
HAL Id: hal-02151994
https://hal.science/hal-02151994

Submitted on 21 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Sampled boundary observer for strict-feedback nonlinear
ODE systems with parabolic PDE sensor

Tarek Ahmed-Ali, Fouad Giri, Iasson Karafyllis, Miroslav Krstic

To cite this version:
Tarek Ahmed-Ali, Fouad Giri, Iasson Karafyllis, Miroslav Krstic. Sampled boundary observer for
strict-feedback nonlinear ODE systems with parabolic PDE sensor. Automatica, 2019, 101, pp.439-
449. �10.1016/j.automatica.2018.12.014�. �hal-02151994�

https://hal.science/hal-02151994
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


1 

 

Sampled Boundary Observer for Strict-Feedback Nonlinear ODE Systems with 

Parabolic PDE Sensor 
 

Tarek Ahmed-Ali*, Fouad Giri*, Iasson Karafyllis**, Miroslav Krstic*** 


* Normandie UNIV, UNICAEN, ENSICAEN, LAC, 14000 Caen, France (tarek.ahmed-ali@ensicaen.fr, 

fouad.giri@unicaen.fr). 

** Department of Mathematics, National Technical University of Athens, Athens, Greece, (e-mail:  iasonkar@central.ntua.gr). 

*** Department of Mechanical and Aerospace Engineering, University of California at San Diego, La Jolla, CA 92093-0411, 

USA (e-mail:  krstic@ucsd.edu). 

 

Abstract. We design an observer for ODE-PDE cascades where the ODE is nonlinear of strict-feedback structure and the PDE is a linear 

and of parabolic type. The observer provides online estimates of the (finite-dimensional) ODE state vector and the (infinite-dimensional) 

state of the PDE, based only on sampled boundary measurements. A design that simultaneously addresses nonlinear ODEs and boundary 

measurement sampling is the paper’s key contribution. Our observer design combines the backstepping design approach and the high-gain 

observer methodology and our analysis employs a Lyapunov-Krasovskii type functional to establish exponential convergence. Our sufficient 

conditions for convergence involve the maximum sampling interval and the PDE domain length. 

Keywords:  ODE-PDE cascades, nonlinear systems, parabolic PDEs sampled-data observer, high-gain observer. 



1. INTRODUCTION 

Designing boundary observers for cascade systems involving 

PDE sensing and/or actuation has recently become a highly 

active research topic. Linear ODE-PDE cascades with first-

order hyperbolic PDEs have been dealt with in (Krstic and 

Smyshlyaev, 2008). The proposed boundary observer is a 

copy of the system with additional innovation terms 

involving domain-dependent gains which are obtained 

through the solution of a first order ODE. The innovation 

terms provide the observer with a feedback structure and 

introduce a coupling between its ODE and PDE parts. 

Exponential stability of the resulting error system has been 

analysed using an appropriate error coordinate backstepping 

transformation and a quadratic Lyapunov functional. This 

study has been extended in (Ahmed-Ali et al., 2017a) to the 

case where the system ODE part is nonlinear of globally 

Lipschitz type and with a triangular structure. The ODE 

nonlinearity is accounted for in the observer design by using 

the high-gain formalism, especially in the part devoted to the 

ODE state observation. The system nonlinearity gives rise to 

a limitation on the admissible length D  of the PDE domain: 

the larger the Lipschitz constant, the smaller the admissible 

values of .D  This limitation has been coped with in (Ahmed-

Ali et al., 2017b) by using a cascade observer involving a 

number, say m ,  of partial observers each one providing the 

estimates of the PDE state on a subdomain of length mD / . 

Accordingly, the observer (error system) exponential stability 

can be guaranteed, however large the Lipschitz constant of 

the ODE nonlinearity, provided the number m  is taken 

sufficiently large. 

Observer design for linear ODE-PDE cascades that involve 

parabolic PDEs has been introduced in (Krstic, 2009). The 

observer involves domain position dependent gains that are 

governed by second order ODEs. Again, exponential stability 

of the corresponding observation error system is established 

using a quadratic Lyapunov functional. In (Ahmed-Ali et al., 

2015), we have extended the result of (Krstic, 2009) to ODE-

PDE systems where the ODE part is nonlinear Lipschitz with 

triangular structures. Observer design for nonlinear 

multivariable systems with parabolic PDE sensor dynamics 

and application to output feedback control was studied in 

(Wu and Wang, 2013). 

Boundary observer design for linear PDE-ODE cascade 

systems with first-order hyperbolic PDEs has been studied in 

e.g. (Hasan et al., 2016). The observer is constructed in a 

collocated setup, which means that both sensing and 

actuation are located at the same boundary. The observer 

gains are computed analytically by solving Goursat-type 

PDEs in terms of Bessel function of the first kind. Finally, 

boundary observer design for linear coupled PDE-ODE, with 

hyperbolic PDE, has been considered in e.g. (Tang and Xie, 

2010, 2011).  

A common characteristic of the above mentioned observers is 

that they all require the system boundary outputs to be 

continuously accessible to measurements. As only sampled 

measurements are available in practice, continuous-time 

measurement based observers may not meet their theoretical 

performances. This explains the great deal of interest that has 

been paid to sampled-data based observer design over the last 

few years. However, quite a few sampled-measurement 

observers have been developed for systems described by 

PDEs, see e.g. (Fridman and Blighovsky, 2012; Ahmed-Ali 

et al., 2016a) for parabolic PDEs. The problem of sampled-

data observer design for linear ODE-PDE cascades has only 

recently been investigated in (Ahmed-Ali et al., 2016b, 

2017b) considering a specific class of parabolic PDEs and 

boundary conditions. The observer design developed there 

can be viewed as a sampled version of that in (Krstic, 2009) 

as it relied on a coordinate transformation of the ODE and 

PDE states. However, the error system exponential stability 

has been investigated using a small-gain (input-output) 

stability analysis, rather than Lyapunov functional analysis in 

(Krstic, 2009). 

