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ABSTRACT

Small non-coding RNAs (sRNAs) regulate numer-
ous cellular processes in all domains of life. Several
approaches have been developed to identify them
from RNA-seq data, which are efficient for eukary-
otic sRNAs but remain inaccurate for the longer and
highly structured bacterial sRNAs. We present AP-
ERO, a new algorithm to detect small transcripts from
paired-end bacterial RNA-seq data. In contrast to pre-
vious approaches that start from the read coverage
distribution, APERO analyzes boundaries of individ-
ual sequenced fragments to infer the 5′ and 3′ ends
of all transcripts. Since sRNAs are about the same
size as individual fragments (50–350 nucleotides),
this algorithm provides a significantly higher accu-
racy and robustness, e.g., with respect to sponta-
neous internal breaking sites. To demonstrate this
improvement, we develop a comparative assessment
on datasets from Escherichia coli and Salmonella
enterica, based on experimentally validated sRNAs.
We also identify the small transcript repertoire of
Dickeya dadantii including putative intergenic RNAs,
5′ UTR or 3′ UTR-derived RNA products and anti-
sense RNAs. Comparisons to annotations as well
as RACE-PCR experimental data confirm the pre-
cision of the detected transcripts. Altogether, AP-
ERO outperforms all existing methods in terms of
sRNA detection and boundary precision, which is
crucial for comprehensive genome annotations. It
is freely available as an open source R package on
https://github.com/Simon-Leonard/APERO

INTRODUCTION

In recent years, small non-coding RNAs (sRNAs) have been
identified as major regulators of gene expression in all three

domains of life (1–3). In bacteria, quantitative compar-
isons of sRNA-based and protein-based gene regulation
suggest that sRNAs allow cells to switch quickly yet reli-
ably between distinct states, while protein regulators are bet-
ter suited for quantitative adjustment of protein level (4).
Accordingly, sRNAs have largely been found in circuits re-
sponding to strong environmental cues (e.g. extreme nutri-
ent limitation, stress response) (5). Most sRNAs range from
50 to 350 nucleotides in length, are generally highly struc-
tured, and alter the translation of mRNAs and/or modulate
transcript turnover through base-pairing with their mRNA
targets (6–9). They can be broadly divided into two cate-
gories: (i) cis-antisense sRNAs, expressed from the strand
opposite to their target gene (10,11) and (ii) trans-acting sR-
NAs, expressed either from intergenic regions (12) or from
untranslated regions close to a CDS (13,14).

The development of high-throughput RNA sequencing
opened the way for genome-wide detection of sRNAs. How-
ever, their small length in comparison to mRNAs and their
distinct properties give rise to specific identification difficul-
ties. As a result, the number of small transcripts detected in
bacteria is extremely variable, ranging from several hundred
(15,16) to several thousand (17,18) depending on the species
but also strongly on the RNA library preparation protocol
and analysis method used, and the reported small transcript
lengths are equally variable. In view of their importance in
gene regulation, the robust detection and mapping of sR-
NAs thus remains a significant problem in microbial genet-
ics. The definition of their boundaries (in both 5′ and 3′ di-
rections) is especially delicate, as 5′ ends can be processed
by RNase E and be capped with a monophosphate instead
of a triphosphate (19), whereas 3′ ends are often rapidly
degraded by polynucleotide phosphorylase (PNPase) (20).
And yet the detected boundaries are then the main input
given to functional annotation algorithms, which look for
sRNA targets and predict their biological function. These
further steps thus crucially rely on the precision of this anal-
ysis.
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Almost all existing sRNA detection algorithms from
RNA-Seq data are based on the same principle. Single-
end or paired-end reads are first mapped to a reference
genome, and then converted into a genome coverage dis-
tribution, from which sRNAs are defined as regions with
sufficient and/or uniform coverage. This method was ini-
tially inspired by algorithms designed for eukaryotic sR-
NAs (miRNA, siRNA), which are much smaller in size
(20–25 nucleotides), and where the coverage remains rela-
tively uniform along the transcript. In contrast, bacterial
sRNAs are longer and exhibit very strong coverage inho-
mogeneities. The latter constitute a well-known problem in
usual RNA-Seq analysis, but they are even stronger in sR-
NAs, because (i) the latter are highly structured and con-
sequently display stronger spontaneous breaking/cleavage
sites and (ii) they can be specifically processed by RNase
E, which exhibits strong sequence selectivity (21). Conse-
quently, algorithms searching for uniform coverages, such
as sRNA-Detect (22), tend to cut the detected transcripts
at their spontaneous cleavage sites, resulting in excessive
numbers of small transcripts (see Results). Other algorithms
usually use a coverage threshold to define a small transcript
or find its boundaries (23–26), but here also, spontaneous
breaking/cleavage sites tend to produce coverage drops that
are difficult to robustly distinguish from the actual tran-
script end. Recently, ANNOgesic (27) obtained a gain in
robustness by tolerating several nucleotides below the cho-
sen coverage threshold. Whatever the algorithm, utilization
of coverage distribution certainly contributes in the hetero-
geneity of results reported on bacterial small transcripts.

Our algorithm differs from all those previously men-
tioned in that it avoids the step of converting the reads into a
coverage distribution where significant information is lost,
resulting in the issue mentioned above. Instead, the exten-
sions of identified small transcripts are directly analysed
from the sequenced pairs of reads, taking full advantage of
the precision of paired-end sequencing. Indeed, in contrast
to mRNAs, the size of sRNAs is of the same order as the
sequenced fragments; in many cases, a few fragments are
thus sufficient to cover the entire sRNA in length, and al-
low locating its boundaries at high resolution. In the afore-
mentioned example of a spontaneous breaking site inside
a sRNA, even if the coverage signal drops sharply, a small
number of fragments extending on both sides of the site is
sufficient to prove that the sRNA extends to their respec-
tive ending points or even further. The rationale of the al-
gorithm thus consists in (a) detecting 5′ ends of small tran-
scripts and (b) several iterative extensions of the transcripts
in the 5′ → 3′ direction based on the previous operation,
where the conserved information of sequenced fragments
start/end pairing provides an increased statistical power
compared to methods based on the coverage where this in-
formation is lost, hence the name of the algorithm (Analysis
of Paired-End RNA-Seq Output).

