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Improving Business-as-Usual Scenarios in Land 

Change Modelling by Extending the Calibration 

Period and Integrating Demographic Data 

Romain Mejean, Martin Paegelow, Mehdi Saqalli, Doryan Kaced 

Abstract   Land use and land cover change (LUCC) models are increasingly being 

used to anticipate the future of territories, particularly through the prospective sce-

nario method. In the case of so-called trend or Business-as-Usual (BAU) scenarios, 

the aim is to observe the current dynamics and to extend them into the future. How-

ever, as they are implemented as baseline simulation in most current software pack-

ages, BAU scenarios are calibrated from a training period built from only two dates. 

We argue that this limits the quantitative estimation of future change intensity, and 

we illustrate it from a simple model of deforestation in Northern Ecuadorian Ama-

zon using the Land Change Modeler (LCM) software package. This paper proposes 

a contribution to improve BAU scenarios calibration by mainly two enhancements: 

taking into account a longer calibration period for estimating change quantities and 

the integration of thematic data in change probabilities matrices. We thus demon-

strate the need to exceed the linear construction of BAU scenarios as well as the 

need to integrate thematic and particularly socio-demographic data into the estima-

tion of future quantities of change. The spatial aspects of our quantitative adjust-

ments are discussed and tend to show that improvements in the quantitative aspects 

should not be dissociated from an improvement in the spatial allocation of changes, 

which may lead to a decrease in the predictive accuracy of the simulations. 
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1 Introduction 

Over the past several decades, geographers developed a large spectrum of mod-

els to study land systems through land change, also called land use and land cover 

change (LUCC), whose socio-environmental impacts have been demonstrated 

(Chhabra et al. 2006; Mahmood et al. 2014; Oliver and Morecroft 2014). Among 

them, pattern-based models (PBM) of LUCC (Camacho Olmedo et al. 2018) are 

spatially explicit models allowed by knowledge of the drivers of change (Lambin et 

al. 2001; Carr 2003) and by change analysis methods (Mas 1999; Lambin et al. 

2001; Comber et al. 2016). The purpose of PBM is to anticipate future changes in 

order to guide the present action e.g. in terms of public policy, by using prospective 

scenarios (Houet and Gourmelon 2014). Thus, the prospective scenario technique 

can be used both to observe the continuation of past and current trends in the future 

and to project alternative pathways (Veldkamp and Lambin 2001; Escobar et al. 

2018). We will focus here on the first approach, called “business as usual” (BAU) 

scenarios which is a path-dependent approach (Houet et al. 2016) consisting there-

fore in extending the trend observed in the past over time. BAU scenarios are fre-

quently found in the literature on LUCC modelling (Escobar et al. 2018) as well as 

in many cases of PBM application, in particular because PBM software packages 

includes BAU scenarios as baseline simulation (Mas et al. 2014). 

According to Mas et al. (2014), the modelling process implemented in these 

PBM software packages can be divided into five steps : quantity of change estimate, 

change potential evaluation, spatial allocation of change, reproduction of temporal 

and spatial patterns and model evaluation. Although there is extensive literature on 

improving the spatial allocation of changes or model evaluation (Pontius and Mil-

lones 2011; Maestripieri and Paegelow 2013), there is little work on improving the 

quantitative estimation of change intensity. Indeed, most of the time, applying a 

BAU scenario means defining a single calibration period, between two training 

dates, according to the available data (Mas et al. 2018). The model uses notably this 

calibration period to estimate future change quantities, using generally one-order 

Markov chains (Camacho Olmedo and Mas 2018). Indeed, present-time software 

only allow the use of only two training dates (e.g. Land Change Modeler, 

CA_Markov, Dinamica EGO, Metronamica, ApoLUS, LucSim) and it has been 

shown that the choice of training period is not insignificant and that the simulation 

results obtained are different according to the training dates that have been chosen 

(Paegelow et al. 2014; Paegelow 2018). 