In this paper, we present a new sampled-measurement based 

observer design for ODE-PDE cascades where the ODE is 

nonlinear of the Lipschitz type and with a triangular 

structure, the PDE is parabolic with various boundary 

conditions. Our observer design combines ideas from the 

high-gain observer technique and the backstepping 

transformation principle. It turns out that the observer gain 

depends on a matrix-valued function (of the PDE spatial 

variable) that is the solution of a second order ODE. The 

observation error system is analyzed using a suitable 

quadratic Lyapunov-Krasovski functional, that constitutes 

another novelty of this work. Accordingly, upper bounds on 

the sampling interval and the PDE domain length are 
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established for the error system to be exponentially stable. 

Compared to the authors’ previous works, the present result 

extends that of (Ahmed-Ali et al., 2015) in at least two 

directions: (i) the class of considered (parabolic) PDEs and 

their associated boundary conditions are much larger; (ii) the 

present observer is sampled-output (while it was continuous-

time output measurement based in the previous work). The 

present work is also an extension of (Ahmed-Ali et al., 

2016b, 2017b) due to the ODE nonlinearity. It is also the 

complete version of the conference paper (Karafyllis et al., 

2017) where most technical proofs were missing. 

The paper is organized as follows: the first observer problem 

under study is formulated in Section 2 and the corresponding 

observer design and analysis are dealt with in Sections 3 and 

4; an extension of this observer design to a larger class of 

systems is presented in Section 5; well-posedness analysis of 

all considered systems and observers is discussed in Section 

6; some concluding remarks end the paper.  

Notation. ),0(1 DH  (with D  any positive real constant) is 

the Sobolev space of absolutely continuous functions 

R],0[: D  with ],0[/ 2 DLdd  . ),0(2 DH  denotes the 

Sobolev space of scalar functions R],0[: D  with 

absolutely continuous ],0[/ 2 DLdd   and 

],0[/ 222 DLdd  . Let ),(),(;],0[: txwtxDw   RR  

be any function. Then, ][tw  and ][twx  refer to the functions 

defined on Dx 0  by  ),()])([( txwxtw   and 

xtxwxtwx  /),()])([( . Consider a scalar function 

),0(1 DH  such that 0)0(   or 0)( D . Then, one 

has the following Wirtinger's inequality: 
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3. OBSERVER PROBLEM STATEMENT 

3.1 Class of observed systems 

We are considering continuous-time nonlinear systems that 

can be modelled by the following ODE-PDE cascade: 

 ))(),(()()( tvtXftAXtX  ,  for 0t  (2) 

 ),(),(),( txcutxautxu xxt  , 

 for ),0(),0(),(  Dtx  (3) 

 ),0(),0( tqutux  ,  for all 0t   (4a) 

 )(),( tCXtDu  ,  for all 0t   (4b) 
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where ntX R)(  denotes the state vector of the finite-

dimensional subsystem, described by (2) with any initial 

condition nXX R 0)0( ; mtv R)(  (for some known 

1m ) is an external known bounded signal of class 

 mC RR ;2
 ; R),( txu  designates the state of the infinite-

dimensional subsystem described by the parabolic type PDE 

(3) with boundary conditions (4) and any initial condition 

R )])(0[()0,( xuxu  for ],0[ Dx ; 0a , Rc  and 

0q  are known real parameters. Letting ),( vXf X  denote 

the Jacobian matrix of (.)f  w.r.t X , it is supposed that: 

 0 f , :nX R  fX vXf ),(  (6) 

 where f  might depend on the external signal v . The pair 

),( CA  is observable and the whole system is observed 

through a ZOH sampling of the signal ),0( tu , i.e. the system 

output is: 

 ),0()( ktuty   , for all ),[ 1 kk ttt  and 2,1,0k  (7a) 

where  
0kkt  denotes the sampling time sequence. This is a 

partition of R  i.e.   
0kkt  is increasing with 00 t   and 

kt  as k . It is also supposed that   h0  with, 

  )(sup 1


 kk
k

def

tth
N

 (7b) 

We seek an observer that provides accurate online estimates 

of both the (finite-dimensional) state vector )(tX  and the 

distributed state ),( txu , Dx 0 , based only the 

measurements of the external signals )(tv  and )(ty . 

Remark 1. Sampled-output observers have recently been 

developed in (Ahmed-Ali et al., 2016b, 2017b) for 

subclasses of (2)-(4) corresponding to 0(.) f . Then, 

Luenberger type linear observers were used, while high-

gain observer is necessary to deal with the present problem. 

The considered strict-feedback structure of the system and 

the globally Lipschitz assumption on (.)f  are precisely 

considered to make the high-gain observer design 

applicable, see e.g. (Khalil, 2015, p. 271). In this respect, 

note that all uniformly observable SISO systems are 

diffeomorphic to the strict-feedback form. Accordingly, 

considering this form entails covering all uniformly 

observable SISO systems. Owing to the global Lipschitz 

assumption made on (.)f , although this is quite usual, it 

actually entails limitation of the set of admissible 

nonlinearities. 

4. OBSERVER DESIGN AND ANALYSIS 

Consider the following backstepping transformation: 

 )()()(),(),( 1 tXxMDCMtxutxp  ,  

  for ),0(),0(),(  Dtx               (8) 

where  
nnxM R)(  is defined by the following ODE and 

boundary conditions: 
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where nnI R  denotes the identity matrix. The solution of 

the problem (9)-(10) is analytic and expressed by the 

following globally convergent series 
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The transformation (8) also involves the inverse of )(DM  

which implicitly entails an additional assumption on A . This 

issue is no longer investigated in this paper. Using (9), (2) 

and (3), it follows from (8) that ),( txp  is governed by the 

following PDE, for all ),0(),0(),(  Dtx : 

)()()(),(),(),( 1 XfxMDCMtxcptxaptxp xxt

  (12) 

For convenience, the new system representation in terms of 

the states  )),(),(( txptX  is rewritten: 

 ))(),(()()( tvtXftAXtX  , for all 0t  (13) 

 ),()()(),(),(),( 1 vXfxMDCMtxcptxaptxp xxt
 , 

 for all ),0(),0(),(  Dtx  (14)  

 ),0(),0( tqptpx  ,  for all 0t  (15) 

 0),( tDp ,      for all 0t  (16) 

 )()()(),(),( 1 tXxMDCMtxptxu   (17) 

where (17) and the boundary conditions (15)-(16) are derived 

from (8) using (4) and (10). The ),( pX system 

representation (13)-(17) mainly differs from the initial 

),( uX representation in that the boundary conditions (15)-

(16) of the former are X free leading to homogeneous 

boundary conditions (unlike those of the initial 

representation, see (2)-(4)). Homogeneous boundary 

conditions are required in the existence/uniqueness theorems 

for PDEs. For convenience, the well posedness issue will be 

discussed latter (see Remark 4).  

