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ABSTRACT

This paper introduces an improved Low Rank Adaptive Nor-
malized Matched Filter (LR-ANMF) detector in a high dimensional
(HD) context where the observation dimension is large and of the
same order of magnitude than the sample size. To that end, the sta-
tistical analysis of the LR-ANMF, in a context where the target signal
is disturbed by a spatially correlated Gaussian clutter and a spatially
white Gaussian noise, is addressed. More specifically, the asymp-
totic distribution under the null hypothesis is derived, in the regime
where both the dimension M of the observations and the number N
of samples converge to infinity at the same rate and when the clutter
covariance matrix has fixed rank K. In particular, it is shown that
the LR-ANMF test statistic does not exhibit the CFAR property in
the previous asymptotic regime. A correction to the LR-ANMF test
is then proposed to ensure the asymptotic CFAR property, providing
the improved LR-ANMF, termed as HD-LR-ANMF. Its asymptotic
distribution is derived under both the null and the alternative hy-
potheses. Numerical simulations illustrate the fact that, despite the
asymptotic nature of the analysis, the results obtained are accurate
for reasonable values of M,N .

Index Terms— Radar target detection, Low Rank Adaptative
Normalized Matched Filter, Random Matrix Theory.

1. INTRODUCTION

The problem of detecting a known M -dimensional target response
corrupted by an additive disturbance with unknown spatial covari-
ance matrix R is a fundamental topic in radar processing and has
received a lot of attention since the past thirty years. When the dis-
turbance is assumed to be Gaussian distributed, the problem is usu-
ally formulated as the following binary hypothesis test

H0 : x ∼ NCM (0,R) vs H1 : x ∼ NCM (αa,R),

where a ∈ CM is a known signature vector and α ∈ C is some un-
known deterministic amplitude. In that case, the Generalized Likeli-
hood Ratio Test (GLRT) is widely used, and consists in rejecting the
null hypothesisH0 whenever the test statistic

S =

∣∣∣a∗R̂−1x
∣∣∣2

a∗R̂−1a
(
N + x∗R̂−1x

) (1)
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is above a certain threshold fixed according to a desired false alarm
rate, and where

R̂ =
1

N

N∑
n=1

yny∗n

is the sample covariance matrix (SCM) built fromN i.i.d. secondary
"target-free" data y1, . . . ,yN distributed as NCM (0,R). The dis-
tribution of the statistic S has been studied in [1] under both H0

and H1. In practice, to achieve reasonable performance in terms of
detection probability, such detector requires a sample size N much
larger than the dimension M (e.g. N ≈ 2M or more in the context
of array processing, see [2]).

When the covariance matrix R is structured according to some
specific model, alternative detectors may be derived, requiring lower
sample size to achieve similar detection performance than the GLRT
(1), see e.g. [3, 4]. In this paper, we consider the scenario where the
additive disturbance is the sum of a spatially white Gaussian vector
modelling background noise and a spatially correlated Gaussian vec-
tor with singular covariance matrix modelling environment response
(clutter):

R = Γ + σ2I,

where σ2 is background noise power and Γ =
∑K
k=1 γkuku

∗
k

(K < M ) with γ1 ≥ . . . ≥ γK > 0 and with u1, . . . ,uK ∈ CM

orthonormal. Moreover, if one has access to the spectral projection
matrix Π onto Ker(Γ), then the clutter free observation x̃ = Πx
could be used with classical methods for detecting signal in white
noise. In [5], assuming the clutter subspace dimension K known, it
was proposed to replace Π by its Maximum Likelihood estimate
Π̂, which coincides with the spectral projection matrix onto the
eigenspace of R̂ associated with the M − K smallest eigenvalues,
and a new test statistic, termed as LR-ANMF (Low Rank Adaptive
Normalized Matched Filter), was proposed:

T =
M
∣∣∣a∗Π̂x

∣∣∣2∥∥∥Π̂a
∥∥∥2
2

∥∥∥Π̂x
∥∥∥2
2

. (2)

Other LR detectors have also been developed in the literature, see
e.g. [6–8].

