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Abstract

This paper discusses an interval-valued state estimation framework for linear dynamic systems. In particular, we derive an
expression of the tightest possible interval estimator in the sense that it is the intersection of all interval-valued estimators for the
system of interest. However, from a numerical implementation perspective, this estimator might suffer from a high complexity,
at least in the general setting. Therefore, practical implementation might require some over-approximations which would yield
a good trade-off between computational complexity and tightness. We discuss a number of such over-approximations. We also
consider the general estimation scenario when the system parameters, the initial state, the input signal and the measurement
are all uncertain.
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1 Introduction

State estimation is a key problem in control engineer-
ing and more generally, in decision-making systems. One
approach to this estimation problem is that of inter-
val observers. Contrary to classical observers which gen-
erate single valued state estimates [19,1], interval ob-
servers produce set-valued estimates of the state for un-
certain dynamical systems. The philosophy of the ap-
proach is inspired by the so-called set-membership esti-
mation framework [14,7]. However, as stated in [16], the
proper concept of interval observer is surprisingly recent
and can be traced back to [12]. More precisely, inter-
val observers are dynamical systems which provide an
interval-valued trajectory (defined by lower and upper
bounds) which contains all possible state trajectories of
a given uncertain system. The model uncertainties may
arise from input disturbances, sensor noises or unknown
initial conditions. Also, the uncertainties are considered
from a deterministic point of view, that is, no stochas-
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tic significance is assigned to them. In these settings,
many contributions have been made for different classes
of systems: continuous-time Linear Time Invariant (LTI)
[15,5,8,17], discrete-time LTI/LTV systems [9,16], Lin-
ear Parameter Varying (LPV) systems [11], nonlinear
systems [21,18]. For more on the interval observer liter-
ature we refer to a recent survey reported in [10].

Although the existing literature covers a large variety of
systems, a question of major importance that has not
received much attention so far is that of the size (or vol-
ume) of the estimated interval-valued state trajectory.
In effect, there exist in principle infinitely many interval
estimators that satisfy the outer-bounding condition for
the state trajectories of the system of interest. But ide-
ally, one would like to find the smallest possible interval
set (in some sense) among all those which enclose the
states. Hence we ask the question of how to characterize
the tightest interval estimator in the sense that the upper
and lower bounds are closest componentwise. A second
matter of interest concerns how to tackle the challeng-
ing estimation scenario where in addition to usual un-
certainty about the signals, the system parameters (ma-
trices) are only known to belong to interval sets. Again
this issue has not received a sufficient treatment in the
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existing literature.

The current paper intends to address these two ques-
tions. For this purpose, a new approach is proposed to
tackle the problem of designing an interval-valued es-
timator. For simplicity of exposition we restrict atten-
tion to continuous-time LTI systems but the proposed
approach can be extended at a moderate effort to Lin-
ear Time-Varying (LTV) systems. The key ingredient
of the proposed framework is a parametrization of the
interval set in the form of a center jointly with a ra-
dius which measures the width (size) of the interval set.
Then we show that simple maximization techniques al-
low to construct the tightest enclosing interval set for the
state. Note however that computing numerically such
an interval-valued estimate of the state might be expen-
sive in general. We therefore discuss some approxima-
tion strategies illustrating the trade-off between qual-
ity (tightness indeed) of the estimate and the computa-
tional price to pay for it. Note that another aspect of the
quest for tightness in interval estimation was discussed
in [20] and [22]. However, these references considered
cost function-based notions of tightness over the whole
time domain and for a pre-specified class of estimators.
In contrast, the current paper elaborates on a property
of strict tightness which holds for any time.

The first part of the material to be presented here al-
ready appeared in the preliminary work [2]. That work
concerned only the situation where the input signal, the
measurements and the initial state of the system are un-
certain and the parameters are considered to be exactly
known. The second part extends the discussion to the
more general and challenging situation where both the
parameters and the signals are uncertain.

Outline. The remainder of the paper is organized as
follows. In Section 2, we set up the estimation problem
and present the technical material employed for design-
ing the estimator. In Section 3 we discuss estimators in
open-loop, that is, estimators that result only from the
simulation of the state transition equation without any
use of the measurement. Section 4 discusses a systematic
way of transforming a classical linear observer into an
interval-valued estimator. The general case when both
parameters and signals are uncertain is treated in Sec-
tion 5. Section 6 reports some numerical results confirm-
ing tightness of the proposed estimator. We conclude the
paper in Section 7.

Notation. R (resp. R+) is the set of real (resp. nonneg-
ative real) numbers. For a real number x, |x| will refer

to the absolute value of x. For x = [x1 · · · xn]
⊤ ∈ Rn,

‖x‖p will denote the p-norm of x defined by ‖x‖p =

(|x1|
p+· · ·+|xn|

p)1/p, for p ≥ 1. In particular for p = ∞,
‖x‖∞ = maxi=1,...,n |xi|. For an n-dimensional vector
x, diag(x) will denote the n × n square matrix having
the entries of x on its main diagonal. If X ∈ Rn×n,

then diag(X) is the diagonal matrix obtained from X
by setting its off-diagonal entries to 0. For a matrix
A ∈ Rn×m, ‖A‖p is the matrix norm induced by the

vector norm ‖·‖p, ‖A‖p = max‖x‖p≤1 ‖Ax‖p.

If A = [aij ] ∈ Rn×m and B = [bij ] ∈ Rn×m are real
matrices of the same dimensions, the notation A ≤ B
will be understood as an elementwise inequality on the
entries, i.e., aij ≤ bij for all (i, j). |A| corresponds to the
matrix [|aij |] obtained by taking the absolute value of
each entry of A. In case A and B are real square matri-
ces, A � B (resp. A ≻ B) means that A−B is positive
semi-definite (resp. positive definite). A square matrix
A is called Hurwitz if all its eigenvalues have negative
real parts. It is called Metzler if all its off-diagonal en-
tries are nonnegative.
For a positive integer n, we use the notation Ln(R+) =
{s : R+ → Rn} to refer to the set of n dimensional
vector-valued functions on R+. L∞(R+,R

n) is the sub-
set of Ln(R+) containing bounded and measurable
functions.

2 Preliminaries

2.1 Estimation problem settings

Consider a Linear Time Invariant (LTI) system de-
scribed by

ẋ(t) = Ax(t) +Bw(t) (1a)

y(t) = Cx(t) + v(t) (1b)

where t ∈ R+ refers to time, x ∈ Ln(R+) is the state
of the system with x(0) termed the initial state; w and
v are (possibly unknown) external signal respectively in
L∞(R+,R

nw) and L∞(R+,R
ny ), y ∈ Lny (R+) is the

measured output. A ∈ Rn×n, B ∈ Rn×nw and C ∈
Rny×n are some real matrices.

First of all, we define intervals of Rn. Let x and x be two
vectors inRn such that x ≤ xwith the inequality holding
componentwise. An interval of Rn, denoted [x, x] is the
subset defined by

[x, x] =
{

x ∈ R
n : x ≤ x ≤ x

}

(2)

Now we consider the following assumption.