To get online estimates )(ˆ tX  and ),(ˆ txp  of the 

unmeasurable states )(tX  and ),( txp , we propose the 

following sampled-output observer:  

 )(~)())(),(ˆ()(ˆ)(ˆ 1
ktyLDMtvtXftXAtX  


, 

    for all ),[ 1 kk ttt  and 2,1,0k  (18) 

 ),(ˆ),(ˆ),(ˆ txpctxpatxp xxt   

 ))(),(ˆ()()(1 tvtXfxMDCM  , 

     for all ),0(),0(),(  Dtx  (19) 

 0),(ˆ),0(ˆ),0(ˆ  tDptpqtpx , for all 0t        (20) 

 )(ˆ)()(),(ˆ),(ˆ 1 tXxMDCMtxptxu  ,  

 for all ),0(),0(),(  Dtx  (21) 

 )()(ˆ)(~ tytyty  , with ),0(ˆ)(ˆ tuty   (22) 

with 

  
nn

n

def

diag 












 R
1

1
,,

1
,1


 ,  (23) 

where the real scalars K  and 1  are design parameters 

and nL R  is any vector such that LCA  is Hurwitz (this 

is not an issue since the pair ),( CA  is observable).  

Remark 2. In the case of linear systems (i.e. if 0(.) f  

then) the use of a high-gain observer is not necessary. In such 

a case, one can consider simpler sampled-data observers like 

those in (Ahmed-Ali et al., 2016b, 2017b; Karafyllis et al., 

2017). Presently, this amounts to letting 1  and I  in 

the ODE part of the observer (given par (18)). In all 

mentioned observers, the ‘measurement delay’ caused by the 

heat PDE sensor dynamics is compensated for in the observer 

ODE part by the matrix )(DM  (Krstic, 2008; Ahmed-Ali et 

al., 2016b, 2017b; Karafyllis et al., 2017).  In a sense, )(DM  

acts as a ‘transition’ matrix between the measurement point, 

located at 0x , and the output of the ODE part, located at 

Dx  . In the case of no PDE sensor dynamics (i.e. if  

0D ), IMDM  )0()(  and the observer part (18) boils 

down to a standard high-gain observer. To analyse the 

proposed observer, we introduce the estimation errors: 

 )()(ˆ)(
~

tXtXtX  ,  (24a) 

 ),(),(ˆ),(~ txptxptxp  , ),(),(ˆ),(~ txutxutxu     (24b) 

Using (10), (22) and (24a), one immediately gets by 

subtracting (17) to (21) and letting there kttx  ,0 : 

 )(
~

)(),0(~)(~ 1
kkk tXDCMtpty    (25) 

Using the observer equations (18)-(22), the system equations 

(13)-(17), and definitions (24a-b), we get the following error 

equations, for all ]1,0[x , ),[ 1 kk ttt  and Nk : 

 ))(),(())(),(ˆ()(
~

)(
~

tvtXftvtXftXAtX 


 

 )(
~

)()( 11

ktXDLCMDM   

 ),0(~)( 1
ktpLDM  ,  (26) 

 ),(~),(~),(~ txpctxpatxp xxt   

  ))(),(())(),(ˆ()()(1 tvtXftvtXfxMDCM    

   (27) 

 0),(~),0(~),0(~  tDptpqtpx ,    for all 0t , (28) 

 )(
~

)()(),(~),(~ 1 tXxMDCMtxptxu  ,  (29) 

The exponential stability of the error system (26)-(29) is 

stated in the following theorem: 

Theorem 1 (main result). Consider the class of systems 

defined by equations (2)-(4) with parameters 0a , Rc  

and 0q . Consider the output-sampled observer defined 

(18)-(22), with the scalar parameter 0  arbitrary, the 

gain nL R  such that the matrix 
nnLCA  R  is Hurwitz, 

and the matrix function )(xM  defined by (9)-(11). Then, 

there exists  0*   such that for any 
*  , there exist 

** /10  D  and 0* h  so that if (the domain length D  

of the PDE (3) and the diameter h  of the time partition 

 
0kkt  are such that) 

*0 DD   and 
*0 hh  then: 

1) The observer (18)-(22) is exponentially convergent in the 

sense that, 

  )(
~

tX   and  dxtxu
D

0
2 ),(~   (30) 

 exponentially converge to zero, whatever the initial 

conditions
nXX R)0(ˆ),0( , )];,0([]0[ˆ],0[ 2

RDCpu  , with 

0)](0[ˆ)0](0[ˆ)0](0[ˆ  Dppqpx , )0])(0[()0])(0[( uqux  , 

and )0()])(0[( CXDu  . 

2) In the case of linear systems, i.e. if the Lipschitz coefficient 

f  in (6) is zero then, D  can be arbitrarily large. 

Proof. Introduce the following notation: 



 

 

4 

 

 

 XDMZ
~

)(1           (31) 

  
1

0
))(),(

~
)((),( dstvtXstXftD X   (32) 

Then, differentiating both sides of (31), one obtains using 

(26) and applying the mean-value theorem: 

 )(
~

)()( 1 tXADMtZ  )()(),()( 11 tZDMtDDM     

 ),0(~)(1

kk tpLtZLC    , 

 ),0(~)()( kk tpLtLCZtAZ    

 )()(),()( 11 tZDMtDDM    , 

 for all ],0[ Dx , ),[ 1 kk ttt , Nk  (33) 

where the second equality is obtained using the following 

equalities which are direct consequences of the following 

properties: 

CC  ,   (34) 

 AA  ,  (35) 

AxMxAM )()(  , AxMxAM )()( 11   , (36) 

for all ],0[ Dx . 

In turn, (27) is rewritten as follows: 

),(~),(~),(~ txpctxpatxp xxt   

 )()(),()()( 11 tZDMtDxMDCM     (37) 

where the last term on the right side is obtained using (34). 

