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Information Topological Characterization of
Periodically Correlated Processes by Dilation
Operators

Guillaume Bouleux, Maél Dugast, and Eric Marcon

Abstract—Giving process information through spectral
considerations has been tackled for decades. We propose
in this work a new way of dealing with such an objective
by giving hidden information topology of the spectral
measure of non-stationary and periodically correlated
processes. We used first the Kolmogorov decomposition
which is a natural extension of the Naimark operator
theory to obtain a sequence of rotation matrices called
the dilation matrices. These matrices carry all the spectral
information of the process and belong to SO(n) or SU(n)
with respect to respectively the real or complex nature
of the periodically correlated processes studied. In order
to give a topological interpretation of the positioning of
these matrices on the space of rotation matrices, we have
applied a persistent homology technique and next exposed
fundamental attributes. We showed that different types
of periodically correlated processes are endowed with a
point cloud structure that can be easily discriminated by
topological and information features.

Index Terms—Dilation Theory, Non-stationary Pro-
cesses, Topological Data Analysis, persistent homology, In-
formation Entropy, Signal Analysis, Signal Classification,
Betti numbers, Geometry.

I. INTRODUCTION

Information contained in a non-stationary stochastic
process has been for example exhibited and treated by
the harmonic analysis field since many decades now.
Classical time-scale/time-frequency analysis [1], [2] or
Fourier-like representation when the process belongs to
the periodically correlated (PC) subclass [3], [4] are
some well-known approaches to fulfill this purpose. They
help in giving information on the underlying measure of
the non-stationary process. Giving process information
has also been tackled in the Information Geometry
context [5], [6], [7], [8] for which the geometrical
structure of the process measure is of interest and not
only the geometrical structure of the process realization.
Some authors have also characterized the topological
structure of Information by theoretically demonstrating
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its homological property [9], [10]. In this work, we
intend to give a topological characterization for non-
stationary process measure.

With the results of [11] for non-stationary processes,
the process’ spectral measure is represented by several
dilation operators. Each of them is a real or complex
rotation matrix, depending on the nature of the process
studied. The spectral measure of the non-stationary pro-
cess is then embedded onto either the Special Orthogonal
group SO(n) of real rotation matrices or the Special
Unitary group SU(n) of complex rotation matrices and
is represented by a sampled curve on that group. In [8],
non-stationary processes are differentiated by comparing
curves of dilation operators trough Square Root Velocity
(SRV) functions developments [7], [12] on Lie group
but nothing is mentioned on the intrinsic shape, say the
topology of such curves. This is a major point we are
dealing with in the present work. To our knowledge, not
only there is no previous work which represents non-
stationary processes and specifically PC processes by
their dilation operators on Lie group but no previous
work has brought information of the topology of the
associated spectral measure.

The topological study of closed curves on a manifold
M is usually addressed by the means of homotopy
theory through the fundamental group, 71 (M). Roughly
speaking, a non-trivial fundamental group exhibits the
number of times a closed curve winds. This yields to a
topological invariant number called the Chern number.
Problem is to catch the number of windings and even
to be sure not to miss some of them. To overcome this
difficulty, the cell structure of the fundamental group is
exploited to give rise to homology group theory. For a
concrete and a real application perspective, homology
has been largely computed by means of the persistent
homology. As an example, [13] shows how persistent ho-
mology can be used in linguistic, [14] reveals some topo-
logical signature of random matrices, and topological
description of stochastic processes has been undertaken
by [15] through dimensionality reduction techniques. In
this context, recent evidence highlights the importance of



persistent homology within the field of stochastic signal
processing. This approach is adapted in consequence
to the dilation matrices for giving information on their
algebraic topology.

This paper begins with the section II which lays out
the theoretical dimensions of the Dilation theory. This
section intends to give the reader enough elements for
understanding how the spectral measure of a process
can be embedded in a manifold. Then, section III starts
by giving an intuitive explanation for introducing the
complex topic of homology. A more theoretical but not
necessary part is next proposed to formally expose the
homology. This section nevertheless gives the key for un-
derstanding how topological invariant shall be computed
through the dilation matrices. Further, section IV intro-
duces persistent homology and the associated persistent
diagrams. Section V exposes the results obtained and
proposes some interpretation and early conclusions on
the topological features determined. Finally, a conclusion
is drawn in section VL.