It must be noted that one existing method
(DETR’PROK) also directly deals with reads rather
than with coverage (28), but since it only considers single-
end reads, the benefit of our approach is lacking, and
the results are indeed very comparable to coverage-based
methods (see below). In fact, several of the latter were
developed when paired-end data were still scare, and the

improvement offered by APERO was therefore not yet
technically relevant. Existing algorithms were also tested
either on RNA-Seq data where the library preparation
includes a fragmentation step (thereby adding an addi-
tional and artificial source of noise), or more recently on
specific datasets of non-fragmented, size-selected RNAs.
Although our method can also be applied on both types of
data, it is more specifically suited to the latter case, where
many small transcripts should then be directly sequenced
as intact fragments with high precision, even when partial
spontaneous fragmentation results in inhomogeneous
coverage values.

In the following, we present the APERO algorithm and
apply it on RNA-Seq datasets from Escherichia coli and
Salmonella enterica. To evaluate its performance, we de-
velop a comparative assessment between APERO and seven
existing methods (Rockhopper (24), DETR’PROK (28),
TLA from RNA-eXpress (23), sRNA-Detect (22), the two
custom-made scripts developed by Gómez-Lozano et al.
(25) and Nuss et al. (26), and ANNOgesic (27) using sets
of known sRNAs annotated in these two species. We show
that APERO outperforms all previous methods in terms
of sRNA detection and boundary precision. In addition,
it is able to detect different isoforms of a single sRNA.
We also analyze a new set of RNA-Seq data from the
phytopathogenic bacterium Dickeya dadantii, in presence
or absence of Terminator EXonuclease (TEX) treatment
that enriches primary transcripts. APERO allows detecting
1703 primary small transcripts, including intergenic RNAs,
5′ UTR or 3′ UTR-derived RNA products and antisense
RNAs. 23 of which were already annotated by similarity
with E. coli. Eight sRNAs whose boundaries are annotated
differently depending on the algorithm were analyzed using
RACE-PCR, which experimentally validated the bound-
aries detected by APERO and confirmed the accuracy of
our algorithm in identifying novel full-length small tran-
scripts.

MATERIALS AND METHODS

APERO determines a set of small transcripts from paired-
end RNA-seq data, preferably obtained with size-selected
but un-fragmented RNAs. As input, it requires a sequence
alignment file in BAM format, which is filtered using bit-
wise flags in order to select paired-reads that are correctly
oriented and positioned with respect to each other. APERO
is written in R and depends on the Rsamtools and Reshape2
packages to extract the genomic positions of the sequenced
fragments, as well as on the Snowfall package for paral-
lel computations. We also implemented the algorithm as a
tool on a local Galaxy server instance (bioinfo.insa-lyon.fr),
where users can upload data and run the workflows with-
out any software installation. APERO is composed of two
modules: the first one infers small transcript 5′ ends from
the ends of mapped fragments (i.e. paired reads), and the
second then determines the length of small transcripts by
extending them iteratively in the 5′→ 3′ direction follow-
ing sequenced fragments (Figure 1). These modules are de-
scribed qualitatively at the beginning of the Results section;
in the two following paragraphs, we provide the precise def-
initions of the parameters and statistical methods used. The

http://bioinfo.insa-lyon.fr
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Figure 1. Description of the APERO algorithm. (A) Workflow. Starting from an input BAM sequence alignment file, a first module (B) detects the 5′ end
of small transcripts (hereafter called start site), and a second module (C) then identifies the 3′ end of small transcripts. The output is a list of annotated
transcripts with their genomic coordinates and further information, including small transcript annotation if an optional genomic annotation file (ptt
format) is provided. (B) A sliding window is used to evaluate read start coverage at each position. A start site (or start region) is identified as a region
exhibiting a local enrichment in fragment starts, compared to neighboring background. w is the sliding window length, f is the length of the region chosen
to calculate the neighboring background. The parameters wmax and d (upper values) are fixed by the user, and control the spatial resolution of the algorithm
(see materials and methods). (C) The 3′-ends of transcripts are computed by iteratively extending the transcripts based on the longest fragments observed
at the current position. Starting from the start site (1), a first putative 3′ end is tested (2) by counting the number of fragments extending beyond this
position. If this number is significant (right panel), a new putative 3′ end is computed from these fragments, and tested iteratively. Analyzing individual
paired-end fragments rather than a read coverage improves the robustness and statistical power of the analysis, especially with respect to spontaneous
RNA degradation. (D) APERO screen shot of STnc 1590 detection.
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remaining paragraphs describe the datasets, benchmarking
methods, and experimental procedures.

Determination of 5′ ends

The first APERO module aims at identifying 5′ ends of
small transcripts, i.e. transcriptional start sites or 5′ pro-
cessed ends (Figure 1B). The number of read starts is com-
puted at each position along both strands of the genome,
and 5′ ends (hereafter called start sites) are defined as re-
gions exhibiting local enrichment in read starts compared
to neighboring genomic positions. 5′ ends are not always de-
fined at a single position, but can extend over a few (usually
up to three) nucleotides. The user can set the maximal width
wmax, and start sites of width 1 ≤ w ≤ wmax are then itera-
tively analyzed by the algorithm. For a current genomic po-
sition i and a current start site width w, the number of read
starts in the considered region (i ± w) is compared to that
of neighboring regions of increasing sizes 1 ≤ f ≤ d, where
d is the second parameter provided by the user. With this
choice, d represents the minimal distance for distinguishing
two separate 5′ ends, i.e. the spatial resolution of the algo-
rithm.

