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Abstract 

The phenomenon of void coalescence induced strain localization plays an important role in the ductile failure process as the 

intermediate stage between diffuse damage and crack formation. The aim of the present work is double: (i) giving a 

framework for numerically treating the failure of ductile structures in the context of the X-FEM and (ii) assessing three 

different enrichment methods allowing for reproducing the intermediate stage of void coalescence induced localization within 

X-FEM. 

© 2015 The Authors. Published by Elsevier Ltd. 
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1. Introduction 

The phenomenon of void coalescence induced 

strain localization plays an important role in the 

ductile failure process, an insight which is more and 

more recognized in the research of failure. 

Accounting for strain localization requires to 

capture the mechanism of deformation itself and to 

describe its relationship with the precedent (diffuse 

damage) and subsequent (crack propagation) phases 

of failure. 

There exist in the literature various ways to 

model the intermediate phase of strain localization. 

Continuum approaches attempt to describe the 

effects of void coalescence on the (continuum) 

material, see e.g. [1-2], whereas embedded-band 

based approaches aims at reproducing the kinematic 

consequences of the localization band by enriching 

the finite element kinematics, see e.g. [3-4]. 

We are here studying the capability of X-FEM, 

initially developed to describe crack propagation 

independently of the mesh topology, see [5], to 

reproduce strain localization. Depending on the 

perspective, the mechanism of strain localization 

can be described via strong, weak or regularized 

discontinuity approach.  

In the strong discontinuity method (SDM), the 

complex micro-mechanisms which take place 

during strain localization can be assumed to be 

collapsed into a surface which corresponds to the 

experimental observation of the presence of a 

meso-crack. In contrast to the macro-crack which is 

also represented by a strong discontinuity, the 

meso-crack is not continuous along its propagation 

path as it may be interrupted by zones of material 

cohesion and it can thus be assumed to still carry 

stresses. In a similar context, e.g. when it is about to 

describe the progressive transition from damage to 

fracture, there are the works of [6-8]. In the weak 

discontinuity method (WDM), strain localization is 

shown to go along with void coalescence which 

occurs in a narrow zone. This band of physically 

non-zero width accommodates large portions of 

damage and plastic deformation. Examples from the 

literature are the works in [3-4,9]. Regarding the 

regularized discontinuity method (RDM), it is 

assumed that strain localization cannot appear in a 
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sharply confined band. Then, the strain field across 

the band is rather viewed in a continuous (smooth) 

manner. Thus, the localized strain is distributed in a 

thin zone and the maximal strain is found in the 

very center of the band. A similar approach can be 

found in certain models of shear banding. Examples 

from the literature are the works in [10-11]. 

The aim of the present work is double: (i) giving 

a framework for numerically treating the failure of 

ductile structures in the context of the X-FEM and 

(ii) assessing three different enrichment methods 

allowing for reproducing the intermediate stage of 

void coalescence induced localization. For this 

purpose, the different kinematic fields are discussed 

and the principle of virtual work is stated which the 

three methods are derived from. Moreover, the 

enrichment technique which is used for each 

method is specified.  

In Section 2 is recalled the principle of the 

standard X-FEM. The three considered methods are 

detailed in Section 3 and concluding remarks are 

given in Section 4. 

2. Standard X-FEM 

In the standard X-FEM framework, see [1], the 

continuous displacement field ( )û x  of a given 

finite element containing any part of the strong 

discontinuity is assumed to be enriched by a 

discontinuous field ( )Du x
(

 which is supposed to 

represent the kinematics of the discontinuity and a 

singular field ( )Su x
(

 which is supposed to 

represent the singularity near the crack tip. In the 

case of a strongly non-linear elasto-plastic ductile 

material, the singular terms in the enhanced 

displacement formulation can be neglected (see 

[12]), i.e. ( )u x 0S =(
. The superposition of the 

continuous and discontinuous fields yields the total 

displacement field ( )u x  of the form 

( ) ( ) ( )
( ) ( ) ( )

ˆ

ˆ

u x u x u x

u x u x

D

H s

= +

= +

(

%

 (1) 

 

where the function ( )H s  is the modified 

Heaviside function 
1 0

( )
1 0

s
H s

s

+ ≥
= − <

; s  is the 

signed distance function with respect to the center 

line of the strong discontinuity, see Fig.1. 