Assumption 1 There exist (known) bounded signals
(w,w) and (v, v) respectively in L∞(R+,R

nw) and
in L∞(R+,R

ny ) such that w(t) ≤ w(t) ≤ w(t) and
v(t) ≤ v(t) ≤ v(t) for all t ∈ R+.

Here again the inequalities are understood component-
wise.
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We consider in this paper the problem of synthesizing
an interval estimator for the state of the LTI system
(1). The notion of estimator is understood here in the
general sense of a map (also called an operator) between
function spaces which may or may not be realizable as
the solution of a differential equation (see Remark 1 and
Definition 1 below). Hence the interval estimator to be
designed will not necessarily be in the more usual form
of observer. Considering that the initial state x(0) of (1)
lives in an interval of the form [x(0), x(0)] ⊂ Rn and that
the external signals w and v satisfy Assumption 1, we
want to estimate upper and lower bounds x(t) and x(t),
t ∈ R+, for all possible state trajectories of the uncertain
system (1).

Remark 1 A dynamical system is viewed here as a map
Σ : Rnx ×Lnω (R+) → Lnz (R+) between function spaces
with R+ being called the time domain of the system. Σ
associates to a pair (X0, ω) ∈ Rnx ×Lnω (R+) of a vector
X0 called the initial state and a signal ω called the input
signal, a signal z , Σ(X0, ω) called the output signal.
It can be conveniently described by its so-called input-
output map fΣ : R+×R+×Rnx ×Lnω (R+) → Lnz (R+)
defined by z(t) = fΣ(t0, t,X0, ω). The so-defined z(t) is
hence the output of the system Σ at time t when it starts
at time t0 from state X0 and is driven by the input ω.
Also, some dynamical systems can be described through
the solutions of a differential equation called state-space
realization (similar to the differential equation in (1)).
See e.g., [23] for more on this formalism.

Definition 1 (Interval estimator) Consider the sys-

tem (1) and letω(t) = [w(t)⊤ w(t)⊤ v(t)⊤ v(t)⊤ y(t)⊤]⊤

and X0 = [x(t0)
⊤, x(t0)

⊤]⊤ for some t0. Consider a

dynamical system Σe with output (x, x) defined by its
input-output maps (

¯
fΣe

, f̄Σe
) as

x(t) =
¯
fΣe

(t0, t,X0, ω)

x(t) = f̄Σe
(t0, t,X0, ω)

(3)

where
¯
fΣe

: R+ × R+ × R2n × Lnω (R+) → Rn and f̄Σe

is defined similarly.
The system defined by (3) is called an interval estimator
for system (1) if:

(a) Any state trajectory x of (1) satisfies x(t) ≤ x(t) ≤
x(t) for all t ≥ t0, whenever x(t0) ≤ x(t0) ≤ x(t0)

(b) (3) is Bounded Input-Bounded Output (BIBO) sta-
ble, i.e. (x, x) is bounded whenever X0 and ω are
bounded.

Here the signals bw, bv, y and the initial state vector X0

are viewed as the inputs of system (3). Boundedness is
understood in the sense of the infinity norm being finite.

We will discuss two types of interval estimators: open-
loop interval estimators (or simulators) where (3) does

not depend on the measurements y and the measure-
ment noise bv ; and closed-loop interval estimators where
measurement is fed back to the estimator.
There are in principle infinitely many estimators that
qualify as interval estimators in the sense of Definition
1. It is therefore desirable to define a performance index
(measuring e.g. the size of the estimator) which selects
the best estimator among all. We will be interested here
in the smallest interval estimator in the following sense.

Definition 2 Let S denote a subset of Rn. An interval
IS ⊂ Rn is called the tightest interval containing S if S ⊂
IS and if for any interval J of Rn, S ⊂ J ⇒ IS ⊂ J .

In other words, the tightest interval IS "generated" by
S is the intersection of all intervals containing S.

2.2 Preliminary material on interval representation

An important observation for future developments of
the paper is that the interval [x, x] can be equivalently
represented by

C(cx, px) =
{

cx + Pxα : α ∈ R
n, ‖α‖∞ ≤ 1

}

(4)

where

cx =
x+ x

2
, Px = diag

(

px
)

, px =
x− x

2
(5)

Here, the notation ‖·‖∞ refers to the infinite norm of
vectors and diag(v) is as defined in the Notation section.
We will call the so-defined cx the center of the interval
[x, x] and px its radius (or width). To sum up, the interval
set can be equivalently represented by the pairs (x, x) ∈
Rn × Rn and (cx, px) ∈ Rn × Rn+ i.e., [x, x] = C(cx, px).
Finally, it will be useful to keep in mind that then x =
cx − px and x = cx + px.

The following lemma states a key result for later uses.

Lemma 1 Let (cz, pz) ∈ Rm ×Rm+ and (cw(t), pw(t)) ∈
Rnw × R

nw

+ be center-radius representations of some in-
tervals [z, z] and [w(t), w(t)] where cw is in L∞(R+,R

nw)
and pw in L∞(R+,R

nw

+ ). Let F ∈ Rn×m be a fixed value
matrix and H be a matrix function in L∞(R+,R

n×nw).
Consider the subset I of Rn defined by

I =

{

Fz +

∫ t1

t0

H(τ)w(τ)dτ :

z ∈ [z, z], w measurable, w(τ) ∈ [w(τ), w(τ)]
}

(6)

with [t0, t1] being some interval of R+. Finally, consider
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the pair (c, p) defined by:

c = Fcz +

∫ t1

t0

H(τ)cw(τ)dτ (7)

p = |F | pz +

∫ t1

t0

|H(τ)| pw(τ)dτ (8)

Then, [c− p, c+ p] is the tightest interval set enclosing I

in the sense of Definition 2.

PROOF. We first show that I ⊂ [c−p, c+p]. Let x ∈ I.
Then x can be written in the form

x = Fz +

∫ t1

t0

H(τ)w(τ)dτ,

where z and w obey the conditions in the definition of
I. As discussed in Section 2.2 we can describe the un-
certain vector z and uncertain signal w by z = cz +
Pzαz and w(τ) = cw(τ)+Pw(τ)αw(τ) respectively with
αz ∈ Rn and αw(τ) ∈ Rnw such that ‖αz‖∞ ≤ 1 and
‖αw(τ)‖∞ ≤ 1 for all τ and Pz = diag(pz), Pw(τ) =
diag(pw(τ)). It follows, by plugging these representa-
tions in the expression of x, that x = c + ψ with c ex-
pressed as in (7) and

ψ = FPzαz +

∫ t1

t0

H(τ)Pw(τ)αw(τ)dτ.

