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Arbitrage is one of the central tenets of financial economics, enforcing the law of one price

and keeping markets efficient. Theoretically, when spreads are observed, the arbitrage gives

a positive return, requires no capital and is riskless. But, in reality, important impediments,

due to market frictions and imperfect information, can limit arbitrage.

The semi-strong efficiency form tests, defined by Fama (1970, 1991), are concerned

whether current prices ”fully reflect” all obviously publicly available information. This article

establishes a large literature on the efficiency of markets, including agricultural commodities

futures, although ? note the relatively few semi-strong studies with respect to weak tests.

Machine learning methods, detailed for example by Hastie et al. (2008), are used in

finance literature to test market efficiency. Recently, Hsu and Chen (2014) used growing

hierarchical self-organizing maps about hedging. Under Fama’s framework, authors used

neural networks on agricultural commodities, such as Hamm and Brorsen (2000) or Hamm

et al. (1993) for weak tests. In the case of Taiwan stocks indexes, Hsu et al. (2011) used

machine learning to model the inter-market opportunities of arbitrage. First, they compute

arbitrage conditions on a training period, then they apply a machine learning approach (an

extended classifier system method) to estimate the model and finally they test the model’s

quality over a testing period. Implicitly, such a method is used as a weak form test of

inter-market efficiency.

Commodity futures prices are more complex processes than those of stocks, bonds and

other financial assets. They strongly depend on the cash market, with supply and demand

seasonality, quality and storage issues. Moreover, inter-market arbitrage cannot be com-

puted directly on one unique futures price but only on their spread. In fact, wheat futures

specifications vary by Exchanges with respect to quality specifications, delivery point(s),

maturity dates and currency of quotation. As a consequence, Garcia and Leuthold (2004),

in their review of the literature, indicate the pertinence of using projected balance sheets

and transport index-based values for inter-market studies.

This paper aims to provide a semi-strong test of the efficiency of inter-market wheat

futures, using an original machine learning method. Unlike Hsu et al. who use extended the

classifier system method, we choose the classification and regression tree (CART) algorithm

first proposed by Breiman et al. (1984). CART allows a shift from a weak to a semi-strong

test by introducing public information into the model.

1



1 Data and empirical procedures

The semi-strong form of market efficiency hypothesis requires that prices reflect all publicly

available information. An investor cannot benefit over and above the market by trading on

new information. Then, to test this hypothesis, we compose data base with wheat quotes

and with public information.

1.1 Wheat futures prices

The data include US and EU Wheat futures exchange-listed on the Chicago Mercantile

Exchange (Chicago Soft Red Winter Wheat) and on the EuroNext (Milling Wheat). 1

US Exchange quote in dollar per bushel and EU Exchanges quote in euros per metric

ton. Clearly, we have to convert EU prices in dollar per bushel or convert US prices in euro

per metric ton to compute the spread. Convert EU prices is the best solution because:

1. CME Wheat begins in 1960 and EuroNext Wheat begins in 1998. Because of Euro FX

Futures (EC) begins in 1999, we would lose the 1969-1999 historical data by converting

US price in euro per ton.

2. Transportation index published by the Baltic Exchange (see subsection 1.4 for details)

is computed from prices in dollar per ton and per days. Explain the value of arbitrage

in euro with transportation data in dollar seems inappropriate.

European Futures Wheat prices are converted in dollar cents per bushel since 1999 with a

technical rate of 36.7437 bushels per metric ton.

To obtain the price in dollar, we use the Euro Dollar Futures quotation of Chicago

Mercantile Exchange (CME Euro FX Futures (EC)) with the nearest maturity.2

1.2 Inter-market arbitrage computation

Arbitrage is taking advantage of a price spread of same financial product (or equivalent

product). Triantafyllopoulos and Montana (2011) explain that ‘possibly the simplest of such

strategies consists of a portfolio of only two assets, as in pairs trading.’

In this paper, this trading approach consists in going long a wheat futures A while

shorting another wheat futures B. This portfolio has only exposure to changes of spreads but

1 Kansas City Hard Red Winter Wheat and Black Sea Wheat (CME) and UK Feed Wheat (ICE) could
be include in the next stage of research.

2The CME Euro FX Futures (EC) offers four maturities per year. For example, the January futures
prices in dollar per bushel are obtained from the January futures prices in euros per ton and from the mars
CME Euro FX Futures prices.
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not to wheat price trends. The underlying assumption that futures wheat must be priced

with a explainable spread and then, pairs trading is a mean-reverting strategy.

