
HAL Id: hal-02152100
https://hal.science/hal-02152100

Submitted on 18 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Don’t listen to my Keystroke Dynamics!
Denis Migdal, Christophe Rosenberger

To cite this version:
Denis Migdal, Christophe Rosenberger. Don’t listen to my Keystroke Dynamics!. International Sum-
mer School for Advances in Biometric Authentication: Biometrics and Forensic Science in the Deep
Learning Era, May 2019, Alghero, Italy. �hal-02152100�

https://hal.science/hal-02152100
https://hal.archives-ouvertes.fr

Don’t listen to my Keystroke Dynamics!

Denis Migdal, Christophe Rosenberger

February 2019

Abstract

Keystroke Dynamics enables the authentication or
identification of users by analyzing their way of typ-
ing, e.g. when browsing the Internet. Most studies
in the state of the art focus on increasing Keystroke
Dynamics Systems performances. In this paper, we
address the problematic of avoiding biometric au-
thentication with keystroke dynamics in order to
protect users’ privacy against unwanted authentica-
tion/identification. Experimental results obtained on
significant datasets show the benefits of the proposed
approaches.

1 Introduction

As any biometric authentication solution, a keystroke
dynamic system (KDS) is composed of two main
modules: the enrollment and the verification mod-
ules. Each user must enroll himself/herself in the
KDS in order to compute its biometric reference tem-
plate given multiple samples (i.e., several inputs of
the password) acquired during the enrollment step.
For each input, a sequence of timing information is
captured (i.e., time when each key is pressed or re-
leased) from which some features are extracted (i.e.,
latencies and durations) and used to learn the model
which characterizes each user. During a verification
request, the claimant types his/her password. The
system extracts the features and compares them to
the biometric reference template of the claimant. If
the obtained distance is below a certain threshold,
the user is accepted, otherwise he/she is rejected.

First works on KD have been done in the eight-
ies [2], although the idea of using a keyboard to

automatically identify individuals has first been
presented in 1975 [14]. In the preliminary report
of Gaines et al. [2], seven secretaries typed several
paragraphs of text and researchers showed that it
is possible to differentiate users with their typing
patterns. Since then, several studies have been
done, allowing to decrease the quantity of infor-
mation needed to build the biometric reference,
while improving the performances [15, 11, 13, 9, 4].
However, to the knowledge of the authors, no studies
has yet tried to decrease their performances in
order to protect users’ privacy against unwanted
authentication or identification.

The article is organized as follows. Section 2 focus
on possible attacks using keystroke dynamics biomet-
ric modality. Possible protection schemes are given
in section 3 illustrated with different experimental
results. Section 4 concludes and gives some perspec-
tives of this study.

2 Attack

We present in this section the attack that can been
done in order to identify anybody.

2.1 Attacker model

The attacker is able to execute arbitrary JavaScript
code on the users’ browser in order to authenticate
them, using only the keyboard events’ timestamps.
We assumed the typed text to be fixed, s.a. a login,
e-mail, or password.

The attacker is able to measure the timestamps of
keyboard events she/he receives with the javacript

1

function Date.now(). Thus, modifying the events’
timestamps will have no effect, as the attacker can
measure them himself. However, events can be de-
layed, i.e. waiting some time before sending the key-
board event. As JavaScript events loop is mono-
threaded, any active wait is troublesome and will be
easily detected by the attacker using setInterval(),
thus requiring the delayed event to be destroyed, and
recreated after a passive wait with setTimeout().

The attacker has an a priori on the user’s identity,
and will be able to use any Keystroke Dynamics Sys-
tems, and to perform any pre-processing, in order to
authenticate him. The way the Keystroke Dynam-
ics is protected, and the eventual parameters of such
anonymization scheme is also assumed to be known
by the attacker. Thus, such parameters should be
fixed for all users in order to prevent the attacker from
using them to discriminate users through browser fin-
gerprinting techniques [1].

