L, and determines the rank of x in L,
namely the integer i for which x will be the i-th smallest element in the sorted set L ∪ {x}.
When the list L = (L1, . . . , Ln) is already sorted, the well-known dichotomic strategy may
be used. It deals with the extended list L := (L0, L1, . . . , Ln, Ln+1), where two guards are
added to the initial list L, a strict infimum L0 and a strict supremum Ln+1 satisfying the
strict inequalities L0 < y < Ln+1 for any y ∈ X . The dichotomy principle uses the function
mid : (b, e) 7→ b(b+e)/2c, and determines the rank of x in L∪{x}, i.e., the index i ∈ [1 . . n+1]
for which Li−1 < x < Li. The algorithm Dicho-Select is described in Fig. 1 (left).

3 compared to the bound Θ(logn) obtained on average when dealing with a precomputed trie.
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Dicho-Select (L, x)
b := 0
e := n+ 1
while b+ 1 < e do

m := b(b+ e)/2c
if Lm < x then

b := m

else
e := m

return e

(0, 6)

(0, 3)

(0, 1) (1, 3)

(1, 2) (2, 3)

(3, 6)

(3, 4) (4, 6)

(4, 5) (5, 6)

3

1

2

4

5

Figure 1 The dicho-select algorithm (left). The dichotomic tree Dn (n = 5) (right).

With each cardinality n, the dichotomy strategy associates a binary tree Dn, called the
dichotomic tree (Fig. 1, right). Such a tree describes the partitioning process on any ordered
list of cardinality n, with indices in [1 . . n], and deals with extended indices in [0 . . n+ 1].

I Definition 1 (Dichotomic tree). The dichotomic tree Dn associated with a cardinality n is
a binary tree, with n internal nodes and n+ 1 external nodes. Each node is labelled by a pair
(b, e) with 0 ≤ b < e ≤ n+ 1. Moreover,

if b + 1 < e, the node labelled by (b, e) is internal: it contains the index m = mid(b, e)
and has two children, labelled by (b,m) (on the left) and (m, e) (on the right);
if b+ 1 = e, the node labelled by (b, e) is external: it has no children.

An integer pair (c, d) is dichotomic it appears as a label of a node in Dn.

When the dicho-select algorithm is called on a sorted list L of cardinality n, the dichotomic
tree Dn is adapted to the list L (and its extended version L): an internal node (b, e) contains
the key Lm with m = mid(b, e). The tree is thus called the dichotomic tree of the list L,
and denoted by D(L). During the execution of Dicho-Select on the input (L, x), the tree
D(L) is used as a binary search tree, and a comparison is performed at node (b, e) between
the key x and the key Lm with m = mid(b, e).
The sequence of visited nodes forms a path in D(L), that is called the execution path Π(L, x).
It leads to an external node with label (i− 1, i) such that Li−1 < x < Li. The part Π(L, x)
that excludes the last (external) node and thus only gathers its internal nodes, is called the
internal execution path and denoted by Π(L, x). The length of this path, denoted by |Π(L, x)|
and defined as the number of its nodes, is a central parameter of dicho-select(L, x):

I Lemma 2. The total number G(L, x) of key comparisons performed by dicho-select
on the input (L, x) is equal to the length |Π(L, x)| of the internal execution path Π(L, x) of
Dicho-Select in D(L) on input x. When the cardinality n of L belongs to [2p−1 . . 2p − 1],
the length of the path Π(L, x) satisfies |Π(L, x)| ∈ {p − 1, p}. When n = 2p − 1, one has
|Π(L, x)| = p, for any x.

3 Dichotomic selection for words

3.1 General context
The dicho-select algorithm is straightforwardly adapted to words, as shown in [7]. The
book describes the framework that appears in practical issues, where one deals with a list
L of finite words (called strings), that may be possibly prefixes of other strings inside L,
and where the searched string x may belong to L. This makes the pseudo code of [7] rather
subtle and sometimes difficult to understand.
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As we focus on asymptotic features, when both the cardinality of the list, and the length
of strings tend to ∞, we are led to the case when the keys (both the elements of the list L
and the searched element x) are infinite words. Furthermore, we suppose that all words in
L are distinct and the word x does not belong to L. This makes the precise structure of
algorithms more readable and their main parameters more apparent: this leads to a clearer
asymptotic complexity analysis, notably on average.

We will design various algorithms of dichotomic flavour that adapt the Dicho-Select
algorithm to the context of infinite words, built over some finite ordered alphabet Σ. We
now deal with two different orderings, the partial prefix order � (defined on prefixes), and
the lexicographic order ≤ (defined on infinite words). For two finite words w,w′ on the
alphabet Σ, we denote w � w′ (or w′ � w) if w is a prefix of w′. We denote by Γ(x, y) the
longest common prefix between two words x and y and by γ(x, y) its length, here called the
coincidence4 between x and y. Then, the number of symbol comparisons needed to compare
the words x and y is equal to γ(x, y) + 1, and the main complexity parameter is the total
number of symbol comparisons performed by the algorithm.

3.2 The trie structure
The trie structure (see [13, 23]) is the main tree structure for solving problems on words.
Fig. 2 gives an example of a trie built on a list L with seven words on Σ := {a, b, c}.

I Definition 3. Let L be a list of words on the ordered alphabet Σ := {a1, a2, . . . , ar}. The
trie T (L) is defined as follows

if L = ∅, then T (L) = ∅; if L = {w}, then T (L) is an external node which contains w;
for |L| ≥ 2, T (L) is an internal node with r subtrees T (L \ a1) , . . . , T (L \ ar), where
L \ u is the list formed with words of L that start with the symbol u stripped of u; the
edge between the root and the i-th subtree is labelled with the symbol ai.