Now consider the vectors r+ ∈ Rn and r− ∈ Rn defined
for all i = 1, . . . , n, by

r+i =max
{

ψi : ‖αz‖∞ ≤ 1, ‖αw(τ)‖∞ ≤ 1, τ ∈ [t0, t1]
}

r−i =min
{

ψi : ‖αz‖∞ ≤ 1, ‖αw(τ)‖∞ ≤ 1, τ ∈ [t0, t1]
}

By denoting the i-th row of F with f⊤i and that of
H(τ) with h⊤i (τ), we see that the maximizing values of
the decision variables are α∗

z = sign(fi) and α∗
w(τ) =

sign(hi(τ)), t0 ≤ τ ≤ t1 hence leading to

r+i =
∣

∣f⊤i
∣

∣pz +

∫ t1

t0

∣

∣h⊤i (τ)
∣

∣pw(τ)dτ.

Here sign refers to the sign function operating compo-
nentwise. Hence for all i = 1, . . . , n, r+i is equal to the
i-th entry of p defined in (8) and so r+ = p. Similarly
it can be seen that r− = −p. By definition of r+ and
r−, it is obvious that c + r− ≤ x ≤ c + r+. Hence
I ⊂ [c− p, c+ p].
For clarity of the rest of the proof, we addition-
ally observe that since −pi = minx∈I(x − c)i and
pi = maxx∈I(x− c)i are minimum and maximum values
respectively, they are attainable for some elements si

and s̃i of I, i.e., (si)i = ci − pi and (s̃i)i = ci + pi.
Proof of tightness. We are now left with proving that
[c − p, c + p] is the tightest enclosing interval set
for I. For this purpose, consider another interval set
[g, g] such that I ⊂ [g, g]. Pose pg = (g − g)/2 and
cg = (g + g)/2 and consider x ∈ I. Since x lies in
the intersection of [c − p, c + p] and [g, g], there is α
and αg all with infinity norm less than 1, such that
x = c + diag(p)α = cg + diag(pg)αg, which translates
componentwise into

−pg,i − ci + cg,i ≤ piαi ≤ pg,i − ci + cg,i (9)

for i = 1, . . . , n. From the first part of the proof, we
know that for any i = 1, . . . , n, there exists (si, s̃i) ∈ I2

such that (si)i = ci − pi and (s̃i)i = ci + pi. Since x is
an arbitrary element of I, the inequalities (9) must hold
for both particular instances x = si and x = s̃i. And for
these values of x ∈ I, αi in (9) clearly takes the values
−1 and +1 respectively. It follows that

−pg,i − ci + cg,i ≤ ±pi ≤ pg,i − ci + cg,i

from which we see that cg,i− pg,i ≤ ci− pi and ci+ pi ≤
cg,i + pg,i. Hence [c− p, c+ p] ⊂ [g, g]. This shows that
[c− p, c+ p] is the tightest interval containing I.

Remark 2 The definition of I through (6) implicitly as-
sumes that z and all the values w(τ), τ ∈ [t0, t1], are not
related to each other. They are thus treated in the proof
(namely in the maximization part) as completely inde-
pendent variables.

3 Open-loop interval estimator for LTI systems

3.1 Open-loop simulation: the best interval estimator

We first discuss a simulation of the state trajectory of the
LTI system in (1a) under uncertain perturbation w and
when the initial state x(0) belongs to a known interval
set. In this first step, we do not make use of the measure-
ment equation (1b). To proceed, we will assume that the
matrices A and B in (1a) have fixed and known values.
We use the notations (cw(t), pw(t)) ∈ Rnw × R

nw

+ and
(cx(t), px(t)) ∈ Rn × Rn+, t ∈ R+, to denote the center-
radius representations for the intervals [w(t), w(t)] and
[x(t), x(t)] respectively.

Theorem 2 Let the initial conditions and the uncer-
tain input sets of system (1a) be described respectively
by (cx(0), px(0)) and (cw(t), pw(t)) for t ∈ R+. Assume
that system (1) is stable, i.e., A is Hurwitz.
Then the interval trajectory [x, x] defined by

x(t) = cx(t)− px(t) and x(t) = cx(t) + px(t) (10)
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with

cx(t) = eAtcx(0) +

∫ t

0

eA(t−τ)Bcw(τ)dτ (11)

px(t) =
∣

∣eAt
∣

∣ px(0) +

∫ t

0

∣

∣eA(t−τ)B
∣

∣pw(τ)dτ, (12)

is the tightest interval-valued estimator for system (1)
(in open loop) in the sense of Definition 1.

PROOF. That [x, x] defined in (10) is the tightest
interval-valued trajectory containing the trajectories of
(1) is a statement that follows directly from Lemma 1.
It suffices to note that the solution of (1) takes the form

x(t) = eAtx(0) +

∫ t

0

eA(t−τ)Bw(τ)dτ (13)

and apply the lemma. As to condition (b) of Definition
1, it is an immediate consequence of the assumption that
the matrix A of system (1) is Hurwitz. ✷

Framed differently, the theorem states that the interval
estimator (10)-(12) is the intersection of all enclosing in-
tervals for the state trajectories generated by the uncer-
tain system (1) when no measurement is available. Now
the question we ask is how to compute the proposed es-
timates. Of course, a direct implementation of the equa-
tions (10)-(12) might be overly expensive in finite-time
and unfeasible when the time horizon considered for es-
timation goes to infinity. We will therefore be searching,
when possible, for a finite dimensional state-space real-
ization for the signals cx and px. To begin with, note
that cx can be simply realized as ċx = Acx + Bcw. So
the challenge is rather related to the realization of px.
In the sequel, we discuss a few particular cases where a
finite dimensional realization exists.

3.2 On the realization of the tightest estimator

We start by observing that if A is a Metzler matrix and
if B is either nonpositive or nonnegative, then px in (12)
can be simply realized by ṗx(t) = Apx(t)+|B|pw(t). This
follows from the fact that eAt is a nonnegative matrix for
all t ≥ 0 whenever A is a Metzler matrix. Consequently,
one can drop the absolute value symbols in (12) hence
yielding the simple realization displayed above.

A second remark concerns the scenario where pw is con-
stant. In this latter case, a simple realization of px can
be obtained as stated in the following proposition.

Proposition 3 Assume that pw(t) = pw(0) for all t ∈
R+, i.e., pw is constant. Then the signal px in (12) can

be realized as follows:







Ṁ(t) = AM(t), M(0) = In
ṙ(t) = |M(t)B| pw(0), r(0) = 0

px(t) = |M(t)| px(0) + r(t)

(14)

with state (M(t), r(t)) ∈ Rn×n × Rn and In being the
identity matrix of order n.

The proof of the proposition follows by simple calcula-
tions. We will show below (see Section 3.3.3) that even
though pw is not constant in general, we can rely on this
proposition to construct a nice over-approximation of
the tightest interval estimator.