II. EMBEDDING SPECTRAL MEASURES ON A
MANIFOLD

Even before we can talk about topological informa-
tion, it is necessary to understand how the random
structure which defines a stochastic process can be
embedded onto a manifold. The objective of this part,
therefore, is to give the reader enough elements so that
he can understand this connection. The general idea is to
represent the spectral measure of the process by general
rotation matrices which encode the rotations necessary
for the Gram-Schmidt orthogonalization of the canonical
basis defined by the set {E;}7—; of vectors with a one
at the ¢—th position and zero elsewhere in the space
spanned by the kernel of the random process.

A. From spectral measure, shift operator to dilation
operator

We start our development by adopting the approach of
[16]. In this paper, the dilation of the spectral measure
is presented in the following way. Let {X;};cr be a
stationary process living on a group 7', there is a unitary
representation U of 7" on Hx = sp{Xy,t € T}, called
the time-domain [17], [18], [4], [19] and such that X; =
Ui X., where e is identity element of the group 7. In
this context the operator U is named the shift operator,
it describes how to go from any vector X;_; of Hx to
X;. With now G the dual of T', the Fourier transform of
the spectral measure F' of {X;}.er is given by

R, - / b, gl F(dg), T € T (1)
G

where [T, g] is the value of a character g on 7. When T' =
R, the characters are the functions ¢ : © — €™ L €
R, G is isomorphic to R and we obtain the usual Fourier
transform. Finally, there exists a Hilbert space H = Hx
and a unitary representation U, such that

R; = <X77Xe> = <U7'XeaXe>
= X;UTXe:/[T,g]X;‘E(dg)Xe,
G
(2)

where E' is the spectral measure of U,. By the unicity
of the Fourier transform we have consequently

F(A) = X*E(A)X, AeX 3)

with ¥ is a fixed o-algebra of 7. This expression finally
means that the spectral measure of the process { X }ter
in embedded in a larger spectral measure at the top left
corner such that

“4)

E(A) is therefore the spectral dilation of F(A). We
recognize here the Naimark dilation, which can also
be formulated through an operator viewpoint by the
following fundamental theorem

Theorem 1 (Naimark Dilation). A sequence of operators

{Ry},cy on a Hilbert space H is positive definite, i.e.
007" (Ri—jhi, hj) > 0 for all sequences {h;}&° if and

onliz if there exits an isometry U on U C H such that

Ry = PyU?" (5)

M
where P, stands for the orthogonal projection on A and
11 indicates a dimension reduction to . In addition, if

Kr=\/ U, 6)

n>0

then U is unique up to an isomorphism.

Basically (5) implies that the whole correlation se-
quence is obtained by successive power of the unitary
dilation operator U. Actually, by bringing (2) and (5), we
see that the unitary dilation operator U is nothing but the
shift operator. When digging in the literature, we found
many references dealing with the use of the Naimark
theorem for stochastic processes characterization. For
example, [20] or [21] tackle the dilation theory by
spectral measure considerations whereas [22], [23], [24],
[25] uses the positive definite sequences as a starting
point for developing the Naimark dilation. Finally, the
readers will find explicit proofs for the correspondance
between the shift operator and the Naimark dilation in
[26] or [27].



We finish this part by giving the structure of the unitary
dilation when a process is nonstationary. In this scenario,
the sequence of operators of Theorem 1 is no more ex-
plained by only one unique unitary operator U. Actually,
it is enough to think that for each time of origin there
exists a specific unitary dilation. This is the concept
of nonstationarity. The statistics of the process do not
depend on just of the lag but also of the time they are
computed. At each time, there is a different spectral com-
ponent, which yields to different unitary dilations. By
keeping the same notation adopted for the time domain
definition of the shift operator, at each time there is a new
shift operator. Then, X; = Uy X;_1 = HZ:O U;X.. The
formal generalization of the Naimark unitary dilation
is thus given by the Kolmogorov decomposition which
writes

Theorem 2 (Kolmogorov Decoposition). Let R a posi-
tive definite kernel. Then, there is a Hilbert space H and
applications U;, ¢ € Z such that

Rl‘,j PH Uz'Uz'—l o Uj_l ’"H Vi,j eN
Kr = \/ V'Hx
neZ
with V' = Hﬁ;(l) U;. A sequence of operator is then
obtained by the product of unitary dilations U;, 1 € Z.