Even if quotations concern the same commodity, such as wheat, each futures contract

presents different specifications (maturity date, delivery point(s), wheat quality specifica-

tions. . . ). We compute spread arbitrage on daily historical futures data and calculate the

return and time to close trading. For each settlement day d, for each futures combination

A B, the A BARB(t) arbitrage return is, if positive, the max of spread in N next days minus

initial spread (B(t)− A(t)) and transaction costs.

We note the name of pair trading as A B. Using the settlement price, we take a short

position on A and a long position on B. When spread B − A increases, this both positions

give a positive return. Arbitrage is computed to retain the best return during the next 6

weeks. When spread B − A deacreases, the best return is realized at time t, ie 0.

A BARB(t) = max
d≤42
{A(t)− A(t+ d)− (B(t)−B(t+ d))}

where t is the present time and d represents duration in days, the first t+ d where the max

is obtained is the cloture date of arbitrage. The close time is the nearest day where max is

reached.

When A is a European wheat quote in euros per metric ton, and B is an US wheat quote,

we adjust the previous formula:

A BARB(t) = max
d≤42
{γ (A(t)− A(t+ d))× EC(t+ d)− (B(t)−B(t+ d))}

where γ is the conversion from metric ton to bushel cent (equal to 36.7437/100) and EC(t+d)

is the euro dollar spot price at t+ d.3

The figure 1.2 shows respectively (1) EBMH2015 and WH2005 quotations (maturity Mars

2015), (2) the synchronized spread, (3) the result of arbitrage EBMH2015 WH2015, (4) the

result of arbitrage WH2015 EBMH2015 and (5) the euro dollar parity ECH2015. All values

are in US dollar cents per bushel except euro dollar.

A naive reading of figure 1.2 led to think that EBMH2015 and WH2005 track closely

and, consequently, that the world wheat market is working. Nevertheless, the spread moves

3Just by reversing the roles of A and B, when A is an US wheat contract, and B is an european wheat,
the previous formula becomes:

A BARB(t) = max
d≤42

{(A(t)−A(t+ d))− γ (B(t)−B(t+ d))× EC(t+ d)}
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Figure 1: Synchronized prices and arbitrage computation (maturity Mars 2015)
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between -108 to 4$c/bu. The volatility of spread creates pairs trading arbitrage opportunities

up 120$c/bu (18.45% of the WH2015 price). The mean of EBMH2015 WH2015 arbitrage is

29.03 and represents 4.6% of the WH2015 price.

We test too the presence of trend in response variable. In figure 1.2 (on the left), we

compute the mean by harvest of arbitrage return calculated in $c/bu. We observe a signi-

ficative (5%) positive trend, 0.6825$ per year. However, when the arbitrage is divided by

the price of the long position, the trend is no more significative.
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Figure 2: Trend of arbitrage returns
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Figure 3: L’arbitrage

The figure 3 presents the den-

sity of arbitrage returns in cents

per bushel divided by the price of

the long position. As understood,

arbitrage returns exhibits a non-

normal density. Because arbitrage

returns are calculated as a maxi-

mum of random variables, the gen-

eral extreme theorem suggests that

arbitrage distribution converges to

an extremum generalized distribu-

tion. A simple fit of the generalized

extrem value density on data gives

a significatif tail index ξ estimated

to 0.71. The ξ > 0 suggests the

presence of heavy tail density and that arbitrage returns follows Fréchet law.4

4The Fréchet distribution is the generalized extreme value distribution in the case ξ > 0. It has the
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1.3 World Agricultural Supply and Demand Estimates

We add historical World Agricultural Supply and Demand Estimates (WASDE) data as

provided by the USDA (www.usda.gov/oce/commodity/wasde). Monthly, WASDE reports

a full balance sheet for each commodity. It includes forecasts for US, EU and world wheat.

Separate estimates are made for the components of supply (beginning stocks, imports, and

production) and demand (domestic use, exports, and ending stocks). Forecast balances could

explain calendar spread and zone details could explain spatial spreads.

We would add in quotes and arbitrage database new variables as beginning stocks of

production, imports, and production, domestic use, exports, and ending stocks for the long

contract and for the short contract. This merge presents two difficulties:

1. we have to join the daily calculated arbitrage database with the monthly WASDE

database. For each cotation date, we take on the last published WASDE data in the

merge. For example, we consider the arbitrage at April 20th 2015 between the CME

wheat futures (long WK2015), maturity September 2015 and the European Wheat

futures, maturity December 2015 (short EBMZ2015). At the April 20th 2015, the last

WASDE publication date sets for April 9th 2015. Then, for the calculated arbitrage

starting the April 20th 2015, all merged WASDE data come from the report published

the April 9th 2015.