The trie only maintains the minimal prefix set P (L) of symbols that is needed to distinguish
all the elements of L (written underlined in blue in Fig. 2). Without any prior knowledge
about the set of the words, this is the most efficient tool for comparing (and sorting) words.

L1 aaabcbbca...
L2 aaacacbac...
L3 bacaabbba ...
L4 bacbaabcc...
L5 bcabbbbbc...
L6 cacccaaac...
L7 ccbacbcbb... L

1

b

L
2

c

a

a

a

L
3

a

L
4

b

c

a

L
5

c

b

L
6

a

L
7

c

c

Figure 2 On the left, a list L with seven words, with its minimal prefix set P (L) (underlined).
On the right, the trie T (L).

I Proposition 4. The minimal number of symbol comparisons needed to solve the selection
problem Select (L, x) on words (without prior knowledge on the input (L, x)) is exactly the
length of the branch B(L, x) of the trie T (L ∪ {x}) leading to the external node associated
with x.

4 This parameter is usually denoted as lcp(x, y) and reads as (length of) the least common prefix. As we
both deal with the prefix itself, and its length, we prefer the notations Γ and γ.
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The trie structure has been deeply analyzed in various contexts (see for instance [18, 9, 24]).
In a quite general probabilistic framework of a source M with entropy h(M) (defined
in [25, 6] and later recalled in Section 4.1), the following holds, in terms of number of symbol
comparisons, and on average, when the cardinality n of the list L tends to ∞ (see [5]):

the asymptotic cost of building the trie T (L) is equivalent to [1/h(M)]n logn;
the asymptotic size of the minimal prefix set P (L) is equivalent to [1/h(M)]n logn;
the asymptotic cost |B(L, x)| of inserting x in T (L) is equivalent to [1/h(M)] logn.

But, in the present context, the list L is assumed to be ordered. The main questions are
now as follows: Is it possible to take advantage of the ordering of the list L, with a clever use
of the dichotomic strategy? Can this be done without explicitly building or storing the trie
T (L)? Are these dichotomic algorithms close to the lower bound |B(L, x)|?
The clever-dicho-select algorithm proposed in [7] (and recalled later in Section 3.4)
answers all these questions in an affirmative way.

Even though the trie T (L) is not explicitly built during the execution of our further
algorithms of type Dicho-Select on words, our analyses “read” operations made by the
algorithms simultaneously on the two trees, the dichotomic tree D(L) and the trie T (L).
With a node labelled by (b, e) in the dichotomic tree D(L), we first consider the two elements
Le and Lb of the list L (that may be fictive guards for e = 0 or b = n+ 1), then the prefix
Γ[b, e] := Γ(Lb, Le) which is the largest common prefix between Lb and Le, and finally its
length γ[b, e]. In the case when b = 0 or e = n+ 1, we let Γ[b, e] := ε (the empty word) and
γ[b, e] = 0. This gives rise to the Γ(L) tree that is a decoration5 of the dichotomic tree D(L)
and contains at each node (b, e) of D(L) the prefix Γ[b, e] (see Fig. 5, right). This prefix
Γ[b, e] also identifies a node of the trie T (L) and the associated branch in T (L), from the
root to this node.

A path Π(L, x) of D(L) leading to an external node of label (i− 1, i) gives rise to the
branch labelled with Γ[i− 1, i] in the trie T (L). Then, inserting x in T (L) yields the branch
B(L, x) in the trie T (L ∪ {x}). The sequence of prefixes Γ[m,x] := Γ(Lm, x) is increasing
(for the prefix order �) along the path Π(L, x), and the strategy of the algorithm defines how
Γ[m,x] is computed along Π(L, x). We describe in the following three different strategies;
we explain why the first two ones, defined in Section 3.3, are not efficient, and how they can
be adapted in Section 3.4 to lead to the clever-dicho-select Algorithm that is proven
quasi-optimal in Section 4.2.

3.3 First two variants of dichotomic search on strings
Substituting the key-comparison “Lm < x” in dicho-select(L, x) with the red block of
Fig. 3 (left) implementing the comparison between words gives rise to the algorithm word-
dicho-select(L, x) described in Fig. 3 (left). The word-dicho-select algorithm appears
to be quite naive, since it recomputes from scratch the prefix Γ[m,x] along the path Π(L, x).
It does not use the important following property due to the ordering of the list:

I Lemma 5. For a node of Π(L, x) with label (b, e) and index m := mid(b, e), and for any
x ∈ [Lb, Le], the inequality holds: Γ[m,x] � min (Γ[b, x],Γ[e, x]) = Γ[b, e] .

