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We design an observer for ODE-PDE cascades where the ODE is nonlinear of strict-feedback structure and the PDE is a linear and of parabolic type. The observer provides online estimates of the (finite-dimensional) ODE state vector and the (infinite-dimensional) state of the PDE, based only on sampled boundary measurements. A design that simultaneously addresses nonlinear ODEs and boundary measurement sampling is the paper's key contribution. Our observer design combines the backstepping design approach and the high-gain observer methodology and our analysis employs a Lyapunov-Krasovskii type functional to establish exponential convergence. Our sufficient conditions for convergence involve the maximum sampling interval and the PDE domain length.

INTRODUCTION

Designing boundary observers for cascade systems involving PDE sensing and/or actuation has recently become a highly active research topic. Linear ODE-PDE cascades with firstorder hyperbolic PDEs have been dealt with in [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF]. The proposed boundary observer is a copy of the system with additional innovation terms involving domain-dependent gains which are obtained through the solution of a first order ODE. The innovation terms provide the observer with a feedback structure and introduce a coupling between its ODE and PDE parts. Exponential stability of the resulting error system has been analysed using an appropriate error coordinate backstepping transformation and a quadratic Lyapunov functional. This study has been extended in (Ahmed-Ali et al., 2017a) to the case where the system ODE part is nonlinear of globally Lipschitz type and with a triangular structure. The ODE nonlinearity is accounted for in the observer design by using the high-gain formalism, especially in the part devoted to the ODE state observation. The system nonlinearity gives rise to a limitation on the admissible length D of the PDE domain: the larger the Lipschitz constant, the smaller the admissible values of .

D This limitation has been coped with in (Ahmed- Ali et al., 2017b) by using a cascade observer involving a number, say m , of partial observers each one providing the estimates of the PDE state on a subdomain of length m D / . Accordingly, the observer (error system) exponential stability can be guaranteed, however large the Lipschitz constant of the ODE nonlinearity, provided the number m is taken sufficiently large. Observer design for linear ODE-PDE cascades that involve parabolic PDEs has been introduced in [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF]. The observer involves domain position dependent gains that are governed by second order ODEs. Again, exponential stability of the corresponding observation error system is established using a quadratic Lyapunov functional. In [START_REF] Ahmed-Ali | High-Gain Observer Design for a Class of Nonlinear ODE-PDE Cascade Systems[END_REF], we have extended the result of [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] to ODE-PDE systems where the ODE part is nonlinear Lipschitz with triangular structures. Observer design for nonlinear multivariable systems with parabolic PDE sensor dynamics and application to output feedback control was studied in [START_REF] Wu | Observer design and output feedback stabilization for nonlinear multivariable systems with diffusion PDE-governed sensor dynamics[END_REF].

