
HAL Id: hal-02151838
https://hal.science/hal-02151838v1

Submitted on 10 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sherlock Holmes of Cache Side-Channel Attacks in
Intel’s x86 Architecture

Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Usman Ali,
Vianney Lapotre, Guy Gogniat

To cite this version:
Maria Mushtaq, Ayaz Akram, Muhammad Khurram Bhatti, Usman Ali, Vianney Lapotre, et al..
Sherlock Holmes of Cache Side-Channel Attacks in Intel’s x86 Architecture. IEEE-Communications
and Network Security, Jun 2019, Washington DC, United States. �hal-02151838�

https://hal.science/hal-02151838v1
https://hal.archives-ouvertes.fr


Sherlock Holmes of Cache Side-Channel Attacks in
Intel’s x86 Architecture

Maria Mushtaq
University of South Brittany

Lorient, France
maria.mushtaq@univ-ubs.fr

Ayaz Akram
University of California

Davis, USA
yazakram@ucdavis.edu

Muhammad Khurram Bhatti
Information Technology University

Lahore, Pakistan
Khurram.bhatti@itu.edu.pk

Usman Ali
Information Technology University

Lahore, Pakistan
msee17009@itu.edu.pk

Vianney Lapotre
University of South Brittany

Lorient, France
vianney.lapotre@univ-ubs.fr

Guy Gogniat
University of South Brittany

Lorient, France
guy.gogniat@univ-ubs.fr

Abstract— Intel’s x86 architecture has been exposed to high
resolution and stealthy cache side channel attacks (CSCAs) over
past few years. In this paper, we present a novel technique
to detect CSCAs on Intel’s x86 architecture. The proposed
technique comprises of multiple machine learning models that
use real-time behavioral data of concurrent processes collected
through Hardware Performance Counters (HPCs). In this work,
we demonstrate that machine learning models, when coupled
with intelligent performance monitoring of concurrent processes
at hardware-level, can be used in security for early-stage de-
tection of high precision and stealthier CSCAs. We provide
extensive experiments with four variants of the state-of-the-art
CSCAs. We demonstrate that our proposed technique is resilient
to noise generated by the system under various loads. To do so,
we provide results under realistic system load conditions with
an evaluation metric comprising of detection accuracy, speed,
system-wide performance overhead and confusion matrix for
machine learning models. In experiments, our technique achieves
detection accuracy of up to 99.51% for Flush+Reload attack on
RSA, incurring a performance overhead of 1.63% and 99.99%
accuracy on AES while incurring a maximum performance
overhead of 8.28%. Our experimental results show consistency
for Flush+Flush attack on different implementations of AES as
well.

Index Terms—Cryptography, Side-Channel Attacks, Detection,
Machine Learning, RSA, AES, Flush+Reload, Flush+Flush.

I. INTRODUCTION

Side-Channel Attacks (SCAs) target cryptographic imple-
mentations for unauthorized retrieval of information [1], [2], [3].
The threat of side channel leakage imposes a serious concern
to data privacy as it can break the otherwise theoretically
sound cryptographic algorithms at implementation-level. For
performance benefits, extensive sharing and de-duplication is
performed in modern processors. The CSCAs is a sub-class
of SCAs, which exploits sharing vulnerabilities in caching
hardware to retrieve confidential information. These attacks
exploit specialized instructions to manipulate the state of shared
caches such as LLC. Numerous mitigation techniques have
been proposed against various threats generated by SCAs [4],
[5] both at software and hardware levels. These techniques
suggest to prevent such attacks at various levels in computing

hierarchy [4]. For instance, at the system level, physical
and logical isolation approaches exist [6], [7]. Whereas, at
the hardware level, it is rather difficult to apply mitigation
techniques due to the fact that they are not favorable on
commodity systems in terms of cost and complexity of their
design. Nevertheless, hardware solutions are mostly based on
having new secure caches, changes in prefetching policies and
either randomization or complete removal of cache interference
[8], which would cause drastic changes the way computing
systems work. At the application level, mitigation solutions
mainly target the source of information leakage [9] and try
to obfuscate by either randomizing or making side-channel
information constant (timing, power, access etc.). Despite many
efforts, the proposed mitigation techniques against SCAs are
not effective. This is mainly because these techniques generally
offer protection against some specific vulnerability and do
not take a system-wide approach. Moreover, a one-for-all
solution against such vulnerabilities is often costly in terms
of performance. The proposition of recent attacks like Spectre
[10] and Meltdown [11] are evidences that side-channel attacks
are becoming even more sophisticated and stealthier [2] over
the time. Detection techniques, on the other hand, can help
applying mitigation only when needed and thus, can save
the hard-earned performance benefits of existing computing
systems. However, for detection-based prevention strategy to
be effective, detection needs to be highly accurate, should
incur minimum system overhead at run-time, should cover
a large set of attacks and should be capable of early-stage
detection, i.e., before the attack completes.