B. Computation of the dilation matrix

So far, the appearance of the Naimark dilation operator
seemed rather theoretical, but the works of [11], [28],
[29], [24] and latter [30], [31] have shown how to obtain
a computational expression of the unitary dilation U
associated with the process {X;}.er. Two major points
are to be recalled for the obtention of U. The first one
is to remind the one-to-one correspondence between the
correlation (assumed normalized) matrix R of {X}ier
and a sequence of partial correlation coefficients, the par-
cors. This one-to-one correspondence has been largely
tackled in the literature by many different faces; some
have an interest in the polynomial decomposition of
random measure [32], other on geometrical characteris-
tics of the spectral measure [33], [5], [7]. Among all
the approaches bring out by this vaste literature, we
found that the definite positive property of the correlation
matrix R gave somewhat the most easy to interpret one-
to-one correspondence, this is deeply explained in [11].
In this reference, is associated to the correlation matrix
R another matrix, let’s say I' which has the definition

0 I T IS
0 Ta3 Taoy Lan
: (M

Fn—l,n

We arrive now at the second major points. Since by
definition |I'; ;| < 1,Vj >4,i=1,...,n, all the parcors
are also considered as contractions. This is a fundamental
point which allows to use the following theorem given
in [16]

Theorem 3. [Dilation of a Contraction] For every con-
traction 7' on the Hilbert space H there exists a unitary
dilation U on a space X containing H as a subspace,
which is minimal, that is, such that
o0
K=\ U"n ©)
—0oQ
This minimal unitary dilation is determined up to iso-

morphism, and thus can be called the minimal unitary
dilation of 7.

Owing to Theorem 3, this yields to explicitly express
the dilation of the contraction T' = I';;,7 > 7,1 =
1,...,n€eH as

U:(T DT*)eK:H@H

o ©)

where Dy = (I —T*T)'/2 is called the defect operator.
The basic structure of (9) stands for the Julia operator
which becomes when H = R, the so-called Givens rota-
tion. To finally obtain the unitary dilation of the spectral
measure F' of (4) it suffices now to compose with (9)
and (7). Due to the non stationarity of {X;};cr, and as
defined by the Kolmogorov decomposition introduced in
(2), each sub-unitary dilation U; are obtained by applying
successive Givens rotations on the rows of (7) (please
refer to [11] for a complete proof), such that

Ui = G(Fi,i_;_l)G(Pi,i-&-Q) U G(Fi,n) (10)

where G(I'; ;41) is the Givens rotation of I'; ;1 defined
as
Liivk Dr

. — Ttk

iyitk i,i+k

which explicitly writes in matrix form as

1
I
Piivk  Dr:,,, (12)
Dr, . — zz‘—&—kz
1

We draw the attention of the reader to the necessity to
have the same number of parcors to build each Givens



it Dr:T'i 4 Dr; . Dry, Lliivs Drs,, Dr:, ,Dr:, Tiita
DFMH _Fj,i+lrivi+2 _F;,i+1DF:,i+2Fivi+3 _F;:,i-l-lDFf,Hz) DF;HSFi,H—S
0 DFL,Hz _Fz,i+2r’i7i+3 _F;F,’i-I—QDF:,HS Fi7i+4
vi=| 0 0 Dr, ., —Lialiiva (13)
0 0 0 Dr...,

rotation. Finally, a basic form for the sub-unitary dilation
matrix U; is therefore (13) which is often called an upper
Hessenberg matrix in the literature [34]. This is a rotation
matrix which belongs to SO(n) or SU(n), the special
orthogonal of special unitary group respectively.

C. A step by step implementation example

To illustrate these theoretical results, we have gener-
ated five periodically correlated processes and displayed
their SO(3) representation, thus two parcors were used
for each of the sub-unitary dilation matrix U;. Given
the examples of Fig.1, for which the periodicity of each
signal is equal to 7' = 20 samples, we have used
the perARMA R package and the included function

perpacf to compute the 20 sequences of (arbitrary)
3 parcors. Indeed, we have basically X+ = U; X, for
a periodically correlated process with period 7'; only T’
sequences bring the spectral information. Estimating 3
parcors yield to a representation of the process on SO(4),
for the representation of Fig.1 we kept only 2 parcors so.
We use next the set {F”}Zjoji ~? to obtain each sub-
unitary dilation matrix U; with respect to (14).