Finally let us comment shortly on a possible linear time-
invariant realization of system (12) (whose input and
output are respectively pw and px) independently of the
class of inputs. The question is then that of finding a set
of matrices (A,B, C, φ0) ∈ Rd×d × Rd×nw × Rn×d × Rd

for some finite dimension d and such that the solution
φ of the differential equation φ̇(t) = Aφ(t) + Bpw(t),
φ(0) = φ0, satisfies px(t) = Cφ(t) for all t ∈ R+. Indeed

this is true if and only if CeAtB̃ = H(t) where B̃ = [B φ0]

and H is the impulse response of the system (12) defined

by H(t) ,
[

|eAtB| |eAt|px(0)
]

. If H satisfies some reg-

ularities conditions, one can resort to realization algo-
rithms to compute a minimal realization (A, B̃, C). The
reader is referred to, e.g., [6,3] for more on the realization
theory of LTI systems. Unfortunately, the conditions for
the existence of LTI realizations are unlikely to hold in
general here due to the nonsmooth nature of the abso-
lute values in the expression of H(t).

3.3 Some approximations of the tightest interval esti-
mator

As it turns out, apart from some special situations, im-
plementing the tight estimator (10)-(12) in the most gen-
eral case is intractable in practice. We therefore consider
in this section the question of whether one could over-
approximate px by a more easily realizable signal p̂x. In
order to discuss this question, let us recall some basic
mathematical facts that will be useful.

Lemma 4 Let A and B be matrices of compatible di-
mensions. Then the following properties hold:

|A+B| ≤ |A|+ |B| (15a)

|AB| ≤ |A| |B| (15b)

|A| ≤ B ⇒ ‖A‖2 ≤ ‖B‖2 (15c)

‖A‖2 = ‖|A|‖2 (i.e., the 2-norms of A and |A| are equal)
(15d)

∣

∣eA
∣

∣ ≤ eψ(A) ≤ e|A| (15e)
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In (15e) ψ(A) is a matrix defined by [ψ(A)]ij = |Aij | if
i 6= j and [ψ(A)]ij = Aij if i = j.

Indeed ψ(A) is the matrix obtained from A by taking
the absolute value of the off-diagonal elements and leav-
ing entries on the main diagonal unchanged: ψ(A) =
diag(A) + |A− diag(A)|. Hence for any square real ma-
trix A, ψ(A) is a Metzler matrix. The facts (15a)-(15d)
which were stated in [13, Chap. 8] are straightforward
to check. As for (15e), a proof can be found in [2].

In order to reduce the potential complexity associated
with the implementation of (12), we discuss three over-
approximation methods.

3.3.1 Over-estimating px

The following proposition allows to over-estimate px
with a signal p̂x whose computation is cheaper. More
specifically, we can avoid numerical evaluation of in-
tegrals on unbounded time intervals thanks to the
following proposition.

Proposition 5 Let T ∈ R+. Let p̂x : R+ → Rn+ be
defined by: p̂x(t) = px(t) for all t ∈ [0, T [ where px is
defined as in (12), and

p̂x(t) = |eAT |p̂x(t− T ) +

∫ t

t−T

|eA(t−τ)B|pw(τ)dτ (16)

for all t ≥ T with A and B being the matrices of system
(1) and pw as in Theorem 2. Then px(t) ≤ p̂x(t)∀t ∈ R+

and hence the state trajectories generated by system (1)
satisfy

cx(t)− p̂x(t) ≤ x(t) ≤ cx(t) + p̂x(t) ∀t ∈ R+. (17)

with cx defined as in (11).

PROOF. The solution to (1) can be written as

x(t) = eATx(t− T ) +

∫ t

t−T

eA(t−τ)Bw(τ)dτ.

Now, by applying Lemma 1, it is immediate that (17)
holds if we can establish that C(cx(t − T ), p̂x(t − T )) is
an enclosing interval for x(t− T ). This in turn is true if
px(t − T ) ≤ p̂x(t − T ) for all t. Hence let us show that
px(t) ≤ p̂x(t) for all t. For this purpose, write t in the
form t = q(t)T +r(t) where q(t) is a nonnegative integer
and r(t) ∈ R+ with 0 ≤ r(t) < T . Then by applying

repeatedly (16) leads to

p̂x(t) = |eAT |q(t)p̂x(r(t))+

+

q(t)
∑

j=1

∫ t−(j−1)T

t−jT

∣

∣eAT
∣

∣

(j−1)∣
∣eA(t−(j−1)T−τ)B

∣

∣pw(τ)dτ

By applying (15b), we see that

p̂x(t) ≥|eATq(t)|p̂x(r(t)) +

∫ t

t−q(t)T

∣

∣eA(t−τ)B
∣

∣pw(τ)dτ

On the other hand p̂x(r(t)) = px(r(t)) = |eAr(t)|px(0) +
∫ r(t)

0

∣

∣eA(t−τ)B
∣

∣pw(τ)dτ . Plugging this in the last in-
equality above and applying again (15b) show that
p̂x(t) ≥ px(t). ✷

Note that if A is Hurwitz, then T can be chosen suffi-
ciently large so that |eAT | is Schur stable 1 . For such a
T , (cx, p̂x) defines an interval estimator for system (1)
in the sense of Definition 1. As shown by Proposition 5,
the interval-valued estimate defined by (cx, p̂x) is only
an over-estimate of the one resulting from (cx, px). As T
gets larger, the two interval estimators will get closer but
then the complexity increases. And in the extreme case
where T = t, we recover p̂x = px. The appealing fact
with this estimator is that it allows to balance, through
the selection of T , computational price and tightness.

3.3.2 Approximation using a Metzler matrix

A second simple approximation can be obtained directly
from Lemma 4. In effect, by applying the facts (15a)-
(15e) above, we find that px(t) ≤ p̌x(t), where

p̌x(t) , eψ(A)tpx(0) +

∫ t

0

eψ(A)(t−τ)|B|pw(τ)dτ. (18)

Although p̌x is a looser estimate of px (than e.g., (16)) its
benefit lies in the fact that it is much easier to compute.
In effect, the new signal p̌x can be realized very simply
in the form ˙̌px(t) = ψ(A)p̌x(t) + |B|pw(t) with p̌x(0) =
px(0). However, for (cx, p̌x) to be an interval estimator
in the sense of Definition 1, we must require additionally
that ψ(A) be Hurwitz.

3.3.3 Over-estimating pw by a constant vector

Another over-estimate of px can be obtained from Propo-
sition 3 as follows. By Assumption 1, pw is bounded.
Therefore, let δo be the vector in Rnw whose i-th en-
try δoi is defined by δoi = supt∈R+

pw,i(t) where pw,i(t)

1 i.e., its spectral radius is less than 1.
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refers to the i-th entry of pw(t). Then by letting δ be
a signal defined by δ(t) = δo for all t ≥ 0, w satisfies
cw(t) − δ(t) ≤ w(t) ≤ cw(t) + δ(t) and hence (cw, δ) is
a valid (but larger) interval representation for the input
signal w which fulfills the condition of Proposition 3. As
a consequence, replacing pw(0) in (14) with δo gives a
computable realization of an interval estimator for the
state of system (1).
For an empirical comparison of the estimators discussed
here, see Section 6.

