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Abstract. The problem of sampled-data observer design is 

addressed for a class of state- and parameter-affine nonlinear 

systems. The main novelty in this class lies in the fact that the 

unknown parameters enter the output equation and the associated 

regressor is nonlinear in the output. Wiener systems belong to 

this class. The difficulty with this class of systems comes from 

the fact that output measurements are only available at sampling 

times causing the loss of the parameter-affine nature of the 

model (except at the sampling instants). This makes existing 

adaptive observers inapplicable to this class of systems. In this 

paper, a new sampled-data adaptive observer is designed for 

these systems and shown to be exponentially convergent under 

specific persistent excitation conditions that ensure system 

observability and identifiability. The new observer involves an 

inter-sample output predictor that is different from those in 

existing observers and features continuous trajectories of the 

state and parameter estimates. 

Index Terms- Adaptive observer, Sampled-data nonlinear 

systems 

I. INTRODUCTION

The problem of simultaneous state and parameter estimation, 

based on sampled measurements, is of great practical interest 

since most physical systems are continuous-time and subject to 

parameter uncertainty. It is also of great theoretical interest 

because the existing observer design and analysis methods are 

not applicable to specific nonlinear systems and their extension 

to wider classes constitutes new challenges. The first adaptive 

observers for nonlinear systems were not sampled-data, see e.g. 

[1]-[4]. Their strong nonlinearity makes their direct 

discretization a highly complex issue. In particular, there is no 

guarantee that the performances of the original continuous-time 

adaptive observers are preserved in their approximate discrete-

time versions. The first sampled-data adaptive observers, for 

nonlinear systems, have been developed [5]-[7]. In [5], a class of 

state affine systems was considered where the unknown 

parameters come linearly in the state equation and the associated 

regressor is output-independent. Then, an adaptive observer has 

been developed using the so-called continuous-discrete design 

principle. Accordingly, online state estimation is performed 

using an (open-loop) estimator all the time, except for the 

sampling instants. At these instants, the state estimate trajectory 

is corrected using an observer (involving a feedback innovation 

term). The parameter estimates are only updated at the sampling 

instants (and kept constant on the rest of the time). It turns out 

that both the state and the parameter estimate trajectories are 

discontinuous. Nevertheless, the observer is exponentially 

convergent, under persistent excitation conditions, if the 

sampling interval is sufficiently small. A quite different adaptive 

observer has been proposed in [6] for an almost similar class of 

systems as in [5]. This adaptive observer involves an inter-

sample output predictor that is reinitialized at each sampling 

instant using the output measurements. Its main feature is that 

the state (resp. the parameters) estimates are generated using all 

the time the same state estimator (resp. same parameter adaptive 

law). Therefore, the trajectories of both the state and the 

parameter estimates are continuous. Again, the observer 

exponential convergence is ensured under PE conditions. A 

common limitation of the (sampled-output) nonlinear adaptive 

observers proposed in [5] and [6] is that they are not applicable 

to systems with output-injection, i.e. those where the regressor 

(entering the state equation) is output-dependent. This class of 

systems has been considered in [7] where an adaptive observer, 

involving inter-sample output-estimator, has been proposed. 

Exponential convergence is established, under ad-hoc persistent 

excitation conditions, provided the sampling period is 

sufficiently small.  

In this paper, the problem of adaptive observer design is 

considered for a different class of nonlinear systems. 

Specifically, the unknown parameters enter the output equation, 

while they entered the state equation in the previous works. 

Furthermore, the regressor (that is associated with the unknown 

parameter vector) is output-dependent. Consequently, the system 

affine nature with respect to the parameters is lost almost all the 

time, because of the output sampling. Another difficulty with 

this class of systems is that the output signal enters nonlinearly 

in the output equation making impossible the construction of 

dynamic inter-sample output-predictors like those in [8] or [7]. 

Therefore, a quite different static (inter-sample output) predictor, 

reinitialized at sampling times, is designed in this paper. 

Furthermore, the proposed adaptive observer includes a state 

estimator and an adaptive parameter law featuring continuous 

state and parameter estimate trajectories. The observer 

exponential convergence is established, for small sampling 

intervals, under persistent excitation (PE) conditions 

guaranteeing system observability and identifiability. To the 

authors’ knowledge it is the first time that an exponentially 

convergent adaptive observer is developed for (nonlinear) 

systems with unknown parameters in the output equation. 

The paper is organized as follows: the class of systems under 

study is described in Section II along with the observation 

objectives; the observer design and analysis are presented in 

Sections III and IV, respectively; simulation results are provided 

in Section V; technical proofs are appended. 