So far from our knowledge, the exact distribution of T under
both H0 and H1 remains unknown. In the large sample size regime
N → ∞ while K and M are kept fixed, Π̂ → Π almost surely
(a.s.), and the asymptotic distribution of M−1T under H0 and H1



has been derived in [5]. In particular, underH0,M−1T is asymptot-
ically distributed as a Beta(1,M−K−1) random variable, and con-
sequently the LR-ANMF is asymptotically CFAR (Constant False
Alarm Rate) in the large sample size regime. However, the theo-
retical results developed in the large sample size regime, which are
suited for practical situations where N � M , may not be relevant
when N is of the same order of magnitude than M (such situations
occur in practice for short time stationary signals or high dimen-
sional observations).

To model this situation, it is interesting to consider the high di-
mensional regime where both M and N converge to infinity at the
same rate. Under this double asymptotic regime, Π̂ is not a consis-
tent estimator of Π anymore, and the theoretical analysis of [5] is
no longer valid. In this paper, we derived an improved LR-ANMF
detector, termed as HD-LR-ANMF, Using classical results from ran-
dom matrix theory, we provide in this paper the asymptotic distribu-
tion of T under both H0 and H1 in the high dimensional regime,
and under the additional assumption that the clutter K is fixed with
respect to M,N . More precisely, we prove that the LR-ANMF test
statistic is no longer asymptotically CFAR in this regime. Then, pro-
viding the appropriate correction to ensure this asymptotic property
leads to the new HD-LR-ANMF. The asymptotic distribution of the
HD-LR-ANMF statistic is also studied under H1. Numerical simu-
lations are provided to illustrate the fact that, despite the asymptotic
nature of our analysis, the results obtained are accurate for realistic
values of M,N .

To conclude this introduction, we also mention the approach
of [9–11], where the distribution of T is approximated as the dis-
tribution of the ratio of "classical" random variables (e.g. Gaussian,
chi-square, Laplace, etc.), whose evaluation by Monte-Carlo meth-
ods is in practice less demanding than the evaluation of (2).

2. SPECTRUM OF THE SCM IN THE HIGH
DIMENSIONAL REGIME

We consider hereafter the asymptotic regime in which M = M(N)
is a function of N such that M

N
→ c > 0 as N → ∞ and

K, γ1, . . . , γK are independent of N . We moreover assume that 1

γ1 > . . . > γK > 0. We recall below some well-known results con-
cerning the behaviour of the eigenvalues and respective orthonormal
eigenvectors of the SCM R̂, which we denote by λ̂1 ≥ . . . ≥ λ̂M
and û1, . . . , ûM in the remainder. Consider the empirical distri-
bution of the eigenvalues of R̂ defined as the random probability
measure

µ̂ =
1

M

M∑
m=1

δλ̂m

.
As R is a fixed-rank perturbation of σ2I, µ̂ admits a.s. a weak

limit as N →∞ given by the Marcenko-Pastur distribution [12, 13]

µ(dx) = (1−1/c)+δ0(dx)+

√
(x− x−) (x+ − x)

2πσ2cx
1[x−,x+](x)dx

where x− = σ2(1−
√
c)2, x+ = σ2(1 +

√
c)2 and δ0 is the Dirac

measure at 0. As a consequence, the eigenvalues of R̂ globally
spread around σ2 according to the distribution µ, and

∥∥∥R̂−R
∥∥∥
2

does not converge to 0 anymore, as it was the case in the large sam-
ple size regime.

1The assumption that the eigenvalues of Γ all have multiplicity one could
be relaxed and is only made here to keep light notations.

Concerning their individual behaviour, it is expected that the K
largest eigenvalues of R̂ will separate from the others when the cor-
responding eigenvalues γ1, . . . , γK of the clutter covariance matrix
Γ are sufficiently large. The precise threshold is given in the follow-
ing assumption.

Assumption 1. It holds that γ1 > . . . > γK > σ2√c.