The spatial expansion of the agricultural frontier in Northern Ecuadorian Ama-

zon (NEA) can be observed over time from historical remote sensing images: set-

tlement patterns and the forest clearing they induce are identifiable by their familiar 

fish-bone patterns, spread alongside the roads (Baynard et al. 2013). In the NEA, 

Mena et al. (2006)  calculated an annual deforestation rate of 2.49% between 1986 

and 1996 and of 1.78% between 1996 and 2002, i.e. a slowing of deforestation over 
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time. We argue that, in a path-dependent approach like that of the BAU scenarios, 

such a slowdown in the rate of deforestation (i.e. in quantities of change) could not 

be deduced from purely spatial and linear assumptions, e. g. from only two training 

dates, but rather requires taking into account a longer period of time and the con-

sideration of thematic data. 

Based on a simple model of deforestation dynamics in the NEA using the Land 

Change Modeler (LCM) software (Eastman and Toledano 2018), we propose here 

a contribution to improve BAU scenarios and more specifically the quantitative es-

timation of change intensity by mainly two enhancements. First, this contribution 

tries to exceed the linearity of BAU scenarios resulting from taking into account 

only two training dates. Then, authors introduce available, socio-economic, espe-

cially demographic, driver data directly to make more realistic classic Markov ma-

trices. Both approaches are implemented by adjusting Markovian transition proba-

bilities. 

2 Materials and Methods 

Context and study area 

Northern Ecuadorian Amazon (NEA) is a region located in the western part of 

the Amazon basin, in the eastern part of Ecuador's national territory called “Ori-

ente”. This region is characterized by significant endemism to such a degree that it 

is known as one of the world's biodiversity hotspots (Orme et al. 2005). However, 

since the discovery of oil fields in the late 1960’s, this territory is undergoing sig-

nificant deforestation coupled with a fast population growth, due to free land acces-

sibility, a high fertility rate and to a continue in-migration (Bilsborrow et al. 2004). 

Indeed, the road infrastructures built for oil extraction have enabled an agricultural 

colonization, mainly by small farmers from Andean and Coastal regions of Ecuador 

(Hiraoka and Yamamoto 1980; Bromley 1981; Brown et al. 1992). This agricultural 

colonization was spontaneous but also supported by the Ecuadorian authorities 

through two land reforms (Wasserstrom and Southgate 2013) and logistic support 

(Juteau-Martineau et al. 2014). 

We will focus here on an area composed of a set of sub-watersheds, altogether 

surrounding and including the parroquia of Dayuma, inherited from another mod-

elling approach dealing with environmental contamination (Houssou 2016). This 

area (Fig. 1), is located south of the city of Coca and Río Napo, in NEA. We have 

developed land cover classification for this study area using the following procedure 

detailed below. 
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Fig. 1: Study area, in NEA. 

 

Data and image processing 

The land cover data used in the modelling process were obtained by using rela-

tively simple image processing, coupling supervised segmentation (Paegelow and 

Camacho Olmedo 2010) and classification based on maximum likelihood algorithm. 

Then, authors calculated the annual deforestation rates. In order to minimize classi-

fications errors, we have chosen to classify land use into four major categories: wa-

ter, forested areas, deforested areas (merging of the classes "bare soil", "crops" and 

"pastures") and urban areas. Tables 1, 2 and 3 indicate image characteristics, areas 

of each of the land cover classes and estimates of the annual rate of deforestation 

we have derived from it.  

 

Table 1: Image characteristics 

Satellite sensor Path/row Data acquired Spatial resolution (m) 

LANDSAT 5 - TM 9/60 and 9/61 25 september, 1998 30 m 
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LANDSAT 7 – ETM+ 9/60 and 9/61 12 september, 2002 30m 

LANDSAT 8 – OLI TIRS 9/60 and 9/61 2 september, 2013 30m 

SENTINEL-2  1 september, 2017 10m decreased to 30m by gener-

alization* 

SENTINEL-2  8 february, 2018 10m decreased to 30m by gener-

alization* 

* Reduction in the number of columns and rows while decreasing cell resolution by a pixel thinning 

algorithm. 