2.2 Datasets

There exist many keystroke dynamics datasets
[10]. We decided in this work to focus on fixed
text datasets (i.e. where users typed the same
passphrase). Datasets have been cleaned to remove
incoherent data, e.g. entries in which the user did
not type the asked text. This corresponds to 13%
of entries in GREYC W, and less than 3 entries for
other datasets.

In order to get comparable sets, only the first 45
entries per users is kept, users with less than 45 en-
tries, and datasets with less than 45 users, are dis-
carded. From the existing fixed-text datasets, only
3 matched our criteria. From these 3 datasets, we
build 4 datasets composed of a fixed text Keystrokes
for each user (one having 2 fixed text, 2 datasets are

thus created). Table 1 gives the datasets used in this
work.

2.3 Attack performance

As the number of collected samples during the enroll-
ment step is usually low, many Keystroke Dynamics
Systems are based on a distance. In the scope of this
article, the attacker uses the Hocquet distance func-
tion [6]:
We aim at computing a distance between two tem-
plates KA and KB . We suppose that the template
KA is associated by µ and σ the average value of bio-
metric samples and the standard deviation (note that
0/0 is assumed to be 0).

STAT2 = 1− 1

n

n∑
i=1

e
− |KB(i)−µi|

σi (1)

In the scope of this paper, the templates are com-
posed of the gap and dwell durations for each typed
key, i.e. the duration between two consecutive key
press, and the time a key is pressed. The 10 first tem-
plates of each user are used for the reference template
computation.

The capacity of an attacker to authenticate an user
will be quantified with the maximal estimation of the
Equal Error Rate (EER), which corresponds to con-
figuration of the biometric system when FAR equals
FRR. The False Acceptance Rate (FAR) describes
the ratio of accepted impostor data, the False Rejec-
tion Rate (FRR) describes the ratio of falsely rejected
legitimate users.

The performance of a KD Anonymization Scheme
(KDAS) will thus be quantified as the minimum of
the maximal estimation of the EER for each possible
KDS and pre-processing. For a given KDS and pre-
preprocessing, if the KDAS is not deterministic, the

Name Text # of users (45) Clock resolution EER Source
GREYC K greyc laboratory 104 10.0144ms 14.75% [5]
GREYC W1 laboratoire greyc 62 1ms 14.40% [5]
GREYC W2 sésame 46 1ms 25.39% [3]

CMU .tie5Roanl 51 0.2ms 19.38% [8]

Table 1: Description of used datasets.

2

KDAS is tested 20 times, and the mean of the max-
imal estimation of the EER for each test is used. If
the dataset is not indicated, the number given is the
mean of the number for each of the 4 datasets used
in this study.

2.4 Attacker pre-processing

The timestamp of a given event depends of the reso-
lution and jitter of the clock used to measure it. The
resolution is the mean time between two clocks tics,
and the jitter, the difference between the theoreti-
cal clock tic timestamp and its real timestamp. This
mean that an event occurring at a time t will have
a timestamp of bt/rc ∗ r + j , with r the clock res-
olution, and j a random noise (the jitter). Existing
studies have found that the clock resolution influence
KDS performances [7], and discretization might im-
prove KDS performances [4].

Values where discretized using 1,001 different reso-
lutions (from 0 to 1 by step of 1/1,000). As shown in
Figure 1, attacker might expect slight (J ' 0.02 for
GREYC W1) or negligible (J < 0.005) EER improve-
ment by doing so. Figure 6 shows the discretization
can both increase or decrease the EER depending on

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

GREYC K GREYC W1 GREYC W2 CMU

J

noJ

diff

0.137

1.932

0.422

0.112

0.137

1.932

0.422

0.122

0.055
0.000 0.000

0.376

Figure 1: Maximal absolute gains on the EER using
1,001 different discretizations with (J) or without jit-
ter (noJ), and maximal difference between EER with
and without jitter (diff). EER values are expressed
in %.

the resolution.

Jitter can be removed with the following formula
: t′ = dt/rc∗r. As shown in Figure 1, it has negligible
influence on the EER (diff < 0.004, and noJ ' J),
and thus does not need to be removed.