The unitary dilation U; of {X;}ier (for the general
nonstationary case) are then embedded in the Lie group
of real or complex rotations. As, in addition we assume
that {X;}icr is periodically correlated, the set of sub-
unitary dilation {U;};=1 ., is periodic as well and the
spectral measure F' draws a closed path on the Lie group.
Since now the process { X; }+c7 has a representation on a
differential manifold, we are able to give its topological
intrinsic characteristics.

[II. HOMOLOGY

The fundamental previous section has defined a way to
embed a nonstationary stochastic process on a Lie group.
The process is represented by points in this manifold,
and the set of points draw a closed path. We aim now
at extracting topological invariant from this shape.

This section is devoted then to the presentation of
topology and algebraic topology tools that will be used
to extract intrinsic topological information from the

periodically correlated processes studied. We will first
introduce the basic concepts of homology and a theoret-
ical part will follow for people who would be interested
in a more mathematical justification. With the basis
of homology in mind, the second part can be omitted
without compromising the understanding of the results.

A. The short basis of homology

The very basis of homology is to characterize n-
dimensional shapes (let’s say discrete shapes) by their
k-dimensional holes, £ < n. Unlike homotopy, which
uses the notion of loops, i.e., a closed path that starts
and ends at the same point, homology uses the notion of
cycles, i.e. a closed path without the consideration of its
origin. To determine the number of dimensional holes
of a shape, the points are joint together to form what
is called a cell in the algebraic topology context. When
the cells are glued together, they form a complex, a sort
of skeleton of the shape. There are several possibilities
for defining a cell, and thus a complex. In order to meet
our needs, we chose the simplicial complex that meets
the simple interpretation and calculation objectives. The
skeleton of the form is then described by dimensional
simplices, whose forms are illustrated by the Fig. 3. The
idea behind homology is to then look for the closed path
created by the composition of dimensional simplices. To
put words on this, a 1-dimensional hole, which we will
associate with a circle, is characterized by the sum of
the segments (1-simplicies) of the skeleton to form a
closed trajectory (a cycle). If now this closed trajectory
is not a part (a boundary) of another form constituted
by the composition of triangles (2-simplicies), then it
is asserted that the closed trajectory represents a 1-
dimensional hole for the shape. In that case, it belongs to
the first homology group, denoted H; and the topological
invariant associated with the number of independent 1-
dimensional hole for the shape is defined as the Betti
number, 31 = rank(Hi). The shape is finally described
by its Betti numbers (5o, 81, . - ., fk)Vk < n.
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B. Illustration by the example

Let us give a simple example to illustrate these con-

cepts. In the Fig. 3 the triangle v = (a, b, ¢) has faces
(ab), (bc), and (ca). The boundary of the triangle is then
(ab)+ (bc)+ (ca) which defines a closed path. Therefore,
(ab) + (bc) + (ca) is a cycle, but it is also a boundary.
We conclude that (ab) + (bc) + (ca) do not represent a
hole.
To end this illustration part, we propose to the reader
to observe the Fig. 4. This plot displays three discrete
shapes materialized by the distribution of the points
along a circle, Fig.4-(b) or a torus, Fig. 4-(c). In this
example, Fig. 4-(a) is a point. It is a connected com-
ponent and thus has a Betti number 3y = 1. The Betti
numbers associated with Fig. 4-(b) are (5p = 1,51 = 1),
there is consequently one connected component and 1-
dimensional hole. Finally, the Betti numbers obtained
for points distributed along a torus are (5y = 1,31 =
2,82 = 1), i.e. one connected component, any closed
path drawn on the surface can be reduced to a point,
two circles, the intrinsic generators, and one cavity.