Equation (37) is completed with the boundary conditions 

(28)-(29). To analyse the )~,( pZ system, we consider the 

following Lyapunov-Krasovskii functional: 

dxtxptPZtZtpZV
DT

0

20 ),(~

2
)()(),~,(


 

 dxtxp
D

x
0

21 ),(~

2


),0(~

2

21 tp
q

  

 dssZhts
t

tk
 

2

2 )()(     (38) 

for N  kttt kk ,1 , where 00  , 01   and 02   

are real scalars such that: 

 010   ca   (39a) 

 and P  any positive definite matrix satisfying the inequality,  

IPLCALCAP T  )()(  (39b) 

for some 0 , where I  denotes the identity matrix of 

nn
R . Note that P  exists (whatever 0 ) because  

LCA  is Hurwitz. Also, from (28) one has the following 

relations which will prove to be useful: 

 
t

tk
k

dssZtZtZ )()()(  , dxtxptp
D

x 0
),(~),0(~   (40) 

Using (33), (37) and (39b), it follows differentiating 

),~,( tpZV  with respect to time: 

 ),0(~)()()(2),~,( kk

T tpLtLCZtAZPtZtpZV    
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  
D
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D
dxtZDMtDxMDCMtxp

0

11
0 )()(),()()(),(~   

 dssZtZh
t

tk
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 ),0(~),0(~
1 tptpq t ,  for N  kttt kk ,1    (41) 

where the last couple of terms are obtained using the 

Leibnitz’s derivation rule. Using the relation equality  

)())(()()()( tPZLCAtZtZLCAPtZ TTT   (which holds 

because  P  is symmetric), equality (41) immediately 

develops further as follows, for N  kttt kk ,1 : 

  )()()()(),~,( tZPLCALCAPtZtpZV TT   
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2

2 )()(       (42) 

Existence and continuity of xtp~  on the right side of (42) can 

be proved as follows: replacing x  by x1  and using the 

regularity properties of all functions, it follows from 

Proposition 2.12 in (Karafyllis and Krstic, 2017a) that xtp~  

exists and is continuous for all ],0[ Dx  and all 0t , 

except for the kt ’s. Now, the various terms on the right side 

of (42) are examined in order and, some of them, bounded 

from above. Using (39b), the first term is bounded as follows: 

  2
)()()()()( tZtZPLCALCAPtZ TT    (43) 

The second term on the right side of (42) is developed as 

follows, using Young’s inequality: 

2
2

2
)()()()(2  

t

t

t

t

T
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dssZ
PLC

tZdssZPLCtZ 

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 
t

tk

dssZ
PLCh

tZ
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2
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)()( 



  (44) 

for any 0 , where the last inequality is obtained using 

Jensen’s inequality. The third term on the right side of (42) is 

bounded from above as follows, using Young’s inequality: 

dxtxpPLtZ
D

kx

T

0 ),(~)(2  

 dxtxp
PLD

tZ
D

kx
0

2

2

2
),(~)(




  (45) 

for any 0 . Owing to the fourth term on the right side of 

(42), this can be rewritten as follows: 

)()(),()()(2 11 tZDMtDDMPtZT     

 )()(),()()(2 1111 tZDMtDDMPtZT     

In view of (5c) and (23) that, for all 1 , one has: 

   fX tvtXstXftD   


11

0

1 ))(),(
~

)((),( , (46) 

using (6). Also, using (35) and (6), it readily follows from 

(11) that, for all  Dx ,0 : 
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


 (47) 

Assuming 12 D , one immediately gets from (47) that: 
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MxM  1)( , for all  Dx ,0  (48) 

with 

  








1

1

!
)(exp),1max(1

l

l

l

M
l

cIA
aIcIAaqqD  

is independent of  . Using similar argument, it is shown that 

if 12 D  then: 

MxM   11 )( , for all  Dx ,0  (49) 

for some real constant M  independent of  .  

Using (46), (48) and (49), one gets: 
2211 )(2)()(),()()(2 tZPtZDMtDDMPtZ Mf

T   

  (50) 

The fifth term on the right side of (42) is bounded as follows: 

 
D

xx dxtxpctxpatxp
00 )),(~),(~)(,(~  


D

x dxtxpatpqa
0

2
0

2
0 ),(~),0(~  

D
dxtxpc

0

2
0 ),(~  (51) 

where we have used an integration by parts and the boundary 

conditions (28).  The sixth term on the right side of (42) is 

first bounded as follows: 

 
 

D
dxtZDMtDxMDCMtxp

0
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0 )()(),()()(),(~   


D

dxtxp
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20 ),(~




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  
 

D
dxtZDMtDxMDCM

0

211
0 )()(),()()(   (52) 

for any 0 . As CC   the squared term in the last 

integral, on the right side of (50), develops as follows: 

)()(),()()( 11 tZDMtDxMDCM    

)()(),()()( 11111 tZDMtDxMDMC     

Then, it follows using (45), (47) and (48), one gets: 

)()()(),()()( 11 tZtZDMtDxMDCM MMf   (53) 

Using (53), it follows from (52) that, for N  kttt kk ,1 : 

 
 

D
dxtZDMtDxMDCMtxp

0
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0 )()(),()()(),(~   

   22
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20 )(),(~ tZDdxtxp MMf

D





   (54) 

The seventh and eighth terms on the right side of (42) are 

dealt with as follows, for N  kttt kk ,1 : 

dxtxptxp
D

xtx01 ),(~),(~ ),0(~),0(~
1 tptpq t  

   dxtxptxptxptxp
D

txx

D
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1 tptpq t  
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 

0

11
1 )()(),()()(),(~   

 dxtxpa
D

xx
0

2
1 ),(~  dxtxpctpcq

D

x
0

2
1

2
1 ),(~),0(~   
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2

   221 )(
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tZ
D

MMf 


  (55) 

for any real 0 , where the penultimate equality is 

obtained using (28), while the last inequality is obtained 

using an integration by part, applying Young’s inequality and 

using (53). Using (33) and (40), the penultimate term on the 

right side of (42) is bounded from above as follows: 