Assumption 1 ensures that the clutter eigenvalues γ1, . . . , γK
are sufficiently separated from the noise eigenvalue σ2, or equiva-
lently that the clutter to noise ratio γk

σ2 in eigendirection uk, for all
k = 1, . . . ,K, is roughly above

√
M/N . It is therefore refered

to as clutter-noise separation assumption. Under Assumption 1, we
have [13] that for all k = 1, . . . ,K,

λ̂k
a.s.−−−−→
N→∞

φ(γk, σ
2) =

(γk + σ2)(γk + σ2c)

γk
, (3)

with φ(γk, σ
2) > x+, while

λ̂K+1
a.s−−−−→

N→∞
x+ and λ̂M

a.s−−−−→
N→∞

x−,

where we recall that x− and x+ are the left and right edges of the
Marcenko-Pastur distribution. Thus, under Assumption 1, the K
largest eigenvalues of R̂ corresponding to the clutter asymptotically
split from the M −K smallest eigenvalues associated to the noise.

The behaviour of the spectral projectors of R̂ associated with
the K largest eigenvalues has also been studied (see e.g. [14]). In
particular, under Assumption 1, for any deterministic unit-norm vec-
tors b,d ∈ CM and all k = 1, . . . ,K,

b∗ûkû
∗
kd = h(γk, σ

2)b∗uku
∗
kd + o(1) a.s. (4)

as N → ∞, where h(γk, σ
2) =

γ2k−σ
4c

γk(γk+σ
2c)

. Thus, up to a factor
depending only on γk and σ2, each individual entry of the projection
ûkû

∗
k converges to the corresponding entry of uku

∗
k.

3. ASYMPTOTIC DISTRIBUTION OF THE LR-ANMF

With the results of the previous section, we are now in position to
study the asymptotic distribution of the statistic T defined in (2) un-
derH0 and the clutter-noise separation assumption.

The result underH0 is given as follows.

Theorem 1. UnderH0 and Assumption 1,

2T

ϑ0

D−−−−→
N→∞

χ2(2),

where χ2(2) stands for the chi-square distribution with 2 degrees of
freedom, and

ϑ0 = 1 +

∑K
k=1

γk
σ2

(
1− h(γk, σ

2)
)2 |a∗uk|2

‖Πa‖22 +
∑K
k=1 (1− h(γk, σ2)) |a∗uk|2

.

Proof. We first focus on the denominator of (2). Using the fact that
K is fixed with respect to N , it is straightforward to show that

1

M

∥∥∥Π̂x
∥∥∥2
2

a.s.−−−−→
N→∞

σ2. (5)



Next, using (4), we have

∥∥∥Π̂a
∥∥∥2
2

= ‖a‖22 −
K∑
k=1

|a∗ûk|2

= ‖a‖22 −
K∑
k=1

h(γk, σ
2)|a∗uk|2 + o(1) a.s.

= ‖Πa‖22 +

K∑
k=1

(
1− h(γk, σ

2)
)
|a∗uk|2 + o(1) a.s..

(6)

We next analyze the fluctuations of the numerator of (2). Using the
decomposition

a∗Π̂RΠ̂a = σ2
∥∥∥Π̂a

∥∥∥2
2

+

K∑
k=1

γk

∣∣∣a∗Π̂uk

∣∣∣2 ,
as well as (6), (4), we end up with

a∗Π̂RΠ̂a = β + o(1) a.s. (7)

as N →∞, where

β = σ2

(
‖Πa‖22 +

K∑
k=1

(
1− h(γk, σ

2)
)
|a∗uk|2

)

+

K∑
k=1

γk
(
1− h(γk, σ

2)
)2 |a∗uk|2. (8)

Since for all u ∈ R and ξ ∈ C, we have

E
[
exp

(
iuRe

(
ξa∗Π̂x

))]
= E

[
exp

(
−u2|ξ|2a∗Π̂RΠ̂a/4

)]
,

using (7) and dominated convergence theorem together with ξ =√
2/β gives

E
[
exp

(
iuRe

(
ξa∗Π̂x

))]
= exp

(
−u2/2

)
+ o(1)

as N →∞. Consequently, Levy’s theorem implies that

2

β

∣∣∣a∗Π̂x
∣∣∣2 D−−−−→

N→∞
χ2(2), (9)

and the results of Theorem 1 follows from (5), (6) and (9).