Lemma 5 leads to a more efficient algorithm, the Dicho-Select-WMin algorithm
described in Fig. 3 (right), where the added blue lines maintain along the path Π(L, x) the

5 This means that Γ(L) has the same structure as D(L) with some extra information at nodes.
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current coincidences `b := γ[b, x] and `e := γ[e, x] between the searched key x and the two
ends of the interval [Lb, Le] it belongs to. However, the Dicho-Select-WMin algorithm is
not optimal. The following indeed holds along the execution path Π(L, x):

At node (b, e), the algorithm deals with prefixes w that satisfy Γ[b, e] � w � Γ[m,x];
At the successor node with label (b′, e′), the strict inequality Γ[b′, e′] ≺ Γ[m,x] may hold;
thus, the algorithm may go backwards along the branch B(L, x), repeating the same
symbol comparisons;

Word-Dicho-Select (L, x);
b := 0 ; e := n+ 1;
while b+ 1 < e

do m := mid(b, e) ;
` := 0 ;
while x[`] = Lm[`] do

` := `+ 1;
if Lm[`] < x[`] then

b := m

else
e := m

return e

Dicho-Select-W-Min (L, x);
b := 0 ; e := n+ 1 ;
`b := 0; `e := 0;
while b+ 1 < e do

m := mid(b, e);
` := min(`b, `e);
while x[`] = Lm[`] do

` := `+ 1 ;
if Lm[`] < x[`] then

b := m; `b := ` ;
else

e := m; `e := ` ;
return e

Figure 3 The two algorithms: the word-dicho-select (left), the dicho-select-wmin (right).

3.4 A clever version that uses the LCP–table
This is why the authors of [7] propose to precompute the set {γ[b, e] | (b, e) ∈ D(L)} that
only depends on L (and not on x). When stored in an array (see Section 3.5), it is called in
[7] the lcp–table and it slightly extends the notion of lcp–array which restricts to pairs of
consecutive strings in L. Then, the authors prove that precise comparisons, at each node
(b, e) of the path Π(L, x), between the four values

γ[b, x], γ[e, x], γ[b,m], γ[e,m], with m := mid(b, e)

avoids backwards steps and thus redundant symbol comparisons, as it is now stated.

I Lemma 6. Consider a node of Π(L, x) with label (b, e), together with the four coincidences
`b = γ[b, x], `e = γ[e, x], γ[b,m], γ[e,m]. There are five (exclusive) cases in order to determine
`m = γ[m,x], the successor pair (b′, e′) (and thus the next pair (`b′ , `e′)):

In the first four cases, the following holds:
(1) if γ[b, x] > γ[b,m], then `m = γ[b,m], (b′, e′) = (b,m).
(2) if γ[e, x] > γ[e,m], then `m = γ[m, e], (b′, e′) = (m, e).
(3) if γ[b, x] < γ[b,m], then `m = `b, (b′, e′) = (m, e).
(4) if γ[e, x] < γ[e,m], then `m = `e, (b′, e′) = (b,m).
The equality max(`b′ , `e′) = max(`b, `e) holds; the clever-dicho-select algorithm does
not perform any comparison and does not discover any new symbol;
In the remaining case (5), when γ[b, x] = γ[b,m] and γ[e, x] = γ[m, e], then a computation
is needed for `m and (b′, e′). The inequality max(`b′ , `e′) ≥ max(`b, `e) holds;
The algorithm performs [max(`b′ , `e′)−max(`b, `e) + 1] symbol comparisons and discovers
[max(`b′ , `e′) − max(`b, `e)] new symbols. Case (5) corresponds to a node (b, e) of the
path Π(L, x) (called a forward node) for which one of the two conditions (i) or (ii) hold

CPM 2019
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(i) γ[m,x] > max (γ[b, x], γ[e, x])
(ii) γ[m,x] = max (γ[b, x], γ[e, x]) = max (γ[b,m], γ[e,m])

The set of forward nodes (called the forward set) of Π(L, x) is denoted as F (L, x).
Fig. 4 (left) leads to an easy proof of Lemma 6, explicitly based on the trie structure T (L): it
represents the branch B(L, x) of the trie T (L) (in blue) with the relative possible positions of
the three branches that respectively lead to Lb, Le, Lm. It focuses on the case where `b ≤ `e,
which leads to four possible cases (2), (4) (5i), (5ii) of Lemma 6.

Lb

Lm x Le

Γ[b, x]

Γ[m,x] = Γ[m, e]

Γ[e, x] Lb

x Lm Le

Γ[b, x]

Γ[e, x] = Γ[m,x]

Lb

x?
Lm

x?
Le

Γ[b, x]

Γ[e, x]

Γ[m,x]
Lb

x?
Lm

x? Le

Γ[b, x]

Γ[e, x] = Γ[m, e]

clever-dicho-select(L, x);
(b, `b) := (0, 0); (e, `e) := (n+ 1, 0)
while b+ 1 < e do
m := b(b+ e)/2c;
if γ[m, e] < `e then

(b, `b) := (m, γ[m, e])
else if `e < γ[m, e] then
e := m

else if γ[b,m] < `b then
(e, `e) := (m, γ[b,m])

else if `b < γ[b,m] then
b := m

else
` := max(`b, `e)
while x[`] = Lm[`] do
` := `+ 1

if Lm[`] < x[`] then
(b, `b) := (m, `)

else
(e, `e) := (m, `)

return e.

Figure 4 On the left, description of the four cases (2), (4), (5(i)), (5(ii)) of Lemma 6 that occur
when γ[e, x] ≥ γ[b, x]. On the right, description of the clever-dicho-select Algorithm.

Proof of Lemma 6. When the inequality Γ[e, x] � Γ[b, x] holds, we deal with the branch Le,
and consider the positions (defined by the prefixes Γ[m, e] and Γ[e, x]) where the branches
Lm and x are hung on the branch Le; As the two words Lm and x satisfy (with respect to
the lexicographic order) Lm < Le and x < Le, these branches are hung on the left of the
branch Le: there are three cases for their relative positions:

case (2): Γ[e, x] � Γ[e,m] ; case (4): Γ[e, x] ≺ Γ[e,m] ; case (5): Γ[e, x] = Γ[e,m] .