Boundary observer design for linear PDE-ODE cascade systems with first-order hyperbolic PDEs has been studied in e.g. [START_REF] Hasan | Boundary observer design for hyperbolic PDE-ODE cascade systems[END_REF]. The observer is constructed in a collocated setup, which means that both sensing and actuation are located at the same boundary. The observer gains are computed analytically by solving Goursat-type PDEs in terms of Bessel function of the first kind. Finally, boundary observer design for linear coupled PDE-ODE, with hyperbolic PDE, has been considered in e.g. (Tang andXie, 2010, 2011). A common characteristic of the above mentioned observers is that they all require the system boundary outputs to be continuously accessible to measurements. As only sampled measurements are available in practice, continuous-time measurement based observers may not meet their theoretical performances. This explains the great deal of interest that has been paid to sampled-data based observer design over the last few years. However, quite a few sampled-measurement observers have been developed for systems described by PDEs, see e.g. [START_REF] Fridman | Robust sampled-data control of a class of semilinear parabolic systems[END_REF]Ahmed-Ali et al., 2016a) for parabolic PDEs. The problem of sampleddata observer design for linear ODE-PDE cascades has only recently been investigated in (Ahmed-Ali et al., 2016b[START_REF] Karafyllis | Decay estimates for 1-D parabolic PDEs with boundary disturbances[END_REF] considering a specific class of parabolic PDEs and boundary conditions. The observer design developed there can be viewed as a sampled version of that in [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF] as it relied on a coordinate transformation of the ODE and PDE states. However, the error system exponential stability has been investigated using a small-gain (input-output) stability analysis, rather than Lyapunov functional analysis in [START_REF] Krstic | Compensating actuator and sensor dynamics governed by diffusion PDEs[END_REF]. In this paper, we present a new sampled-measurement based observer design for ODE-PDE cascades where the ODE is nonlinear of the Lipschitz type and with a triangular structure, the PDE is parabolic with various boundary conditions. Our observer design combines ideas from the high-gain observer technique and the backstepping transformation principle. It turns out that the observer gain depends on a matrix-valued function (of the PDE spatial variable) that is the solution of a second order ODE. The observation error system is analyzed using a suitable quadratic Lyapunov-Krasovski functional, that constitutes another novelty of this work. Accordingly, upper bounds on the sampling interval and the PDE domain length are 2 established for the error system to be exponentially stable. Compared to the authors' previous works, the present result extends that of [START_REF] Ahmed-Ali | High-Gain Observer Design for a Class of Nonlinear ODE-PDE Cascade Systems[END_REF] in at least two directions: (i) the class of considered (parabolic) PDEs and their associated boundary conditions are much larger; (ii) the present observer is sampled-output (while it was continuoustime output measurement based in the previous work). The present work is also an extension of (Ahmed-Ali et al., 2016b[START_REF] Karafyllis | Decay estimates for 1-D parabolic PDEs with boundary disturbances[END_REF] due to the ODE nonlinearity. It is also the complete version of the conference paper (Karafyllis et al., 2017) where most technical proofs were missing. The paper is organized as follows: the first observer problem under study is formulated in Section 2 and the corresponding observer design and analysis are dealt with in Sections 3 and 4; an extension of this observer design to a larger class of systems is presented in Section 5; well-posedness analysis of all considered systems and observers is discussed in Section 6; some concluding remarks end the paper. Notation.
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OBSERVER PROBLEM STATEMENT

Class of observed systems

We are considering continuous-time nonlinear systems that can be modelled by the following ODE-PDE cascade:

)
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denotes the state vector of the finitedimensional subsystem, described by (2) with any initial condition
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where f  might depend on the external signal v . The pair . Then, Luenberger type linear observers were used, while highgain observer is necessary to deal with the present problem. The considered strict-feedback structure of the system and the globally Lipschitz assumption on (.) f are precisely considered to make the high-gain observer design applicable, see e.g. (Khalil, 2015, p. 271). In this respect, note that all uniformly observable SISO systems are diffeomorphic to the strict-feedback form. Accordingly, considering this form entails covering all uniformly observable SISO systems. Owing to the global Lipschitz assumption made on (.) f , although this is quite usual, it actually entails limitation of the set of admissible nonlinearities.

OBSERVER DESIGN AND ANALYSIS

Consider the following backstepping transformation:
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where

n n I   R
denotes the identity matrix. The solution of the problem (9)-( 10) is analytic and expressed by the following globally convergent series
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The transformation (8) also involves the inverse of ) (D M which implicitly entails an additional assumption on A . This issue is no longer investigated in this paper. Using (9), ( 2 17) and the boundary conditions ( 15)-( 16) are derived from (8) using ( 4) and ( 10). The  ) , ( p X system representation ( 13)-( 17) mainly differs from the initial  ) , ( u X representation in that the boundary conditions ( 15)-( 16) of the former are  X free leading to homogeneous boundary conditions (unlike those of the initial representation, see ( 2)-( 4)). Homogeneous boundary conditions are required in the existence/uniqueness theorems for PDEs. For convenience, the well posedness issue will be discussed latter (see Remark 4). 
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where the real scalars K and