 
Figure 1: Body crossed by a localization band 

The sign of the distance function is determined in 

accordance with the orientation of the normal 

vector n  of the localization band. The symmetric 

part of the gradient of ( )u x  in (1) accordingly is 

( ) ( ) ( ) ( )
( ) ( )

ˆu x u x u x

u x

s s s

s

H s

H s

∇ = ∇ + ∇

 + ⊗∇ 

%

%

 (2) 

Using ( ) ( )n
H

H s s s
s

γ∂∇ = ∇ =
∂

 where γ  

denotes the Dirac's delta distribution, (2) becomes 

( ) ( ) ( ) ( )
( ) ( )

ˆu x u x u x

u x n

s s s

s

H s

sγ

∇ = ∇ + ∇

 + ⊗ 

%

%

 (3) 

The bulk strain is defined as follows 

( )( ) ( ) ( ) ( )ˆε u x u x u xs s

bulk H s= ∇ + ∇ %  (4) 

Introducing any admissible virtual variation of 

displacements uδ  and applying the divergence 

theorem yield the principle of virtual work as 

( ) ( ) ˆ: *
t

bulk bulk d dδ δ δ
Ω Γ

Ω = ⋅ Γ∫ ∫ε u σ u u t  (5) 

where σbulk and t* stand for the stress and the 

external surface forces respectively (neglecting 

inertia and body forces). The use of the Bubnov-

Galerkin approach, i.e. the test functions are chosen 

from the same space as the trial functions, see (1), 

yields 

ˆ ( )H sδ δ δ= +u u u%  (6) 

The discrete displacement and strain fields of a 

given finite element containing any part of the 

strong discontinuity and their variations are 

interpolated as follows (using matrix notation from 

now on) 

ˆ ˆ; ; ;

ˆ ˆ; ;

s s

s sδ δ δ δ δ δ δ δ
= = ∇ = ∇ =

= = ∇ = ∇ =

% %

% %

u Na u Nb u Ba  u Bb

u N a u N b ; u B a  u B b

 
(7) 

where a  and b  are the nodal and additional 

degrees of freedom (dof). The B -matrix in (7) 

contains the spatial derivatives of the interpolation 

functions N , so that 

( ) ; ( )u Na + Nb u N a + N bH s H sδ δ δ= =  (8) 

and 

( ) ( )
( ) ( )

ε u Ba Bb

ε u B a B b

bulk

bulk

H s

H sδ δ δ
= +

= +
 (9) 

Injecting (9) into (5) yields 

( ) ( ) *B a+ B b σ u N at
t

bulkH d dδ δ δ
Ω Γ

Ω= Γ∫ ∫  ((10) 

As aδ  and bδ  in (10) are independent, the use 

of the discretized variations of the displacements 

and strains in (5) allows for obtaining two separate 

weak equilibrium equations: 

( )

( )

*

0

B σ u N t

B σ u

t

T T

bulk

T

bulk

d d

H d

Ω Γ

Ω

Ω = Γ

Ω =

∫ ∫

∫
 

(11) 

To determine the state of equilibrium involving a 

non-linear material behavior, an incremental-

iterative solution procedure is used. Therefore, the 
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stress-strain relationship has to be brought into a 

rate form. The bulk stress rate is computed using 

the continuum tangent modulus Lbulk  as follows 

( )σ L ε L Ba + Bb
bulk bulk bulk bulk

H= = &&& &  (12) 

The set of discrete linearized equations 

involving the incremental displacements ad  and 

bd  between steps n and n+1 finally gives 

1 1

f fK K a

K K b f f

ext int

a aaa ab

ext int
ba bb n b bn n

d

d + +

          = −      
          

 (13) 

where the components of the stiffness matrix are 

computed as follows 

K B L B  ; K B L B

K B L B K

T T

aa bulk bb bulk

T

ab bulk ba

d d

H d

Ω Ω

Ω

= Ω = Ω

= Ω =

∫ ∫

∫
 

(14) 

and the internal and external force vectors are 

calculated from 

; 0

;

f N t*      f

f B σ f B σ

t

ext T ext

a b

int T int T

a bulk b bulk

d

d H d

Γ

Ω Ω

= Γ =

= Ω = Ω

∫

∫ ∫
 (15) 