(2) The equality Γ[m,x] = Γ[m, e] holds. As the branch x holds on the left of Le, this shows
that x ∈ [Lm, Le]. Then the next (b′, e′) is (m, e).

(4) The equality Γ[m,x] = Γ[e, x] holds. As the branch x holds on the left of Le, this shows
that x ∈ [Lb, Lm]. Then the next (b′, e′) is (b,m).

(5) The two branches x and Lm are hung at the same position on Le, and both lie on the
left of Le. Then there exists a red path, (empty in the case (5ii)) which begins at prefix
Γ[e, x] = Γ[m, e] and represents the common suffix between Lm and x (empty in the case
(5ii)). The comparison between Lm and x has to be performed, and begins at prefix
Γ[e, x]. Remark that the equality Γ[b, x] = Γ[b,m] also holds in this case. J
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Then, Lemma 6 gives rise to the clever-dicho-select algorithm described in Fig. 4
(right), whose complexity is now summarized in the following Proposition.

I Proposition 7. Consider a list L, with its precomputed set γ(L). Then, the total number
of symbol comparisons performed by Clever-Dicho-Select on the input (L, x) is

C(L, x) = |B(L, x)|+ |F (L, x)|,

where B(L, x) is the branch that leads to x in the trie T (L ∪ {x}), and F (L, x) is the subset
of forward nodes in the internal execution path Π(L, x) of the dichotomic tree D(L).

3.5 Precomputing the LCP–table
In Section 3.2, the Γ(L) tree was defined as a decoration of the tree D(L). Here, we only
need the knowledge of on array of length 2n+ 1 (Fig. 5, bottom right). This array (called the
lcp–table in [7]) contains the value γ[b, e] at index i(b, e) ∈ [0 . . 2n] defined as: i(b, e) = b, if
(b, e) is external, and i(b, e) = n+ mid(b, e), if (b, e) is internal.

The computation of the lcp–table proposed in the book [7] is based on a bottom-up
strategy, and has a complexity closely related to the path length of the trie T (L), of order
Θ(n logn) (on average). We present here a new algorithm, based a top-down strategy. When
called on the triple (0, n+ 1, 0) the algorithm Build-lcp-table, described in Fig. 5 (left),
computes the lcp–table and the number A(L) of symbol comparisons performed clearly
involves the difference γ[b,m] + γ[m, e]− 2γ[b, e] at each node [b, e] of D(L).

Build-lcp-table(b, e, `)
if b = 0 or e = n+ 1 then

`′ = 0
else

`′ := `

while Lb[`′] = Le[`′] do
`′ := `′ + 1

γ[b, e] := `′

if b+ 1 < e then m := mid(b, e)
Build-lcp-table(b,m, `′)
Build-lcp-table(m, e, `′)

(0,8)
4
ε

(0,4)
2
ε

(0,2)
1
ε

(0,1)
ε

(1,2)
aaaa

(2,4)
3
ε

(2,3)
ε

(3,4)
bac

(4,8)
6
ε

(4,6)
5
ε

(4,5)
b

(5,6)
ε

(6,8)
7
ε

(6,7)
c

(7,8)
ε

lcp–table(L) = [0, 4, 0, 3, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]
Int(a) = Int(aa) = Int(aaa) = [1, 2],

Int(b) = [3, 5] = [3, 4] ∪ [4, 5], Int(c) = [6, 7]
Dic(a) = Dic(aa) = Dic(aaa) = Dic(ba) = {[1, 2]},

Dic(b) = {[3, 4], [4, 5]}

Figure 5 On the left, the algorithm for computing the lcp–table. On the right, the Γ(L)-tree
and the lcp–table related to the list L of Fig. 2, together with some examples for Int(w) and
Dic(w).

We now provide an alternative expression for the cost A(L). Consider indeed an internal
node of the trie T (L) related to the prefix w and associate with it the largest integer interval
Int(w) := [a, b] for which w = Γ[a, b]. The cardinality of Int(w) is the number Nw of
elements of L which begin with w. The interval Int(w) is not dichotomic6 (in general). We

6 A pair (a, b) is dichotomic if it labels a node in the dichotomic tree D(L).
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denote by Dic(w) its decomposition into largest possible dichotomic intervals (see Fig. 5 for
some examples), and by dic(w) the cardinality of the decomposition Dic(w). There are now
two results: – first, the parameter dic arises as a basic cost for A(L) – second, there is a
relation between the two parameters dic(w) and the cardinality Nw .

I Proposition 8. The number A(L) of symbol comparisons used by Algorithm Build-lcp-
table for computing the lcp–table for list L is expressed as

A(L) = (2n+ 1− En) +
∑

w∈T (L)
w 6=ε

dic(w), (1)

and involves the number En of nodes on the extreme (left and right) branches of D(L) together
with the cardinality dic(w) of the dichotomic decomposition for every internal node w of the
trie T (L). One has En = Θ(logn) and the following estimate holds,

dic(w) ≤ 2 + 2 log2Nw . (2)

4 Probabilistic analyses of the dichotomic process

The algorithm clever-Dicho-Select algorithm involves thus three parameters:
The length |B(L, x)| of the branch which leads to x in the trie T (L ∪ {x}); this is a
classical parameter, and an instance of a cost with toll (see Eq. (5)). It only depends on
probabilistic properties of the input source and does not involve the dichotomic process.
The other two parameters are more difficult to analyze, because they involve both the trie
T (L) and the dichotomic tree D(L), and thus two sources (as Section 4.3 will explain).