3 Protection

We propose different solutions to anonymize keytroke
dynamics of users.

3.1 Costless protection

Release keyboard events can be automatically gen-
erated a constant time after the pressure event e.g.
2ms (A). As shown in figure 2, such strategy increase
significantly the EER (0.044 ≤ A ≤ 0.117).

Users’ screen typically draw a frame every 1/60
seconds. Thus, in ordinary use, the time an event
occurred between two consecutive frames makes no
difference to the users, i.e. any delay of an event
to match the time of the next frame is de facto im-
possible to perceive for an user, and thus assumed

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

GREYC K GREYC W1 GREYC W2 CMU

A

DA

0.053

0.044

0.065

0.117

0.053

0.045

0.066

0.123

Figure 2: Minimal absolute loss on the EER using
1,001 different discretizations with automatic release
(A) and delay then automatic release (DA).

3

Figure 3: Minimal EER with 5 KDAS in function of
their parameter N .

costless. Such operation can be trivially done thanks
to Window.requestAnimationFrame().

As shown in Figure 2, automatically generating re-
lease events after delaying pressure events to the next
frame (DA), gives slight increase of the EER. How-
ever, such strategy is interesting as it would suppress
information that could be exploited by other KDS.

In the following, non-costless KDAS, pressure
events will be delayed beforehand, and release events
will be automatically generated afterward.

3.2 Non-blocking protection

In order to further increase the EER values, some
events have to be delayed beyond the next frame.
Such delay might be perceivable by the users and
thus constitute a cost in terms of usability of the
KDAS. This cost, we call latency, is computed as the
maximal number of frames skipped during a typing
of a given text.

Non-blocking KDAS delays pressure events inde-
pendently from the previous, with the only constraint
to preserve the events’ order. Their parameters N is
the number of frames that can be skipped, and de
facto their latency.

Two non-blocking KDAS are studied. In the first,
events are discretized with a resolution of (N +1)/60
(delay), and in the second, events are delayed by n
frames with n an uniform discrete noise n∼U(0, N)
(rdelay). These two KDAS were tested with 15 con-

Figure 4: Mean, and maximum (prefixed with M),
of the expected latency for 5 KDAS in function of
their parameter N

figurations, N ∈ J0, 14K for delay, and N ∈ J1, 15K for
rdelay. As shown in Figure fig:cost, both provide sig-
nificant protection compared to the costless KDAS,
however, for the same latency, rdelay seems always
better than delay.

3.3 Blocking protection

In order to continue to increase the EER, events
can be delayed depending on the previous event.
The first blocking KDAS studied ensures that there
is at least N frames between each pressure events
(block delay), the second (block rdelay) delays them

Figure 5: EER in function of latency

4

such as the ith pressure event’s delayed timestamp
(t′i) is computed from the original timestamp ti as
follows: t′i = max(t′i−1, ti) + U(0, N).

As shown in Figure 3, both blocking KDAS in-
crease the EER faster than non-blocking KDAS.
However, as shown in Figure 4, their latency quickly
explodes. Thus, in order to compare fairly the KDAS
between them, Figure 5 gives the EER in function of
the latency.

As shown in Figure 5, blocking KDAS are, in
mean, a little better than non-blocking KDAS, how-
ever, using maximal latency, non-blocking KDAS
out-performs by far blocking KDAS. Moreover, if
users type too fast (or N too high), blocking KDAS’s
latency adds up at each key pressed. When this hap-
pens, t′i will only be computed from t′i−1, i.e. every
users will have the same way of typing, but at the cost
of a non-ergonomic latency. Adapting N to match
the user typing speed would enable browser finger-
printing attacks. This suggests that blocking KDAS
should be avoided in favor of non-blocking KDAS.