4 Closed-loop state estimator for LTI systems

In case the system (1) is not stable, let us assume it to be
observable (or just detectable). Then it is possible to find
a matrix gainL such thatA−LC is Hurwitz. We can then
construct an interval observer from the classical observer
form. As we did in open-loop, we can of course write the
best estimator (10)-(11) also in closed-loop for a given L
or compute its over-approximations discussed in Section
3.3. However here we choose to study further the type
of approximation given in (18). Although this type of
estimator is not the tightest one, it has the advantage of
computational simplicity.

4.1 A systematic design method

In this section we discuss a systematic way of construct-
ing linear interval observers employing an output injec-
tion. Departing from the structure of the classical Luen-
berger observer, it is easy to see that the state of system
(1) satisfies

ẋ(t) = (A− LC)x(t) +Gs(t), (19)

where

G = [B L −L] and s(t) = [w(t)⊤ y(t)⊤ v(t)⊤]⊤ (20)

with L being the gain of the observer. For a given matrix
L ∈ Rn×ny such that A− LC is Hurwitz one can apply
(11)-(12) to obtain the tightest interval-valued estima-
tor 2 . Similarly, the over-estimates discussed are generi-
cally obtainable in the closed-loop configuration as well.
In particular it follows from the discussion in Section
3.3.2 that (cclx , p

cl
x ) given by

{

ċclx = (A− LC)cclx (t) +Gcs(t), c
cl
x (0) = cx(0)

ṗcl
x = ψ(A− LC)pcl

x (t) + |G| ps(t), p
cl
x (0) = px(0),

(21)
with (cs(t), ps(t)) ∈ Rns × R

ns

+ , ns = nw + 2ny, being a
center-radius representation of s(t), defines an enclosing
interval estimate for the state of system (1).

2 The question of selecting L to optimize some global
tightness-based cost in the spirit of [20] is not discussed here.

Further, the systems (21) yield an interval estimator (ob-
server) for system (1) provided that both A − LC and
ψ(A−LC) are Hurwitz. By Lemma 6 stated below, this
stability condition is satisfied if and only if ψ (A− LC)
is Hurwitz.

Lemma 6 ([2]) Let A,A1, A2 ∈ Rn×n and P ∈ R
n×n
+ .

Let ψ be the function defined in Lemma 4. Then the fol-
lowing implications hold:

(a) ψ(A) is Hurwitz ⇒ A is Hurwitz.
(b) ψ(A) + P is Hurwitz ⇒ ψ(A) is Hurwitz
(c) ψ(A1) ≤ ψ(A2) ⇒ 0 ≤ eψ(A1) ≤ eψ(A2)

(d) If ψ(A1) ≤ ψ(A2), then ψ(A1) is Hurwitz whenever
ψ(A2) is Hurwitz

The question now is how to effectively select a matrix
gain L ∈ Rn×ny so as to fulfill the condition ψ (A− LC)
is Hurwitz. An answer is provided by the following
lemma.

Lemma 7 ([2]) The following statements are equiva-
lent:

(1) There exists L ∈ Rn×ny such that ψ(A − LC) is
Hurwitz.

(2) There exist a diagonal positive definite matrix P ∈
Rn×n and some matrices Y ∈ Rn×ny , X ∈ Rn×n

satisfying the conditions:

X⊤ +X + 2diag(S) ≺ 0

|S − diag(S)| ≤ X
(22)

where S = PA − Y C. In case the statements hold, L is
given by L = P−1Y .

Lemma 7 shows that one can compute the observer gain
L efficiently by solving a feasibility problem which is
expressible in terms of Linear Matrix Inequalities (LMI)
[4]. In comparison to classical results we do not require
A − LC to be Metzler since ψ(A − LC) is naturally
Metzler. Hence the only constraint associated with the
search for the gain L is the Hurwitz stability of ψ(A −
LC).

5 Interval estimation in the presence of uncer-
tain parameters

Consider now the general situation where the matrices
(A,B) together with the initial state x(0) and the signals
(w, v) in (1) are all uncertain.

5.1 A technical lemma

Let us use the following notational convention. For an
uncertain matrix A ∈ Rn×m, let [A,A] be its interval
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representation. To be precise, recall that the interval set
[A,A] for matrices in Rn×m is defined as

[A,A] =
{

A ∈ R
n×m : A ≤ A ≤ A

}

where all inequalities hold componentwise. Similarly as
in the case of vectors, [A,A] admits a center-radius rep-
resentation (CA,PA) ∈ Rn×m × R

n×m
+ such that

[A,A] =
{

CA + PA ⊙ SA : SA ∈ R
n×m, ‖vec(SA)‖∞ ≤ 1

}

(23)
where the symbol ⊙ refers to the Hadamard product
(componentwise product of matrices) and vec(·) is the
vectorization operator.

To proceed, we will need an extension of Lemma 1 to the
general estimation scenario.

Lemma 8 Let (cz, pz) ∈ Rm ×Rm+ and (cw(t), pw(t)) ∈
Rnw × R

nw

+ be center-radius representations of some in-
tervals [z, z] and [w(t), w(t)] where cw in L∞(R+,R

nw)
and pw in L∞(R+,R

nw

+ ).

Let (CF ,PF ) ∈ Rn×m × R
n×m
+ and (CH(t),PH(t)) ∈

Rn×nw × R
n×nw

+ , t ∈ R+, be center-radius representa-

tions of [F , F ] and [H(t), H(t)] respectively.
Consider the set J ⊂ Rn defined by

J =
{

Fz +

∫ t1

t0

H(τ)w(τ)dτ :

z ∈ [z, z], F ∈ [F , F ], H,w measurable

w(τ) ∈ [w(τ), w(τ)], H(τ) ∈ [H(τ), H(τ)]
}

(24)

with [t0, t1] being some fixed interval of R+.
Finally, let (c, p) ∈ Rn × Rn+ be defined by

c = CF cz +

∫ t1

t0

CH(τ)cw(τ)dτ (25)

and p =
[

p1 · · · pn
]⊤

with

pi = Λi (CF ,PF , cz, pz)

+

∫ t1

t0

Λi (CH(τ),PH(τ), cw(τ), pw(τ)) dτ
(26)

for i = 1, . . . , n, with 3

Λi (CF ,PF , cz, pz) =
∑m
j=1 ν

(

CijF p
j
z,P

ij
F c

j
z,P

ij
F p

j
z

)

and

ν : R3 → R being the function defined by

ν(a1, a2, a3) = max
|s|≤1,|r|≤1

(a1s+ a2r + a3sr) (27)

3 Notation: Cij

F refers to the (i, j)-th entry of the matrix CF

and pjz is the j-th entry of the vector pz.

Then (c, p) is a center-radius representation of the tight-
est interval set of Rn containing J.