),0(~)()()( 2

2

2 kk tpLtLCZtAZhtZh    
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2 )()(4 tZh MMf  , for N  kttt kk ,1 (56) 

where the third term on the right side of (56) is got using 

Jensen’s inequality. Using (56), (55), (54), (51), (50), (45), 

(44), (43), it follows from (42) that, for N  kttt kk ,1 : 
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2

2
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1 )(42 MMfMf hP  

   22
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We need the following condition to be satisfied: 

 01   (59) 

First, let the parameter   be selected such that: 

 02 2  PMf   (60) 

Then, we let the maximum sampling period  h , the domain 

length D , and the free positive real parameters  ),,(   be 

small enough so that (59) holds. A possible choice is to let 

),,(   be small enough so that: 

 
6

2 2 PMf 



  (61) 

 
6

2 2 PMf 
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
  (62) 
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  (63) 

Then, one sets the maximum sampling period  h  so that the 

following inequalities hold: 
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Finally, we let the domain length D  small enough so that: 
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The still free parameters 0  and   are let to be large enough 

so that the following additional couple of conditions hold: 
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a  (67) 

Then, applying Wirtinger’s inequality (1), one has: 
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Also, let the maximum sampling period  h  be small enough 

so that one has, 
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
  (69) 

Using (67)-(69), it follows from (57): 
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 105  ca     (74) 
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By letting D  be small enough, the following properties hold: 

 )62(,0  ii  (76) 

Since 1  to 6  are positive, it follows from (70) that: 

 ),~,(
2

),~,(),~,(
1

6
ktpZVtpZVtpZV




   (77) 

using (38), with 
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




















hP
 (78) 

Now, if 

 





1

62
  (79) 

then it follows applying Halanay's inequality to (77) (see e.g. 

Fridman and Blighovsky, 2010, Lemma 3): 

),~,(sup),~,( 0
0

)(2 0 








tpZVetpZV

h

tt
;  )( 0tt   (80) 

where   is the unique solution of the algebraic equation: 

 




 he2

1

62
2   (81) 

Note that the condition 





1

62
 holds if D  is small 

enough, because 06   as 0D , due to (75). It readily 

follows from (80) that both )(tZ  and dxtxp
D

0
2 ),(~  

exponentially converge to zero. In view of (31) and (29), so 

do )(
~

tX  and dxtxu
D

0
2 ),(~ . Finally, recall that the domain 

length D  is required (in the above analysis) to be small only 

to make sure that inequalities (66) and (79) do hold. It is 

readily seen that, in the case of a zero Lipschitz coefficient 

f , those inequalities hold irrespective of the value D . This 

proves Theorem 1.   

 

Remark 3. 1) From (60) it follows that the minimal observer 

gain 
*  in Theorem 1 is such that  /2 2* PMf . The 

larger the nonlinearity coefficient f  the larger 
* . 

2) Inequalities (61)-(67), (69), (76), and (79) are sufficient 

conditions, on the maximum sampling interval h  and the 

domain length D . It is readily checked that those 

conditions define nonempty sets of admissible values. Let 

us check it for h . To meet (61)-(63) and (the second part 

of) (67), let the free scalars ),,,(  be set as follows: 
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To meet (64) and (65), the sampling interval is set so that: 

 0hh   (84) 

with 

  3210 ,,min hhhh   (85) 
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 (86) 

and 3h  the unique value for which the left side of (69) is 

zero i.e. 
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
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where (83) has been used to get (87).  

3) In addition to the results of Theorem 1, it is noticed that 

all conditions on the sampling interval, namely inequalities 

(64), (65) and (69), are useless if 0h  i.e. in the 

continuous-measurement case. In such a case, only the 

condition on the domain length D  stands. If further the 

Lipschitz constant is zero then, by Part 2 of Theorem 1, it 

follows that also the condition on D  disappears, retrieving 

thus a similar result as in (Krstic, 2008).  

4) In practical applications, the domain length D  might not  

be small enough to meet the related smallness requirement 

of Theorem 1. Then, a practical solution is to implement 

several sensors (say N ) providing the measurements of 

),( kt
N

D
iu  ( 10  Ni  ), with N  selected large enough 

so that the ratio ND /  meets the requirement on D  in 

Theorem 1. Doing so, the observer (18)-(22) provides the 

estimates of the state  )(tX  and the distributed state 

),( txu , for DxD
N

N


 )1(
, based only on the 

measurements of )(tv  and ),
1

( ktD
N

N
u


. Then, the state 

),( txu  of the rest of the subdomains 

)/)1(,/( NDiNiD  )20(  Ni   can be simultaneously 

estimated using the measurements ),( kt
N

D
iu  (for 

20  Ni  ) and existing observers for parabolic PDEs 

like (3), see e.g. (Fridman and Blighovsky, 2012, Schaum 

et al., 2016). 

5. OBSERVER DESIGN EXTENSION 

In this section, we extend the observer design method of 

Section III to the following wider class of systems: 

 ))(())(),(()()( 1 tvgtvtXftAXtX  ,  for 0t  (88) 

 ))(,(),(),(),(),( 2 tvxgtxcwtxbwtxawtxw xxxt  , 

 for ),0(),0(),(  Dtx  a.e.  (89) 

 ))((),0(),0( 0 tvptqwtwx  ,  for all 0t   (90) 

 ))(()(),( 1 tvptCXtDw  ,  for all 0t  (91) 

for some functions (.)1g  and 2g  of class  nmC RR ;1
 and 

 RR ;],0[1 mDC  , respectively, and some functions 10 , pp  

of class  RR ;2 mC ; the exogenous signal 
mtv R)(  (for 

some integer 1m ) is accessible to measurements and of 

class  mC RR ;2
 . All other quantities remain unchanged 

with respect to (2)-(4). Compared to the initial class of 

systems defined by (2)-(4), the new PDE equation (47) 

includes the convection term ),( txbwx  (with Rb ); 

 

We seek an exponentially convergent observer for the new 

system (88)-(91). To this end, introduce the state 

transformation, 

  ),(),( )( txwetxu Dxr  ,  for ),0[],0[),(  Dtx  (92) 

with 

   
a

b
r

2
   (93)  

Differentiating ),( txu , one gets using (40): 