1   are design parameters and n L R  is any vector such that LC A  is Hurwitz (this is not an issue since the pair ) , ( C A is observable).
Remark 2. In the case of linear systems (i.e. if 0 (.)  f then) the use of a high-gain observer is not necessary. In such a case, one can consider simpler sampled-data observers like those in (Ahmed-Ali et al., 2016b[START_REF] Karafyllis | Decay estimates for 1-D parabolic PDEs with boundary disturbances[END_REF]Karafyllis et al., 2017). Presently, this amounts to letting 1   and I   in the ODE part of the observer (given par ( 18)). In all mentioned observers, the 'measurement delay' caused by the heat PDE sensor dynamics is compensated for in the observer ODE part by the matrix ) (D M [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF]Ahmed-Ali et al., 2016b[START_REF] Karafyllis | Decay estimates for 1-D parabolic PDEs with boundary disturbances[END_REF]Karafyllis et al., 2017). In a sense, ) (D M acts as a 'transition' matrix between the measurement point, located at 0  x , and the output of the ODE part, located at D x  . In the case of no PDE sensor dynamics (i.e. if 0  D
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and the observer part ( 18) boils down to a standard high-gain observer. To analyse the proposed observer, we introduce the estimation errors: 10), ( 22) and (24a), one immediately gets by subtracting ( 17) to ( 21) and letting there
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The exponential stability of the error system (26)-( 29) is stated in the following theorem:

Theorem 1 (main result). Consider the class of systems defined by equations ( 2)-( 4) with parameters
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2) In the case of linear systems, i.e. if the Lipschitz coefficient f  in ( 6) is zero then, D can be arbitrarily large.

Proof. Introduce the following notation:
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Then, differentiating both sides of (31), one obtains using (26) and applying the mean-value theorem:
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where the last term on the right side is obtained using (34). Equation ( 37) is completed with the boundary conditions ( 28)-( 29). To analyse the  ) , ( p Z system, we consider the following Lyapunov-Krasovskii functional:
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, where I denotes the identity matrix of n n R . Note that P exists (whatever 0   ) because LC A  is Hurwitz. Also, from (28) one has the following relations which will prove to be useful:
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Existence and continuity of xt p ~ on the right side of (42) can be proved as follows: replacing x by x  1 and using the regularity properties of all functions, it follows from Proposition 2.12 in (Karafyllis and Krstic, 2017a) t 's. Now, the various terms on the right side of ( 42) are examined in order and, some of them, bounded from above. Using (39b), the first term is bounded as follows:

  2 ) ( ) ( ) ( ) ( ) ( t Z t Z P LC A LC A P t Z T T        (43) 
The second term on the right side of ( 42) is developed as follows, using Young's inequality:
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for any 0   , where the last inequality is obtained using Jensen's inequality. The third term on the right side of ( 42) is bounded from above as follows, using Young's inequality:
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In view of (5c) and ( 23) that, for all 1   , one has:
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for some real constant

M  independent of  .
Using ( 46), ( 48) and ( 49), one gets:

2 2 1 1 ) ( 2 ) ( ) ( ) , ( ) ( ) ( 2 t Z P t Z D M t D D M P t Z M f T         (50)
The fifth term on the right side of ( 42) is bounded as follows:

  D xx dx t x p c t x p a t x p 0 0 )) , ( ) , ( )( , (      D x dx t x p a t p q a 0 2 0 2 0 ) , ( ) , 0 ( ~    D dx t x p c 0 2 0 ) , (  (51) 
where we have used an integration by parts and the boundary conditions ( 28). The sixth term on the right side of ( 42) is first bounded as follows:

      D dx t Z D M t D x M D CM t x p 0 1 1 0 ) ( ) ( ) , ( ) ( ) ( ) , ( ~    D dx t x p 0 2 0 ) , (   +        D dx t Z D M t D x M D CM 0 2 1 1 0 ) ( ) ( ) , ( ) ( ) (    (52) for any 0   . As C C  
the squared term in the last integral, on the right side of (50), develops as follows:

) ( ) ( ) , ( ) ( ) ( 1 1 t Z D M t D x M D CM     ) ( ) ( ) , ( ) ( ) ( 1 1 1 1 1 t Z D M t D x M D M C               
Then, it follows using (45), ( 47) and (48), one gets:

) ( ) ( ) ( ) , ( ) ( ) ( 1 1 t Z t Z D M t D x M D CM M M f         (53)
Using (53), it follows from (52) that, for

N     k t t t k k , 1 :       D dx t Z D M t D x M D CM t x p 0 1 1 0 ) ( ) ( ) , ( ) ( ) ( ) , ( ~    2 2 0 0 2 0 ) ( ) , ( ~t Z D dx t x p M M f D           (54)
The seventh and eighth terms on the right side of (42) are dealt with as follows, for

N     k t t t k k , 1 : dx t x p t x p D xt x  0 1 ) , ( ) , (  ) , 0 ( ) , 0 ( 1 t p t p q t     dx t x p t x p t x p t x p D t xx D t x    0 1 0 1 ) , ( ) , ( ) , ( ) , ( ~  ) , 0 ( ) , 0 ( 1 t p t p q t    dx t x p c t x p a t x p D xx xx     0 1 ) , ( ) , ( ) , (    dx t Z D M t D x M D CM t x p D xx      0 1 1 1 ) ( ) ( ) , ( ) ( ) ( ) , ( ~  dx t x p a D xx    0 2 1 ) , (  dx t x p c t p cq D x    0 2 1 2 1 ) , ( ) , 0 ( ~  dx t x p D xx   0 2 1 ) , ( 2    2 2 1 ) ( 2 t Z D M M f       (55)
for any real 0   , where the penultimate equality is obtained using (28), while the last inequality is obtained using an integration by part, applying Young's inequality and using (53). Using ( 33) and ( 40), the penultimate term on the right side of ( 42) is bounded from above as follows:

) , 0 ( ) ( ) ( ) ( 2 2 2 k k t p L t LCZ t AZ h t Z h          2 1 1 ) ( ) ( ) , ( ) ( t Z D M t D D M       dx t x p L ds s Z LC t Z LC A h D k x t t k       0 2 ) , ( ) ( ) ( ) (       2 1 1 1 1 ) ( ) ( ) , ( ) ( t Z D M t D D M                 t t k ds s Z LC h t Z LC A h 2 2 2 2 2 2 2 2 2 ) ( 4 ) ( 4      2 0 2 2 2 2 ) , ( 4 dx t x p L D h D k x     2 2 2 ) ( ) ( 4 t Z h M M f      , for N     k t t t k k , 1 (56) 
where the third term on the right side of ( 56) is got using Jensen's inequality. Using ( 56), ( 55), ( 54), ( 51), ( 50), ( 45), ( 44), ( 43), it follows from (42) that, for

N     k t t t k k , 1 : 2 ) ( ) , , ( t Z t p Z V     2 ) (t Z     t t k ds s Z PLC h 2 2 ) (    2 ) (t Z   dx t x p PL D D k x   0 2 2 ) , (   2 2 ) ( 2 t Z P M f       D x dx t x p a t p q a 0 2 0 2 0 ) , ( ) , 0 ( ~    D dx t x p c 0 2 0 ) , (    2 2 0 0 2 0 ) ( ) , ( ~t Z D dx t x p M M f D             D dx t x p c 0 2 0 ) , (  2 2 2 2 ) ( 4 t Z LC A h     dx t x p a D xx   0 2 1 ) , (  dx t x p c t p cq D x    0 2 1 2 1 ) , ( ) , 0 ( ~  dx t x p D xx   0 2 1 ) , ( 2    2 2 1 ) ( 2 t Z D M M f         t t k ds s Z LC h 2 2 2 2 2 ) ( 4    dx t x p L D h D k x   0 2 2 2 2 ) , ( 4   2 2 2 ) ( ) ( 4 t Z h M M f      ds s Z t t k   2 2 ) (   2 1 ) (t Z            D dx t x p c 0 2 0 ) , ( 1   dx t x p PL D c a D x             0 2 2 1 0 ) , (     dx t x p a D xx    0 2 1 ) , ( ) 2 1 (   ) , 0 ( ) ( 2 1 0 t p q c a     ds s Z LC h PLC h t t k             2 2 2 2 2 2 2 ) ( 4       dx t x p PL D L D h D k x            0 2 2 2 2 2 ) , ( 4     (57) with 2 2 2 1 ) ( 4 2 M M f M f h P                  2 2 2 2 0 4 LC A h D M M f             2 1 2 M M f D       (58)
We need the following condition to be satisfied:

0 1   (59)
First, let the parameter  be selected such that:

0 2 2   P M f    (60)
Then, we let the maximum sampling period h , the domain length D , and the free positive real parameters ) , , (    be small enough so that (59) holds. A possible choice is to let ) , , (    be small enough so that:

6 2 2 P M f       (61) 6 2 2 P M f       (62)   6 2 2 2 0 P D M f M M f           (63)
Then, one sets the maximum sampling period h so that the following inequalities hold:

6 2 ) ( 4 2 2 2 P h M f M M f          (64) 6 2 4 2 2 2 2 P LC A h M f         (65)
Finally, we let the domain length D small enough so that:

  6 2 2 2 2 1 P D M f M M f           (66) 
The still free parameters 0  and  are let to be large enough so that the following additional couple of conditions hold:

0 2 0      PL D a , 0 2 1    a (67)
Then, applying Wirtinger's inequality (1), one has:

dx t x p a dx t x p PL D a D xx D x               0 2 1 0 2 2 0 ) , ( ) 2 1 ( ) , ( ~     dx t x p PL D a D D             0 2 2 0 2 2 ) , ( 4     dx t x p a D D x    0 2 2 2 1 ) , ( ) 2 1 ( 4    (68)
Also, let the maximum sampling period h be small enough so that one has, 0 4

2 2 2 2 2    LC h PLC h      (69)
Using ( 67)-( 69), it follows from (57):

2 1 ) (t Z V       D dx t x p 0 2 2 ) , (  dx t x p D x   0 2 3 ) , (  ds s Z t t k   2 4 ) (   ) , 0 ( ~2 5 t p q   dx t x p D k x   0 2 6 ) , (  (70) with                          1 4 0 2 0 2 2 2 c PL D a D (71) 2 2 1 3 4 ) 2 1 ( D a       (72) 2 2 2 2 2 4 4 LC h PLC h          (73) 1 0 5    c a   (74)      2 2 2 2 6 4 PL D L D h   (75)
By letting D be small enough, the following properties hold:

) 6 2 ( , 0    i i  (76)
Since 1

 to 6  are positive, it follows from (70) that:

) , , ( 2 ) , , ( ) , , ( 1 6 k t p Z V t p Z V t p Z V        (77) using (38), with          2 4 1 5 1 3 0 2 max 1 2 , 2 , 2 , 2 , ) ( min            h P (78) Now, if     1 6 2 (79)
then it follows applying Halanay's inequality to (77) (see e.g. Fridman and Blighovsky, 2010, Lemma 3):

) , , ( sup ) , , ( 0 0 ) ( 2 0           t p Z V e t p Z V h t t ; ) ( 0 t t  ( 80 
)
where  is the unique solution of the algebraic equation: D is required (in the above analysis) to be small only to make sure that inequalities (66) and (79) do hold. It is readily seen that, in the case of a zero Lipschitz coefficient f  , those inequalities hold irrespective of the value D . This proves Theorem 1.  Remark 3. 1) From ( 60) it follows that the minimal observer gain *

     h e 2 1 6 2 2   (81) Note that the condition     1 6 2 holds if D is
 in Theorem 1 is such that     / 2 2 * P M f  . The larger the nonlinearity coefficient f  the larger *  .
2) Inequalities ( 61)-( 67), ( 69), (76), and (79) are sufficient conditions, on the maximum sampling interval h and the domain length D . It is readily checked that those conditions define nonempty sets of admissible values. Let us check it for h . To meet (61)-( 63) and (the second part of) (67), let the free scalars ) , , , (     be set as follows:

          12 2 , 12 2 2 2 P P M f M f     (82)   2 0 2 12 2 M M f M f D P           , a 1   (83) 
To meet ( 64) and ( 65), the sampling interval is set so that:

0 h h  (84) with   3 2 1 0 , , min h h h h  (85) 2 2 2 2 2 2 2 2 1 24 2 , ) ( 24 2 LC A P h P h M f M M f M f                  (86)
and 3 h the unique value for which the left side of ( 69) is zero i.e.