We only propose trivial bounds for the number |F (L, x)| of forward nodes in the
dichotomic path Π(L, x), namely 1 ≤ |F (L, x)| ≤ |Π(L, x)|
As Proposition 8 shows, the cost A(L) for computing the lcp–table for L is defined
from the cost dic. This is not a cost with toll, but it can bounded from above and
below with two costs with toll.

Moreover, the basic structure that underlies the whole dichotomic strategy on the list L is
the Γ(L) tree, that contains at each node (b, e) the prefix Γ[b, e] of length γ[b, e]. The mean
value of the coincidence γ[b, e] at a random node (b, e) of depth ` is also a central parameter,
and we give some hints in Section 4.3 for a possible further study.

4.1 The input source and its parameterization
We consider a sourceM on an ordered finite alphabet Σ which will both produce the elements
of the list L and the searched word x (called the input source). A source is a (probabilistic)
mechanism which emits a symbol from the alphabet Σ, at each discrete time t = 0, 1, . . . . It
produces infinite words in ΣN and is defined by the set of probabilities

pw := Pr[a word begins with the prefixw], (w ∈ Σ?) .

Figure 6 (top) recalls the parameterization of a source (see also [6]): using, for each k, the
equality

∑
w∈Σk pw = 1 and the lexicographic order on Σk, builds a sequence of quasi-disjoint

intervals Iw, with |Iw| = pw. When k tends to∞, each word y is written (almost everywhere)
as y = M(t), with t ∈ [0, 1]. The increasing mapping M : [0, 1]→ ΣN maps reals to infinite
words. Using an analogy with numeration, we say that the infinite wordM(t) is the expansion
of the real t in “base”M, and (conversely) the real t is the parameter of the word y.
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Classical sources are obtained in this general framework: all the memoryless sources – the
regular ones, for which all the probabilities pw of the prefixes w ∈ Σk are equal, as well as
the non regular ones– , but also Markov chains, and finally a class of more correlated sources,
as described in [25]. Figure 6 (bottom) describes the parameterization of two regular sources:
the binary one (in blue), and the ternary one (in green).

0 1pε = 1

p0 p1

p00 p01 p10 p11

p000 p001 p010 p011 p100 p101 p110 p111

x y
M(x) = 001..., M(y) = 011...

1
2

1
4

3
4

0 1

1
8

3
8

5
8

7
8

0 1 2

00 01 02 10 11 12 20 21 22

Figure 6 Parameterization of a source and fundamental intervals (top). Two instances of
parameterization for regular sources (bottom).

In this context, the Dirichlet generating series of the sources, defined as

Λ(s) :=
∑
w∈Σ?

psw, Λk(s) :=
∑
w∈Σk

psw , (3)

play a prominent role, as highlighted in [25]. The source is said to be tame if these functions
considered as functions of a complex variable s have good properties near the vertical line
<s = 1 (see [6] and details in the Appendix); it notably possesses an entropy,

h(M) := lim
k→∞

1
k

∑
w∈Σk

pw log pw = lim
k→∞

1
k

d

ds
Λk(s)

∣∣∣
s=1

. (4)

The source is said to be periodic if the series Λ(s) is periodic.
The Dirichlet series of a regular source associated with an alphabet of cardinality b admit
nice expressions,

Λk(s) = bk · b−ks = bk(1−s), Λ(s) = (1− b1−s)−1 .

This shows that a b-regular source is tame and periodic of period 2πi/(log b), with an entropy
equal to log b.

The intervals that appear at depth k in Figure 6 (top) define the parameterization
M . They are called the fundamental intervals (of depth k). They satisfy Iw := {u |
M(u) begins with w}. They may be defined via the coincidence γ, as Ik(t) = {u ∈ [0, 1] |
γ(M(t),M(u)) ≥ k}.

Both the elements of the list L and the searched word x will be produced by the source
M. We first draw (n+ 1) real numbers (t, u1, . . . , un) in the [0, 1] interval, in a uniform and
independent way; then, we sort (u1, u2, . . . , un), and rewrite this n-uple as an ordered n-uple
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(t1 < t2 < · · · < tn); we let x = M(t), and Li := M(ti) for i ∈ [1 . . . n]. As the mapping M is
increasing, the list L is sorted in the increasing order. The parameter ti of the word Li is the
i-th smallest element (also called the i-th statistics) of the random n-uple (u1, u2, . . . , un).

4.2 Probabilistic analysis of the Clever-Dicho-Select algorithm
With a list L and a finite prefix w, we have associated in Section 3.5 the parameter Nw :=
Nw(L) that is the number of elements of L which begin with w. The internal nodes of the
trie T (L) are labelled with prefixes w for which Nw(L) ≥ 2. The variable Nw plays a central
role in the analysis of the trie parameters, notably those that are associated with a toll
function x : N→ N and obtained as a sum taken over the internal nodes:

X(L) :=
∑

w|Nw≥2

x(Nw) . (5)

This class of parameters X (called costs with toll) contains for instance the path length (for
x(k) = k) and the number of internal nodes (for x(k) = 1.) The asymptotic mean value of
such parameters has been deeply studied, notably in [5], and it depends both on the toll and
the characteristics of the source, in particular its entropy. Even though the cost dic(w) is
not a cost with toll, the inequality 1 ≤ dic(w) ≤ 2 log2Nw + 2 stated in Proposition8 bounds
it with two costs with toll. We then obtain the main result of the paper, for which a sketch
of proof is given in the Appendix.