Table 2: Area per class (ha) on classification 

Area per class (ha) 1998 2002 2013 2017 

Water 53.46 0 5.67 0 

Forested areas 259703.73 253322.01 240156.63 237400.83 

Deforested areas 26889.39 33391.35 46470.15 49218.48 

Urban areas 95.94 29.16 110.07 123.21 

Table 3: Annual deforestation rate (%/year)  

1998-2002 2002-2013 2013-2017 

-0.61 -0.47 -0.29 

 

Despite some problems in detecting water surfaces, we observe a trend similar to 

that observed by Mena et al. (2006) at a different period and further north, in an 

earlier colonized territory: a slowing down of the annual rate of deforestation. In-

deed, according to our data, while 0.61% of forests disappeared each year between 

1998 and 2002 in our study area, only 0.29% was disappearing each year over the 

2013-2017 period. 

Implemented pattern-based model 

The software package chosen for the pattern-based modelling process, called 

Land Change Modeler (LCM), is integrated into TerrSet (Eastman 2014) and is used 

to develop prospective models of LUCC, based on observations of past changes, 

statistical and machine learning methods to calibrate functions describing the rela-

tionship between change and drivers of change (Mas et al. 2018). 

Although many authors have focused on analysing the functioning of LCM (Mas 

et al. 2014; Eastman and Toledano 2018), it is necessary to recall here some essen-

tial points about it as a brief overview: to estimate future change quantities, LCM 

uses Markov chains from a calibration period purposely defined by two training 

dates in order to determinate matrices of future transition probability between land 

use classes. LCM allows the use of an external transition probability matrix. Then, 



6  

in terms of spatial allocation of changes, LCM allows the user to choose between 

three different methods to determinate the location of future changes, based on the 

relationships between driver variables loaded into the model and changes that oc-

curred during the training period: (i) a multi-layer perceptron (MLP) neural network 

(Mas 2004), (ii) Similarity-Weighted Instance-based Machine Learning (Sim-

Weight) and (iii) Logistic Regression. The simulation results can be expressed in 

two forms:  

a) a soft simulation, i.e. a map of projected potential for transitions, mapping the 

places most prone to change. It can then be validated by means of a Receiver 

Operating Characteristic (ROC) analysis (Pontius and Schneider 2001; Mas et 

al. 2013) 

b) a hard simulation, i.e. a qualitative map of projected LUCC, which can be val-

idated by pixel-by-pixel validation techniques (Chen and Pontius 2010).  

LCM is also able to integrate dynamic drivers into the modelling process (recal-

culated at each time step of the simulation), such as land use or road network as well 

as incentives or constraints for change e. g. the presence of protected areas that re-

duce deforestation. Finally, especially for us, BAU-type trend scenarios are in-

cluded in LCM as baseline simulations. 

The model we developed with LCM was trained over the period 2002-2013 and 

we used it to do projections for the year 2017. For simplification purposes, the only 

transition considered by the model is the transition from forested to deforested ar-

eas. Tables 4 and 5 below show respectively the Markovian matrix of transition 

probabilities calculated by LCM and the spatial driver variables used by the MLP 

(method we have chosen to spatially allocate future changes). 

Table 4: Markovian matrix of transition probabilities. 

 Water Forested areas Deforested areas Urban areas 

Water 0 0.3333 0.3333 0.3333 

Forested areas 0 0.9657 0.0343 0 

Deforested areas 0 0.0882 0.9106 0.0012 

Urban areas 0 0 0.2143 0.7857 

Reading: from row to column. 
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Table 5: Spatial driver variables implemented in the model.  