 ),(),(),( )()( txwbetxwaetxu x
Dxr

xx
Dxr

t
   

 ))(,(),( )()( tvxgetxwce DxrDxr    (94) 

 ),(),(),( )()( txwetxwretxu x
DxrDxr

x
   (95) 

 ),(2),(),( )()(2 txwretxwertxu x
DxrDxr

xx
    

 ),()( txwe xx
Dxr    (96) 

for ),0[],0[),(  Dtx . It follows from (94)-(96) that: 

 ))(,()
4

(),(),( 2
)(

2

tvxgeu
a

b
ctxautxu Dxr

xxt
  

 for ),0(),0(),(  Dtx  a.e. (97) 

Similarly, the following boundary conditions are readily 

obtained from (92) and (95), using (90) and (91): 

 ))(()(),(),( 1 tvptCXtDwtDu  , for all 0t  (98) 

))((),0()
2

(),0( 0 tvpetu
a

b
qtu rD

x
 ,for all 0t  (99) 

The transformed system modelled by equations (88) and 

(97)-(99), is rewritten here for convenience: 

 ))(())(),(()()( 1 tvgtvtXftAXtX  ,  for 0t  (100) 

 ))(,()
4

(),(),( 2
)(

2

tvxgeu
a

b
ctxautxu Dxr

xxt
  

 for ),0(),0(),(  Dtx  a.e.  (101) 

 ))(()(),( 1 tvptCXtDu  ,  for all 0t  (102) 

 ))((),0()
2

(),0( 0 tvpetu
a

b
qtu rD

x
 ,  for 0t (103) 

 ),(),( )( txuetxw Dxr    (104) 

where the last equation is obtained from (92) to make the link 

between the new system model (100)-(103) and its initial 

model (88)-(91). Except for the terms involving the external 

signal )(tv , equations (100)-(103) fit the model structure (2)-

(4). In the latter the parameter c  (resp. q ) is replaced by 

a

b
c

4

2

  (resp. 
a

b
q

2
 ). Accordingly, it is supposed that: 

 0a , 0
2


a

b
q   (105)  

The system (100)-(104) is observed through the sampled 

measurements ),0()( ktuty  , for ),[ 1 kk ttt  and 

2,1,0k  (this amounts to assuming ),0(),0( k
rD

k tuetw   

accessible to measurements). Again, consider the 

transformation (8), with  
nnxM R)(  defined by the ODE 
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(9) and initial conditions (10) replacing there c  (resp. q ) by 

a

b
c

4

2

  (resp. 
a

b
q

2
 ). It turns out that )(xM  is defined by, 

 













  I

a

b
cAxMax

dx

Md
)

4
()()(

2
1

2

2

 (106) 

 I
a

b
q

dx

dM
IM )

2
()0(,)0(     (107) 

Then, the system (100)-(103) rewrites as follows in terms of 

the ),( pX -coordinates: 

 ))(())(),(()()( 1 tvgtvtXftAXtX  ,  for 0t  (108) 

 ))(,(),()
4

(),(),( 2
)(

2

tvxgetxp
a

b
ctxaptxp Dxr

xxt
  

  ))(())(),(()()( 1
1 tvgtvtXfxMDCM   ,  

 for ),0(),0(),(  Dtx  (109) 

 ))((),0()
2

(),0( 0 tvpetp
a

b
qtp rD

x
 ,   

 for all 0t  (110) 

 ))((),( 1 tvptDp  ,      for all 0t  (111) 

 )()()(),(),( 1 tXxMDCMtxptxu   (112) 

 ),(),( )( txuetxw Dxr      (113) 

Then, inspired by the observer (65)-(70), we propose the 

following observer for the system (108)-(113): 

 ))(())(),(ˆ()(ˆ)(ˆ
1 tvgtvtXftXAtX 


,  

 ))()(ˆ( kk tytyL  , for ),[ 1 kk ttt , 0k   (114) 

 ))(,(),(ˆ)
4

(),(ˆ),(ˆ
2

)(
2

tvxgetxp
a

b
ctxpatxp Dxr

xxt
  

  ))((),ˆ()()( 1
1 tvgvXfxMDCM  

, 

  for ),0()1,0(),( tx   (115) 

 0))((),0(ˆ)
2

(),0(ˆ
0   tvpetp

a

b
qtp rD

x , 

  for 0t   (116) 

 ))((),(ˆ
1 tvptDp  ,  for all 0t   (117) 

 )(ˆ)()(),(ˆ),(ˆ 1 tXxMDCMtxptxu  ,  

  for ),0[]1,0[),( tx  (118) 

 ),(ˆ),(ˆ )( txuetxw Dxr    with  
a

b
r

2
   (119) 

 ),0(ˆ)(ˆ tuty    (120) 

Note that all terms involving the external signal )(tv , on the 

right side of equations (114)-(117), disappear when 

subtracting those equations from the corresponding equations 

in (108)-(111), leading to an error system similar to (26)-(28) 

except for that c  (resp. q ) in the latter is replaced by 
a

b
c

4

2

  

(resp. 
a

b
q

2
 ) in the former.  Then, applying Theorem 1 to 

the new error system, we obtain the following result: 

Corollary 1. Consider the class of systems defined by 

equations (100)-(104) with parameters 0a , Rc  and 

a

b
q

2
 . Consider the output sampled observer defined 

(114)-(119), where the scalar parameter 0  is arbitrary, 

the gain nL R  is such that the matrix nnLCA  R  is 

Hurwitz, and the matrix function )(xM  is defined either by 

(106)-(107). There exists a 0*   such that for any *  , 

there exist 0* D  and 0* h  so that if *0 DD   and 
*0 hh  then the observer (108)-(113) is exponentially 

convergent in the sense described in Theorem 1. 

Remark 4. The existence and uniqueness of solutions of the 

systems considered above can be analysed in many ways.  

1) Existence and uniqueness of solutions for (108)-(111). 