PROOF. For any ϕ ∈ J there is (F, z) ∈ [F , F ]× [z, z],
(H(τ), w(τ)) ∈ [H(τ), H(τ)]× [w(τ), w(τ)] such that

ϕ = Fz +

∫ t1

t0

H(τ)w(τ)dτ (28)

Moreover, there exist αz ∈ Rn, SF ∈ Rn×m, SH(τ) ∈
Rn×nw ,αw(τ) ∈ Rnw satisfying ‖αz‖∞ ≤ 1, ‖vec(SF )‖∞ ≤
1, ‖αw(τ)‖∞ ≤ 1, ‖vec(SH(τ))‖∞ ≤ 1 and such that

F = CF + PF ⊙ SF ,

z = cz + Pzαz,

H(τ) = CH(τ) + PH(τ)⊙ SH(τ),

w(τ) = cw(τ) + Pw(τ)αw(τ),

with Pz = diag(pz), Pw(τ) = diag(pw(τ)). Plugging
these in (28) yields ϕ = c+ ξ with c as in (25) and

ξ = CFPzαz + (PF ⊙ SF )cz + (PF ⊙ SF )Pzαz

+

∫ t1

t0

[

CH(τ)Pw(τ)αw(τ) + (PH(τ)⊙ SH(τ))cw(τ)

+ (PH(τ)⊙ SH(τ))Pw(τ)αw(τ)
]

dτ

Proceeding similarly as in the proof of Lemma 1, we
just need to show that pi = max ξi for all i = 1, . . . , n,
where the maximization is taken over all SF , αz and
SH(τ), αw(τ), t0 ≤ τ ≤ t1 as defined above, with the
magnitude constraint on their entries. For a matrix A,
let for convenience Aij denote the (i, j)-th entry of A.
Using this convention, note that

max ξi

= max
SF ,αz,

SH(τ),αw(τ)
t0≤τ≤t1

[

m
∑

j=1

CijF p
j
zα

j
z + PijF S

ij
F c

j
z + PijF S

ij
F p

j
zα

j
z

+

∫ t1

t0

(

nw
∑

j=1

CijHp
j
wα

j
w + PijHS

ij
Hc

j
w + PijHS

ij
Hp

j
wα

j
w

)

dτ
]

=

m
∑

j=1

max
|αj

z|≤1,|Sij

F
|≤1

(

CijF p
j
zα

j
z + PijF S

ij
F c

j
z + PijF S

ij
A p

j
zα

j
z

)

+

∫ t1

t0

(

nw
∑

j=1

max
SH(τ),αw(τ)

(

CijHp
j
wα

j
w + PijHS

ij
Hc

j
w

+ PijHS
ij
Hp

j
wα

j
w

)

)

dτ

Note that it is possible here to introduce the maximum
in the summand (and integrand) because all decision
variables (i.e., the entries of SF , SH , αz, αw) are inde-
pendent here so that all terms involved in the summands
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(and integrand) can be maximized separately.

By now recalling the definition of the function ν in (27),
we can write

max ξi =

m
∑

j=1

ν
(

CijF p
j
z,P

ij
F c

j
z,P

ij
F p

j
z

)

+

∫ t1

t0

[

nw
∑

j=1

ν
(

CijHp
j
w,P

ij
H c

j
w,P

ij
Hp

j
w

)]

dτ

and hence max ξi is equal to pi defined in (26). This
conclude the proof. ✷

Below, we state an explicit way of computing the values
of the function ν in (27).

Lemma 9 Let ai, i = 1, . . . , 3 be three real numbers
and σ : {1, 2, 3} → {1, 2, 3} be a permutation such that
∣

∣aσ(1)
∣

∣ ≥
∣

∣aσ(2)
∣

∣ ≥
∣

∣aσ(3)
∣

∣. Then the function ν defined
in (27) satisfies

ν(a1, a2, a3) =
∣

∣aσ(1)
∣

∣+
∣

∣aσ(2)
∣

∣

+ aσ(3) sign(aσ(1)) sign(aσ(2)).
(29)

PROOF. Without loss of generality, assume that
σ(i) = i. Note then that if a1 or a2 is equal to zero, then
a3 = 0 as well and (29) holds clearly. Hence assume that
a1a2 6= 0 and let us proceed by contradiction for the rest.
For this purpose, assume that for all (a1, a2, a3) ∈ R3,
there exist (s, r) ∈ [−1, 1]× [−1, 1] such that

a1s+ a2r + a3sr > |a1|+ |a2|+ a3 sign(a1) sign(a2).

Then

a3 (sign(a1) sign(a2)− sr) < (a1s−|a1|)+(a2r−|a2|) ≤ 0

Let δ = sign(a1) sign(a2) ∈ {−1,+1}. Since a1 and a2
are arbitrary, δ is also arbitrary. The proof hypothesis
can therefore be reformulated as: for all δ ∈ {−1,+1}
and for all a3 ∈ R, there exist (s, r) ∈ [−1, 1] × [−1, 1]
such that a3(δ − sr) < 0. This is not true since for ex-
ample (a3, δ) = (1, 1) yields a contradiction. Hence for
all (s, r) ∈ [−1, 1]× [−1, 1]

a1s+ a2r + a3sr ≤ |a1|+ |a2|+ a3 sign(a1) sign(a2).

Moreover the left-hand side member of this inequality is
attained for s = sign(a1) and r = sign(a2). In conclusion
(29) holds as stated. ✷

It is interesting to observe that Lemma 1 can be easily
recovered from Lemma 8. For example, under the con-

ditions of Lemma 1, CF = F , PF = 0, CH(τ) = H(τ),
PH(τ) = 0 so that pi in (26) reduces to

pi =

m
∑

j=1

ν
(

F ijpjz, 0, 0,
)

+

∫ t1

t0

[

nw
∑

j=1

ν
(

Hij(τ)pjw(τ), 0, 0
)]

dτ

= |fi|
⊤pz +

∫ t1

t0

|h⊤i (τ)|pw(τ)dτ

with f⊤i and h⊤i (τ) being the i-th rows of F and H(τ)
respectively. The expression above coincides with the i-
th entry of p defined in (8).

5.2 Construction of an interval estimator

To derive an interval-valued state estimator, the idea
now is to apply Lemma 8 to Eq. (13). However the ex-
pression of the best estimator might, in this case, be of
excessive formal complexity due to the necessity to find
the smallest interval set containing the matrix exponen-
tial. We shall therefore consider a more readable over-
estimate. One ingredient for this purpose is the following
lemma.

Lemma 10 Let A ∈ Rn×n, P ∈ R
n×n
+ and S ∈

[−1, 1]
n×n

be some matrices. Then

∣

∣eA+P⊙S − eA
∣

∣ ≤ eψ(A)+P − eψ(A) (30)

where ψ is the function defined in Lemma 4 and ⊙ refers
to the Hadamard matrix product.