2. Spread arbitrage combines two futures contracts (WK2015 and EBMZ2015). Both

contracts can be on two different crop years or on two different crop regions. Then,

we have to merge WASDE data twice, one merge per contract. Each merge is per-

formed for wheat on regions (respectively US and EU), and harvest year (production

for 2014/2015)..

Then, we calculate some variables as the ratio of production on domestic total use

(ratioPU), the ratio of export on sum of international exchange (ratioEI), the ratio of end-

ing stocks on beginning stocks (ratioS). We calculate the harvest year spread (DiffC) and

some ratios of ratio between contracts: DiffratioS refers to the ratio of ratioS, DiffPU

the ratio of ratioPU and DiffEI the ratio of two ratioEI. First, ratio aims to synthetize

information from several variables to perfom the regression tree. Second, ratio is less sensitive

to trend.

cumulative distribution function
Pr(X ≤ x) = e−x−1/ξ

if x > 0.

where 1/ξ > 0 is a shape parameter.
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1.4 Transportation data

To explain spatial spread, we have to include the value of transportation in the model. At

this stage of research, we propose to use the Baltic Exchange Dry Index (BDI). BDI is a

measure of the price of shipping major raw materials such as metals, grains, and fossil fuels

by sea. It is created by the London Baltic Exchange based on daily assessments from a panel

of shipbrokers and is quote-listed on the Baltic Exchange.5

The graph illustrates the BDI freight index levels and volatilities. From 2000 to mid-2008,

freight rates increased by to rose to 11 793, the record high of BDI, on 20th May 2008. In few

month, it dropped to 663 on 5th December 2008.
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Figure 4: Historical data of BDI freight index

Empirical results of Chang

et al. (2014) confirm that the den-

sity of the BDI exhibits the sig-

nificant asymmetric long-memory

property of volatility and the fat-

tail phenomenon. As the conse-

quence, the estimation of the trend

largely depends on the used period

for estimation. Therefore, detrend-

ing the BDI time-series does not

appear to be relevant. The ratio

BDI on begin long price is com-

puted also.

2 Methodology

2.1 CART formulation

Classification And Regression Tree (CART), first proposed by Breiman et al. (1984), could

be used for classification or regression even if the method differs to determine where to split.

In Classification, CART compute the Gini impurity coefficient to split. 6 In Regression,

5 The BDI is a composite of 3 sub-indices, each covering a different carrier size: Capesize, Panamax,
and Supramax. Capesize carriers are the largest ships with a capacity greater than 150,000 DWT. Panamax
refers to the maximum size allowed for ships travelling through the Panama Canal, typically 65,000 - 80,000
DWT. The Supramax Index covers carriers with a capacity of 50,000 - 60,000 DWT.

6 It is a measure of how often a randomly chosen element from the set would be incorrectly labeled if it
were randomly labeled according to the distribution of labels in the subset.
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variance reduction is often employed to determine where to split Hastie et al. (2008).

CART algorithm fits the response value Y , the arbitrage results, is a function as f̂w(x)

that depends on X (i.e. E[Y |X]) and a complexity parameter w, the number of final node

in CART algorithm. After the data were split into independent samples, the training and

the testing periods. It is carried out in two stages:

First, the algorithm is chosing the splitting variable (sv) and the splitting point (sp) using

training sample. CART algorithm estimates on the training period the function f̂w(x),

the regression tree of arbitrage return.

Secondly, the resultant model is sometimes too complex and overfits data. This stage of

procedure consists to trim back the full tree and aims to establish the predictability

of the model. Cross-validation is a model validation technique for assessing how the

results of a statistical analysis will generalize to an independent data set. Then, on

the testing periods, we estimate w that minimize the error of function f̂w(x) and prune

the tree as a consequence.

Where splitting node ? In the general case, CART estimates the function f̂w(x) could

be writed as:

f̂w(x) =
w∑
j=1

Ȳj,w × 1{x∈Rj,w}

where w is the number of final node (the complexity), 1{x∈Rj,w} is the indicator function of

j-node Rj,w and ¯Yj,w is the average in subset j. If we split a node j into two sons (left and

right sons), we will have

Dparent =
∑
xi∈Rj

(yi − ȳi)2

For each j−node split, the deviance reduction R could be computed as R = Dparent −
(Dleft son + Dright son). The splitting process must be stop only when some minimum node

size is reached. This general case assumes the normality of errors.