II. OBSERVATION PROBLEM STATEMENT

A. Class of Systems

The system under study is described by the following model: 

))(()())(()( tubtxtuAtx  , for all 0t (1) 
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m
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nub R)( ; myu  1),( R ,  (4) 

with )0(x  arbitrary, where u  and y  denote the system input 

and output, respectively; 
nx R  is the state vector. All 

quantities in (2)-(4), including the integer n  and m ,  are known 

except for the parameter vector  .  Furthermore, )(uA , )(ub , 

and ),( yu  are 1C  functions. The input signal u  is bounded 

and the mapping xu   (defined by equation (1)) is L -stable. 

Then, it readily follows that, in turn the state x  and the output 

y  are bounded. Note that signal boundedness is a usual 

assumption in the literature of nonlinear observers. The output 

equation (2) is only accessible to measurements at sampling 

instants kt . The latter is any increasing sequence so that kt  

as k . The maximum sampling step is )(sup 1 kk
k

tth . 

Remark 1. 1) In case where the output signal )(ty  is accessible 

to measurements all the time (i.e. in the absence of output 

sampling), the output equation (2) is said to be affine in the 

unknown parameter vector   because the quantity ),( yu  is 

then fully known all the time. This is the case in most existing 

works on sampled-output observers (adaptive or not), e.g. 

[5],[6],[8]. The present observer design problem is much harder 

precisely because the output equation (2) is no longer affine in 

  due to the output signal sampling. Indeed, except at sampling 

times, both ))(),(( tytu  and   are unknown making the 

quantity  ))(),(( tytu  subject to a double uncertainty.  

2) Another major difficulty of the present observer design 

problem, compared to the previous works ([5]-[8]), is that the 

output signal )(ty  is implicitly defined by the output equation 

(2). The implicit output definition makes it impossible the design 

of inter-sample output predictors like those in [8],[16],[17]. 

3) To illustrate the practical interest of the class of models (1)-

(2), consider the following Wiener type system: 

)()()( tbutAxtx  , )()( tcxtw   (5) 

))(()( twfty   (6) 

for some triplet ),,( cbA  of constant matrices with the 

dimensions indicated in (3)-(4). That is, the system is constituted 

of a linear dynamic part, represented by (5), followed in series 

with a nonlinear static element described by (6). The latter might 

be the nonlinear characteristic of a sensor. In the system 

identification literature (e.g. [12],[13],[14],[15]), it is usually 

supposed that the nonlinear function (.)f  is invertible and its 

inverse is parametrized as follows: 

 


 
m

i
ii tytytyftw

1

1 ))(()())(()(   (7) 

with some known function basis   mii ,,1,0;   where (.)0  

is the identity function. Combining (7) and (5), one gets a model 

in the form of (1)-(2). Finally, note that a nonlinear relation like 

(6) practically stems from the nonlinearity of a sensor or other 

components. Nonlinear characteristic components are usually 

met in (renewable) energy systems, see examples in e.g. 

[18],[19],[20],[21]   

B. Observer Objectives 

The problem at hand consists in designing an observer that 

provides accurate online estimates of the state )(tx  and the 

parameter vectors  . State and parameter estimation must only 

rely on the input signal )(tu  and the sampled output 

measurements )( kty . A major difficulty in this problem is 

induced by the term  ))(),(( tytu  in (2). Indeed, the parameter 

vector   is unknown and the output y  in (.,.)  is only 

accessible to measurement at sampling times. That is, the term 

 ))(),(( tytu  is subject to a double uncertainty all time, except 

at sampling times. This double uncertainty makes currently 

existing sampled-data adaptive observers inappropriate for the 

system (1)-(2). Indeed, those proposed in [1,5] apply to state-

affine systems with unknown parameters in the state equation, 

not in the output equation. 

III. ADAPTIVE OBSERVER DESIGN 

To get online estimates )(ˆ tx  and )(ˆ t , of the state vector x  and 

the unknown parameter vector  , we propose the adaptive 

observer of Table 1. 

 

Table 1. Proposed Adaptive Observer 

    )()()(ˆ)()(ˆ)()(ˆ 1 tvtytyctSubtxuAtx k
T   ,  

 for all 2,1,0;1   kttt kk  (8) 

)(ˆ))(),(()(ˆ)(ˆ ttytutxcty kkk  ,  

 for all 2,1,0;1   kttt kk  (9) 

    )(ˆ)()(ˆ)(ˆ)()( 1 tttttcctStv kk
T 


 

, 

  for all 2,1,0;1   kttt kk  (10) 

 

        cctSuAuAtStStS TT  )()(  (11) 

with arbitrary )0(x̂  and 0)0()0(  TSS , and 0  is 

arbitrary. 