PROOF. We first prove that for any two square ma-
trices A and B of the same dimensions,

∣

∣(A+B)k −Ak
∣

∣ ≤ (C + |B|)
k
− Ck (31)

for any matrix C satisfying |A| ≤ C and for all k ≥ 1.
We proceed by induction on k. Clearly, the inequality
(31) holds for k = 1. By noting that

(A+B)k+1−Ak+1 = A
[

(A+B)k −Ak
]

+B(A+B)k,

and making use of the inequalities (15a) and (15b), we
easily see that if (31) is true for k, then it is also true for
k + 1. In conclusion (31) holds true as claimed, for any
k ≥ 1.
We now turn to proving (30). For this purpose, let α > 0
be such that αI+diag(A) ≥ 0. It follows that |αI +A| =
|(αI + diag(A)) + (A− diag(A))| ≤ αI +ψ(A). We can
write

∣

∣eαI+A+P⊙S − eαI+A
∣

∣

≤

∞
∑

k=0

1

k!

∣

∣

∣
(αI +A+ P ⊙ S)

k
− (αI +A)

k
∣

∣

∣
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which, by applying (31), gives

eα
∣

∣eA+P⊙S − eA
∣

∣ ≤ eα
(

eψ(A)+|P⊙S| − eψ(A)
)

This in turn yields (30) since 0 ≤ |P ⊙ S| ≤ P. ✷

By applying Lemma 10, we see that ifA ∈ [A,A] ⊂ Rn×n

as defined in (23), then for all t ∈ R+, eAt lies in the
matrix interval C(CF (t),PF (t)) defined by

CF (t) = eCAt and PF (t) = e(ψ(CA)+PA)t − eψ(A)t.

Likewise, it can be observed that if A ∈ [A,A] ⊂ Rn×n

and if B ∈ [B,B] ⊂ Rn×nw , then M(t) , eAtB
lies in C (CM (t),PM (t)) where CM (t) = eCAtCB
and the entries of the matrix PM (t) are defined by

PijM (t) = Λi (CF (t),PF (t), [CB ]:j , [PB ]:j) with Λi de-
fined as in Lemma 8 and [CB ]:j denoting the j-th column
of CB .

Then, given the uncertainty sets (cx(0), px(0)), (cw(t), pw(t)),
t ∈ R+, (CA,PA), (CB ,PB), associated respectively
with the initial state, the system input and the param-
eter matrices A and B, the interval-valued trajectory
C(c̃x(t), p̃x(t)), with c̃x and p̃x defined by

c̃x(t) = CF (t)cx(0) +

∫ t

0

CM (τ)cw(t− τ)dτ (32)

and p̃x(t) =
[

p̃1x(t) · · · p̃nx(t)
]⊤

,

p̃ix(t) = Λi (CF (t),PF (t), cx(0), px(0))

+

∫ t

0

Λi
(

CM (τ),PM (τ), cw(t− τ), pw(t− τ)
)

dτ

(33)
would constitute an interval-valued estimator for sys-
tem (1) if we can guarantee the stability condition. Note

again that c̃x in (32) can be realized by ˙̃cx = CAc̃x(t) +
CBcw(t), c̃x(0) = cx(0).

Theorem 11 Consider system (1) where the initial
state x(0), the input w and the parameter matrices
A and B are all uncertain and described as above. If
ψ(CA) + PA is Hurwitz, then C(c̃x(t), p̃x(t)) with c̃x(t)
and p̃x(t) defined respectively as in (32) and (33) is an
interval estimator for system (1).

PROOF. From the above discussions we already know
that the bounding condition is satisfied. Hence we just
need to prove the stability condition of Definition 1. By
Lemma 6, the system defining c̃x in (32) is BIBO stable
if ψ(CA)+PA is Hurwitz. It remains to prove that p̃x is
bounded as well whenever px(0), cw and pw are bounded.

For this purpose we start by noting that the function
ν in (27) satifies ν(a1, a2, a3) ≤ |a1| + |a2| + |a3|. As a
consequence,

Λi (CF (t),PF (t), cx(0), px(0)) ≤
((

|CF (t)|+ PF (t)
)

px(0) + PF (t)|cx(0)|
)

i

Applying this to the whole expression of p̃x(t) gives

p̃x(t) ≤
(

|CF (t)|+ PF (t)
)

px(0) + PF (t)|cx(0)|+

+

∫ t

0

[(

|CM (τ)|+ PM (τ)
)

pw(t− τ) + PM (τ)|cw(t− τ)|
]

dτ

(34)
where PM (t) ≤

(

|CF (t)| + PF (t)
)

PB + PF (t) |CB | for
all t ∈ R+. Using now (15d) and the submultiplicativity
and subadditivity properties of the Euclidean norm, we
get

‖p̃x(t)‖2 ≤
(

‖CF (t)‖2 + ‖PF (t)‖2
)

‖px(0)‖2
+ ‖PF (t)‖2 ‖cx(0)‖2

+

∫ t

0

[

(

‖CM (τ)‖2 + ‖PM (τ)‖2
)

‖pw(t− τ)‖2

+ ‖PM (τ)‖2 ‖cw(t− τ)‖2

]

dτ

(35)
with ‖PM (t)‖2 ≤

(

‖CF (t)‖2 + ‖PF (t)‖2
)

‖PB‖2 +
‖PF (t)‖2 ‖CB‖2. Recall the definitions of CF (t),
PF (t), CM (t) given above. Under the assumption that
ψ(CA) + PA is Hurwitz, we know by Lemma 6 that
CA and ψ(CA) are also Hurwitz. As a consequence,
there exist some strictly positive numbers λ1, λ2, λ3 and
some constant c1, c2, c3 such that ‖CF (t)‖2 ≤ c1e

−λ1t,
‖PF (t)‖2 ≤ c2e

−λ2t, ‖CM (t)‖2 ≤ c3e
−λ3t for all

t ≥ 0. From these and the above inequality on
‖PM (t)‖2 there also exist λ4 > 0 and c4 ≥ 0 such that
‖PM (t)‖2 ≤ c4e

−λ4t. Plugging these inequalities in (35)
yields the conclusion that p̃x is bounded whenever px(0)
and pw are bounded. This completes the proof of the
stability condition. ✷

5.2.1 A cheap over-estimation of p̃x

Exploiting the inequality (34), we can establish by
straightforward manipulations that p̃x(t) ≤ pux(t)−p

c
x(t)

where pux and pcx can be realized in the state-space form
as

ṗux(t) = (ψ(CA) + PA) p
u
x(t) (36)

+ (PB + |CB |) (pw(t) + |cw(t)|)

ṗcx(t) =ψ(CA)p
c
x(t) + |CB ||cw(t)| (37)

with pux(0) = px(0) + |cx(0)| and pcx(0) = |cx(0)|. As it
turns out, this last system is BIBO stable when ψ(CA)+
PA is Hurwitz, the same condition as in Theorem 11. It is
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interesting to note that the estimator (18) corresponding
to the scenario where only the initial state and the input
are uncertain can be recovered from (36)-(37).