Davis and Anderson (1989) grew trees by assuming survival times to be exponential

within a given node. The method is similar. Instead estimated y, the response variable, the

model estimates the hazard rate of y, h(y) and instead mean square criteria to split, the

model uses the log-likelihood.

The models specifies the hazard rate function as following:

ĥw(yi) =
w∑
j=1

λj1{yi∈Rj,w} j = 1, 2, · · · , w

8



for jth terminal node yj is estimated by f̂j,w = 1/λj, because of expected value of exponential

density.

Algorithm splits node on the basis of exponential log-likelihood. The split selected is the

partition that minimizes for a node j, the proposed loss function is

Dj = l̂j = nj − nj ln

(
nj∑

xi∈Rj
yi

)

where nj is the number of complete observations at the node j.

How pruning the tree ? Cross-validation involves partitioning a sample of data into

complementary subsets, performing the analysis on the training set, and validates the analy-

sis on the other subset, the testing set. Steps could be repeated using different partitions to

reduce de variability of estimator. This step gives the predictive capacity on model. CART

uses the cost complexity criterion to the validation and overfits nodes are prune on the tree:

Cα(T ) =

|T |∑
j=1

Dj + α|T |

when terminal nodes of tree T are indexed by m (Region Rm).In usual regression case, Dj

is the sum of square errors but with exponential errors:

Cα(T ) =

|T |∑
j=1

nj − nj ln

(
nj∑

xi∈Rj
yi

)
+ α|T |

2.2 Computing specifications

Because of volum, we choose an SQL database manager (mysql7) to build and manage

databases. We compute with the useful rpart packages in R 8 to build CART regression

tree (Therneau et al. (2009)). Please note that in CART, the first subgroup is set to be

the reference level, ie ĥ(yi) =
λj
λ0
1{x∈Rj,w}. Then, in the root node, hazard rate estimated is

always equal to 1 and the predicted value is:

ĥ(yi) =
λ0
λj
1{xi∈Rj,w}

7https://www.mysql.fr/
8http://cran.r-project.org/
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‘exponential’ method is selected in CART to compute the hazard rate estimation.

rpart function needs 6 parameters : xval, minbucket, maxcompete, maxsurrogate,

cp et maxdepth.

The xval parameter refers to the number of cross-validation to prune the tree. This

method has proved very reliable for screening out ‘white noise’variables in the data set. The

cross-validation has to divide the data set into xval groups G1, G2 . . . Gxval, the size of each

group is reduced into n/xval. Because of the high variance of response variable, this method

is not appropriate.

CART algorithm is a stepwise procedure. The question of when to stop algorithm is

important. minbucket parameter gives one of stop criteria and refers to the minimum size

of a final node. A minbucket too high is loosing the singularity estimation of the data. A

value too small lets the algorithm cost time computation and build a large number of nodes

that will be pruned in second stage of CART.

maxcompete is useful for printing or ploting results.

CART performs the fit of tree in presence of missing values. One approach is to es-

timate the missing datum using the other independent variables; rpart uses a variation of

this to define surrogate variables. When an explained variable is missing the split use the

first surrogate variable, or if missing that, the second surrogate is us, etc. . .maxsurrogate

parameter defines the maximal variables useful to surrogate a missing value. A missing value

in explain data do not implies that rows is loosed in regression. Our data sources give rarely

missing values, the maxsurrogate is fixed to 2.

cp is a second algorithm stop parameter that uses the complexity w and that aims to

optimise time calculation. This cost parameter is fixed to 0.001.

maxdepth is the last stop parameters and refers to the maximal depth of tree between 1

to 30. We fixe this value to 12.

2.3 Model

Our model estimates the arbitrage returns from publicly available information with the

following hazard equation:

ĥj(yi) = λj1{xi∈Rj,w} j = 1, 2, · · · , w

If the predictibility of this model is prooved, we deduce that the Fama’s semi-strong

efficiency form hypothesis is not verified in world wheat futures markets and deduce pair

trading strategies.
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3 Results and practical implications

3.1 Tree analysis

Major result is the tree proposed in figure 5 page 11 and figures 6, 7, 8 pages 15–17. The

first figures presents the high part of tree and the followings present the tree sub-trees. Tree

is fit on 1999-2009 harvest years data and is cross validated since 2010 harvest year. In split

nodes, the tree indicates the split variable (sv) and the (number of rows) in node. Over

theedge from a parent to a child node, the tree indicates the split point (sp). In final nodes,

the tree indicates the estimated response value, the return arbitrage divided by the long

futures price (Y ) in percent (%) and the (number of rows) in final node.