 

))(),(()()()()()()( 11

kk

T

k

T tytuctStcctStuAt     

 for all 2,1,0;1   kttt kk  (12) 

with arbitrary 
mnR)0( . 

 

)(~)()()(ˆ tyttRt T


, for all 0t  (13) 

)()()()()()( tRtttRtRtR T  , for all 0t  (14) 

)())(),(()( tctytut kk    

 for all 2,1,0;1   kttt kk  (15) 

with arbitrary )0(̂  and 0)0( R . 

 

Clearly, the adaptive observer of Table 1 is composed of four 

main parts: 

(i) the state observer (8)-(10) providing the state estimates 

)(ˆ tx ; 

(ii) the parameter estimator (13)-(15) providing the 

parameter estimates )(ˆ t  (which is a least-squares with 

forgetting factor equal to 1); 
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(iii) the adaptive law (11) providing the observer matrix gain 

)(tS ; 

(iv) the filter (12) providing the auxiliary (matrix) signal 
mnt R)( . 

Owing to the observer gain )(tS , we need it to be positive 

definite all the time and staying away from the null matrix. This 

issue has been investigated in [9]. To state the result established 

there, the following definitions (also introduced there) are 

recalled for convenience: 

 

 The transition matrix ),( tsu  of the system (1) is defined as 

the solution of the following system: 

),())((),( tssuAts
ds

d
uu  , (16) 

with Ittu  ),( , where I  denotes the identity matrix. 

 

 The observability Gramian associated to (1)-(2) is: 





Tt

t u
TT

u dstscctsuTt ),(),(),,(  (17) 

 

Then, the existence result for (11) can be stated as follows [9]: 

 

Lemma 1.  Suppose the input signal )(tu  is such that, there exist 

0T , 0u  and 00 t  so that: 

uuTt   )),,((min , for all 0tt   (18) 

where  (.)min  refers to the smallest eigenvalue of a matrix. 

Then, there exists 00   and 0S  such that, for any 

0)0()0(  TSS  and 0  , there exist 

TtSS  0,0,0)(   so that: 

ItSI SS   )()( , for all 0tt   (19)  

where )(S  is a decreasing continuous function of    

 

Remark 2. 1) Note that property (18) constitutes a persistent 

excitation condition on the input signal )(tu  that guarantees the 

uniform observability of the system (1)-(2). In the sequel, 

condition (18) will be assumed to be true so that one can make 

use of (19). In [9], it was shown that 
)2( max)(

Ta

uS e



  with 

)(supmax uAa
u

 .   

2) Another important remark is that output estimation between 

two sampling instants cannot presently be performed using inter-

sample predictors, unlike in e.g. [8],[7],[13]. Indeed, those 

predictors can be obtained when the output derivative )(ty  can 

be explicitly expressed in function of the state )(tx  only. 

Presently, the derivative of )(ty  is a function of both )(tx  and  

)(ty . This is a direct result of the fact that )(ty  enters the right 

side of (2)  

  

IV. ADAPTIVE OBSERVER ANALYSIS 

Let us introduce the following estimation errors: 

)()(ˆ)(~ txtxtx  ,     )()(ˆ)(
~

ttt   , for all 0t   (20) 

)()(ˆ)(~
ktytyty  , for all 2,1,0;1   kttt kk  (21) 

One immediately gets from (9) and (2): 

)(
~

))(),(()(~)(~ ttytutxcty kkk  , 

 for all 2,1,0;1   kttt kk  (22) 

Subtracting (1) from (8), one gets using (22): 

)()(
~

))(),(()(~)(~)()(~ tvttytuKtxKctxuAtx kkk    (23) 

Also, it readily follows from (13) and (22) that:  

))(
~

))(),(()(~)(()()(ˆ)(
~

ttytutxcttRtt kkk
T  


,  

 for all 2,1,0;1   kttt kk  (24) 

 

Now, introduce the coordinate change: 

)(
~

)()(~)( tttxtz   (25) 

Differentiating (25) with respect to time yields, using (23) and 

(24): 

 

)()()()( ktKcztzuAtz  , for all 2,1,0;1   kttt kk  (26) 

Also, using (25) it follows from (22) that: 

 )(~)(~)()(
~

)()(~
ktxtxctczttty   , 

  for all 2,1,0;1   kttt kk  (27) 

where )(t  is as in (15). In turn, the quantity )(~)(~
ktxtx   in 

(27) develops as follows, using (25): 