The local enrichment Ei,w,f is defined as:

Ei,w, f =
∑

jε[i−w− f,i−w−1] c j +
∑

jε[i+w+1,i+w+ f ] c j

2 f
∑

jε[i−w,i+w] c j

2w+1

where cj is the number of reads starting at position j. A re-
gion i ± w is then considered as a start site if Ei,w,f is above
a threshold value Emin whatever the f value. If several start
sites are identified at the same position i (but with differ-
ent widths w), only the narrowest (and most precise) start
site is retained. Start sites identified at different positions i
within the same window are merged and define a start clus-
ter. The enrichment threshold value was chosen equal to
Emin = 1/(2d).

The output of this APERO module is a list of 5′ ends con-
taining the central position of the start region, its half-width
w, the strand from which the transcription is initiated and
the number of reads starting from this start region. This out-
put file can optionally be filtered according to the number
of read starts depending on the dataset read depth. In the
applications presented here, we used a filter equal to (20 ×
total number of reads)/genome size to eliminate weakly ex-
pressed transcripts.

Determination of 3′ ends

The second APERO module determines the length of small
transcripts (i.e. their 3′ end) by extending them iteratively in
the 5′→ 3′ direction from the 5′ end, as long as sequenced
fragments are present in sufficient numbers (Figure 1C).
Fragments starting at a 5′ end start site are first selected and
ranked according to their length. In order to rule out poten-
tially irrelevant transcriptional readthrough, the 1% longest
fragments are discarded. We call e the 3′ end of the remain-
ing longest fragment, Ce the coverage value at position e,
Cstart,e the total number of fragments between start and e,
and Lstart,e the distance between the start site and e. The

coverage ratio at position e, Fstart,e, is then defined as:

Fstart,e = Ce
Cstart,e

Lstart,e

Fstart ,e represents the number of fragments that over-
lap e, normalized by the expression strength of the whole
transcript. If Fstart,e, < Fmin, e is then considered as the 3′
end of the transcript. If Fstart,e ≥ Fmin, the small transcript
is extended further (see Figure 1C): the longest fragment
overlapping position e is identified using the procedure de-
scribed above, and its end e’ is tested as a new putative 3′
end. This operation is repeated until the Fstart,e’ value is be-
low the threshold Fmin.

The threshold value Fmin controls the tendency of the al-
gorithm to increase transcript lengths (with lower values re-
sulting in longer transcripts). Tests showed that the optimal
value depends on the dataset, maybe due to differences in li-
brary preparation, protocols, sequencing depth, etc. We de-
termined this optimal value by analyzing the distributions
of Fstart,e after one iteration of the algorithm on the experi-
mentally validated sRNAs: threshold values Fmin = 3 (for S.
enterica) and Fmin = 6 (for E. coli) efficiently discriminated
between the transcripts where the 3′ end was already found
after a single iteration, and those which required further
iterations (Supplementary Figure S1). These values corre-
spond approximately to the first quartile of the Fstart,e distri-
bution for both datasets; consequently, a default Fmin value
is computed automatically in the same way when handling
a new dataset. This procedure also gives a value Fmin = 3
for the D. dadantii dataset.

Annotation/Classification

As shown in Figure 1, if the user provides an annotation
file of the reference genome to APERO (in ptt format), the
detected small transcripts are classified according to their
position with respect to annotated CDSs and their strand
(Supplementary Figure S2). Orphan RNAs are transcribed
from intergenic regions and could be regulatory sRNAs.
RNAs transcribed on the same strand as the CDS are clas-
sified as: Primary RNA (P) when located in the 250 nu-
cleotides upstream of the CDS without overlapping it; 5′-
UTR and 3′-UTR RNAs when overlapping the start and
stop codon respectively. RNAs transcribed on the opposite
strand are classified as: Ai (antisense internal) when tran-
scribed inside CDS; Div (divergent) when starting in the
250 nucleotides upstream of the CDS; 5′Ai and 3′Ai RNAs
when overlapping the start and stop codon respectively.

Size-selected RNA libraries

We considered three paired-end sequencing data obtained
from size-selected and non-fragmented RNAs: one from S.
enterica (accession number SRX1036363) (18) and two new
datasets from E. coli (accession number SRX4670654) and
D. dadantii (accession number SRX4664132).

For S. enterica, the total RNAs from the log-phase
were isolated using Trizol® (Life Sciences) standard man-
ufacture protocol. The small RNA fractions were sepa-
rated from the large fractions using the RNeasy MinElute
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Cleanup Kit (Qiagen) and submitted to Otogenetics (http:
//www.otogenetics.com/) for commercial RNA-Seq on an
Illumina MiSeq genome sequencer according to the Illu-
mina TruSeq Small RNA Sample Prep protocol.

For E. coli, the total RNAs from the early stationary
phase were isolated using the hot-phenol procedure and
RNAs of size ranging from 50 and 200 nucleotides were ex-
tracted from a denaturing polyacrylamide electrophoresis
gel. The strand-specific library was prepared and sequenced
by Fasteris SA (https://www.fasteris.com/dna/) according to
the Illumina TruSeq Small RNA Sample Prep protocol.

For D. dadantii, the total RNAs from previously de-
scribed conditions (29) were extracted using the frozen
acid-phenol procedure (30) and the small RNA fractions
(<500 nucleotides) were separated from the large fractions
using the RNeasy MinElute Cleanup Kit (Qiagen). The
strand-specific libraries were prepared and sequenced by
Vertis Biotechnologie AG (http://www.vertis-biotech.com/)
according to the Illumina TruSeq Small RNA Sample Prep
protocol.