3. Enlarged X-FEM based methods under 

consideration 

It should be noted that by definition a strong 

discontinuity involves a discontinuity of the 

displacement/velocity field, as for a crack, whereas 

a weak discontinuity involves a discontinuity of the 

gradient of the displacement/velocity field, as for a 

localization band. In the enlarged X-FEM 

framework considered herein, the total 

displacement field ( )u x  can be written in the form 

( ) ( ) ( ) ( )ˆu x u x u x
w

H s= + %  (16) 

where the function ( )wH s  is an adapted version 

of the modified Heaviside function in (1). Based on 

the enriched displacement field (16), the strain field 

is computed as follows 

( )( ) ( ) ( ) ( ) ( )
( ) ( )

ˆs s s

w

s

w

H s

sγ

= ∇ = ∇ + ∇

 + ⊗ 

%

%

ε u x u x u x u x

u x n

 
(17) 

where 

( ) ( )w

w

H s
s

s
γ

∂
=

∂
 (18) 

denotes an adapted version of the classical Dirac's 

delta distribution. 

We are now defining 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( )

ˆ

ˆ

ˆ

ss

cont loc w

s s

bulk w

ss

band w

cont loc

s

H s

s

γ

γ

 = ∇ = ⊗ 

= ∇ + ∇

 = ∇ + ⊗ 

= +

%

%

%

ε x u x  ; ε x u x n

ε x u x u x

ε x u x u x n

ε x ε x

 
(19) 

where ( )ε x
cont

 denotes the continuous strain which 

prevails before the onset of localization; ( )ε xbulk
 

the bulk strain in presence of the localization band; 

( )ε xloc
 the localization-induced overstrain which 

includes contributions normal and tangential to the 

band and ( )ε xband
 the strain in the band. The 

discrete displacement and strain fields of a given 

finite element containing any part of the band and 

their variations are interpolated as follows 

u Na+ NbwH=  (20) 

and 

( )ε Ba + Bb n Nb
w w

H γ= +  (21) 

yielding 

( ) ( )
;

;

ε Ba ε Ba + Bb

ε n Nb    ε Ba + n Nb

cont bulk w

loc w band w

H

γ γ
= =

= =
 (22) 

The advantage of using the discontinuous 

enrichment formulation is that any arbitrary profile 

of the displacement field across the band can be 

prescribed. Depending on the different viewpoints 

(discussed below), the displacement field may be 

described by a strong, weakly or (non-linearly) 

regularized discontinuity. It should be noted that the 

weak discontinuity is a special type of 

regularization of the strong discontinuity. Yet, in 

this work the class of ’weak discontinuity’ is 

regarded as being different from the class of 

’regularized discontinuity’ which is referred to as 

non-linearly distributed (continuous) profile. 

Three different viewpoints of the localization 

band are to be studied successively. As a means of 

comparison, an appropriate discretization 

framework is elaborated, computational issues are 

discussed and capabilities for describing the 

transition from continuum mechanics and the 

transition to fracture mechanics are assessed. 

. 

   

a) ‘cohesive’ strong discontinuity b) weak discontinuity c) regularized discontinuity. 

Figure 2: Strain profiles. The length scale w is related to the localization bandwidth 

 

3.1. Strong discontinuity method (SDM) 

In this context, i.e. cohesive strong 

discontinuity, function ( )wH s  corresponds to the 

modified Heaviside function as in (1) and ( )w sγ  

equals to (18). The strain profile can then be 
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depicted as in Fig.2a. The virtual internal work can 

be written 

( ) ( )
t

d dδ δ δ
Ω Γ

Ω = ⋅ Γ∫ ∫ε u σ u u t*  (23) 

Injecting (20), (21) and (22) into (23) yields  

( ) ( )
( ) ( )

* *
t t

w bulk

w loc

w

H d

d

d H d

δ δ

γ δ

δ δ

Ω

Ω

Γ Γ

⋅ Ω

+ ⋅ Ω

= ⋅ Γ + ⋅ Γ

∫

∫

∫ ∫

B a + B b σ u

n N b σ u

N a t N b t

 
(24) 

Noting that 

( ) ( ) 2
D

w loc locd dγ δ δ
Ω Γ

⋅ Ω = ⋅ Γ∫ ∫n N b σ u N b T  (25) 

the system of equations (24) then yields 

  
( )

( ) ( )

*

2

*

t

D

t

T T

bulk

T T

w bulk loc

T

w

d d

H d d

H d

Ω Γ

Ω Γ

Γ

Ω = Γ

Ω + Γ =

Γ

∫ ∫

∫ ∫

∫

B σ u N t

B σ u N T u

N  t

 