In this paper, we address the problem of accurate & early
detection of CSCAs at run-time. We present a novel detection
mechanism that uses machine learning models. These models
use PHC data in near real-time using selected hardware event.
The data represent memory access pattern generated by data-
dependent cryptographic operations that are being carried out
by underlying hardware. Using data from hardware events as
features, these ML models detect CSCAs concurrently during



the course of encryption. We perform experiments with three
state-of-the-art access-driven CSCAs, Flush+Reload on RSA
[1] & AES [12] and Flush+Flush [2] on AES cryptosystem
with two different implementations (slow half key recovery and
fast implementation of full key recovery). The effectiveness
of proposed detection mechanism has been demonstrated on
Linux Ubuntu 16.04.1 running on Intel’s core i7-4770 CPU
at 3.40-GHz in our expeirments. Following are the the main
contributions of this paper:

1) We propose a generic run-time detection technique for
CSCAs that uses multiple machine learning models.
It relies on run-time profiling of concurrent processes,
which are collected directly through the hardware events
using HPCs in near real-time. The HPCs are used in
previous research work as well. However, the novelty
in this work comes from the selection and coupling of
suitable hardware events with machine learning models
under stringent constraints such as: run-time, fast and
accurate detection with minimal performance overhead
under realistic system load conditions and against a larger
set of stealthier CSCAs.

2) We demonstrate successful detection of three vari-
ants of state-of-the-art CSCA implementations, i.e.,
Flush+Reload on RSA, Flush+Reload on AES and
Flush+Flush on AES cryptosystems.

3) We demonstrate that the proposed technique is resilient
to noise generated by the system under various loads. To
do so, the results are provided under variable system load
conditions, i.e., under No Load (NL), Average Load (AL)
and Full Load (FL) conditions. In order to achieve such
load conditions, memory-intensive SPEC benchmarks
are being run on the system along with the cryptosystem
and attacks.

4) We provide guidelines on selecting appropriate hard-
ware events and machine learning models for run-time
detection of CSCAs.

Rest of the paper is organized as follows. Section II
presents related work on CSCAs, their mitigation and detection
techniques. Section III provides necessary background. Section
IV presents the proposed technique including the selection of
machine learning models and methodology. Section V provides
experimental evaluation and discussion. Section VI discusses
comparative analysis of our detection mechanism with state-
of-the art. Section VII concludes this paper.

II. RELATED WORK

A. State-Of-The-Art on CSCAs and Mitigation Techniques

The CSCAs exploit micro-architectural features of hardware
platforms to attack cryptosystems such as RSA, AES, DSA,
ElGamal, ECDSA etc. Significant source of information extrac-
tion in such attacks is due to the recognition of memory access
pattern and timing variation. In the last decade, many CSCAs
have been seen and in the follow-up, many mitigations were
proposed as a solution to these attacks [4], [5]. Some examples
of attack categories are Flush+Reload [1], Flush+Flush [2],

Prime & Probe [13], Evict & Time [3] and Evict & Reload
[14]. In the recent past, solutions to mitigate SCAs have been
proposed from time to time such as: Logical/Physical isolation
(including Cache Coloring [15], CloudRadar [16], STEALTH-
MEM [9], cacheBar [17], hardware partitioning [18]), Noise
based mitigations [19], Scheduler-based countermeasures [20],
Partitioning time [21], [22]. These mitigation techniques often
provide protection against specific leakage channels. Moreover,
they drastically increase performance overhead and code size
while working under attack scenario. As a performance versus
security trade-off, applying countermeasure as an all weather
approach is often expensive because they require entirely
new system design in order to maintain performance benefits.
Thus, detection methods can facilitate in indicating the use of
countermeasure on need-basis.