Driver variable Source Cramer V 

Viviendas with one to two rooms INEC, 2010 0.2777 

Viviendas with three to five rooms INEC, 2010 0.2307 

Viviendas with six or more rooms INEC, 2010 0.2271 

People aged 0-14 years old INEC, 2010 0.2543 

People aged 65 years old and more INEC, 2010 0.2419 

People with 6 or more children INEC, 2010 0.2272 

Viviendas connected to the electricity network INEC, 2010 0.237 

Viviendas with WC facilities INEC, 2010 0.2912 

People born in the Sierra INEC, 2010 0.2969 

People born in the Oriente INEC, 2010 0.259 

Population density INEC, 2010 0.2179 

ED to deforested areas in 2002 Own data 0.4606 

ED to roads SIGTIERRAS 0.4606 

ED to oil fields PRAS 2016 0.2373 

 

Drivers that are not Euclidean distances (ED) to relevant features like roads, oil 

fields or already deforested areas are socio-economic drivers selected from the last 

population census (Instituto Nacional de Estadística y Censos, INEC, 2010). More 

specifically, these are maps obtained by spatial interpolation (TIN method, Floriani 

and Magillo 2009) of census detail file data processed with REDATAM (De Grande 

2016), from localidades dispersas and manzanas, which are census basic point units 

of the census. First, we selected the drivers to be included in the model based on our 

readings on deforestation processes in NEA or other South American contexts. So, 

we selected the variables we assumed to refer to: household size (Morin 2015), po-

sition of household in the lifecycle (Perz and Walker 2002), good living conditions 

(pull effect, Mena et al. 2006) and province of origin (push effect, to identify set-

tlers). In a second step, among these drivers, we arbitrarily selected those with a 

Cramer V calculated with the class "deforested spaces" greater than 0.2. 

LCM provides elements of model skill from the training process, based on anal-

yses of a set of validation pixels: at each iteration, the MLP generates predicted 

class membership for each of the validation pixels and reports an overall accuracy 

rate and a skill score. According to the TerrSet documentation, the skill score rep-

resents the difference between the calculated accuracy using the validation data and 

expected accuracy if one were to randomly guess at the class memberships of the 

validation pixels. We obtained a training accuracy rate of nearby 80% and a skill 

measure of nearby 0.6. The only dynamic driver is ED to deforested areas and, still 

for simplification purposes, we have not used any constraint or incentive, although 
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we have cadastral division and that our study area is crossed by the Yasuni National 

Park, in the east. 

3 A classic Markovian BAU scenario and its adjustments 

First, we performed a classic BAU trend scenario, as implemented by default in 

LCM, where future change quantities are estimated using Markov chains, based on 

two training dates. For this reason, we have named it "Markovian BAU". In a second 

step, we proposed two consecutive adjustments to the Markovian BAU: an adjust-

ment to exceed its linearity, taking into account a larger time period (BAU-a), and 

an adjustment to integrate demographic data (BAU-b). 

These two adjustments are made by corrections to the Markov transition matrix 

(Table 4) and are intended to improve quantitative estimation of change intensity in 

trend scenarios as part of path-dependent pattern-based modelling approaches. In a 

third step, we considered the spatial aspects of these adjustments. 

Markovian BAU 

The classic Markovian BAU scenario uses the Markovian matrix calculated by 

LCM (Table 4) based on the training period we have defined (2002-2013) to deter-

minate future quantities of change in simulations. Under this scenario, the hard sim-

ulation produced by LCM overestimates deforestation quantities: as shown in Table 

6, nearly 54700 ha of deforestation are estimated by the simulation in 2017, com-

pared to almost 49200 ha on the classification (Table 2), that is about 11,1% over-

estimation. 

Table 6: Markovian BAU scenario simulated areas (ha).  