5.2.2 A comment on the extension to closed-loop

To begin with, note that Eq. (19) still holds for given
values of (A,B,C) and given trajectories for w and v.
For simplicity, assume thatC is a fixed-value matrix. Let
(CA,PA), (CB ,PB), (CG,PG) denote the center-radius
representations of [A,A], [B,B] and [G,G] respectively
and (cs(t), ps(t)) denote that of [s(t), s(t)]. Then, since
L and C are fixed-valued matrices, (CA − LC,PA) is
a center-radius representation of A − LC. By the same
observation, it follows from the expression of G in (19)
that

CG = [CB L −L] and PG = [PB 0n,ny
0n,ny

]

with 0n,ny
denoting a n × ny matrix filled with zeros.

Similarly, since y(t) takes fixed values, we have

cs(t) = [cw(t)
⊤ y(t)⊤ cv(t)

⊤]⊤

ps(t) = [pw(t)
⊤ 0⊤ny

pv(t)
⊤]⊤.

With these remarks, the radius estimate (36)-(37) ex-
tends naturally to the closed-loop scenario as follows

ṗu,clx (t) = (ψ(CA − LC) + PA) p
u,cl
x (t) (38)

+ (PG + |CG|) (ps(t) + |cs(t)|)

ṗc,clx (t) =ψ(CA − LC)pc,clx (t) + |CG||cs(t)| (39)

with pu,clx (0) = px(0) + |cx(0)| and pc,clx (0) = |cx(0)|.
Let us recapitulate.

Theorem 12 Consider system (1) where the matrices
(A,B) are uncertain along with the signals w, v and the
initial state x(0). If there exists a matrix L such that
ψ(CA − LC) + PA is Hurwitz, then

[cclx − (pu,clx − pc,clx ), cclx + (pu,clx − pc,clx )],

with ċclx = (CA − LC)cclx + CGcs, c
cl

x (0) = cx(0) and
pu,clx , pc,clx as in (38)-(39), defines an interval estimator
for system (1).

Remark 3 By following a similar line of reasoning as
in the proof of Lemma 7 (see [2]), it is possible to prove
the following: Existence of L ∈ Rn×ny such that ψ(CA−
LC) + PA is Hurwitz, is equivalent to the existence of
(P,X, Y ) with the same characteristics an in Lemma 7
such that X⊤ +X + 2diag(S) + P⊤

AP + PPA ≺ 0 and
|S − diag(S)| ≤ X, where S = PCA − Y C. Hence we
can find numerically a matrix L fulfilling the requirement
of Theorem 12 by solving a convex feasibility problem.

6 Numerical results

This section reports some simulation results that illus-
trate the performances of some of the interval estimators
discussed in this paper.

6.1 Open-loop estimation

For concision, we just consider the open-loop configu-
ration under the assumption that the system matrices
(A,B) are known and fixed. Consider an instance of sys-
tem (1) with fixed-values state transition matrices de-
fined by

A =

[

−3 1.5

−2 −2

]

and B =

[

−1

0

]

. (40)

The input w is such that w(t) ∈ C
(

cw(t), pw(t)
)

for all t
where cw(t) = 1+5 cos(2πνct) and pw(t) = |2 sin(2πνpt)|
with νc = 0.3 Hz and νp = 50 Hz. As to the initial
state, it lives in an interval C

(

cx(0), px(0)
)

with cx(0) =

[−2 2]⊤, px(0) = [3 2.2]⊤. Note that in order to be able

to test all the estimators in open-loop (in particular the
one suggested in Section 3.3.2), the matrix A in (40) has
been selected such that ψ(A) is Hurwitz.

For this example, Figure 1 compares the tightest esti-
mator proposed in (10)-(12) with three estimators from
the family described in Eqs (16)-(17) for a time hori-
zon T ∈ {0.01, 0.1, 1}, expressed in seconds. The inte-
gral quantities present in the expressions of these estima-
tors are numerically implemented here using the Simp-
son method. Two comments can be made. First, these
simulation results provide an empirical evidence sup-
porting our claim that the estimator proposed in (10)-
(12) is indeed the tightest possible. Second, the over-
approximation given in (16)-(17) gets tighter as the hori-
zon T increases. Finally, it is interesting to observe that
T needs not be too large for p̂x in (16) to provide a good
approximation of px; here we get a good match between
px and p̂x for a value as small as T = 1.

The second figure (Fig. 2) compares the estimator (10)-
(12) to its over-approximations discussed in Sections
3.3.2 and 3.3.3. A specificity of these estimators is that
they are computationally less expensive to implement
as they can be realized by finite dimensional state-space
representations (with state lengths equal to 2n and n(n+
1) respectively). It follows from the empirical results that
in the current settings, the over-approximation using the
Metzler matrix ψ(A) is the cheapest but also the least
tight.

11
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Figure 1. Comparison of open-loop interval estimators
(16)-(17) for T = 0.01 (green), T = 0.1 (black), T = 1 (red),
T = t (blue). In gray are represented the state trajectories
of the system generated from different initial conditions and
different inputs with values on the allowed intervals.

6.2 Closed loop estimation in the presence of parametric
uncertainties

We consider now the closed-loop estimation scenario
where in addition to uncertainties on the input and on
the initial state, the parameters may also be uncertain.
Using the same notational convention as in the begin-
ning of Section 5.1, we set CA = A, CB = B with A and

B defined in (40), PB = 0, C =
[

1 0
]

and

PA =

[

1.75 1.07

0.40 0.55

]

.

The input and initial state uncertainties (cx(0), px(0))
and (cw, pw) are set to the same values as in the previous
case (see Section 6.1). As to the measurement noise v,
it is defined by

(

cv(t), pv(t)
)

= (0, 0.1) for all t. Then
applying the method described in Remark 3 successfully
returns a gain L that renders ψ(CA−LC)+PA Hurwitz.
The corresponding implementation of the estimator in
Theorem 12, gives the results represented in Figure 3. As
we can see, this illustrates our claim that the estimator
displayed in Theorem 12 is an interval-valued estimator
for the uncertain linear system.
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Figure 2. Comparison of open-loop interval estimators: tight-
est (blue), estimator (14) (cyan) obtained by upper-bound-
ing pw with 2, approximation using a Metzler matrix (ma-
genta). In gray are represented the state trajectories of the
system generated from different initial conditions and differ-
ent inputs.
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Figure 3. Closed-loop interval estimates in the scenario where
the initial state x0, the input w and the parameters are
uncertain. The estimator of Theorem 12 was applied with a

gain L =
[

8.685 − 2.00
]

⊤
which was obtained according to

the method described in Remark 3.

7 Conclusion

In this paper we have presented a new approach to the
interval-valued state estimation problem. The proposed
framework is mainly discussed for the case of continuous-
time linear systems but it is generalizable (to some ex-

12



tent) to LTV systems and probably to some other classes
of systems. The main contribution of this work consists
in the derivation of the tightest interval-valued estima-
tor which enclose all the possible state trajectories gen-
erated by an uncertain LTI system. A numerical imple-
mentation of this estimator requires however some trade-
off between tightness and computational load. Therefore
some relaxations on tightness have been discussed along
with extensions to the general situations where the sys-
tem parameters and the external signals are all uncer-
tain and interval-valued.
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