(26) 

Where T��� is the (cohesive) traction force. The 

first equation constitutes the equilibrium in the 

continuous field (bulk material). The second 

equation describes the traction continuity across the 

discontinuity in a weak sense, where continuity is 

established between the integral over the entire 

continuous domain NΩ , i.e. 
N N

+ −Ω ∪ Ω , see Fig.1, 

and the integral over the cohesive surface, which is 

typical for the KOS formulation according to the 

terminology in [13]. So the traction continuity 

appears as a result of the consequent application of 

the principle of virtual work and is not imposed as 

an additional equation. This is in contrast to the 

SOS [3-4] and SKON [9,14] formulations (see [13]) 

in the context of the E-FEM, where the traction 

continuity condition is explicitly imposed at the 

interface and thus allows for a more accurate stress 

computation. The bulk stress rate is computed 

according to (12). In the same way, the traction rate 

of the cohesive law in (25-26) reads 

 T D uloc loc=& &   ;    2u Nb= &&  (27) 

where Dloc
 is the cohesive tangent modulus and 

 u&  the displacement jump rate of the crack lips. 

The components of the stiffness matrix in (13) 

coming from (26-27) are computed as follows 

4
D

T

aa bulk

T

ab w bu lk ba

T T

bb bulk loc

d

H d

d d

Ω

Ω

Ω Γ

= Ω

= Ω =

= Ω + Γ

∫

∫

∫ ∫

K B L B

K B L B K

K B L B N D N

    (28) 

 

and the internal and external force vectors are 

calculated from 

2

t t

D

ext T ext T

a b w

int T

a bulk

int T T

b w bulk loc

d H d

d

H d d

Γ Γ

Ω

Ω Γ

= Γ = Γ

= Ω

= Ω + Γ

∫ ∫

∫

∫ ∫

f N t*    ; f N t*

f B σ

f B σ N T

 (29) 

The incorporation of a discontinuity into the 

element using X-FEM requires the application of 

special integration techniques to evaluate the 

integrals at the Gauss points in the continuum bulk. 

The widely used subtriangulation method of [5] is 

not adapted to ductile materials for which the 

history- and path-dependent variables need to be 

tracked. Thus it is rather advantageous to use the 

approach of [12] where the two-dimensional (2D) 

element is subdivided into 16 rectangles which are 

each integrated by the 4-points Gauss rule (64 

Gauss points in total), see Fig.3. 

 
Figure 3: Integration scheme for a 2D 

quadrilateral element cut by a cohesive 'band' 

The contributions of the cohesive tractions to 

the elemental equations, that is the line integrals 

along DΓ  in Kbb  and f int

b
, can be evaluated by 

using two additional (standard) Gauss points (GP) 

(see e.g. [15]) or just one GP to reduce the 

calculation time. The GPs are positioned along the 

one-dimensional (1D) cohesive segment within the 

localized element, see Fig.3. The SDM as described 

above has been implemented in the engineering FE 

code Abaqus by [16]. 

3.2. Weak discontinuity method (WDM) 

In the WDM, functions ( )wH s  and ( )w sγ  in 

(17) are reported in Table 1 where the localization 

bandwidth related length scale w depends on the 

material and loading conditions. The corresponding 

strain profile is depicted in Fig.2b. 
 

Table 1: Functions ( )wH s  and ( )w sγ  for a 

weak discontinuity. 

 
2

w
s < −  

2 2

w w
s− ≤ < +  

2

w
s ≥ +  

( )wH s  1−  
2

s
w

 1+  

( )w sγ  0  
2

w
 0  

 

In the case of a weak discontinuity, the left side 

of the virtual internal work (23) can be rewritten as 

follows 

( ) ( ) ( ) ( )

( ) ( )

: :

:

N

L

bulk bulk

band band

d d

d

δ δ δ δ

δ δ
Ω Ω

Ω

Ω = Ω

+ Ω

∫ ∫

∫

ε u σ u ε u σ u

ε u σ u

 
(30) 

where 
/2

/ 2L D D

w

w
d dnd w d

+

Ω − Γ Γ
∴ Ω = ∴ Γ = ∴ Γ∫ ∫ ∫ ∫  (31) 

yielding the following weak form of the 

equilibrium equations 
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( ) ( )