)(
~

)()(
~

)()()()(~)(~
kkkk tttttztztxtx    

    )(
~

)(
~

)()(
~

)()()()( kkkk tttttttztz    

   dsstttttztz
t

tkkk
k
 )(

~
)()(

~
)()()()( 


 (28) 

which together with (27) yields: 

))()(()()(
~

)()(~
ktztzctczttty    

   






   dssttttc
t

tkk
k

)(
~

)()(
~

)()( 


, 

  for all 2,1,0;1   kttt kk  (29) 

 Using (29), equation (24) becomes: 

)()()()(
~

)()()()(
~

tczttRttttRt T  


  )()()()( ktztzcttR  dsstcttR
t

tk
k
 )(

~
)()()( 


 

   )(
~

)()()()( tttcttR k   , 

 for all 2,1,0;1   kttt kk  (30) 

This equation is to be completed with the adaptation gain 

equation (14). The complete error system, including (26) and 

(30), is rewritten for future referencing: 

)()()()( ktKcztzuAtz  , for all 2,1,0;1   kttt kk  (31) 

  )(
~

)()()()()(
~

)()()()(
~

tttcttRttttRt k

T  


 dsstcttR
t

tk
k
 )(

~
)()()( 


)()()( ktczttR  , 

 for all 2,1,0;1   kttt kk  (32) 

)()()()( 11 tttRtR
dt

d T  
 (33) 

))(),(()()()()()()( 11

kk

T

k

T tytuctStcctStuAt     

 for all 2,1,0;1   kttt kk  (34) 

The complementary equation (34) is identical to (12), this is 

rewritten here for convenience. Equation (32) is equivalent to 

(14), it is more convenient because it is re-expressed in terms of 
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the inverse gain )(1 tR . The exponential stability of the error 

system (31)-(34) is stated in the following theorem: 

  

Theorem 1 (main result). Consider the system (1)-(2) and let it 

be excited by an input signal )(tu  satisfying (18) so that (19) 

holds. Consider the adaptive observer described by Table 1 and 

the corresponding estimation error system described by 

equations (30) through (33). Then, there exists a 0Mh  such 

that if Mhh 0  then the following properties holds: 

1) The transformed estimation error )(tz  converges 

exponentially to the origin. 

2) The auxiliary matrix signal )(t  is bounded. 

3) If the input signal )(tu  is such that )(t  is persistently 

exciting in the sense that, 

  Idsss
t

t

T




 


)()( , for all 0t  

for some real constants 0,0   , then the parameter 

estimation error )(
~

t  exponentially converges to the origin. 

4) Under the above conditions, the state estimation error )(~ tx  

exponentially converges to the origin. 

Proof. See the Appendix. 

V. SIMULATION 

The proposed approach is illustrated on a Wiener system (see 

Remark 1). A noise-free case is considered first. Afterwards, a 

case with output measurement noise is considered. 

The considered Wiener system is inspired on Example 1 in [14], 

which considers a Wiener model that describes a valve for 

control of fluid flow. The linear dynamic part is a continuous-

time equivalent (using zero-order-hold) of the discrete-time 

model presented in [14]. The continuous-time model has state-

space matrices  

𝐴 =  [
−4 −

25

4

4 0
], 𝑏 =  [

2
0

], and 𝑐 = [0
25

8
]. The nonlinear 

function in [14] is 𝑓(𝑤) =
𝑤

√0.1+0.9𝑤2
 and its inverse is 𝑓−1(𝑦) =

√0.1𝑦

√1−0.9𝑦2
. The results here are obtained for a system where 

𝑓−1(𝑦) is replaced by its least-squares fifth-order polynomial 

approximation and where the data are simulated using 

parameterization (1)-(2) and (7) instead of (5)-(6), since, 

although the fifth-order polynomial 𝑓−1(𝑦) is invertible (see Fig. 