Sequenced reads were trimmed using Trim Galore
(on a Galaxy server, version 0.4.3.1), checked for suf-
ficient quality with FastQC (bioinformatics.babraham.
ac.uk/projects/fastqc/), filtered, and mapped to respec-
tive reference genomes (S. enterica serovar Typhimurium
strain SL1344, NC 016810.1; E. coli str. K-12 substr.
MG1655, NC 000913.3; D. dadantii 3937, NC 014500.1)
using Bowtie2 (31) with the local alignment mode (Galaxy
Version 2.3.2.2).

These RNA-seq datasets were chosen for benchmarking
because (i) the size-selection and absence of fragmentation
of RNAs should remove a noise-generating step in the li-
brary preparation and improve the statistical coverage of
small transcripts; (ii) many sRNAs were experimentally val-
idated in S. enterica and E. coli; (iii) they exhibit differ-
ences in sequencing depth and read length: 2 × 2.6 million
mapped paired-end 100-bp reads for S. enterica, 2 × 15.5
million mapped paired-end 125-bp reads for E. coli, 2 ×
40 million paired-end 75-bp reads for D. dadantii. Further-
more, D. dadantii RNA-seq was performed with (+TEX)
and without (–TEX) Terminator Exonuclease treatment, re-
sulting in an enrichment of reads starting at Transcriptional
Start Site positions (TSS) in the +TEX dataset.

Performance evaluation of sRNA detection algorithms

Predictions of APERO were compared to those of different
programs dedicated to the identification of small transcripts
in bacteria (listed in Results). All methods (except Rock-
hopper) were used with the same minimum height/coverage
parameter, fixed to (20 × total number of reads)/genome
size. This value approximately matches that suggested by
authors for the sequencing depth of the S. enterica dataset
(15,32). To evaluate their performance, we computed two al-
ternate estimators: recall and Jaccard index. Recall indicates
the proportion of annotated small transcripts detected by a
given approach (true positives divided by the total number
of positive). Jaccard index is defined as the number of inter-
secting base pairs between an annotated sRNA and a de-
tected small transcript divided by the number of base pairs
in the union of the two sRNAs. All known sRNAs were con-

sidered as positives (true positives or false negatives). Since
we could not evaluate the number of true negatives and false
positives in our predicted small transcripts, no further sta-
tistical criteria were considered.

RACE-PCR validation of predicted small transcripts

The 5′ and 3′ ends of small transcripts were validated
by RACE-PCR experiments as previously described (17).
RNAs were extracted from D. dadantii bacterial cells grown
in exponential phase in minimal medium in the presence
of sucrose as carbon source. Primers listed in Supplemen-
tary File S1 are used for reverse transcription and PCR
amplification. The RACE-PCR products were cloned into
the pGEMT-easy. Cloned DNA fragments were then se-
quenced using the M13 primers (Invitrogen).

RESULTS

Detection and mapping of small transcripts from paired-end
reads

Paired-end RNA-seq data from S. enterica (18) and from
E. coli (this work) were used as training datasets to com-
pare APERO with other methods and evaluate their perfor-
mance in the identification of known sRNAs. In all RNA
libraries presented in this paper, small transcripts were sep-
arated according to their size and sequenced without any
fragmentation step. Technical details, as well as methods
and parameters of the algorithm, can be found in Materials
and Methods; in the following paragraphs, we only give a
short description of the program before evaluating its per-
formance on the data.

APERO is written in R and can be used on all operat-
ing systems after installing several R packages (Rsamtools,
Reshape2, Snowfall). A webserver version is also available
on a local instance of the Galaxy bioinformatics platform
(bioinfo.insa-lyon.fr), which provides an installation-free
access to all users. The workflow of the program is described
in Figure 1, together with a screenshot of the STnc 1590
sRNA from S. enterica (Figure 1D). The required input is
a BAM sequence alignment file from a RNA-Seq dataset,
and the output is a text file giving the list of detected small
transcripts, with different information fields (genomic co-
ordinates, strand, value of the width parameter used, inten-
sity of small transcript start and number of iterations of the
second module). Optionally, the user can provide a genome
annotation (in ptt format), which is then used to classify
each small transcript with respect to neighboring or over-
lapping CDS. Detected small transcripts could correspond
to intergenic RNAs, 3′UTR RNAs, 5′ UTR-derived RNA
products or antisense RNAs.

APERO is composed of two separate modules. The first
one (Figure 1B) is dedicated to the identification and map-
ping of the 5′ ends of small transcripts, i.e. the putative tran-
scriptional start sites (TSSs) or 5′ processed ends. Inspired
by previous algorithms specifically dedicated to TSS detec-
tion (26,33), 5′ ends are defined as regions exhibiting a lo-
cal enrichment in read starts compared to neighbor regions.
Two common difficulties are encountered: (i) due to wob-
bling of the RNA polymerase, TSSs peaks are not always
defined sharply, but can extend over several nucleotides; (ii)