C. The mathematical justification

Consider S as a set of points of R” and fix k£ < n.
Let for the example o0 = (vg,v1, - ,v;) be the k-
simplex made by the convex hull of its (k+ 1) vertices.
Then, a O-simplex is a point of S, a 1-simplex is a
segment joining two points of .S, a 2-simplex is a filled
triangle, a 3-simplex is a filled tetrahedron and so on.
The faces of a k-simplex is the sub-k-simplex given
by (v1,-+ ,Vi—1,Vi+1, - ,Ux). The Fig. 3 gives visual
representation for these concepts.

Definition 1 (simplicial complex). The set of k-
simplices which are either disjoint or intersect in a
common face is called a simplicial complex and is
denoted Cy. It is often seen as the skeletal representations
(mesh type representations) of data point clouds.

We recall here that the fundamental question raised
by the homology theory is to determine intrinsic
dimensional-hole features of the underlying point clouds.
Is to be determined how these dimensional-holes are to
be found when the simplicial complex is obtained. We
have to first define how k-simplices compose themselves.

T e Vi=1,...,20 (14

I3

—Ligs

V1—1Ti3?

Definition 2 (k-chain). The formal sums of k-simplices
in Cy, called k-chain, is endowed with a group structure
when we define the inner commutative addition ¢ + j =
(1Uj) — (iny) for all 4,5 € Cj. This amount to an
addition over the field Zs.

To illustrate, if two O-simplices (a), and (b) are
disjoint, then (a) + (b) = (b) + (a) whereas (a) + (a) =
(b)+(b) = 0. Finally, it remains to know when a k-chain
participates or not to the definition of a dimensional-
hole. To proceed, we need the definition of what is called
boundary and cycle.

Definition 3 (Boundaries and cycles). The boundary of
a simplex ¢ € Cj is the formal sum of the faces (of
dimensions k—1) of ¢. It defines a group homomorphism
Oy : Cr = Ci_1. An k-chain u is then a k-boundary
if there exists (k + 1)-chain v such that Oy (v) = u,
meaning that v € Imdy,1. Now a k-chain w is a cycle
if Ok (u) = 0, meaning that u € Ker ().

We can now define the k-th homology group, as

Hy, = Ker(0)/Im(0k+1)- (15)

It consists of all elements that are cycles (dimensional
holes) but not boundaries. By using again the example
of section III-B but in a more formal way; we obtain
that the boundary map 0y of the triangle v = (a, b, ¢) is
2(v) = (ab) + (bc) + (ca) and the boundary map 0 is
On((ab)+(be)+(ca)) = (a)+(b)+(b)+(c) +(c) +(a) =
(). The k-chain u = (ab) 4 (bc) + (ca) is consequently a
cycle since 91 (u) = ) and is a boundary as well, indeed
O2(v) = u. Then d2 09 = () and w is not an element of
first homology group Hj.

IV. PERSISTENT HOMOLOGY

Having now a better idea on the mathematical con-
cepts of homology, we turn the discussion on the persis-
tent homology. persistent homology has been applied for
time series classification, [35], image pattern recognition
[36], biology [37], phylogenetic [38], science of lan-
guage [39] and various other fields like [40] or for brain
monitoring [46], [47]. As seen in the previous sections,
the group homology is obtained thanks to the comparison
of simplices at different dimensions. The invariants,
the Betti numbers for example, directly depend on the
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Fig. 1. (Left column), one realization of each of the three signals from the 2 classes PARMA(2,1) and PAR(2). Each of these signals is
periodically correlated with a period 7' = 20 samples among the 1000 samples available. The sig.(b) and sig.(c) have different generating
coefficients. (Right column), an example of a trajectory formed by the dilation matrices in SO(3) for the associated signals. The trajectory
is represented inside the ball of radius 7. To plot the curve, we have first interpolated with splines into the Lie algebra and used next the

exponential map to return on SO(3).