Land cover 
2017 by classifica-

tion 

2017 by Markovian BAU pre-

dicted area  
Model deviations (%) 

Water 0 5.67  

Forested areas 237400.83 231847.28 -2.3 

Deforested areas 49218.48 54690.28 +11.1 

Urban areas 123.21 110.03 -10.7 

 

We assume that this overestimation is mainly due to the non-inclusion of the 

observed trend of increasing deceleration in the rate of deforestation, as LCM only 

estimated the quantities of changes from only two training dates. We try to correct 

this below, by modifying the matrix to take into account the deceleration trend. 
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BAU-a 

The first adjustment we made is therefore to take into account a longer period of 

time for model calibration. We assume indeed that an observation of the dynamics 

prior to those of the strict training period (2002-2017) would allow us to better in-

tegrate the slowing of the rate of deforestation and thus limit the overestimation of 

deforestation quantities by the model, that we have previously observed. We have 

therefore, in concrete terms, changed the original transition matrix to better integrate 

this deceleration, by multiplying the transition probabilities that interested us by one 

factor: the ratio between the annual deforestation rates for the periods 1998-2002 

and 2002-2013 (Table 3). This ratio, about 0.77, was therefore used to weight the 

transition probability from forested to deforested area, in bold in Table 7. We then 

adjusted the cell of persistence of the forested areas class accordingly, in such a way 

that the sum of the row equals 1 (difference between 1 and the new transition prob-

ability). This new modified matrix (Table 7) has been implemented in LCM and has 

led to new simulations, the results of which in terms of area by class are presented 

in Table 8. 

Table 7 : Modified matrix of Markovian transition probabilities : the BAU-a scenario.  
 

Water Forested areas Deforested areas Urban areas 

Water 0 0.3333 0.3333 0.3333 

Forested areas 0 0.9736 0.0264 0 

Deforested areas 0 0.0882 0.9106 0.0012 

Urban areas 0 0 0.2143 0.7857 

Table 8: BAU-a scenario simulated areas (ha).  

Land cover 
2017 by classification 

(ha) 

2017 by BAU-a predicted 

area (ha) 
Model deviations (%) 

Water 0 5.67  

Forested areas 237400.83 233743.90 -1.5 

Deforested areas 49218.48 52793.67 +7.3 

Urban areas 123.21 110.03 -10.7 

 

Under this new scenario, we observe this time a lower overestimation of defor-

estation quantities by the model: LCM overestimates only 7.3%.  
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BAU-b 

Our second proposal to adjust the BAU trend scenario is to integrate population 

growth dynamics into the transition probability matrix, to make it more realistic. 

Indeed, population growth is often considered as a major driver of deforestation in 

the world, in Latin America and especially in NEA (Preston 1996; Armenteras et 

al. 2017; Jarrín-V. et al. 2017). 

Therefore, using the available demographic data from the population censuses 

(INEC), we calculated a new ratio to reweight the transition matrix. On our study 

area, the only demographic data available at a fixed spatial scale over time, allowing 

the calculation of a population growth rate, were those at the cantonal level, and we 

focused on the canton of Orellana, which includes the Dayuma parroquia and most 

of our study area (Fig. 1). These data (Table 9) indicate that population growth 

slowed between 1990-2001 (10.32%) and 2001-2010 (8.14%), a trend effectively 

similar to that of the deforestation rate over a comparable period. We thus calculated 

the ratio between the annual population growth rates for the two periods (1990-2001 

and 2001-2010). This ratio, of 0.79, was used to reweight the transition probability 

from forested to deforested area, this time in the BAU-a transition matrix (Table 7), 

in the same way as we did previously (i.e. by weighting the transition from forested 

to deforested areas by this new factor and then recalculating the other elements of 

the row). As before, the new matrix (Table 10), resulting from the calculation, was 

used in LCM to generate new simulations. The results in terms of quantities are 

presented in Table 11, in comparison with the surfaces of the classification. 

Table 9: Demographic data from the population census (INEC) and calculation of the ratio 

between annual growth rates. 