Region Pairs (643878)

Diff Crop year (324611)

Begin Spread

Sub-tree 3

Begin Spread

Sub-tree 2

=-1,-2,1,2 =0

Begin Spread

Sub-tree 1

=EUUS,USEU =EUEU,USUS

Figure 5: The high part of tree

The tree tells us an hierarchy of variables in model. First variable split intra-regional

arbitrage than inter-regional arbitrage. Second variable cut off the arbitrage that have the

same crop years from others. Les us note that these both major variables concern the

proximity or homogenity of the two futures in the pair trading. Next, the Begin Spread is a

recurrent pertinent separator variable. This result is logical if we considere that pair trading

is a mean-reverting strategy.

The month of quote is an interesting variable pertinent in the tree. SymbPM refers
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to the contract and the maturity month of contract, independly of the year. This both

previous variables are intrinsic to market. Because not exogeneous public information is

needed to predict arbitrage return (in first nodes), we deduce that weak test hyptothesis is

not completly verified.

Public information variables perform the CART regression tree. We found wasde data

ratios of begining stocks ond ending stocks and ratios of production on uses. The trans-

portation index on begin long futures price split two nodes. This variables in tree prooves

that public information help to predict arbitrage return.

3.2 Some statistics

Table on the next page gives the cost complexity calculated on the testing period for each

created node:

Cα(T ) =

|T |∑
j=1

nj − nj ln

(
nj∑

xi∈Rj
yi

)
+ α|T |

with α fixed to 0.001. α > 0 assure that equal deviance, the valided tree will be as small as

possible. When α is too high, nodes are not splitting even if the split reduces significatively

the deviance. The min is reached for the 19th node split and the validated tree has 23 final

nodes.

The tail statisitics of errors is really interesting with ξ = −0.0170. The tail index of errors

is negative and near of 0. This result is really different than that of the arbitrage returns

(ξ = 0.707) and confirms that the choice of exponential errors is reasonable.

We want first to validate the use of CART for a semi-strong efficiency test, then to

conclude on the inter-market inefficiency of wheat futures and finally, to give a public and

useful arbitrage filter on wheat spread.

Summary and conclusions

This paper proposes an original work on world wheat futures market efficiency test to con-

clude on the semi-strong inefficiency of wheat futures.

Our model uses american and european data together to estimate pair trading arbitrage

returns on the wheat futures market. Some variables like transportation and balance sheet

of USDA are significative in CART regression. Then, pair trading arbitrage is predictible

with public information and we deduce of the semi-strong inefficiency of inter-market wheat

futures.
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Splits Cost complexity

1 1.0010

2 0.8397

3 0.8224

4 0.8227

5 0.8066

6 0.8051

7 0.8055

8 0.7867

9 0.7730

10 0.7636

11 0.7597

12 0.7607

13 0.7615

14 0.7601

15 0.7609

16 0.7614

17 0.7619

18 0.7610

19 0.7593

20 0.7597

21 0.7607

22 0.7617

23 0.7626

24 0.7636

25 0.7646

26 0.7655

27 0.7665

28 0.7673

29 0.7679

30 0.7689

31 0.7698

32 0.7707

33 0.7716

34 0.7720

35 0.7714

36 0.7722

37 0.7732

38 0.7740

39 0.7630

The recent paper of Garcia et al. (2014) deals with spread

between spot and futures at maturity and explains also the

failure of the futures market. They show that the magni-

tude of the non convergence could be explain by the wedge,

the difference between the price of carrying physical grain

and the cost of carrying delivery instruments.

In contrast, some recent papers conlude in favor of effi-

ciency of wheat futures contracts. For example, Hamm

et al. (1993; 2000) use neural network on wheat futures con-

tracts and Kristoufek and Vosvrda (2014) use econometric

approach to support this result. In fact, the random-walk-

based efficiency tests (or martingale efficiency tests) imply

that price returns of one contract integrate new informa-

tions independantly of past information. But these tests

do not imply that two prices returns integrate new infor-

mation with consistency.

Our research confirms that efficiency tests based on spread

movement could provide the opposite result that efficiency

tests based on prices returns. To go further, we could in-

clude new wheat futures contracts in data set, experiment

new public informations and test new machine learning al-

gorithms in this context.
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