1), it is in general impossible to find an analytical expression for 

its inverse (as stated by the Abel–Ruffini theorem). To obtain a 

perfect fit with the parameterization (7), this polynomial 

approximation’s linear coefficient, say γ, should be one. This is 

achieved by dividing the linear block with γ and replacing the 

nonlinear block with 𝑓(𝛾𝑤). Note that a Wiener system with a 

linear block with transfer function 
1

𝛾
𝑐(𝑠𝐼 − 𝐴)−1𝑏 and with a 

nonlinear block 𝑓(𝛾𝑤) has the same input/output behavior as the 

original system. Like this, there is a perfect fit with the 

parameterization (7) with 𝜓1 = −1, 𝜓2 = −𝑦2, 𝜓3 = −𝑦3, 

𝜓4 = −𝑦4, 𝜓5 = −𝑦5, and with true parameters 𝜃1 = 1.4094 ⋅
10−4, 𝜃2 = −6.0928 ⋅ 10−3, 𝜃3 = 3.3077 ⋅ 10−1, 𝜃4 =
2.4600 ⋅ 10−2, 𝜃5 = 7.1310 ⋅ 10−1, and we can show 

convergence towards these true parameters. The input consists 

of 1000 samples of a white Gaussian noise with standard 

deviation 0.202, which is selected such that the standard 

deviation of the non-scaled intermediate signal 𝑤 is 0.1 on 

average. Note that this input is bounded and persistently exciting 

for the considered Wiener system. 

 

Figure 1. The nonlinear block of the considered Wiener system. 

Input and output signal measurements are collected over the time 

interval 0𝑠 through 100𝑠, equidistantly sampled with time step 

ℎ = 0.1𝑠. The system and the observer are simulated using 

Matlab/Simulink with a variable time step, and with a maximum 

step of 0.0002𝑠. The simulation protocol is such that the system 

initial state is zero, 0)0( x . The initial state estimates are 

1)0(ˆ)0(ˆ
21  xx  and the initial parameter estimates are 

0)0(ˆ)0(ˆ)0(ˆ
321   . The observer gains are fixed or 

initialized as follows: 1 , nIS )0( , mIR 410)0(  , and 

)0(  is a zero mn matrix, where nI  and mI  are nn  and 

mm  identity matrices, respectively. 

From Figs 2 to 4, it is seen that the predicted output, generated 

by (9), coincides with the true output at the sampling times. Note 

that, after convergence is achieved, the output-predictor has a 

zero-order-hold inter-sample behavior (Fig. 4), while before 

convergence, it shows an integrating behavior (Fig. 3). 

Furthermore, the state estimation error (Fig. 5) and the parameter 

estimation error (Fig. 6) converge to zero. The trajectories of the 

state and parameter estimates are continuous. 

Next, a zero mean white Gaussian noise 𝑒(𝑡) with a signal-to-

noise ratio (SNR) of circa 20 dB (there are slight variations 

depending on the noise realization) is added as follows in (2): 

𝑦(𝑡) = 𝑐𝑥(𝑡) + 𝜓(𝑦(𝑡))𝜃 + 𝑒(𝑡) . Note that the parameter 

estimation errors do not converge to a fixed value (Fig. 7). In 

fortunate cases, the final parameter error is close to zero, 

resulting in good estimates of the nonlinear block, while in 

unfortunate cases, the error is large. This jumping up and down 

of the parameter estimation errors can be counteracted by 

decreasing the exponential forgetting. Removing the exponential 

forgetting completely (by putting the forgetting factor equal to 

zero, which corresponds to removing the first term in the right 

side of (14)) results in parameter estimation errors that tend to 

converge to a fixed value (Fig. 8). With the considered noise 

setting and without exponential forgetting, no bias is expected as 

the number of samples goes to infinity. When choosing the 

exponential forgetting factor, a trade-off should be made 

between parameter convergence and adaptability to system 

changes.  
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VI. CONCLUDING REMARKS 

The problem of sampled-data adaptive observer design has been 

addressed for the class of state- and parameter-affine systems 

described by (1)-(2). This class of systems is quite different from 

those in the existing works (on adaptive observers) because the 

unknown parameter vector   comes presently into the output 

equation. Furthermore, the corresponding regressor 

))(),(( tytu  depends on the output )(ty  which is not accessible 

to measurements, except at the sampling times. Then, the affine 

character of the system is lost all the time. The proposed adaptive 

observer is also quite different from the existing one. Among the 

numerous differences one has: (i) the varying gain in the state 

estimator (8), the inter-sample output-observer (9), the filter 

generated by (12), the transformed regressor defined by (15) 

used in the adaptive parameter law (13)-(14). The present work 

offers several research perspectives e.g. accounting in the model 

(5)-(6) for (output) delays and output-dependent state matrix 

([13],[17]), the investigation of the problem where a nonlinearity 

is present both in the state and the output equation, and the case 

where the nonlinearity is memory [22],  

 

 

Figure 2. True output and predicted output provided by the 

observer which only has access to output samples. It is seen that 

the predicted output converges close to the true output after a few 

seconds. 

 

Figure 3. Zoom on the true and predicted outputs around t = 4 

s. 

 

Figure 4. The predicted output has perfectly converged, at 

sampling instants, to the true output around t  = 10 s. 