Population of Orellana Canton 

1990 2001 2010 

19674 42010 72795 

Growth rates (%) 

1990-2001 2001-2010 Ratio 

10.32 8.14 0.79 

 

Table 10: Modified matrix of Markovian transition probabilities: the BAU-b scenario.  
 

Water Forested areas Deforested areas Urban areas 

Water 0 0.3333 0.3333 0.3333 

Forested areas 0 0.9792 0.0208 0 

Deforested areas 0 0.0882 0.9106 0.0012 

Urban areas 0 0 0.2143 0.7857 
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Table 11: BAU-b simulated areas (ha).  

Land cover 
2017 by classification 

(ha) 

2017 by BAU-b predicted 

area (ha) 
Model deviations (%) 

Water 0 5.67  

Forested areas 237400.83 235088.43 -1 

Deforested areas 49218.48 51449.13 +4.5 

Urban areas 123.21 110.03 -10.7 

 

As we can observe, after this second adjustment of the transition probability ma-

trix, the overestimation by LCM is only 4.5% compared to the classification (Table 

11). Our successive adjustments have therefore reduced the overestimation of quan-

tities by more than half: whereas the classic Markovian BAU scenario simulated 

about 11.1% more deforestation than observed while the adjusted BAU-b scenario, 

the most advanced, generates only 4.5% of deviations to the model. 

It seems that the adjustments have improved the quantitative estimation of 

change intensity, by exceeding the linearity of Markovian BAU scenarios based on 

only two dates and weighting the change probability matrix with demographic data. 

It is now a matter for us to briefly analyse the spatial effects of these adjustments. 

Spatial aspects 

In order to consider the spatial aspects of our successive quantitative adjust-

ments, that led to the simulation results of the BAU-b scenario presented before, we 

use here the method developed by Chen and Pontius (2010). Based on the observa-

tion that the Kappa indices are ineffective for accuracy assessment (Pontius and 

Millones 2011) on the one hand, and the need for statistical assessment on the other 

(Pontius et al. 2004), a part of this method consists in categorizing pixels into four 

categories in order to identify omission and commission errors (Pontius 2000): 

(i) correct due to observed persistence predicted as persistence (null successes), 

(ii) error due to observed persistence predicted as change (false alarms), (iii) correct 

due to observed change predicted as change (hits) and (iv) error due to observed 

change predicted as persistence (misses). 

Table 12 shows the proportion of each of these categories in the Markovian BAU 

and in the BAU-b scenarios, calculated as a percentage of our study area. We have 

chosen to indicate separately errors due to reforestation (transition from deforested 

to forested area), which, as we recall, is not a process taken into account by the 

model. Figure 2 shows a portion of the territory simulated by the Markovian BAU 

scenario (left) and by BAU-b scenario (right), qualified according to this categori-

zation of prediction successes and errors. 
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Table 12: Overall prediction successes and error across the entire study area for Markovian 

BAU and BAU-b scenarios (%).  

 
NS FA H DM RM 

Markovian BAU 89.10 1.32 0.89 4.38 4.31 

BAU-b 89.40 1.03 0.71 4.56 4.31 

NS = null successes, FA = false alarms, H = hits, DM = deforestation misses, RM = reforestation misses. 

 

Fig. 2: Accuracy components based on observed land cover (2013, 2017) and 2017 pre-

dicted land cover maps from the Markovian BAU and the BAU-b. 

 
 

This analysis of the spatial aspects of simulation successes and errors demon-

strate that quantitative adjustments to the probability matrices of change are not 

devoid of spatial consequences. Indeed, as shown in Table 12, hits, which refer to 

deforestation that occurred between 2013 and 2017 and correctly predicted by 

LCM, represent nearby 0.9% of the study area before adjustments compared to al-

most 0.7% after adjustments (BAU-b). This is also visible on the map (Fig. 2) show-

ing a representative detail of the study area, where the hits appear in blue: they are 

more numerous on the left extract assessing the Markovian BAU than on the right 

extract assessing the BAU-b. Inversely, errors due to deforestation predicted as per-

sistence (DM) are increasing after adjustments: they represented nearly 4.4% of the 

study area before adjustments compared to nearly 4.6% after adjustments (in red on 

map extracts). 