http://www.otogenetics.com/
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adjacent peaks distant of several nucleotides are sometimes
observed, reflecting alternate 5′ starts of the same transcript
which prevent the identification of individual peaks. The
analysis procedure was designed to handle these issues and
optimize precision, by varying the scanning window sizes
and favoring the most well-defined start sites. The user can
play on two parameters illustrated on Figure 1B: the maxi-
mal accepted width of a start peak (wmax), and the minimal
distance between separate start sites (i.e. the spatial resolu-
tion of the detection method, d). We tested different values
reported in the literature (34), resulting in differences in the
number of detected start sites, as shown in Supplementary
Figure S1. In practice, it is convenient to use the same value
for these two parameters, which characterize the spatial pre-
cision of the method. With a value of 10 nucleotides (re-
tained for all upcoming analyses), 16 123 5′-ends were iden-
tified from the S. enterica dataset and 10 991 from the E. coli
dataset. As a benchmark of APERO’s ability to accurately
detect 5′ ends, we first applied its 5′ module on previously
published +TEX sequencing data of total (small + large)
RNAs from E. coli (GSE55199) (35) and Salmonella tran-
scripts (GSE49829) (32), where TSSs were already analyzed.
For E. coli, 57% of TSSs identified by Thomason et al. (35)
are also identified by APERO within 10 nucleotides resolu-
tion (among those, 95% are identified within 3 nucleotides
resolution) and for Salmonella 80% are in common with
those described by Kröger et al. (32). These controls show
that the first module of APERO can safely be applied to de-
termine the 5′ ends of small transcripts (from new datasets).
An advantage of our method compared to previous ones
is that it can be applied either on usual RNA-Seq datasets
or on RNAs treated with Terminal Exonuclease (TEX) for
primary transcript enrichment. In the former case, the user
would be unable to distinguish a TSS from a 5′ processed
end. In the latter case, transcript starts are found with in-
creased precision; in both cases, the precision is better than
that of previous sRNA detection algorithms based on read
coverage, as shown below. An interesting example in terms
of 5′ end detection is that of sRNAs exhibiting different iso-
forms. For example, ArcZ, MicL and RaiZ sRNAs undergo
maturation to generate their functional isoforms. In E. coli,
the primary 120-nucleotides ArcZ transcript is processed to
form a low-abundance 88-nucleotides form and a stable 55-
nucleotides form derived from the 3′ end of the primary
transcript (36), MicL is synthesized as a 308-nucleotides
primary transcript that is processed to an 80-nucleotides
form (37). In S. enterica, two major RaiZ species, a 160-
nucleotides form and a 122-nucleotides processed sRNA,
were detected (38). As illustrated in Supplementary Figure
S3, APERO correctly identified both TSS and 5′ processed
end of these sRNAs from datasets obtained without TEX
treatment and is the only algorithm to do so.

The second module of APERO starts from the identi-
fied 5′ ends, and localizes the 3′ end of each small tran-
script, as shown in Figure 1C. Theoretically, since the small
transcripts were not fragmented, the paired-end sequenc-
ing should immediately allow identifying the 3′ bound-
ary from the aligned reads. However, due to experimen-
tal bias, spontaneous fragmentation and degradation of
3′ ends by polynucleotide phosphorylase (PNPase), small
transcript lengths are generally underestimated by this ap-

proach. Starting from an identified 5′ end, the method thus
consists in iteratively extending the identified small tran-
script by locating the 3′ end of the longest fragments (if
their number is sufficient). This end position can then be
either the actual 3′ end of the transcript, or a mere interme-
diate point or spontaneous breaking site within the tran-
script; to distinguish between these two scenarios, the pro-
gram computes the number of fragments that overlap this
position and were not yet counted in the previous iteration
(see Figure 1C). If this number is significant (as compared
to the number of fragments starting at the 5′ end, i.e. the ex-
pression strength of this transcript), the transcript is further
extended toward the 3′ end of these overlapping fragments
and the operation is repeated; otherwise, the iteration stops
and this point is defined as the 3′ end. The tendency of the
algorithm to increase the transcript size is set by a threshold
parameter, the optimal value of which can be obtained au-
tomatically from the analysis of the dataset provided by the
user (see Materials and Methods and Supplementary Fig-
ure S1). The rationale of this method is that the typical size
of s is of the same order as that of typical fragments, so that
only a small number of iterations should be required to re-
cover the full-length transcripts if spontaneous fragmenta-
tion is not too strong. This is indeed what we observe: most
small transcripts are found with less than three iterations
(85% in the D. dadantii dataset). We used several sources of
information on transcript ends in E. coli to control the accu-
racy of the resulting 3′ ends, detected by APERO from the
small transcript dataset (SRX4670654). We first compared
the 3′ end positions of the 9 riboswitches, 15 attenuators
and 312 transcriptional terminators described in EcoCyc,
66% of these are accurately detected by APERO, i.e. with
a median distance less than 10 nucleotides (Supplementary
File S3). The 3′ end positions of 49 sRNAs determined by
Term-seq in E. coli (39) were also analyzed and 80% of
these positions are detected by APERO with a distance less
than 10 nucleotides (Supplementary File S3). In addition,
we used data from E. coli obtained by SMRT-cappable-seq
(40). 94% of 3′ ends identified by this approach were also
detected by APERO with a median distance to 3′ end of
10 nucleotides (Supplementary Figure S4). These controls
show that the module can accurately detected 3′ end RNA
boundaries.

For the following analyses, we discarded internal small
transcripts located inside CDSs, which could correspond
to mRNA degradation products. Using the default param-
eters, we finally obtained 5347 and 4507 small transcripts
for S. enterica and E. coli respectively. These large amounts
of detected small transcripts by APERO in S. enterica and
E. coli also include presumably cleaved, processed or at-
tenuated UTRs (5′UTR represent 12–13% of the total,
3′UTR 15.5–24.6%), antisense RNAs (34.2–22%) and in-
tergenic RNAs (which included orphans, divergent and pri-
mary small transcripts) that could be present in several iso-
forms (27.5–25%) (Supplementary Figure S5). Taking into
account all these categories, the number of small transcripts
detected by APERO is close to previous estimations (as an
example >1000 antisense RNAs are detected in S. enter-
ica and E. coli) (39,41,42). Obviously, some of these small
transcripts could correspond to transcriptional noise and
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Figure 2. Comparison of small transcripts identified by different methods. Total number of intergenic and antisense small transcripts as well as their length
distribution are indicated for S. enterica (A) and E. coli (B). Experimentally validated sRNAs (84 for S. enterica. 101 for E. coli) are used as models. The
number of detected models is indicated, as well as the recall (proportion of models detected) for each method. GL = Method from Gómez-Lozano et al.
(25); Nuss = Method from Nuss et al. (26); TLA = TLA from RNA-eXpress (23). Models are considered detected if Jaccard index is not null.