( ) ( )
ˆ * *

N

D

t t

bulk bulk

band band

w

d

w d

d H d

δ δ

δ δ

δ δ

Ω

Γ

Γ Γ

Ω

+ Γ

= ⋅ Γ + ⋅ Γ

∫

∫

∫ ∫

ε u σ u

ε u σ u

u t u t%

 
(32) 

Injecting (22) (except for the localization part of 

the strain and the continuous strain) into (32) leads 

to 

( ) ( )

( )( ) ( )
* *

N

D

t t

w bulk

w band

w

H d

w d

d H d

δ δ

δ γ δ

δ δ

Ω

Γ

Γ Γ

Ω

+ Γ

= ⋅ Γ + ⋅ Γ

∫

∫

∫ ∫

B a + B b σ u

B a+ n N b σ u

N a t N b t

 
(33) 

Finally, the system of equations reads 

( )

( )

( )

( )( )

*

2 . *

N

D t

N

D t

T

bulk

T T

band

T

w bulk

T T

band w

d

w d d

H d

d H d

Ω

Γ Γ

Ω

Γ Γ

Ω

+ Γ = Γ

Ω

+ Γ = Γ

∫

∫ ∫

∫

∫ ∫

B σ u

B σ u N t

B σ u

N σ u n N t

 

(34) 

When comparing (34) for WDM with (26) for 

SDM, two observations can be made: (i) in the first 

equation of (34), a second surface integral appears 

which results from the band continuum, and (ii) the 

second equation has the same appearance, but now 

the tractions are evaluated from the continuum 

stress in the band. The stress rates outside is 

computed as for (12) and inside the band as follow 

( )( )band band band band wγ= = &&& &σ L ε L Ba+ n Nb  (35) 

with possibly bulk band
= =L L L . 

The components of the stiffness matrix in (13-

14) coming from (34-35) are computed as follows 

2

2

K B L B B L B

K B L B B L N

K K

K B L B N L N

N D

N D

N D

T T

aa bulk band

T T

ab w bulk band

T

ba ab

T
T

bb bulk w band

d w d

H d d

d dγ

Ω Γ

Ω Γ

Ω Γ

= Ω + Γ

= Ω + Γ

=

= Ω + Γ

∫ ∫

∫ ∫

∫ ∫

 

(36) 

and the internal and external force vectors are 

calculated from 

( )2 .

f N t*    ;   f N t*

f B σ B σ

f B σ N σ n

t t

N D

N D

ext T ext T

a b w

int T T

a bulk band

int T T

b w bulk band

d H d

d w d

H d d

Γ Γ

Ω Γ

Ω Γ

= Γ = Γ

= Ω + Γ

= Ω + Γ

∫ ∫

∫ ∫

∫ ∫

 
(37) 

with  (N N n)
s= ⊗ . 

The integration of the continuous terms can be 

achieved in the same way as described previously 

in subsection 3.1, i.e. by using 64 fixed integration 

points. The integration of the terms concerning the 

localized band requires some additional reflections. 

Regarding the simplification made in (25), the 

integral over the localization band LΩ  could be 

transformed into a surface integral over DΓ  by still 

maintaining the continuous character of the 

localized material. This step allows for applying 

1D-integration with two GPs along DΓ , see Fig.4, 

to reduce computation time, and prevents from 

using any non-standard 2D-integration scheme 

adapted to the oriented localization band in the 

element. 

 
Figure 4: Integration scheme for a 2D 

quadrilateral element cut by a cohesive 'band'. 

3.3. Regularized discontinuity method (RDM) 

An example for the functions ( )wH s  and ( )w sγ  

for RDM is given in Table 2. 
 

Table 2: Example for functions ( )wH s  and 

( )w sγ  for a regularized discontinuity. 

 
2

w
s < −  

2 2

w w
s− ≤ < +  

2

w
s ≥ +  

( )wH s  1−  
4

tanh s
w

 
 
 

 
1+  

( )w sγ  0  
24 4

1 tanh s
w w

  −   
  

 0  

 

The corresponding strain profile is depicted in 

Fig.2c. 

In the RDM, the simplification deduced from 

(31) for WDM no longer applies due to the non-

linearity (inhomogeneity) of the stress and strain 

field across the band. In this context, hypotheses 

have been notably proposed in [11] consisting in 

assuming that the bulk strain and localized strain 

(which are components of the total strain, see the 

decomposition employed in (17) and below), and 

their conjugate stress fields, are uncoupled 

mechanisms from the mechanical viewpoint. 