Then, if we relate the area of hits in both cases (Markovian BAU and BAU-b) to 

the deforestation area simulated by the two scenarios, we also find that hits are 
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decreasing after successive adjustments. Under the Markovian BAU scenario, about 

3200 ha of hits are observed among the 54690 ha of simulated deforestation, or 

approximately 5.9%. For BAU-b, about 2045 ha of hits are observed for 51450 ha 

of simulated deforestation, or almost 4%: the proportion of hits in simulated defor-

estation decreases as a result of adjustments. 

4 Discussion 

This paper show that BAU scenarios as implemented in LCM, i.e. based on a 

training period established from only two dates, may be insufficient to provide a 

correct quantitative estimation of change intensity. Indeed, using a classic Markov-

ian BAU scenario, the simple LCM model used here was not able to accurately 

reproduce the observed trend, i.e. a slowing down in the deforestation rate, since it 

overestimates quantities of deforestation. The work presented here explore two 

ways of improving change intensity prediction in BAU scenarios in land change 

modelling: extend the trend observation period and use thematic data to more accu-

rately predict future quantities of change. These assumptions are applied by succes-

sive weightings of the model's transition probability matrix. 

First of all, the results show that such adjustments of the probability transition 

matrix can improve path-dependant modelling approaches: they led to a lower over-

estimation of deforestation quantities in the simulations. These results therefore 

highlight the value of incorporating a longer time period and the benefits of taking 

socio-demographic data into account during the calibration step, to exceed the lin-

earity in the construction of change quantities prediction and to make them more 

realistic. This last approach is in line with the idea of "socializing" pixels, which 

appeared in the 1990s (Martin and Bracken 1993; National Research Council 1998). 

These results also imply that BAU scenarios would benefit from being better 

designed: as these are so-called "trend" scenarios, because they are path-dependent 

approaches, we believe that it would be more efficient to build them on the basis of 

a more in-depth understanding of the trends, i.e. beyond the only two training dates 

allowed by the current software packages. In this sense, the integration of higher-

order Markov chains (Ching et al. 2013) into LUCC modelling tools could be a 

potential path to consider, because the successive adjustments of the Markovian 

matrices proposed here cannot constitute a robust methodology applicable to all 

cases and all types of thematic data. 

However, these adjustments emphasize the need to integrate socio-economic 

data at each step of the LUCC modelling process, in one way or another and there-

fore not only at the spatial allocation of changes step as is currently the case in 

software packages. We believe that socio-economic data must be used to estimate 

future quantities of LUCC, as they are used to predict spatial allocation. This is 

obviously valid for all LUCC modelling approaches, above and beyond BAU sce-

narios. Because land use systems are characterized by multiple, non-linear and com-

plex interactions between societies and environment, at different temporal and 
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spatial scales (Geist et al. 2006), and cannot therefore be limited to the use of purely 

spatial or physical drivers, whatever the stage of the modelling process. In addition, 

it is likely that the coming decades will be characterized by the multiplication of 

accessible socio-economic data as well as those of big data. The latter represent a 

major challenge for many scientific disciplines and geography and geomatics are 

no exception (Kitchin 2013). Lastly, it is interesting to note that population projec-

tions studies have become increasingly numerous and accessible in recent years, 

including in Global South countries such as Ecuador, where they are produced and 

published by INEC. These data can be useful in the development of prospective 

BAU scenarios, especially when they are themselves trend-based. 