may be false positives. However, among small transcripts
detected by APERO in S. enterica, the highest quartile (271
highly expressed small transcripts) are expressed more than
the large majority of the Kröger et al. (32). Among these
271 small transcripts, 83% were not annotated by Kröger
et al. (Supplementary file S4) and we annotated 58 of them
by querying Rfam or by searching similarity to E. coli (at-
tenuators, riboswitches, etc.). In addition, we evaluate the
expression of these small transcripts in independent exper-
iments by using the RNA-seq data from Kröger (Supple-
mentary file S4, supplementary Figure S6): 64 are expressed
at a higher level than adjacent genes. These highly expressed
small transcripts are likely more than mere noise and may
have important functions in gene regulation (43). Identi-
fied transcripts have a median length of 181 nucleotides in
E. coli (111–410 nucleotides, first and third quartiles) and
114 nucleotides in S. enterica (73–231 nucleotides, first and
third quartiles) (Supplementary Figure S7). Some candi-
dates have lengths higher than 500 nucleotides and can be
eliminated as suggested by previous studies (32,44). The ob-
served difference in transcript size between the two species
may be explained by (i) the use of different RNA extrac-
tion methods (Trizol®, hot phenol) that can affect RNA
integrity (45), (ii) different size selection procedures (dena-
turing acrylamide gel or column) and (iii) RNAs from log
phase (S. enterica) and from early stationary phase (E. coli),
have different spontaneous fragmentation profiles due to
the increased expression of PNPase in stationary phase (32).

Comparison of small transcript detection methods

We next compared APERO’s performance with that of
other available methods, including DETR’PROK (28),

sRNA-Detect (22), TLA from RNA-eXpress (23), Rock-
hopper (24), ANNOgesic (27) and the two in-house GL
(25) and Nuss (26) methods, using the entire S. enterica and
E. coli datasets and a list of experimentally validated sR-
NAs (models) from these organisms (from ASAP/Ecogene,
Ecocyc and RegulonDB databases for E. coli and BSRD
database for S. enterica). We used these sRNAs as models
for performance evaluation. Since several methods focused
on sRNA identification from intergenic regions and anti-
sense RNAs, only these two classes of small transcripts were
analyzed (intergenic RNAs correspond to Orphans, Diver-
gent and Primary RNAs in our annotation and antisense
RNAs to Ai, 5′Ai and 3′Ai), i.e. 3302 remaining RNAs in
S. enterica and 2150 in E. coli. The corresponding experi-
mental sets contain 84 sRNA models in S. enterica and 101
in E. coli (Supplementary File S2).

We first compared the total number of small RNA candi-
dates (intergenic and antisense) predicted by each method.
This number varies widely according to the algorithm used,
as described in Figure 2, from a hundred (Rockhopper) to
almost 20 000 (sRNA-Detect), with APERO providing in-
termediate figures. Identified transcripts have similar me-
dian sizes of 75 ± 20 nucleotides for S. enterica and 100±25
nucleotides for E. coli, except those of DETR’PROK, which
are considerably longer. The transcript lengths found by
APERO are generally longer than those of the other meth-
ods, which is expected if the latter tend to incorrectly cut
the transcripts at internal sites where the coverage drops, as
will be seen below. Before looking at the transcript bound-
aries, we test how many experimentally validated sRNAs
were detected by each method, by computing the recall
(i.e. the fraction of detected sRNAs). Results are similar for
both species, and APERO ranks second in terms of detec-
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Figure 3. Performance assessment on different datasets. (A) Recall of each method is plotted against the Jaccard index (indicating the accuracy in boundary
identification) for S. enterica (left) and E. coli (right) data. (B) Venn diagrams of models detected by APERO, ANNOgesic (27), TLA from RNA-eXpress
(23), GL (25) and Nuss (26) algorithms, with a Jaccard index ≥0.8. 8 models in S. enterica (out of 84 models) and 14 models in E. coli (out of 101 entities)
are detected only by APERO.

tion ability, behind sRNA-Detect. However, the very high
number of small transcripts detected by the latter indicates
that many of them could be false positives; since we do not
have the possibility to quantify the prediction specificity on
these datasets, we now test the accuracy of the predicted
sRNA boundary positions to evaluate the precision of each
method, which was the primary objective of APERO.

Accuracy in the sRNA boundaries detection

The mapping accuracy can be quantified from the distances
between the annotated and predicted (5′ and 3′) ends of
each transcript. Here, APERO clearly outperforms all other
methods, with 5′ ends deviated from <20 nucleotides (third
quartile) and 3′ ends from <9 nucleotides from the anno-
tated positions for both bacterial species, whereas the four
next best methods (ANNOgesic, GL and Nuss methods