 

Figure 5. The observed states perfectly converge to the true states 

of the considered Wiener system. 

 

Figure 6. The estimated parameters converge to their true 

counterparts. 
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Figure 7. The parameter estimation errors do not converge to a 

fixed value in the presence of measurement noise 

with forgetting factor one. 

 

Figure 8. The parameter estimation errors tend to converge to a 

fixed value in the presence of measurement noise if 

the exponential forgetting is removed. 

 

APPENDIX. PROOF OF THEOREM 1 

Proof of Part 1. Exponential stability of (27). Consider the 

Lyapunov function candidate: 

dsdzSzzV
t

ht

t

s

T
z 

2

)( 
  , for N  kttt kk ;1  (35) 

This can be rewritten as follows [10]: 

  
t

ht

T

z dsszhtstztStztV
2

)()()()()()(  ,  

 for all N  kttt kk ;1  (36) 

Using (25) and (11), one gets by differentiating (35): 

 
t

ht

TTT
z dssztzhzSzzSzSzzV

22
)()(   

))()()(())()()(( 11

k

TTT

k

T tczcStzuASzSztczcStzuA    

    zSzT   
t

ht
dssztzh

22
)()(   

)(2))()()(( k

TTTT tczczzuSASuAtz   

    zccSuAuSASz TTT ))()((  

  
t

ht
dssztzh

22
)()(   


t

t

TTTTT

k

dsszcczczczSzz )(2   
t

ht
dssztzh

22
)()(   

  (37) 

Let 

 kttt )(  for all 2,1,0;1   kttt kk  (38) 

Then, one has: 

   
t

t

Tt

t

t

t

TTTT

kkk

dsszcdsszcdsszcczczcz )()()(2   

    


t

tt

T
Tt

tt
dsszccdssz

)()(
)()(


  

    


t

ht

T
Tt

ht
dsszccdssz )()(  ,  

  for all 2,1,0;1   kttt kk  (39) 

using the fact that kttt  )(  and ht )(  (due to (38)). 

Combining (37) and (39), one obtains: 

)()( tcIctISzzV TTT
z    

t

ht
dssztzh

22
)()(   (40) 

with: 

 
t

ht
dssztI )()(   for all 2,1,0;1   kttt kk  (41) 

By Jensen’s inequality, one has: 

 
t

ht
dsszhtI

22
)()(  ,  

  for all 2,1,0;1   kttt kk  (42) 

Now, let us focalize on the penultimate quantity on the right side 

of (40). It follows from (31) that: 

   )()()()()( 11
k

TT tztzccStzccSuAtz   ,  

   
 

t

t

TT

k

szccStzccSuA )()()( 11   

 
t

tk

sztz )()()()( 21   

 for all 2,1,0;1   kttt kk  (43) 

with  

cctStuA T

t

)())((sup)( 1
1

  ,   ccT

S )()( 1

2    (44) 

using (19). By Lemma 1, the real quantities )(1   and )(2   

are continuous increasing functions of  . Using (41) and (36), 

inequality (43) implies: 

2
2
2

22
1

2
)()(2)()(2)(  

t

ht
sztztz    

  )()()( 2

3 tItVz   ,  for all t  (45) 

with: 














 )(2,

)(

)(2
max)( 2

2

2

1
3 






S

 (46) 

where we have used (19). Using (45) and (42), it follows from 

(40) that: 


t

ht

T

z dsszhSzzV
2

4 )(    

     
t

htz dssztItVh
22

3 )()()()(   

  


t

ht

t

htz dsszhdsszhtstV
2

4

2
)()()()(     

     
t

htz dssztItVh
22

3 )()()()(   

 )(),( tVh zz     
t

ht
dsszhh

2

34 )()(1    
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 for all 2,1,0;1   kttt kk   (47) 

 

with 0)(),( 3   hhz  and )(max4 ccT  , where we 

have used the inequality hhts 0  (which holds for all 

2,1,0;1   kttt kk ). Given any real 10 1   , there 

exists a 0zh  such that for any zhh 0  one has 

0),(  hz   and   0)(1 34   hh  (48) 

Then, it follows from (47) that )()( tVV zzz   implying that 

the subsystem (31) is exponentially stable and so )(tz  tends 

exponentially to the origin as t .  

 

Proof of Part 2. Introduce the notation )]()([)( 1 ttt m   

where the i ’s denote the column vectors of mnt R)( . 

Similarly, we let:  

))](),(())(),(([))(),(( 1 kkmkkkk tytutytutytu   .  