I Theorem 9. Consider a good input sourceM and a random input (L, x) with |L| = n as
described in Section 4.1. Then asymptotically:

the mean value Bn of the length |B(L, x)| satisfies Bn ∼ (1/h(M)) logn ;
the mean value Fn of the cardinality of the forward set satisfies 1 ≤ Fn ≤ log2(n+ 1) ;
the mean value An of the cost A(L) for building the γ(L) array satisfies

n

h(M) [1 + P (logn)] ≤ An ≤
n

h(M) [1 +Q(logn)]

 2
log 2

∑
k≥2

log k
k(k − 1)

 ,
where P and Q are two periodic functions of very small amplitude which only appear
when the source is periodic.

4.3 Probabilistic analysis of the Γ(L) tree: the second source
We now consider the probabilistic behaviour of the main structure that underlies the algorithm,
namely the Γ(L) tree. We focus here on the case of pure dichotomy where the cardinality
n of the list satisfies n+ 1 = 2p for some integer p > 0, and, thus, the dichotomic tree Dn

(denoted by D̂p) is complete.
A node (b, e) at depth ` in D̂p satisfies b = a 2p−`, e = (a + 1) 2p−` for some integer

a ∈ [0 . . 2` − 1]. This node is associated in the Γ(L) tree with the pair (Lb, Le), whose
parameters tb and te are resp. the b-th and the e-th statistics of the n-uple (u1, u2, . . . , un),
i.e., the elements of respective ranks b and e in the sorted n-uple (t1, t2, . . . , tn). They thus
satisfy, with classical results on i-th statistics recalled in the Appendix,

[tb, te] ≈ [vb, ve] , with vb = b 2−p = a 2−`, ve := e 2−p = (a+ 1) 2−` . (6)

This estimate holds for p → ∞ and any ` ≤ p . Then, any node (b, e) of depth ` in D̂p is
(asymptotically for p→∞) associated with a fundamental interval [vb, ve] of depth ` of the
regular binary source B.
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This provides an (asymptotic) geometric interpretation of the coincidence γ[b, e] (when
p → ∞): this is the largest integer k for which there exists a fundamental interval Iw of
depth k (of the sourceM) that contains the given fundamental interval [vb, ve] of the source
B. Such an interplay between two sources –here the sourcesM and B– is deeply studied in
the context of dynamical systems (see for instance the results of [3, 8]), at least when the
depth ` tends to ∞. A more precise view of this (asymptotic) interplay between these two
sources will be central in a further analysis of the Γ(L) tree.

The parameter Dic may be also described thanks to the interplay of the two sources: it
is indeed related to the decomposition of a fundamental interval of the sourceM in terms of
fundamental intervals of the source B.

Conclusion. The present study has introduced the Γ(L) tree and the parameter Dic. The
Γ(L) tree underlies any algorithm based on dichotomic process, and we feel that the parameter
Dic plays an important role in this process and should be further studied for itself.
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We denote by dic(w) the cardinality of Dic(w), namely the number of dichotomic intervals
it contains (with the previous notations, one has Dic(w) = k) .
This decomposition is easily built in a bottom-up strategy. We begin with the decomposition
of [Aw, Bw] into dichotomic intervals of length one in D(L). As soon as there exists in the
decomposition two adjacent nodes in D(L) with the same predecessor, we replace them
by their common predecessor. The recursive procedure halts at depth ` in D(L) with two
possible cases: one node of depth `, or two adjacent nodes of depth ` with a different
predecessor. For each dichotomic interval [b, e] in D(L) (distinct of the root), denote the
predecessor of [b, e] by pred(b, e). We now prove that the two conditions are equivalent

the prefix w satisfies the inequality Γ[pred(b, e)] ≺ w � Γ[b, e];
the dichotomic interval [b, e] belongs to the set Dic(w);

Indeed, when [b, e] ∈ Dic(w), then first Γ[b, e] � w, and second the interval [b, e] is a
largest dichotomic interval, then its predecessor Γ[pred(b, e)] satisfies the strict inequality
Γ[pred[b, e]] ≺ w.
Conversely, when the prefix w satisfies the inequality Γ[pred(b, e)] ≺ w � Γ[b, e], the
interval [b, e] is a largest dichotomic interval for which Γ[b, e] � w, and thus the inequality
Γ[pred(b, e)] ≺ w � Γ[b, e] holds.
There is thus a bijection between the two multi-sets

{Dic(w) | w internal node of T (L)}, {w | ∃(b, e) ∈ D(L), Γ[pred(b, e)] ≺ w � Γ[b, e]}.

As the cardinality of the last multi-set coincides with the number of (positive) comparisons
that are needed to compute the γ(L) array, this ends the proof. J

A.2 Proof of Proposition 8. Bound for dic(w) given in Eq. (2)
This bound will be established thanks to the next lemmas 10, 12 and 13.

I Lemma 10. Let n > 0 and Dn be a dichotomic tree of height h = dlog2 ne. Each node
(b, e) ∈ Dn corresponds to a dichotomic interval [b, e] of length e− b. At depth 0 ≤ ` ≤ h, all
nodes in Dn correspond with intervals of length either

⌊
n
2`

⌋
or
⌊
n
2`

⌋
+ 1.