However, this hypothesis has been made by pure 

mathematical motivations, and the relation to 

physics remains questionable. Furthermore, it is 

proposed in the context of elasto-damaging 

materials, but no analysis has been made so far for 

ductile materials. The principle of virtual work 

reads 

( ) ( ) ( ) ( )
ˆ * *

N L

t t
w

d d

d H d

δ δ

δ δ
Ω Ω

Γ Γ

Ω + Ω

= ⋅ Γ + ⋅ Γ

∫ ∫

∫ ∫

ε u σ u ε u σ u

u t u t%

 
(38) 

Injecting (21) into (38) leads to 

( ) ( )

( )( ) ( )(

* *

N

L

t t

w

w w

w

H d

H d

d H d

δ δ

δ γ δ

δ δ

Ω

Ω

Γ Γ

Ω

+ + Ω

= ⋅ Γ + ⋅ Γ

∫

∫

∫ ∫

B a + B b σ u

B a + B n)N b σ u

N a t N b t

 
(39) 

Hence 
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*

*

B σ B σ N t

B σ B σ σ 

N t

N L t

N L L

t

T T T

TT T

w w w

T

w

d d d

H d H d N d

H d

γ

Ω Ω Γ

Ω Ω Ω

Γ

Ω + Ω = Γ

Ω + Ω + Ω

= Γ

∫ ∫ ∫

∫ ∫ ∫

∫

 

(40) 

The stress rates is computed as follow 

( )( )σ Lε L Ba + Bb n Nbw wH γ= = +& &&& &  (41) 

The components of the stiffness matrix in (13) 

coming from (40) and (41) are computed as follows 

2

2

K B LB B LB

K B LB B LB B LN

K K

K B LB B LB B LN

N LB N LN

N L

N L L

N L L

L L

T T

aa

T T T

ab w w w

T

ba ab

T T T

bb w w w

T T

w w w

d d

H d H d d

d H d H d

H d d

γ

γ

γ γ

Ω Ω

Ω Ω Ω

Ω Ω Ω

Ω Ω

= Ω + Ω

= Ω + Ω + Ω

=

= Ω + Ω + Ω +

Ω + Ω

∫ ∫

∫ ∫ ∫

∫ ∫ ∫

∫ ∫

 

(42) 

and the internal and external force vectors are 

calculated from 

f N t*    ;   f N t*

f B σ B σ

f B σ B σ σN

t t

N L

N L L

ext T ext T

a b w

int T T

a

T
int T T

b w w w

d H d

d d

H d H d dγ

Γ Γ

Ω Ω

Ω Ω Ω

= Γ = Γ

= Ω + Ω

= Ω + Ω Ω+

∫ ∫

∫ ∫

∫ ∫ ∫

   (43) 

 

It can be noticed that, when compared to SDM 

and WDM, there are more expressions involved for 

RDM and some of them contain the non-linear 

terms 2 2, , ,
w w w w

H H γ γ . These terms imply 

numerical challenges. It is also noteworthy that the 

enriching dof’s are evaluated at the nodes of the 

element and the regularized displacement profile in 

the element is obtained by an interpolation using 

the regularized tanh-function herein. 

4. Discussion 

The three methods described in the previous 

section and whose strain profiles are reported in 

Fig.5, are now assessed and mutually compared 

with the aim to identify their pros and cons. 

4.1. Regarding the physics 

In the post-critical regime, the three methods are a 

priori capable of describing the consequences of 

ductile damage-induced progressive failure leading 

to crack formation. In the SDM this is provided by 

setting up a cohesive law which includes normal 

and shear components with so far more or less 

arbitrary evolution laws; whereas in the WDM and 

RDM it is achieved by adopting a constitutive 

model which is expected to involve both 

hydrostatic and deviatoric stresses as well as an 

additional internal variable kinetics accounting for 

void coalescence, e.g. [16]. It is noteworthy that in 

the case of the SDM, it would be also possible to 

implement a more specific stress triaxiality-

dependent cohesive law, see e.g. [17]. 

Moreover, considering their theoretical framework, 

the three methods can be extended to model 

adiabatic shear banding which arises during 

dynamic loading within a scenario where shear 

banding precedes micro-voiding, and not the 

opposite as stated in the present work. This could 

be achieved in the SDM by keeping in the cohesive 

law the tangential (shear) component only and in 

the WDM and RDM by describing a localization 

band with a finite thickness thus corresponding to 

the physical appearance of the shear band, see [18]. 