Then, the subsystem (34) can be rewritten in the following 

disassembled form: 

))(),(()()()()()()( 11

kki

T

ki

T

ii tytuctStcctStuAt    , 

 for all 2,1,0;1   kttt kk  (49) 

Interestingly, the nominal system defined by (49) without the 

disturbance input ))(),(( kki tytuK  is identical to (31). 

Therefore, we consider the following Lyapunov function, similar 

to (36), to analyze the properties of (49): 

  
t

ht ii

T

i dsshtsSV
2

)()( 
 ,  

 for all 2,1,0;1   kttt kk  (50) 

where the argument t  has been (and will continued to be) 

omitted to alleviate expressions. Just as for (37), we get the 

following derivative: 


t

t i

TT

ii

TT

ii

T

i
k

dssccccSV )(2 
  

  
t

ht ii dssth
22

)()(   ))(),(()(2 kk

T

i

TT

i tytuct 

 (51) 

Following similar steps as those from (38) to (40), it follows 

from (51) that:  

 
t

ht ii

T

i dsshSV
2

4 )(
  

t

ht ii dssth
22

)()(    

 
22

)(
1

))(),(( tctytu ikk

T

i 


  , 

  for all 2,1,0;1   kttt kk  (52) 

with )(max4 ccT  , where   is any positive real number. 

Also, following the steps (43) through (47), it follows from (52): 


t

t iii
k

dsstt )()()()()( 21    

 ))(),(()(1

kk

T tytuctS   (53) 

where )(1   and )(2   are as in (44). Just as we did with (45), 

we obtain by taking the square of both sides of (53) and using 

Young’s inequality: 
2

2

2

1

2

)()(3)()(3)( 
t

t iii
k

dsstt    

 
222 ))(),((3 kkS tytuc   

 






   
t

ht i dsshtV
2

5 )()()(  
  

   
222 ))(),((3 kkS tytuc  , 

  for all 2,1,0;1   kttt kk  (54) 

with 












 )(3,

)(

)(3
max)( 2

2

2

1
5 






S

, where the last inequality 

has been obtained using Jenssen’s inequality (as for (42)). 

Combining (54) and (52) implies: 

 


t

ht i

t

ht i dsshdsshtstVV
2

4

2

)()()()(  
  

 






   
t

ht i dsshtVh
2

5 )()()(  


 
222 ))(),((3 kkS tytuch   

t

ht i dss
2

)(  

  )(
)(

))(),((
1

2

tVctytu S
kk

T

i 







  

)()(
)(

5

1

tVhS





 

















 

    
t

ht i dsshh
2

54 )()(1    

 
222 ))(),(()3( kkS tytuch   , 

2
1

22 ))(),(()
)(2

3()(),( kk
S

S tytuchtVh 



 



  

    
t

ht i dsshh
2

54 )()(1    

  for all 2,1,0;1   kttt kk  (55) 

with )(
2

),( 5 


  hh  . Let the free parameter   be set 

such that  
2

)(1 








S  and consider any 10 2   . There exists 

a 0h  such that for any hh 0  one has: 

0),(   h   and   0)(1 54   hh  (56) 

 

Then, inequality (55) yields: 

2
1

22 ))(),(()
)(2

3()(),()( kk
S

S tytuchtVhtV 



 



 , 

  for all 2,1,0;1   kttt kk  (57) 

which implies that )(tV  is bounded and 

max

1
22 )(2

3
),(

1
)(suplim 






 

 


















S
S

t

ch
h

tV  (58) 

with 
2

max ))(),((sup tytu
t

  . Using (50) and (19), it follows 

from (58): 

),()(suplim 22
 ht M

t




 (59) 

with,  

2

1

22max

)(

2
3

),()(
),(




































 S

S

S

M ch
h

h  (60) 

Replacing the various quantities in (60) by their explicit 

expressions, the above bound rewrites as follows: 
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S
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 (61) 

We now establish an additional useful property that concerns the 

bounding of the quantity )()( ktt   . To this end, one gets 

integrating (49):  

)()( ktt    

 
t

t i
k

dsssuA )())((  )()(1

ki

Tt

t
tccdssS

k






 

   

 ))(),(()(1

kki

Tt

t
tytucdssS

k






 

 , 

 for all 2,1,0;1   kttt kk  (62) 

Using (59) and (19), it readily follows from (62) that: 

)()( ktt   ),(
~

 h , for all 2,1,0;1   kttt kk  (63) 

with 

),()(),(),(
~

max  hcchhhah M

T

SM 

 ),()(  hch MS  

which together with (63) gives: 