Proof. The root interval [0, n] has length n. If n is even, left and right intervals children have
both length n/2 and, if n is odd, left and right intervals children have respectively length
bn/2c and bn/2c+ 1. Hence the property of the lemma holds at depth ` = 1. By recursion,
suppose now that at a given depth ` and posing N =

⌊
n
2`

⌋
, all intervals have length either N or

N+1. We can check easily (for instance using binary expansion of n) that bN/2c = bn/2`+1c,
and also b(N + 1)/2c = bn/2`+1c if N is even and b(N + 1)/2c = bn/2`+1c+ 1 if N is odd.
Hence the property holds at depth `+ 1. J

So at a given depth, dichotomic intervals can only take two lengths. Abusing notation, for a
fixed dichotomic tree Dn, we note Dic(i, f) the decomposition of the interval [i, f ] as a union
of minimal cardinality of disjoint (apart from their extremities) dichotomic intervals. We
also define dic(i, f) as this minimal cardinality. We now want to upper bound the parameter
dic(i, f). We will use the following definition:

I Definition 11. For a dichotomic tree Dn, an interval (i, f) is said to be left (resp. right)
aligned if there exists a dichotomic interval (b, e) such that i = b and e ≥ f (resp. f = e and
b ≤ i).

First we examine the case of an interval (i, f) which is aligned on the left.
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I Lemma 12. Let n > 0 and a dichotomic tree Dn. Let consider a pair (b, f) with 0 ≤ b <
f ≤ n such that [b, f ] is left aligned on a dichotomic interval [b, e]. We have

dic(b, f) ≤ 1 + log2(f − b).

Proof. If [b, f ] is dichotomic, dic(b, f) = 1 and the lemma holds. We assume now that [b, f ]
is not dichotomic. There exists e < e′ such that

[b, e] $ [b, f ] $ [b, e′],

and [b, e], [b, e′] are dichotomic intervals with (b, e′) = pred(b, e) (meaning b(b+ e′)/2c = e).
Consequently [e, e′] is also a dichotomic interval of Dn of length b− e+ ε (for some ε ∈ {0, 1},
see Lemma 10). The first and largest interval of Dic(b, f) is the dichotomic interval [b, e].
We can thus write dic(b, f) = 1 + dic(e, f). Since [e, f ] is left aligned on the dichotomic
interval [e, e′] we can iterate. Using the fact that in the next iteration we decompose an
interval [e, f ] of length f − e ≤ f/2, we get the bound dic(b, f) ≤ 1 + 2 log2(f − b). J

The lemma can be adapted when the interval is right aligned. We can now examine the
general case (i, f) with 0 ≤ i < f ≤ n as illustrated in Fig. 7.

I Lemma 13. Let n > 0 and a dichotomic tree Dn. Let consider a pair (i, f) with 0 ≤ i <
f ≤ n. We have

dic(i, f) ≤ 2 + 2 log2(f − i).

Proof. Let [b, e] the dichotomic interval of maximal length such that [i, f ] ⊂ [b, e]. Then
posing m = b(b+ e)/2c, we decompose the interval [i, f ] according to this splitting point m
into two intervals [i,m]∪ [m, f ]. Those two intervals are respectively aligned on the right and
the left of two dichotomic consecutive intervals [b,m] and [m, e] of length less than f − i. We
can also check that Dic(i, f) = Dic(i, e) + Dic(e, f). Finally we apply the previous lemma to
prove the result. J

Now going back to usual notation of the paper, this yields the estimate of Eq. (2) in
Proposition 8.

A.3 Exact expression for dic(w) in the pure dichotomic case

In the case of a pure dichotomy, there is an exact expression for dic(w), in terms of the
parameter |x|1 that denotes the number of ‘1’ in the binary writing of the integer x. This
makes more precise the estimate given in Lemma 12.

I Lemma 14. In the pure dichotomic case, the following holds:
Consider a pair (b, f) such that the interval [b, f ] is left aligned. Then dic(b, f) = |f −b|1.
Consider a pair (i, e) such that the interval [i, e] is right aligned on a dichotomic interval
[b, e]. Then dic(i, e) = |i− b|1

Proof. The proof is omitted. J
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Interval to cover

interval aligned to the leftInterval aligned to the right

Interval aligned to the right
interval aligned to the left

dichotomic interval dichotomic interval

Figure 7 A dichotomic tree with an interval I (in light green). It decomposes in two intervals
(yellow) which are respectively aligned on the left and on the right.

A.4 Proof of Theorem 9: Average-case analysis of a cost with toll in a
trie built on a good general source

In this section, x : N→ R denotes a toll function, and, for a trie built on a list of words L,
X is the total cost defined in (5)

X(L) :=
∑

w|Nw≥2

x(Nw) ,

where Nw is the number of elements of L which begin with w.
There are three main steps in the analysis of the expectation of parameter X.

First step. We begin to deal with the Poisson model Pz, where the cardinality of the list
N is a random variable which follows the law

Pr[N = n] = e−z
zn

n! .

With a toll x, we associate its Poisson transform

Px(z) := e−z
∑
n≥0

x(n)z
n

n! ,

which coincides with the expectation Ez[x] of the cost x in the Poisson model. In the model
Pz, the cardinality Nw follows a Poisson law of rate z pw that involves the fundamental
probability pw of the source. This is the main advantage of the Poisson model.

We then deal with the Poisson transforms PX(z) and Px(z) that resp. coincide with the
expectations of X and x in the Poisson model, and averaging Relation (5) in the model Pz
entails a relation between the two Poisson transforms

PX(z) := Ez[X] =
∑
w∈Σ?

Ez[x(Nw)] =
∑
w∈Σ?

Px(z pw). (7)
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Then, the function PX(z) writes as a harmonic sum built on the function Px. The Mellin
transform is a good tool for dealing with harmonic sums and the Mellin transform P ∗X(s)
factorizes and involves the Λ generating function of the source (defined in (3)),

P ∗X(s) = Λ(−s) · P ∗x (s) .