4 Conclusion and perspectives

KeyboardPrivacy[12] is a Google Chrome extension
that implements a blocking KDAS. Timestamp of
each events is computed as follow (a is user-defined
for gap and dwell) :

t′i = max(t′i−1, ti)+

{
U(0, a) 1 time out of 2
0 1 time out of 2

The construction of this KDAS extension seems to
be ad hoc, and could be improved using the conclu-
sion of this study:
• use passive waits instead of active waits ;
• automatically generate release events ;
• delays pressure events to the next frame ;
• use non-blocking KDAS (rdelay) to limit the la-

tency ;
• use fixed parameters for all users to prevent fin-

gerprinting attacks.

This work constitutes a preliminary study on
the Keystroke Dynamics Anonymisation Scheme.
Greater values of N should be tested for non-blocking
KDAS. Other KDS could be tested, for authenti-

cation, but also, e.g. for soft-biometrics. Attacker
model could also be modified to include the knowl-
edge of non-protected users references. Other KDAS
are also possible, e.g. using non-regular discretiza-
tion, using non-uniform radom laws, or by merging
KDAS (e.g. merging delay and rdelay).

References

[1] Peter Eckersley. How unique is your web
browser? In International Symposium on Pri-
vacy Enhancing Technologies Symposium, pages
1–18. Springer, 2010.

[2] R. Gaines, W. Lisowski, S. Press, and
N. Shapiro. Authentication by keystroke tim-
ing: some preliminary results. Technical Report
R-2567-NSF, Rand Corporation, May 1980.

[3] R. Giot, M. El Abed, and C. Rosenberger. Web-
based benchmark for keystroke dynamics bio-
metric systems: a statistical analysis. In Intel-
ligent Information Hiding and Multimedia Sig-
nal Processing (IIH-MSP), 2012 Eighth Interna-
tional Conference on, pages 11–15. IEEE, 2012.

[4] Romain Giot, Mohamad El-Abed, Baptiste
Hemery, and Christophe Rosenberger. Uncon-
strained keystroke dynamics authentication with
shared secret. Computers & Security, 30(6-
7):427–445, September 2011.

[5] Romain Giot, Mohamad El-Abed, and
Christophe Rosenberger. Greyc keystroke:
a benchmark for keystroke dynamics biometric
systems. In IEEE International Conference on
Biometrics: Theory, Applications and Systems
(BTAS 2009), pages 1–6, 2009.

[6] Sylvain Hocquet, Jean-Yves Ramel, and Hu-
bert Cardot. User classification for keystroke
dynamics authentication. In The Sixth Inter-
national Conference on Biometrics (ICB2007),
pages 531–539, 2007.

[7] K. Killourhy and R. Maxion. The effect of clock
resolution on keystroke dynamics. In Proceedings

5

of the 11th international symposium on Recent
Advances in Intrusion Detection, pages 331–350.
Springer, 2008.

[8] Kevin S Killourhy and Roy A Maxion. Com-
paring anomaly detectors for keystroke dynam-
ics. In Proc. of the 39th Ann. Int. Conf. on De-
pendable Systems and Networks, pages 125–134,
2009.

[9] H. Lee and S. Cho. Retraining a keystroke
dynamics-based authenticator with impostor
patterns. Computers & Security, 26(4):300–310,
2007.

[10] Vinnie Monaco. Public keystroke dynamics
datasets, 2018.

[11] F. Monrose and A.D. Rubin. Keystroke dynam-
ics as a biometric for authentication. Future
Generation Computer Syststems, 16(4):351–359,
2000.

[12] Paul Moore and Per Thorsheim. Keyboard pri-
vacy plugin, 2016.

[13] Kenneth Revett, Florin Gorunescu, Marina
Gorunescu, Marius Ene, Sergio de Magalhees
Tenreiro, and Henrique M. Dinis Santos. A ma-
chine learning approach to keystroke dynamics
based user authentication. International Jour-
nal of Electronic Security and Digital Forensics,
1:55–70, 2007.

[14] RJ Spillane. Keyboard apparatus for personal
identification. IBM Technical Disclosure Bul-
letin, April 1975.

[15] D Umphress and G. Williams. Identity verifica-
tion through keyboard characteristics. Internat.
J. Man Machine Studies, 23:263–273, 1985.

Figure 6: Attack

6