Following e.g. the approach developed in (Karafyllis and 

Krstic, 2017a), especially Theorem 2.1, we can show that for 

every  ]1,0[]0[ 2Cp   with 0))0(()1])(0[( 1  vpp  and 

  0))0(()exp()0])(0[(
2

)0(]0[ 0 










vprDDp

a

b
qDp , 

there exists a unique mapping 

   ),0(]1,0[]1,0[ 10   CCp R , with  ]1,0[][ 2Ctp   

for all 0t , that satisfies (123), for all 0t  and ]1,0[z  

and (124)-(125, for all 0t . 

A similar result holds for (2)-(4). 

2) Existence and uniqueness of solutions for the systems 

(114)-(117). 

Here, we assume that 1D  (otherwise perform the scaling 

Dxz  ). Using Theorem 2.1 in (Karafyllis and Krstic, 

2017a), we can show the result: 

For every increasing sequence  



0

0
kkt  with 00 t  and 

  


k
k

tlim , for every 
nX R0

ˆ ,  ]1,0[ˆ 2
0 Cp  , with 

,0))0(()1(ˆ

0))0(()exp()0(ˆ
2

)0(ˆ

10

000













vpp

vprp
a

b
qp

 

 and for every locally bounded function RR :y , there 

exist unique mappings   )(ˆ 10 ICCX  R , where 

 1
0

, 




 kk

k
ttI ,    ]1,0[]1,0[ˆ 10   ICCp R  with 

 ]1,0[][ˆ 2Ctp  , for all 0t , 0
ˆ)0(ˆ XX  , 0

ˆ]0[ˆ pp   and 

  )(ˆ 10 ICCX  R  being right-differentiable on R , so 

that (114) holds for all ),[ 1 kk ttt  and ,...2,1,0k  , (115) 

holds for all Itx  ]1,0[),(  and (116), (117) hold for 0t . 

A similar result can be stated for system (18)-(20). 

5. SIMULATION 

To illustrate the observer design, we consider the ODE-PDE 

cascade (2)-(4) with 

 2, 1, 1, 0n a D c q                            (121) 

  ( , ) : 0 ( , )
T

f X v g X v                          (122) 

where 
2

2 1 1 1( , ) : 5 / (1 )g X v v X X X X     . The ODE part 

(2) represents a mass-spring system with viscous force and 

nonlinear restoring force. The mass-spring system is subject 

to the effect of an external force. For this case, the matrix 

( )M x  defined by (9), (10) is given by 
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cos( ) sin( ) / 2

( )
0 cos( )

x x x
M x

x

 
  
 

, for [0,1]x      (123) 

Using [2 1] , 2TL   , the observer (18), (19), (20), (21), 

(22), (23) is expressed by the equations 

 

  

   

1 2

2

1 22

ˆ ˆ ˆ2 2cos(1) sin(1) (0, ) ( )

ˆ ˆ ˆ, 4cos(1) (0, ) ( )

1 sin(2)ˆ ˆˆ ˆ(0, ) (0, ) ( ) ( )
cos(1) 2cos (1)

k k

k k

d
X X u t y t

dt

d
X g X v u t y t

dt

u t p t X t X t

   

   

  

    (124) 

 
 ˆˆ ˆ ˆ( , ) ( , ) ( , ) ( ) ( ), ( )

ˆ ˆ(0, ) (1, ) 0

t xx

x

p x t p x t p x t x g X t v t

p t p t

  

 
      (125) 

where  

 
2

cos(1) sin( ) cos( )sin(1)
( ) :

2cos (1)

x x x
x


 , for [0,1]x   (126) 

In order to simulate numerically system (2), (14), (15), (16), 

(17), (124), (125) we used an eigenfunction expansion of the 

solution of (125) up to 30 terms, i.e., we simulated the ODE 

system for 0,1,...,30n   

 
 

  
 

2

2
2 2

ˆ
ˆ( ) 1 ( )

2

8( 1) 2 1 2
ˆ ( ), ( )

2 1 4

n
n

n

d a
t n a t

dt

n
g X t v t

n








  
        

 


 

             (127) 

and approximated the solution of (125) by the formula 

 
30

0

ˆ ˆ( , ) 2 ( ) cos
2

n

n

p x t a t n x





  
   

  
  

A similar approximation was applied for the solution of (14), 

(15), (16), (17).  

    We also have considered the presence of noise, i.e., we set 

)(),0()( ttuty k  , 

for all ),[ 1 kk ttt  and 2,1,0k            (128) 

where ( )t  is the noise. We have simulated the system 

described by (2), (14)-(17) and (121)-(122), on the one hand, 

and the observer represented by (124)-(125), on the other, 

with initial conditions 1 2
ˆ ˆ(0) (0) 0X X  , 1 2(0) (0) 1X X  , 

3

0

( ,0) 2 cos
2n

p x n x





  
   

  
 , ˆ ( ,0) 0p x  , input ( ) cos( )v t t . 

The simulation is performed considering noise-free output 

and noisy output. In the last case, the sequence )(t  is a 

zero-mean Gaussian white noise with variance 0.03. We have 

used a uniform sampling schedule kt kh , for all integers 

0k  , with two values of the sampling interval: 0.1h   and 

0.2h  . The obtained results are illustrated by Figures 1 to 

5. First, Fig. 1 shows the effect of the injected noise on the 

output. Fig. 2 and Fig. 3 illustrate the observer performances 

in the free-noise case ( 0  ), while Fig. 4 and Fig. 5 show 

the performances in the noisy case. Clearly, the observer 

errors converge to zero in the noise-free case (Figs 2 and 3), 

with greater convergence rate when the smaller sampling 

period 0.1h   is used. Furthermore, it is readily seen on Figs 

4 and 5 that the noise has only a weak effect on the observer 

convergence quality. This can be explained by the fact the 

observer gain 2  is presently not too large. Finally, we 

have checked that the good convergence quality is preserved 

for sampling periods up to 0.35h  . 

 

 
Fig. 1. Noise effect on the output )(ty  given by (128) for 

0.1h  : noisy output (solid line) and noise-free output 

(dashed line).  

 
 

 

Fig. 2. The time evolution of ˆ( ) ( ) ( )W t X t X t   without 

noise and 0.1h  (solid line) and 0.2h   (dashed line)  
 

 
Fig. 3. The time evolution of ˆ( ) (0, ) (0, )b t u t u t   without 

noise and 0.1h   (solid line) and 0.2h   (dashed line). 