0),(
~

suplim
0




 h
h

 (64) 

 

Proof of Part 3. It is shown in many places that, under the PE 

assumption of Part 3 (of Theorem 1), the solution of (33) satisfies 

the following property (e.g. [11]): 

ItR R )(1 , for all 0t  (65) 

for some real constant 0R . Consider the following 

Lyapunov function candidate: 

 
 

t

ht

T dsshtsRV
2

1 )(
~

)(
~~




 (66) 

Deriving this along the trajectory of (32)-(33) gives: 



~~~~
2

1
1

dt

dR
RV TT
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dssth
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~

)(
~




 

   )(
~

)()()(
~

2)(
~

)()()(
~

2 tttcttttt k

TTT    

 dsstctt
t

tk

T

k
 )(

~
)()()(

~
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 )()()(
~

2 k

T tcztt   
~

)()(
~~

)(
~ 1 tttR TTT  

 

  
t

ht
dssth

22

)(
~

)(
~




 

 )(
~

)()()(
~

)(
~

)()(
~ 1 ttttttRt TTT      

   )(
~

)()()()(
~

2 tttctt k

T    

 dsstctt
t

tk

T

k
 )(

~
)()()(

~
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 )()()(
~

2 k

T tcztt    
t

ht
dssth

22

)(
~

)(
~




, 

  for all 2,1,0;1   kttt kk  (67) 

Using (66) and Young’s and Jenssen’s inequalities, it follows 

from (67) that: 

2
2

))()(
~

()(
~

)()( ttdsshtVtV Tt

ht
   

   

 
22

2

2 )(
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)()())()(
~

( ttt
c

tt k
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222 )()(

1
))(

~
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T tzctt 


  

  
t

ht
dssth

22

)(
~

)(
~




 

 )()
),(

~

1(

22

tV
hc

R





  

  











 


t

ht

M
dss

hct
hh

222

)(
~),()(

1 


   

     2))()(
~

)(31( ttT  
22

)()(
1

ktzct


2

)(
~

th 


 , 

  for all 2,1,0;1   kttt kk  (68) 

with   any real such that 031   , where we have used (65), 

and (63). To find an upper bound of the last term on the right 

side of (68), we take the square of both sides of (32) and apply 

Young’s inequality: 

 
22

2

)(
~

)()()(4)(
~

ttttRt T  


 
222

)(
~

)()()()(4 tttcttR k    

 
2

22
)(

~
)()()( dsstcttR

t

tk
k
 


 

 
22

)()()(4 ktzcttR   

 
2

222

max

24

max

1 )(
~

)),(44( thc MRR     

 dsshch
t

tMR
k



2

222

max

2 )(
~

),(4 


 

 
2222

max

2 )(),(4 kMR tzhc    

   for all 2,1,0;1   kttt kk  (69) 

where the last inequality is obtained using Jenssen’s inequality. 

Combining (69) and (68) gives, using (66) and the fact that 

031   : 

)(),()( tVhtV    
t

ht
dssth

2

5 )(
~

),,( 


 

 
2

6 )(),,( ktzth  ,  for all 2,1,0;1   kttt kk  (70) 

with 









R

hc
h






),(
~

1),(

22

 

  ),(44 222

max

24

max

11  hch MRRR

   (71) 

 

),(4
),()(

1),,( 222

max

22

22

5 



 hch

hct
hhth MR

M 


   

  (72) 

),(4)(
1

),,( 222

max

22

6 


 hchctth MR

  (73) 

Using (63), it readily follows from (72)-(73) that: 



 9 

1),,(suplim),(suplim 5
00




thh
hh

  (74) 

  ),(4
1

),,(0 222

max

222

max6 


 hchcth MR
 (75) 

with )(supmax t
t

  is finite due to (59) and (15). Given any 

real number 10 3   , it follows from (71) and (74) that there 

exists a real number ),min(0  hhh z (where zh  and h  are 

as in (56) and (48)) such that, for any hh 0  one has: 

21),(0   h   and  0),,(5 th   (75) 

which together with (69) implies that: 

)()1()( tVtV   2

6 )(),,( ktzth  , 

  for all 2,1,0;1   kttt kk  (76) 

It has already been proved that )(tz  is exponentially vanishing. 

Then, it follows from (70) that so is )(tV . The same result 

applies to )(
~

t  , due to (65)-(66). 

 

Proof of Part 4. From (25) one gets )(
~

)()()(~ tttztx   

which implies that )(~ tx  is exponentially vanishing because 

)(tz  and )(
~

t  are so and )(t  is bounded. 
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