1 2 2 2 2 2 2 3 4 2 12             LC P PLC h M f       (87)
where ( 83) has been used to get (87).

3) In addition to the results of Theorem 1, it is noticed that all conditions on the sampling interval, namely inequalities (64), ( 65) and ( 69), are useless if 0  h i.e. in the continuous-measurement case. In such a case, only the condition on the domain length D stands. If further the Lipschitz constant is zero then, by Part 2 of Theorem 1, it follows that also the condition on D disappears, retrieving thus a similar result as in [START_REF] Krstic | Backstepping boundary control for first-order hyperbolic PDEs and application to systems with actuator and sensor delays[END_REF]. 4) In practical applications, the domain length D might not be small enough to meet the related smallness requirement of Theorem 1. Then, a practical solution is to implement several sensors (say N ) providing the measurements of ) , (

k t N D i u ( 1 0   N i 
), with N selected large enough so that the ratio N D / meets the requirement on D in Theorem 1. Doing so, the observer ( 18)-( 22 

) / ) 1 ( , / ( N D i N iD  ) 2 0 (   N i
 can be simultaneously estimated using the measurements ) , (

k t N D i u (for 2 0   N i 
) and existing observers for parabolic PDEs like (3), see e.g. (Fridman andBlighovsky, 2012, Schaum et al., 2016).

OBSERVER DESIGN EXTENSION

In this section, we extend the observer design method of Section III to the following wider class of systems:

)

) ( ( )) ( ), ( ( ) ( ) ( 1 t v g t v t X f t AX t X     , for 0  t (88) )) ( , ( ) , ( ) , ( ) , ( ) , ( 2 t v x g t x cw t x bw t x aw t x w x xx t     , for ) , 0 ( ) , 0 ( ) , (    D t x a.e. ( 89 
) )) ( ( ) , 0 ( ) , 0 ( 0 t v p t qw t w x   , for all 0  t (90) )) ( ( ) ( ) , ( 1 t v p t CX t D w   , for all 0  t (91)
for some functions (.)

1 g and 2 g of class   n m C R R ; 1 and   R R ; ] , 0 [ 1 m D C 
, respectively, and some functions

1 0 , p p of class   R R ; 2 m C ; the exogenous signal m t v R  ) ( (for some integer 1  m ) is accessible to measurements and of class   m C R R ; 2 
. All other quantities remain unchanged with respect to (2)-( 4). Compared to the initial class of systems defined by ( 2)-( 4), the new PDE equation ( 47 92) and (95), using ( 90) and ( 91):

)

) ( ( ) ( ) , ( ) , ( 1 t v p t CX t D w t D u    , for all 0  t (98) )) ( ( ) , 0 ( ) 2 ( ) , 0 ( 0 t v p e t u a b q t u rD x    
,for all 0  t (99)

The transformed system modelled by equations ( 88) and ( 97)-( 99), is rewritten here for convenience: 

)) ( ( )) ( ), ( ( ) ( ) ( 1 t v g t v t X f t AX t X     , for 0  t ( 100 



(104) where the last equation is obtained from (92) to make the link between the new system model ( 100)-( 103) and its initial model ( 88 ). Accordingly, it is supposed that:

0  a , 0 2   a b q (105)
The system (100)-( 104 

            I a b c A x M a x dx M d ) 4 ( ) ( ) ( 2 1 2 2 (106) I a b q dx dM I M ) 2 ( ) 0 ( , ) 0 (    (107) 
Then, the system (100)-( 103) rewrites as follows in terms of the ) , ( p X -coordinates:

) 

) ( ( )) ( ), ( ( ) ( ) ( 1 t v g t v t X f t AX t X     , for 0  t ( 108 
      )) ( ( ) , ( ) ( ) ( 1 1 t v g v X f x M D CM    , for ) , 0 ( ) 1 , 0 ( ) , (    t x (115) 0 )) ( ( ) , 0 ( ) 2 ( ) , 0 ( ˆ0      t v p e t p a b q t p rD x , for 0  t (116) )) ( ( ) , ( ˆ1 t v p t D p  , for all 0  t (117) ) ( ) ( ) ( ) , ( ) , ( ˆ1 t X x M D CM t x p t x u    , for ) , 0 [ ] 1 , 0 [ ) , (    t x (118) ) , ( ) , ( ˆ) ( t x u e t x w D x r    with a b r 2  ( 119 
) ) , 0 ( ) ( ˆt u t y  (120) 
Note that all terms involving the external signal ) (t v , on the right side of equations ( 114)-( 117), disappear when subtracting those equations from the corresponding equations in ( 108)-( 111), leading to an error system similar to (26)-( 28) except for that c (resp.

q ) in the latter is replaced by

a b c 4 2  (resp. a b q 2 
) in the former. Then, applying Theorem 1 to the new error system, we obtain the following result:

Corollary 1. Consider the class of systems defined by equations ( 100)-( 104 108)-( 113) is exponentially convergent in the sense described in Theorem 1. Remark 4. The existence and uniqueness of solutions of the systems considered above can be analysed in many ways.

1) Existence and uniqueness of solutions for ( 108)-( 111). Following e.g. the approach developed in (Karafyllis and Krstic, 2017a), especially Theorem 2.1, we can show that for every A similar result holds for (2)-(4).

  ] 1 , 0 [ ] 0 [ 2 C p  with 0 )) 0 ( ( ) 1 ])( 0 [ ( 1   v p p and   0 )) 0 ( ( ) exp( ) 0 ])( 0 [ ( 2 ) 0 ( ] 0 [            v p rD D p a b q D p , there exists a unique mapping     ) , 0 ( ] 1 , 0 [ ] 1 , 0 [ 1 0       C C p R , with   ] 1 , 0 [ ] [ 2 C t p  for all 0  t ,
2) Existence and uniqueness of solutions for the systems ( 114)-( 117).

Here, we assume that 1  D (otherwise perform the scaling

Dx z 

). Using Theorem 2.1 in (Karafyllis and Krstic, 2017a), we can show the result: 

For every increasing sequence      0 0 k k t with 0 0  t and       k k t lim , for every n X R  0 ˆ,   ] 1 , 0 [ ˆ2 0 C p  , with , 0 )) 0 ( ( ) 1 ( ˆ0 )) 0 ( ( ) exp( ) 0 ( 2 ) 0 ( ˆ1 0 0 0 0               v p p v p
  ) ( ˆ1 0 I C C X    R
, where

  1 0 ,      k k k t t I ,     ] 1 , 0 [ ] 1 , 0 [ ˆ1 0      I C C p R with   ] 1 , 0 [ ] [ ˆ2 C t p  , for all 0  t , 0 ) 0 ( ˆX X  , 0 ] 0 [ ˆp p  and   ) ( ˆ1 0 I C C X    R being right-differentiable on  R , so that (114) holds for all ) , [ 1   k k t t t and ,... 2 , 1 , 0  k , (115) 
holds for all

I t x   ] 1 , 0 [ ) , (
and ( 116), (117) hold for 0  t .

A similar result can be stated for system (18)-(20).