and TLA from RNA-eXpress) exhibit deviations between
26 and 46 nucleotides at 5′-ends and between 14 and 44
nucleotides at 3′-ends (Supplementary Figure S8). In ad-
dition, APERO makes significantly fewer very large errors
(>100 nucleotides), especially for the 3′ end, which may typ-
ically correspond to erroneous internal stops. To quantify
the combined prediction and accuracy of each method, we
computed the Jaccard indexes for all model sRNAs. This in-
dex represents the proportion of the predicted sRNA length
that matches the corresponding annotation (see Materials
and Methods), and thus allows representing the precision
of each method over all model sRNAs in a single plot. Fig-
ure 3A shows the recall values as a function of this num-
ber (i.e. retaining only the best predicted transcripts with
an increasing threshold), which clearly demonstrates the ac-
curacy of APERO. At a minimum Jaccard index of 0.8,
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i.e. keeping only the most accurately predicted transcripts,
it is the only method to recover well over 50% of the an-
notated sRNAs. Analyzing them individually (Figure 3B)
confirms that 8 S. enterica and 14 E. coli annotated sRNAs
(out of 84 and 101 models respectively) are detected by AP-
ERO alone, well over all other methods. Among the larger
S. enterica dataset of 203 sRNAs identified by Kröger et al.
(15,32) (not experimentally verified), 79 were detected by
APERO with a Jaccard Index ≥0.8, more than any other
method (including ANNOgesic, Supplementary File S2)

Taken together, these data demonstrate the preeminence
of the APERO algorithm for full-length sRNA detection
with accurate boundary identification and for detection of
different isoforms of a single sRNA. A test of robustness
was also carried by varying the parameters in APERO and
other methods (Supplementary Figures S9 and S10), which
demonstrated its lower sensitivity to parameter variations.

Identifying and annotating new small transcripts

We finally used the APERO method to identify sRNAs
in D. dadantii from new sRNA-seq data (accession num-
ber SRX4664132). Using the same parameter values as
above on a standard dataset of size-selected RNA (<500
nucleotides), we detected 3974 small transcripts, with a me-
dian length of 132 nucleotides (Figure 4A). We then tested
the effect of Terminator EXonuclease (TEX) treatment on
the detection of small transcripts. TEX was introduced to
improve the detection of primary TSS positions in bacteria
by selectively digesting fragments with monophosphate 5′
ends, and thus enriching triphosphate 5′ ends of RNA tran-
scripts. Therefore, by using both +TEX and –TEX libraries,
it is possible to discriminate between primary small RNA
transcripts and processed small transcripts and to poten-
tially identify the different isoforms of a single small tran-
script.

Since some small transcripts are known to be capped with
a monophosphate 5′ end because of RNase E (19), we ex-
pected a partial loss of detected small transcripts, which is
indeed observed. Using the +TEX library for TSS identifi-
cation, and the –TEX library for the second step of the al-
gorithm, only 1703 primary small transcripts are detected,
with a similar median length of 141 nucleotides. However,
the detected TSSs are defined much more precisely, and 70%
of them even at a single nucleotide position (Figure 4B).
Among the ∼2300 small transcripts not detected with TEX
treatment, approximately 500 display the consensus motif
of RNase E at their 5′ end and may thus correspond to
bona fide processed sRNAs or to mere degradation prod-
ucts of longer RNAs (especially mRNAs), in which case the
TEX treatment may improve the specificity of the analysis.
To quantify this amount, we reasoned that such degrada-
tion products would then tend to overlap one another more
frequently than actual small transcripts, and we compared
the effect of merging overlapping small transcripts in the
output lists obtained from both datasets (+TEX/–TEX or
–TEX). Indeed, only a small fraction (14%) of the 1703 pri-
mary small transcripts identified using TEX are eliminated
by this procedure, this fraction is considerably higher (50%)
in the 3974 small transcripts obtained in absence of TEX.
In the following, we therefore consider that TEX increases

A

B

Figure 4. Identification of novel putative sRNAs in Dickeya dadantii. (A)
Transcript length distributions of small transcripts identified from RNAs
untreated (–TEX) or treated (+TEX) with Terminator Exonuclease. Num-
ber of small transcripts, number of detected models (out of 23 annotated
sRNAs) and recall are indicated. (B) Evaluation of TEX treatment effect
on the precision of identified TSSs.

the accuracy of small transcript 5′ end detection and use
the former dataset, keeping in mind that some true sRNAs
produced by the endonucleolytic cleavage of mRNAs are
discarded by this treatment.

The 1703 remaining primary small transcripts could cor-
respond to intergenic RNAs, 5′ UTR or 3′ UTR-derived
RNA products (which may or may not be functional regula-
tory sRNAs in addition to attenuation or processing prod-
ucts), and antisense RNAs. Hence, the APERO annotation
module classified 526 of these 1703 as intergenic (div +P +
O), 680 as antisense RNAs, 311 as 5′ UTR and 108 as 3′
UTR and 78 as both antisense and UTR (Supplementary
Figure S5). We now examine if some of these can be vali-
dated using existing annotations or experiments.
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Figure 5. Performance in the detection of D. dadantii sRNAs. (A) Jaccard index of the 23 annotated sRNAs present in D. dadantii. 15 are detected with
a Jaccard index >0.9. PsrO is not detected (Jaccard index = 0). For the seven others, data analysis and previous observations suggest that the differences
are due to discrepancies between the annotations inferred from E. coli and our data, rather than a failure of the algorithm (see text and Supplementary
Figure S11). ND = not detected. (B) Evaluation of APERO performance by RACE-PCR using 8 new predicted sRNAs. Jaccard indexes of the 8 sRNA
candidates are shown. APERO clearly outperforms all other algorithms, with 6 accurate sRNAs (Jaccard ≥ 0.8) and no strong failure (Jaccard ≤ 0.5). (C)
Example RNA-Seq profile of a sRNA candidate chosen for RACE-PCR validation. This sRNA is detected by APERO, ANNOgesic (27) and TLA from
RNA-eXpress (23) only (red, pink and blue arrow, respectively). sRNA start and end positions obtained by RACE-PCR are shown as black vertical lines
(solid and dashed, respectively). GL (25) and Nuss (26) methods failed to detect any sRNA in this region.