dimension of the simplicial complex so. If we dispose of
n points and chose to build an n-dimensional complex,
some hidden invariants may not be observed as cycles
will necessarily be boundaries as well. A contrario, if
we chose to determine the invariants with a number
k < n of points, high dimensional invariants could be
missed. This precisely why persistent homology is used
for, it computes homology at different scales, that is
with varying simplicial complex dimensions, and keep
track of the evolution of the homology groups. This
corresponds to build a filtered complex with the sequence
Ci C Cy--- C Cp, with C,, the maximum simplicial
complex. Once again, the literature is extremely vast
about the choice to make for the filtration process. This
is largely out of the scope of this paper and we let

the readers interested explore more the literature for
comparisons and properties of each of the filtration. For
our concern, we have chosen the Vietoris-Rips filtra-
tion for it simple implementation and robustness. This
method consists in fixing the dimension of the simplicial
complex by the number p. The simplices (vq,- -+ ,vg)
are next formed as soon as ||v; — v;|| < p, Vi, j. This
operation is reproduced with an increasing p until the
simplicial maximum complex containing all the data is
reached. This method is briefly illustrated in Fig. 5. More
details on the computation can be found in [41], [42] and
[43].

During the construction of the Vietoris-Rips filtration,
holes will appear and then later disappear due to the
increasing dimension of the complex. This phenomenon
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(Left column), one realization of each of the 2 signals from the 2 classes PAR(2) and Amplitude Modulated. The sig.(d) is

periodically correlated with a period 7" = 20 samples among the 1000 samples available, and sig.(e) has the same generating coefficients
than that of sig.(c) but with a period of 7' = 54. (Right column), an example of a trajectory formed by the dilation matrices in SO(3) for
the associated signals. The trajectory is represented inside the ball of radius 7. To plot the curve, we have first interpolated with splines into

the Lie algebra and used next the exponential map to return on SO(3).
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Fig. 3. A n-simplex is the convex hull of (n+1) points in an n-

dimensional space. It is the generalization of a triangle. Top (from
left to right): A O-simplex is a point, this is (a) into the plot. A 1-
simplex is a segment, this is (a, b) (where a and b are the vertices
that are at the extremity of the segment), a 2-simplex is a triangle
(a,b, c) in the plane. Bottom (from left to right): the corresponding
faces.

is reported in a diagram called a persistent diagram.
It encodes the birth time and the death time of the
dimensional hole. To fix ideas, we invite the reader to
examine Fig. 6. This plot allows to see for three different
p the evolution of the simplicial complex and we hope

illustrates why some holes appear at a certain dimension
and disappear next. The corresponding persistent dia-
gram is also provided in this plot. The toy example being
one dimensional, only O-simplices and 1-simplicies are
computed. This gives the 0-order holes and 1-order holes
displayed by Fig. 6. The most important result given by
this figure is the lonely point at coordinates (0.45,1.2).
It materializes for p = 0.45 the birth of a 1-dimensional
hole, and the death of this hole for p = 1.2, these facts
are explicitly shown by Fig. 6.

To our purpose, the shapes we would like to topologi-
cally characterize are the shapes obtained by the dilation
matrices on SO(n). In order to compute the persistent
homology on this Lie group with the Vietoris-Rips filtra-
tion, we have used the metric d(4, B) = ||log (AT B) |,
where ||.|| denotes the classical Frobenius norm [44].
These theoretical explanations done, we now propose to
use the persistent homology and the underlying persistent
diagram. We aim consequently at showing that according
to their non-stationarity, PC processes have intrinsic
topological features.

V. THE TOPOLOGICAL INFORMATION

This section is devoted to showing, by the analysis
of the persistent diagrams, that the different periodically
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Fig. 4. (a) points distributed along with a circle, the Betti numbers are (8o = 1, 81 = 1), (b) points distributed along with a torus, the Betti

numbers are (8o = 1,51 = 2,082 = 1).

Fig. 5. A nested sequence of simplicial complexes is created by
increasing the radius of balls represented in orange. As soon as two
balls intersect, the points in their center are connected. When three
balls intersect, we form the triangle, and so on. At stage 3 a hole
appears. It is not yet the boundary of a simplex. This hole will
disappear when its four vertices will be two by two connected.

correlated processes classes illustrated in Fig. 1 and
Fig. 2, do have intrinsic topological features. For the
experience, we have computed 500 trials of the three
models proposed and computed the persistent homology
on the interpolated curves. The computation of the
parcors was carried out using the R package perARMA,

and the python package dionysus [40] was used for the
persistent diagrams computations.