SIMULATION

To illustrate the observer design, we consider the ODE-PDE cascade

(2)-(4) with 2, 1, 1, 0 n a D c q       (121)   ( , ) : 0 ( , ) T f X v g X v  (122) 
where

2 2 1 1 1 ( , ) : 5 / (1 ) g X v v X X X X      .
The ODE part (2) represents a mass-spring system with viscous force and nonlinear restoring force. The mass-spring system is subject to the effect of an external force. For this case, the matrix () Mx defined by ( 9), ( 10) is given by cos( ) sin( ) / 2 () 0 cos( )

x x x Mx x     , for [0,1] x  (123) Using [2 1] , 2 T L 
 , the observer ( 18), ( 19), ( 20), ( 21), ( 22), ( 23 ˆˆ2 2 cos(1) sin(1) (0, ) ( ) 2 cos (1)

ˆˆ, 4 cos(1) (0, ) ( ) 1 sin(2) ˆ(0, ) (0, ) ( ) ( ) cos(1) 2 cos (1) kk kk d X X u t y t dt d X g X v u t y t dt u t p t X t X t            (124)   ( , ) ( , ) ( , ) ( ) ( ), ( ) 
ˆ(0, ) ( 1 
x x x x   
, for [0,1] x  (126)

In order to simulate numerically system (2), ( 14), ( 15), ( 16), ( 17), ( 124), ( 125) we used an eigenfunction expansion of the solution of ( 125) up to 30 terms, i.e., we simulated the ODE system for 0,1,... A similar approximation was applied for the solution of ( 14), ( 15), ( 16), (17).

We also have considered the presence of noise, i. where () t  is the noise. We have simulated the system described by ( 2), ( 14)-( 17) and ( 121)-( 122), on the one hand, and the observer represented by ( 124 The simulation is performed considering noise-free output and noisy output. In the last case, the sequence ) (t  is a zero-mean Gaussian white noise with variance 0.03. We have used a uniform sampling schedule 

CONCLUSION

We have developed a sampled boundary observer design method that applies to the class of ODE-PDE cascades modelled by ( 2)-( 4) and ( 88)-( 91). The main characteristics of the new design method are: (i) the coordinate transformations ( 8) and ( 31); (ii) the matrix-valued function ) (x M (defined by ( 10)-( 11)) and the high-gain matrix  used in the observer gains; (iii) the Lyapunov-Krasovskii type functional (38). Theorem 1 shows that exponential stability of the observation error system (26)-( 29) entails conditions on the maximum (time) sampling interval and the PDE domain length. Accordingly, the maximum domain length is a decreasing function of the Lipschitz constant f  and tends to infinity when   f  , retrieving thus the linear case result of (Ahmed-Ali et al., 2016b[START_REF] Karafyllis | Decay estimates for 1-D parabolic PDEs with boundary disturbances[END_REF]Karafyllis et al., 2017). To the authors' knowledge, it is the first time that a sampled boundary observer design is developed for ODE-PDE cascades that involve nonlinear ODEs. The present work can be pursued in many senses including the extension to more general classes of ODEs, involving non-globally Lipschitz nonlinearities.

  )-(91). Except for the terms involving the external signal ) (t v , equations (100)-(103) fit the model structure (2)-(4). In the latter the parameter c (resp.

  )-(125), on the other, with initial conditions 12 ˆ

  Fig. 1. Noise effect on the output ) (t ygiven by (128) for 0.1 h  : noisy output (solid line) and noise-free output (dashed line).

Fig. 2 .

 2 Fig. 2.The time evolution of ( ) ( ) ( ) W t X t X t  without noise and 0.1 h  (solid line) and 0.2 h  (dashed line)
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  Fig. 4. Error ( ) ( ) ( ) W t X t X t  in the presence of noise with 0.1 h  (solid line) and 0.2 h  (dashed line).

Fig

  Fig. 5. The error ( ) (0, ) (0, ) b t u t u t  in the presence of noise with 0.1 h  (solid line) and 0.2 h  (dashed line).
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	t p x t		xx p x t p x t 			x g X t v t	(125)
	p	t	p t 			
	x						
	where						
	( ) :		2 cos(1) sin( ) cos( ) sin(1)

(113) Then, inspired by the observer ( 65)-( 70), we propose the following observer for the system ( 108)-( 113