Twenty-three sRNAs have been annotated in the Dickeya
genome based on sequence similarities to E. coli. Twenty-
two of these are detected by APERO (Recall > 96%) ex-
cept PsrO/SraG, which is expressed after heat shock or cold
shock treatment in E. coli (12) and not expressed in our
conditions. Among the 22 detected sRNAs, 15 (68%) are
identified with accurate 5′ and 3′-ends as deduced from E.
coli annotations (Jaccard index>0.9), whereas the remain-
ing seven exhibit significant deviations. We examined each

of these seven individuals, to understand if these deviations
result from a failure of the algorithm or reflect a discrepancy
between the annotation and our data. The summary of this
analysis is given in Figure 5, and snapshots of the RNA-Seq
data are shown in Supplementary Figure S11. One sRNA
(CyaR) has a very low coverage, and thus presumably also
a very low expression in our conditions. Another (RprA)
is a RNAse E processed sRNA with a monophosphate 5′
end (19); accordingly, its 5′ end was not detected after TEX
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treatment, but the shorter transcript detected by APERO
is also present in the –TEX dataset and might thus corre-
spond to an alternate form (Supplementary Figure S11).
In three cases, in our data, the annotated sRNA is not
transcribed alone, but co-transcribed with a neighbor gene:
SraF is a pH-responsive riboregulator that resides in the 5′
UTR region of the alx gene (46), and should thus be re-
annotated; PsrD and RyeB are co-transcribed with their
downstream and upstream genes respectively (Supplemen-
tary Figure S11), as previously observed (12,47), and the
boundaries given by APERO match those of the reported
transcription units. For the two remaining sRNAs (RyeA
and FnrS), the boundaries provided by APERO were vali-
dated by RACE-PCR. Altogether, the identified 5′ and 3′-
ends were accurate for more than 90% sRNA models (with
Jaccard index > 0.9). Discrepancies with the annotation de-
duced from E. coli thus indicate that the latter does not
always match the transcriptional patterns present in our
RNA-seq data and highlight the complexity of sRNA bio-
genesis in the living cell.

As a final test, we examine the validity of newly annotated
small transcripts by RACE-PCR. We chose eight new can-
didates, whose boundaries were annotated differently de-
pending on the algorithm used (Figure 5B and Supplemen-
tary Figure S12). Compared to RACE-PCR data, APERO
annotations are accurate for six out of eight new candidates
(Jaccard index > 0.8), against two to three for other meth-
ods (Figure 5B, Supplementary File S5). Also, in contrast to
APERO, all other algorithms strongly missed the bound-
aries of at least one small transcript (Jaccard < 0.5). Dis-
tances between RACE-PCR and APERO annotations are
mostly less than one nucleotide at the 5′-end and around
twenty nucleotides at the 3′end (Supplementary File S5,
Figure 5C).

Taken together, these validations clearly confirm the abil-
ity of APERO to accurately identify bacterial sRNAs.

DISCUSSION AND CONCLUSION

In this paper, we presented a novel tool named APERO
to detect small bacterial transcripts from paired-end size-
selected RNA-seq data. Rather than focusing on cover-
age depth as most of the available state-of-art tools, AP-
ERO takes advantage of paired-end sequencing to local-
ize the ends of fragments derived from the analysed tran-
script, with high precision. Because of this improvement,
the method is less impacted by the strong coverage varia-
tions appearing within a transcript, and it identifies the 5′
and especially 3′ ends with more accuracy. An additional
specificity of APERO is its capacity to identify precursor
and matured sRNA isoforms of a single sRNA.

Among the existing tools, Rockhopper (24) and
DETR’PROK (28) were the first published methodologies.
Rockhopper was not specifically designed for sRNA detec-
tion and DETR’PROK was designed for the use of short
unpaired reads, and consequently exhibit the worst per-
formances for the latter. In particular, they were designed
for RNA-seq libraries without size-selection but prepared
with a fragmentation step. This step is required for the
sequencing of long RNAs but artificially increases the iden-
tification noise for short RNAs. The performance of the

other best tool, namely sRNA-Detect (22), is also skewed
because it searches for uniform coverage, resulting in a high
number of incorrectly short RNAs. The performances of
the three remaining outstanding methods are lowered by
their sensitivity to the minimum height/coverage parame-
ter (Supplementary Figures S9, S10). A minimum height
parameter chosen too close to the background level results
in a lot of false positives, and in arbitrarily extending highly
expressed small transcripts, while a too high value results
in missing actual sRNAs, but also incorrectly cutting them
at internal breaking/cleavage sites where the coverage
drops. This last issue is especially corrected by the APERO
algorithm, leading to the significantly better performances
exhibited in the Results section.

As an example, APERO not only identified 144 sRNAs of
the 185 experimentally validated sRNAs in both E. coli and
S. enterica, but in addition, for >75% of these sRNAs, the
distances between annotated boundaries and APERO de-
tected boundaries are <20 bp. The APERO algorithm was
designed to be applicable on standard RNA-Seq data after
selection of small transcripts (and no fragmentation step),
but also preferentially after Terminator Exonuclease (TEX)
for improved TSS identification (as demonstrated using the
D. dadantii dataset). It is also less sensitive to variation in
parameter values, and altogether, can thus be considered as
the most robust and accurate method for the detection of
bacterial small RNAs.

DATA AVAILABILITY

APERO R package: https://github.com/Simon-
Leonard/APERO; https://zenodo.org/record/2536767#.
XDc6xlxKhPY

APERO Galaxy module: http://bioinfo.insa-lyon.fr
S. enterica dataset: SRA accession number SRX1036363.
E. coli dataset: SRA accession number SRX4670654.
D. dadantii dataset: SRA accession number

SRX4664132.
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