 
Figure 5: Strain profile for a weak discontinuity. 

4.2. Regarding the computational issues 

The three localization methods introduce a length 

scale which serves as localization limiter and thus 

prevents the post-critical numerical solution from 

severe mesh (size and orientation) dependence. In 

the WDM and the RDM, the length scale obviously 

corresponds to the band width. In the SDM, such a 

length scale does not appear explicitly in its 

inherent formulation, see [15] for the SDM, [9] for 

the WDM and [10] for the RDM.  

Concerning the numerical integration, the SDM 

and WDM may take advantage of a 64-point Gauss 

rule to integrate the terms related to the bulk 

material and a 2-point Gauss rule to evaluate the 

line integrals of either the cohesive segment (SDM) 

or the band which is numerically reduced to a line 

(WDM). In the RDM, the numerical integration has 

turned out to be more difficult as it is important to 

properly capture the high strain gradient. When the 

bandwidth is chosen too small with respect to the 

element size, the regularized discontinuity profile 

cannot be properly captured by the 64 Gauss point 

technique. So, specific integration schemes, as 

discussed in subsection 3.3, have to be applied 

demanding for cumbersome projection techniques 

of the path- and history-dependent variables. 

4.3. Perspective of a unified approach 

Here is discussed the capability of the methods to 

be incorporated within a unified numerical failure 

model describing the successive steps leading to the 

ultimate rupture, viz. (more or less) diffuse damage, 

strain and damage localization and crack 

propagation. A proper transition from the pre-

localization phase of diffuse damage using standard 

FEM to the onset of strain localization (marking the 

start of the post-critical regime) and the 

straightforward passage from localization to crack 

propagation have to be ensured. At the onset of 
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localization, the enriching dof's of the X-FEM are 

activated in all three methods. In the SDM the 

initial traction force of the cohesive law in the 

localized element has to be determined so as to get 

a smooth transition. In the WDM and RDM there is 

no need to compute additional values if the same 

constitutive model is used outside and inside the 

band. The transition to fracture may be achieved in 

the three methods as soon as the in-band stresses or 

tractions vanish and become zero. Then, for the 

SDM, WDM and RDM it could be shown that the 

equations for stress-free (standard) X-FEM are 

naturally obtained.  

5. Conclusion 

In this paper are presented three embedded-band 

FE approaches aiming at describing the 

intermediate stage of strain and damage 

localization, based on strong discontinuity (SDM), 

weak discontinuity (WDM) and regularized 

discontinuity (RDM) methods within X-FEM. The 

approaches in question are assessed from the 

physics, computational and unified modelling 

perspectives. Pros and cons for each approach is 

outlined in Table 3.The objective is to give some 

elements for further developments to engineers and 

researchers working in the field of ductile failure of 

larges structures. The present work deals with void 

coalescence induced strain localization. It is 

noteworthy that strain localization may also result 

from other structural or/and material instabilities 

such as e.g. necking [19] or adiabatic shear banding 

[18]. 

Table 3: Assets and weak points of the approaches 
Strong discontinuity Weak discontinuity Regularized discontinuity 

⊕ Complex micro-mechanisms collapsed into 

surface 

⊕ Only 1 additional parameter (��) 

⊕ Reduced mesh dependence (length scale 
��

��

) 

⊕ Straightforward integration scheme 

⊕ Energy-based failure criterion adapted to 

ductile materials 

⊕ Allows for describing shear banding 

⊕ Reduced mesh dependence (length scale 

w ) 

⊕ Straightforward integration scheme 

⊕ Post-localization behavior accounts for 

stress triaxiality 

⊕ Energy-based failure criterion adapted to 

ductile materials 

⊕ Allows for describing shear banding 

⊕ Reduced mesh dependence (length scale 

w ) 

⊕ Post-localization behavior accounts for 

stress triaxiality 

⊕ Energy-based failure criterion adapted to 

ductile materials 

⊕ Allows for describing shear banding 

⊖ Technique to calculate initial traction  ! 

from stress state at localization required 
⊖ 2 additional parameters ( w ,��) 

⊖ Failure criterion does not satisfy condition 

of vanishing stress 

⊖ 2 additional parameters ( w ,��) 

⊖ Failure criterion does not satisfy condition 

of vanishing stress 

⊖ Integration scheme involving variable 

projection necessary if band width much 

smaller than element size 
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