A. Information given by the persistent diagrams

The Fig. 8 displays the persistent diagrams of 4
randomly selected realizations for each of the processes.
The first point to raise is the no second order diagram,
whatever be the class of the process. This point will
be a bit more explored in the next section, but we
can already say that the representation of a process on
SO(3) yields to a curve which belongs to a preferred
plane. In the context of rotation matrices, it suggests that
the spectral measure of a process is oriented. The next
point to raise is the relative stability of these diagrams.
Often, the points are located in a closed neighborhood,
it suggests that the closed path made of the dilation
matrices is quite stable as well. To one trial to the other,
the topological characteristics are the same. Finally, as
one could have expected via the analysis of the sig.(d)
curve of Fig. 2, this process tends to be a stationary
one. This is confirmed by Fig 8-(d) which reveals no
particular hole. A contrario, the analysis of the sig.(e)
of Fig. 2 suggested that there existed several loops, this
is once again confirmed by the persistent diagram of
Fig. 8-(e). The synthesis of these results brought out by
the persistent diagrams of Fig. 8, yield us to prematurely
conclude that which needs to be consolidated by other
analysis. Since only 4 random trials have been showed,
we propose now to analyze the average Betti number
sequence of all the trials.
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Model Bo B P

PARMA(2,1) 1 1 0

PAR(2), T'= 20 1 1 0

PAR(2), T' = 54 4 2 0

Amplitude Modulated || 0 0 0
TABLE

BETTI NUMBERS ACCORDING TO THE CLASS OF THE PROCESSES.

B. Information given by the Betti numbers

Similarly to the approach of [14], we have analyzed
the sequence of Betti numbers. We present the results
in Fig. 9, for the O-order diagram Fig. 9-(a), the 1-
order diagram Fig. 9-(b) and the 2-order diagram Fig. 9-

(c). The different curves proposed are the averaged
curves over the 500 realizations of the Betti sequences.
Let us start by the end and the plot which reinforces
the conclusion previously mentioned. This is, as seen
previously, the Betti sequences associated with the 2-
order diagram. The plot of Fig. 9-(c) clearly shows that
almost all the processes do not have a second order hole,
so no cavity. Even if the sig.(e) admits Betti numbers
variations along with the filtration, the amplitude of
these variations is so weak that we can not consider
the sig.(e) to have a curve which spreads off over one
more dimension. More appealing is the Fig. 9-(b). This
exceptional figure shows all we need to conclude on
the topological features. We have an almost stationary
process, this is sig.(d) which has consequently no loop
in its representation on SO(3). We have two PAR(2)
models with different generating coefficients, they are
the sig.(b) and sig.(c) which admits the same averaged
Betti numbers sequence. We have a PAR(2) model with
the same generating coefficients than that of the sig.(b)
but with a period T' = 54 instead of T' = 20, this
is the sig.(e). This process shows the highest number
of loops in its representation and finally, we have the
sig.(a) which is a PARMA(2,1) model. Its averaged
Betti numbers sequence is without any doubt different
from the other sequences. So, there is no ambiguity in
discerning the process classes, even more, if the generat-
ing coefficients are different, the averaged Betti numbers
sequence says this is the same class. At least, and to
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finish with this part, the analysis of Fig. 9-(a) shows the
number of connected components. As we can see, the

sig.(e) shows a lot number of connected components,
this is related to the strong dispersion of its points. For all
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PAR(2), T =20 >1
PARQ2), T =54 >4
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TABLE IT
BETTI NUMBERS ACCORDING TO THE CLASS OF THE PROCESSES.
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the others, the number of connected components, which
is greater than one certainly, is the same; at the exception
once again of the sig.(d) for which there is only one
connected component. To summarize these results, we
propose to update the Table I to Table II.