On the other side, the Mellin transform of Px satisfies,

P ∗x (s) =
∑
k≥2

x(k)
k!

∫ ∞
0

e−zzkzs−1dz =
∑
k≥2

x(k)
k! Γ(k + s) =

∑
k≥2

x(k)
k

Γ(k + s)
Γ(k) . (8)

Second step. We now wish to return first to PX(z) (the expectation of X in the Poisson
model), then extract the coefficients of order n in PX to obtain the expectation E[n][X] of
X in the usual model where N is fixed and equal to n (this is called the Bernoulli model).
This step is called the Depoissonisation step and may be performed with Depoissonisation
techniques or via the Rice Formula, as it is explained in [26]. In [26], the author shows that
the Rice method may be applied as soon as the function

ψ(s) := P ∗X(−s)
Γ(−s) = P ∗x (−s)

Γ(−s) · Λ(−s)

is tame on a domain R (meaning “meromorphic on R and of polynomial growth when
|=s| → ∞ inside R).

For the two costs that bound the function Dic, namely, the function x(k) = 1 (associated
with the size of the trie) but also the function x(k) = log k, the ratio P ∗x (s)/Γ(s) is tame on
a domain R := {s | <s > 1− a} for some a > 0 and even analytic (without poles). In our
context, the Λ function of the source is also tame on such a domain7 R.
The Rice method deals with the product of the two functions

ψ(s) := P ∗X(−s)
Γ(−s) = P ∗x (−s)

Γ(−s) · Λ(−s), Ln(s) := (−1)n+1 n!
s(s− 1)(s− 2) . . . (s− n)

and provides the estimate for the expectation E[n][X], as

E[n][X] = −

 ∑
k|sk∈R

Res [Ln(s) · ψ(s); s = sk] + 1
2iπ

∫
C
Ln(s) · ψ(s) ds

 ,
where the sum is taken over the poles sk of ψ inside a region R of tameness. We have now
to choose a region R for tameness, exhibit the poles that appear in this region and compute
the associated residues.

Periodicity of the source. In this general context of good sources, the series Λ(s) has
always a simple pole at s = 1 inside the domain R. And there are two possibilities
(i) The pole s = 1 is the unique pole on the vertical line <s = 1, with a residue equal to the

inverse of the entropy, 1/h(M);
(ii) There exists another pole s 6= 1 on the line <s = 1, and then there is an infinite family

of poles regularly spaced on this line, of the form sk = 1 + 2ikρπ for some ρ and any
k ∈ Z.

7 We say here that the source is good.
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In the first case, the source is aperiodic; in the second case, the function s 7→ Λ(s) is periodic,
and the source itself is said to be periodic. At a first glance, the case (ii) seems to be quite
particular. However, as we explain in Section 4.1, this cases arises as soon as the source is
regular, i.e. associated with an alphabet of size b, and probabilities pi = 1/b. In this case,
one has Λ(s) = (1− b1−s)−1 and the parameter ρ equals 1/(log b).

The residue sum involves the function P ?x defined in (8), and there are two possibilities
for the residue sum:

n

h(M) · P
∗
x (1) (case (i)), n

h(M)

[∑
k∈Z

nsk−1 · P ∗x (sk)
]

(case (ii)).

Remark that the factor of the second sum provides a periodic function of the variable logρ n.
This ends the proof.

A.5 Towards the analysis of coincidence γ(b, e)
Consider a node (b, e) of depth ` in D(L), the longest common prefix Γ[b, e] := Γ[Lb, Le], its
length denoted as γ(b, e), and the two parameters tb, te of Lb, Le. With any integer k, we
associate the set Vk that gathers all the ends of fundamental intervals of the sourceM of
depth k. There are three cases for the cardinality Jk(b, e) of the intersection Vk ∩ [tb, te], i.e.,
Jk(b, e) = 0, 1 or Jk(b, e) ≥ 2.

We first consider the toy case where : (a) the intervals [tb, te] exactly coincide with the
binary intervals [vb, ve] defined in Eq. (6) – (b) the sourceM is b-regular. Then, for each
possible cardinality Jk(b, e), we can relate first γ(b, e) and k, then k and `, and we obtain
the estimate

θ`− 1 ≤ γ(b, e) ≤ θ(`+ 2) with θ := log 2/(log b).

Of course, the toy case described in items (a) and (b) is not the actual situation; but the actual
situation – at least on average and for `→∞– appears to be close to this “simplification”,
due to the two following facts:
(a′) The interval [tb, te] is close to the interval [vb, ve]. For an interval (b, e) at depth `, the

pair (tb, te) indeed admits the joint distribution fb,e,n on the triangle T := {(x, y) | 0 ≤
x ≤ y ≤ 1} defined as

fb,e,n(x, y) = n!
(b− 1)!(e− b− 1)!(n− e)!x

b−1(y − x)e−b−1(1− y)n−e (n = 2p) .

It is then easy to exactly compute the expectation and the variance of the main parameters
tb, te, |tb − te|, (1/2)(tb + te) which allows to compare the two intervals [tb, te] and [vb, ve].
These variances are always negligible with respect to their expectations (for n = 2p →∞),
and there is a concentration phenomenon for these distributions.

(b′) For a good source, there is an asymptotic Gaussian law on the logarithms `k(·) of the
lengths of the fundamental intervals Ik(·) (for k →∞) (see [25]).
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