As a first consequence of Theorem 1, we notice that whenM,N
are sufficiently large such that M

N
≈ 0, the statistic 2T is approxi-

mately distributed as a χ2(2) random variable, which is consistent
with the results in the large sample regime obtained in [5] (since in
terms of distribution, 2Beta(1,M − K) → χ2(2) as M → ∞).
Second, when the target signature is nearly orthogonal to the clutter
subspace, that is Πa ≈ a, then 2T is also approximately distributed
as χ2(2) random variable. Third, when the clutter-to-noise ratio is
large (i.e. γ1, . . . , γK � σ2), then the same conclusion is reached.
Thus, in the three previous scenarios, the test statistic T has approx-
imately the CFAR property.

The previous remarks shed light on a situation where the distri-
bution of T under H0 will critically depend on the clutter statistical
properties. Indeed, this situation will occur when M ≈ N and Πa
is not close to a, that is in the high dimensional regime and when
the target signature projects a non-vanishing energy onto the clutter

subspace. Thus, in this context, T is not asymptotically CFAR, and
using the chi-square or beta distributions to set the test threshold ac-
cording to a desired false alarm rate may cause serious errors in the
performance prediction. We propose in the next section an improved
version of the LR-ANMF to correct this main drawback and obtain
a LR detector with the CFAR property.

4. IMPROVED VERSION OF THE LR-ANMF

As we have seen from Theorem 1, the asymptotic distribution of T
under the null hypothesis H0 depends on the clutter covariance ma-
trix Γ and the noise power σ2, which are not available in practice.
We propose in this section to modify the test statistic T so that its
asymptotic distribution under H0 no longer depends on these pa-
rameters. The new test statistic is defined as follows. Let

σ̂2 =
1

M −K

M∑
k=K+1

λ̂k

be the usual ML estimate of σ2, and denote by γ̂k the unique solution
to the equation φ(γ, σ̂2) = λ̂k in the interval

(
σ̂2√c,+∞

)
, when it

exists, and γ̂k = σ̂2√c otherwise.

Definition 1 (High-Dimensional Low-Rank Adaptive Normalized
Matched Filter - HD-LR-ANMF).

T̃ =
2
∣∣∣a∗Π̂x

∣∣∣2
ϑ̃0

,

where ϑ̃0 = σ̂2
∥∥∥Π̂a

∥∥∥2
2

+
∑K
k=1 γ̂k

(1−h(γ̂k,σ̂2))2

h(γ̂k,σ̂2)
|a∗ûk|2 .

We then have the following result.

Theorem 2. UnderH0 and Assumption 1,

T̃
D−−−−→

N→∞
χ2(2).

Proof. From the convergence (9), we only have to estimate consis-
tently the term β defined in (8). Using (6) and the fact that σ̂2 → σ2

a.s. as N →∞, we have

σ̂2
∥∥∥Π̂a

∥∥∥2
2

=

σ2

(
‖Πa‖22 +

K∑
k=1

(
1− h(γk, σ

2)
)
|a∗uk|2

)
+ o(1) a.s.

From Assumption 1 and (3), for all k ∈ {1, . . . ,K}, λ̂k ∈(
σ̂2(1 +

√
c)2,+∞

)
a.s. for all large N , and since γ 7→ φ(γ, σ̂2)

is an increasing one-to-one mapping from
(
σ̂2√c,+∞

)
onto(

σ̂2(1 +
√
c)2,+∞

)
, the equation φ(γ, σ̂2) = λ̂k admits a unique

solution γ̂k > σ̂2√c. By continuity and convergences σ̂2 → σ2 and
λ̂k → φ(γk, σ

2), we deduce γ̂k → γk a.s asN →∞. Finally, from
(4), we obtain

K∑
k=1

γk
(
1− h(γk, σ

2)
)2 |a∗uk|2 =

K∑
k=1

γ̂k
(
1− h(γ̂k, σ̂

2)
)2

h(γ̂k, σ̂2)
|a∗ûk|2 + o(1) a.s.

which implies ϑ̃0 = β + o(1) a.s., and the result of Theorem 2.