 

 

10 

 

 

 

Fig. 4. Error ˆ( ) ( ) ( )W t X t X t   in the presence of noise 

with 0.1h   (solid line) and 0.2h   (dashed line).  
 

 
Fig. 5. The error ˆ( ) (0, ) (0, )b t u t u t   in the presence of 

noise with 0.1h   (solid line) and 0.2h   (dashed line). 

6. CONCLUSION 

We have developed a sampled boundary observer design 

method that applies to the class of ODE-PDE cascades 

modelled by (2)-(4) and (88)-(91). The main characteristics 

of the new design method are: (i) the coordinate 

transformations (8) and (31); (ii) the matrix-valued function 

)(xM  (defined by (10)-(11)) and the high-gain matrix   

used in the observer gains; (iii) the Lyapunov-Krasovskii 

type functional (38). Theorem 1 shows that exponential 

stability of the observation error system (26)-(29) entails 

conditions on the maximum (time) sampling interval and the 

PDE domain length. Accordingly, the maximum domain 

length is a decreasing function of the Lipschitz constant f  

and tends to infinity when f , retrieving thus the linear 

case result of (Ahmed-Ali et al., 2016b, 2017b; Karafyllis et 

al., 2017). To the authors’ knowledge, it is the first time that 

a sampled boundary observer design is developed for ODE-

PDE cascades that involve nonlinear ODEs. The present 

work can be pursued in many senses including the extension 

to more general classes of ODEs, involving non-globally 

Lipschitz nonlinearities.  

REFERENCES 

Ahmed-Ali T., E. Fridman, F. Giri, L. Burlion, F. Lamnabhi-

Lagarrigue (2016a). A new approach to enlarging sampling 

intervals for some sampled-data systems and observers. 

Automatica, vol. 67, pp. 244-251. 

Ahmed-Ali T., F. Giri, M. Krstic (2017a). Observer Design 

for Triangular Nonlinear Systems in the Presence of 

Arbitrarily Large Output Delay - A PDE Based Approach. 

American Control Conference, Seattle, WA, USA. 

Ahmed-Ali T., F. Giri, M. Krstic, F. Lamnabhi-Lagarrigue 

(2015). High-Gain Observer Design for a Class of 

Nonlinear ODE-PDE Cascade Systems. Systems & Control 

Letters, vol. 83, pp. 19–27. 

Ahmed-Ali T., F. Giri, M. Krstic, M. Kahelras. PDE Based 

Observer Design for Nonlinear Systems with Large Output 

Delay. Systems and Control Letters, Systems & Control 

Letters, vol. 113, pp. 1–8, 2018. 

Ahmed-Ali T., I. Karafyllis, F. Giri, M. Krstic and F. 

Lamnabhi-Lagarrigue (2016b) Stability Result for a Class 

of Sampled-Data Systems and Application to Observer 

Design for Cascade ODE-PDE systems. 22nd International 

Symposium on Mathematical Theory of Networks and 

Systems (MTNS 2016), Minneapolis, MN, USA. 

Ahmed-Ali T., I. Karafyllis, F. Giri, M. Krstic, and F. 

Lamnabhi-Lagarrigue (2017b). Exponential Stability 

Analysis of Sampled-Data ODE-PDE Systems and 

Application to Observer Design. IEEE Transactions on 

Automatic Control, Vol. 62 (6), pp. 3091-3098. 

Fridman E., and A. Blighovsky (2010). Sampled-Data 

Stabilization of a Class of Parabolic Systems", Proceedings 

of the 19th International Symposium on Mathematical 

Theory of Networks and Systems, pp. 1129-1134. 

Fridman E., and A. Blighovsky (2012). Robust sampled-data 

control of a class of semilinear parabolic systems. 

Automatica, vol. 48, pp. 826–836. 

Hasan A., O. M. Aamo, and M. Krstic (2016). Boundary 

observer design for hyperbolic PDE-ODE cascade systems. 

Automatica, vol. 68, pp. 75-86. 

Karafyllis I., M. Krstic (2017a). ISS in Different Norms for 

1-D Parabolic PDEs with Boundary Disturbances. SIAM 

Journal on Control and Optimization, 55(3), pp. 1716-1751. 

Karafyllis I., M. Krstic (2017b). Decay estimates for 1-D 

parabolic PDEs with boundary disturbances. 

https://arxiv.org/abs/1706.01410 

 Karafyllis I., T. Ahmed-Ali, F. Giri, M. Krstic, F. Lamnabhi-

Lagarrigue (2017). Stability of Sampled-Data PDE-ODE 

Systems and Application to Observer Design and Output-

Feedback Stabilization. IFAC World Congress, Toulouse, 

France, pp. 13831-13836. 

Khalil H.K. (2015). Nonlinear Control. Pearson Education. 

NJ, USA. 

Krstic M., (2009). Compensating actuator and sensor 

dynamics governed by diffusion PDEs. Systems & Control 

Letters, vol. 58, pp. 372-377. 

Krstic M., A. Smyshlyaev (2008). Backstepping boundary 

control for first-order hyperbolic PDEs and application to 

systems with actuator and sensor delays. Systems & 

Control Letters, vol. 57, pp. 750–758. 

Schaum A., J. Alvarez, T. Meurer, J.A. Moreno, (2016). 

Pointwise innovation–based state observation of exothermic 

tubular reactors. IFAC-PapersOnLine Vol. 49(7), pp. 955-

960. 

Smyshlyaev A., Krstic M., (2010). Adaptive control of 

parobolic PDEs. Princeton University Press, NJ, USA.  



 

 

11 

 

 

Tang S., and C. Xie (2010). Stabilization of a Coupled PDE-

ODE System by Boundary Control. 49th IEEE Conference 

on Decision and Control, Atlanta, GA, USA. 

Tang S.X., C. Xie (2011). State and output feedback 

boundary control for a coupled PDE-ODE system. Systems 

& Control Letters, vol. 60(8), pp. 540-545. 

Wu H.N., J.W. Wang (2013). Observer design and output 

feedback stabilization for nonlinear multivariable systems 

with diffusion PDE-governed sensor dynamics. Nonlinear 

Dynamics, vol. 72(3), pp 615–628. 

 