Finally, the results show that in LCM, an improvement in the estimation of future 

quantities of change can lead to a decrease in the proportion of hits in predicted 

changes, i.e. changes that occurred and were correctly predicted. The improvement 

in the prediction of change quantities has indeed led to a decrease in the quality of 

the results in terms of spatial allocation in the case of the study presented here. This 

is simply because to spatially allocate changes, LCM selects the pixels with the 

highest change potential on the transition potential map calculated by the MLP neu-

ral network based on the relationship between the changes that occurred during the 

training period and drivers. But a reduction in quantities simply results in a smaller 

selection of pixels and therefore a smaller simulated change area. However, if the 

software simulates fewer changes, it is less likely to hit the target: the changes that 

occurred. Thus, this result suggests that quantitative improvements must be accom-

panied by progress in the spatial allocation of changes, in particular the reproduction 

of realistic patterns of change by models e.g. as Dinamica EGO software allows it 

better through its mechanism of expander/patcher (Soares-Filho et al. 2002; Ro-

drigues and Soares-Filho 2018). Process-based LUCC modelling approaches like 

agent-based models are also an interesting approach in this field (Parker et al. 2003; 

Matthews et al. 2007) and their coupling to pattern-based approaches is still an im-

portant scientific issue (Castella and Verburg 2007). 

 

Although this approach allowed us to obtain results which contribute to a brief 

reflection on LUCC modelling practices and especially on the calibration stage of 

trend/BAU scenarios, it has however several limitations. These limitations are due 

both to the data used, to the choices made during the construction of the model in 

LCM and to the method by which we adjusted matrices. 

Initially, these limitations concern the accuracy of the remotely sensed data as 

model input data. Indeed, it has been demonstrated that uncertainty is present at 

each step of the construction of land cover data and that is therefore significantly 

present in LUCC models (Garcia Alvarez 2018). Besides, this uncertainty is at the 

root of a numerous and ongoing work on improving satellite image classification 

techniques which show that there is always a scope for improvement (Lu and Weng 

2007; Tso and Mather 2009). Nonetheless, it is important to remember that while 

supervised classification methods offer many advantages, including time savings, 

practical systematization and greater objectivity, their accuracy is often lower than 
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manual classification by photo-interpretation. In brief, the results must be balanced 

according to the confidence we can place in land cover data, especially since they 

were not validated by field surveys. 

Then, regarding the limitations inherent in the construction of the model, some 

choices made to simplify the model in order to improve understanding can be dis-

cussed. In particular, the non-inclusion of transitions from forested to deforested 

areas (reforestation process) can reduce model accuracy as much as the non-use of 

more dynamic data updated at each iteration like cadastral data or dynamic road 

modelling. However, the main purpose of this paper is to propose an improvement 

of the quantitative estimation of change intensity in trend scenarios, that is why the 

emphasis has been placed mainly on the quantitative aspects, to the detriment of 

certain details, which may nevertheless usually be essential for the development of 

a complete LUCC model. 

Finally, the last limitation that we can highlight is the mismatch of spatial and 

temporal scales when the transition probability matrix has been modified. Indeed, 

for the second adjustment (the BAU-b scenario), we used cantonal demographic 

data for a model applied to a lower spatial level. Another bias lies in the fact that 

these cantonal data include several cities, characterized by specific demographic 

dynamics, while our territory is essentially rural. In addition, the time scale of the 

population censuses used to weight the matrix does not exactly match that of our 

classifications. 

5 Conclusion 

Based on a simple LUCC model developed with LCM, this work highlights the 

need to extend the trend observation period and to include thematic data in the cal-

ibration step of path-dependent pattern-based modelling approaches, to improve the 

quantitative estimation of change intensity. Indeed, the successive adjustments to 

the original Markov matrix of transition probabilities have minimized the model's 

overestimation of deforestation. 

A quick spatial analysis of the results also recalls that improving the quantitative 

estimation of changes cannot be done independently of progress in the spatial allo-

cation of changes.  
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