To conclude this section, we also provide the asymptotic distri-
bution of the HD-LR-ANMF T̃ under H1 in the next theorem. The
proof, which is very similar to the proof of Theorem 1 and Theorem
2, is omitted due to space constraints.

Theorem 3. UnderH1 and Assumption 1,

sup
x∈R

∣∣∣∣P(T̃ ≤ x)− F (x; 2,
2|α|2

σ2ϑ1

)∣∣∣∣ −−−−→N→∞
0,

where x 7→ F (x; k,∆) denotes the cumulative distribution of the
non-central chi-square distribution with k degrees of freedom and
non-centrality parameter ∆, and where

ϑ1 =
ϑ0

‖Πa‖22 +
∑K
k=1 (1− h(γk, σ2)) |a∗uk|2

.

5. NUMERICAL RESULTS

In this section, we provide numerical examples illustrating the re-
sults of the previous section, in the context of array processing where
M represents the number of sensors in a uniform linear array with
spacing of half the wavelength, which implies that the signature vec-
tor is further parametrized as

a(θ) =
1

√
M

(
1, e−iπ sin(θ), . . . , e−i(M−1)π sin(θ)

)T
,

where θ ∈
[
−π

2
, π
2

]
represents the Direction of Arrival (DoA). The

clutter is composed of K = 3 sources with DoA −20◦, 0◦ and 20◦

and the target has DoA 20.1◦. The clutter is renormalized to have
unit energy after matched filtering with target signature. The clutter
to noise ratio (CNR) and signal to noise ratio (SNR) after matched
filter (CNR) are defined respectively as 1

σ2 and |α|2
1+σ2 . Empirical

CDFs and Pfa are evaluated with 104 trials.
In Figures 1 and 2, we plot the empirical CDFs of T̃ for differ-

ent values of M = N as well as the asymptotic limits (CDF of the
χ2(2) distribution under H0 and CDF of the χ2(2, 2|α|2

σ2ϑ1
) distribu-

tion underH1). As expected, we notice that the empirical plots of T̃
get closer to the asymptotic limits when the data size grows.
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Fig. 1. ECDFs of T̃ under H0 hypothesis for different values of M
and CDF of χ2(2) (red). N = M , K = 3, CNR = 10 dB.

In Figure 3, we show the empirical Pfa as a function of the target
DoA for 2T

ϑ0
, T and T̃ . We notice that the correction 2

ϑ0
on T allows
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Fig. 2. ECDFs of T̃ under H1 hypothesis for different values of M
and CDF of χ2(2, 2|α|2

σ2ϑ1
) (red). N = M , K = 3, CNR = 10dB,

SNR = −20dB.

to obtain a CFAR detector and that T̃ is a correct approximation of
2T
ϑ0

for a standard data size in many applications like STAP or MIMO
RADAR.
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Fig. 3. Empirical Pfa as a function of the DoA for 2T
ϑ0

, T and T̃ .
M = 80, N = 80, K = 3, CNR = 10 dB.

6. CONCLUSION

In this paper, we have addressed the study of the LR-ANMF test
statistic for target detection. Considering the asymptotic regime in
which the dimension of the observations and the number of sec-
ondary samples converge to infinity at the same rate, we have proved
that the test statistic, suitably renormalized by a factor depending on
the noise and clutter parameters, is asymptotically χ2-distributed un-
der the null hypothesis. Based on this result, we have proposed a new
test, the HD-LR-ANMF, possessing the asymptotic CFAR property.
Numerical simulations have been provided which indicate that our
results are accurate for realistic values of sample size and observa-
tions dimension.
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