C. Information given by the persistent entropy

Contrary to some authors who applied persistent ho-
mology with a single realization of the signal treated
[45], our approach is more probabilistic. Indeed, by
launching many realizations of the processes for each of
the models under study, allows us to describe the proba-
bilistic aspect of persistent homology diagrams. We then
investigate the randomness description of the information
topology. Subsequently, to our analysis conducted in the
previous subsections, we particularly investigate the nor-
malized persistent entropy. We defined the normalized
entropy as

H(p) = (16)

Zp]log 2

where p; = % with I; = y; —xzj, L = E ", 1;, and
N, the number of points in the persistent dlagram. In
this way, the maximum entropy is set to 1 whatever the
number of points. For any random variables, the entropy
reveals the knowledge we may have on its values. For
example, the distribution that corresponds to maximum
entropy, thus the minimum of information for the real-
izations of the process, is the uniform distribution. When
applied to persistent diagram, it indicates if a particular
topological structure emerged from the point cloud. For
that case, a maximum entropy will interpret itself as
an equal lifetime for all the Vietoris-Rips complexes
and will indicate constrained repartitions of the dilation
matrices. To stress this point, let us track the evolution
of the normalized persistent entropy distribution for the
l-order diagram of a noisy circle when the level of
noise increases. The results are reported in Fig. 10. From
this figure, the more the central hole is perceptible, the
lower the average of the normalized persistent entropy
distribution and its shape tends to a uniform distribution.
At the opposite, when the noise level is so important that
the points seem to be drawn from a uniform distribution

log
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on [0, 1]%, the distribution tends to a Dirac with obviously
a high mean value. This is because the points are not
free to settle anywhere inside the square. They are
constrained by the distribution law which is a purely
unit Gaussian process. Let us now see the distribution of
the normalized persistent entropy for the processes under
study. We have plotted these distributions on Fig. 11.
As usual so far, Fig. 11-(a) is associated with the O-
order persistent diagram, Fig. 11-(b) with the 1-order
diagram and Fig. 11-(c) with the 2-order diagram. Our
conclusions for the Fig. 11-(a) are that the persistent
entropy for the O-order diagram allows showing the
very weak difference between the processes. All the
PAR(2) models tend to a Dirac distribution whereas the
PARMA(2,1) model spread off a bit more. The analysis
next of the persistent entropy distribution associated with
l-order diagram shows the fact that the sig.(b) and
sig.(c) have a low number of points in the diagram
and that the loop is clearly identified by only one point
with a high lifetime. This seems not to be the same for
the sig.(e), for which there are for sure many points
in the diagram with more variability. The sig.(d) has
nearly the same persistent entropy distribution, which
reveals its high volatility and the difficulty to estimate
a loop. At least, only the sig.(d) admits a persistent
entropy distribution for the 2-order diagram, the values
are extremely weak so information about that is almost
surely not significant. We have seen with this analysis
how the persistent entropy distribution could bring con-
fidence in the determination of the number of connected
components or loops. In addition, we have also seen that
for the persistent entropy associated with the O-order
diagram, it was possible to discriminate the different
processes.

To conclude this part, and based on the results ex-
posed, we are in a position to affirm that the structure
of the data point cloud formed by the dilation matrices
reveals important intrinsic and hidden properties of the
PC random processes. Each of the process class clearly
possesses an intrinsic topological structure. We also hope
to open doors towards a new way of characterizing spec-
tral properties of non-stationary processes by topological
considerations.

VI. CONCLUSION

The main goal of this work was to give topological
features of non-stationary Periodically Correlated (PC)
stochastic processes. To do so, we needed first to embed
the stochastic process onto a manifold. This has been
done by the use of the Dilation theory to connect
processes’ spectral measure and rotation matrices. Due
to the periodicity of the spectral measure of the process
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Fig. 11. Normalized persistent entropy histograms associated with, (a) 0-order persistent diagram, (b) 1-order persistent diagram and (c)

2-order persistent diagram.

studied, the trajectory formed by the dilation matrices on
the Lie group is a closed path. Based on this, we have
implemented a persistent homology algorithm based on
the Vietoris-Rips filtration to obtain useful topological
invariants. As expected, the results obtained allowed to
clearly differentiate the classes of processes, in such a
way that with certain confidence we are able to give
the Betti numbers associated with the class of models.
For example a PAR(2) model of 1000 samples and a
period T 20 has Betti numbers (1 < By < 4,
61 = 1, B2 = 0) for its representation on SO(3). The

analysis of the results given by this work also showed
that for the representation on SO(3) the spectral measure
of the processes seemed to be oriented. Finally, we would
like to mention that the processes studied in this work
had finally different persistent diagram which brought
out all the necessary information. We may have more
difficult scenarios for which other algebraic or deep
learning methods could be employed for having a similar
interpretation. This is left to future work.
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