B. State-Of-The-Art on Detection Mechanisms

There are a few research works on detecting CSCAs. Some
of these solutions are implemented as user-level processes
while others operate at kernel-level. Most of these works
do not include detection on latest CSCAs like Flush+Flush.
One of the fundamental limitation of proposed detection
mechanisms is that they do not include evaluation under noisy
backgrounds, i.e., under more realistic system load conditions.
Some of the mechanisms are threshold based which are not very
sophisticated for decision making. Many detection mechanisms
talk about their accuracy but they lack the discussion of
their mechanism in terms of detection speed, percentage of
miss-classification, effect on realistic load conditions and
performance overhead. In contrast, we evaluate our proposed
detection mechanism on a wide set of high resolution and
stealth attacks including two variants of Flush+Flush. We also
use varying system load conditions to show robustness of the
proposed detection mechanism.

Chiappetta et al [23] proposed to use HPCs in conjunction
with Neural Networks for building models for benign and spy
processes. They have shown that the proposed mechanism
works well for Flush+Reload attack with high accuracy.
Mathias et al. [24] proposed a detection solution named
HexPADS, which uses data from different HPCs along-with
kernel information like page faults. Their experiments with
Prime+Probe and Flush+Reload attacks show 100% accuracy
and less than 2% performance overhead. However, paper lacks
the discussion on detection speed that how fast HexPADS
was able to detect attack. Whereas, HexPADS assumes no
realistic load on the system, therefore, overhead may increase
with realistic scenarios. Threshold determination is not a very
sophisticated way for detection because threshold determination
can vary with different load conditions.

Zhang et al [16] proposed a framework, called CloudRadar,
which is implemented as a patch to the OS. Although,
CloudRadar has demonstrated a 100% accuracy with the
performance overhead of less than 5% for Prime+Probe
and Flush+Reload attacks, it detects these attack in isolated
conditions. That is, no tests under realistic/noisy scenario have
been performed to see the efficiency of detection mechanism.



Allaf et al [25] detects Flush+Reload and Prime+Probe attack
at 97% and 98% detection accuracy at speed of 2% under
SPEC benchmarks but proposed system does not identify the
impact on performance of the proposed mechanism.

In the work proposed by Bazm et al. [26], they use HPCs
and Intel Cache Monitoring Technology (CMT). They have
used gaussian anomaly detection for detection of Prime+Probe
in VMs. Their solution demonstrates good accuracy under no
load consitiond but suffers from high rate of false positives
under noisy conditions. The work of Peng et al. [27] ueses
Cache miss rate and data-TLB miss rate to detect CSCAs. This
work fundamentally argues that CSCAs exhibit high cache miss
rate and low data-TLB miss rate. Another recent tool, named
as SCADET [28] is a signature-based detection mechanism
which takes Prime+Probe as a case study. Instead of using
HPCs, this approach uses high-level semantics and invariant
patterns of attack. Results reveal that SCADET provides high
100% accuracy but it lacks discussion on detection speed
and performance overhead of the mechanism. Authors report
that, in some cases, system provides false alarms under load
conditions. Moreover, the trace analysis time of this approach
for detection is very long (notable irregularities when trace
exceeds a certain size), under such conditions, using SCADET
for run-time detection is debatable.

III. BACKGROUND KNOWLEDGE

This section provides the fundamental background needed
to understand the methodology, experiments and results of our
proposed solution. At first, in this section, we demonstrate the
working and effectiveness of three most recent CSCAs that
are used in this paper for experiments and validation of our
proposed detection mechanism [1], [12], [2].

A. Flush+Reload Attack on RSA Cryptosystem

Flush+Reload attack [1] on RSA cryptosystem exploits the
vulnerability of demand-fetch policy of caches by tracking
the difference in timing, in terms of cache hit or cache miss,
when data is loaded into cache. Flush+Reload attack is mainly
dependent on two factors: 1) the permissions to flush any cache
line by virtual address on targeted architecture and 2) the
presence of shared libraries that victim and attacker processes
both are sharing while executing on Intel’s x86 architecture
(attack has been demonstrated on Intel x86) having inclusive
caches. Working principle of Flush+Reload attack is elaborated
in detail in [1].

B. Flush+Reload Attack on AES Cryptosystem

Compared to RSA, AES is a considerably fast cryptosystem.
Recently, Flush+Reload attack has also been implemented on
AES [12], [29]. It uses a fast and light implementation of
T-table in OpenSSL as compared to other proposed attack
implementations on AES. In this case, Flush+Reload attack
mainly focuses on the last round of AES encryption to collect
round key, which provides original secret key by reversing the
key expansion algorithm of AES. Further details on this attack
can be found in [12].

C. Flush+Flush Attack on AES Cryptosystem

Flush+Flush [2] is a cross-core SCA that works in virtualized
environment. We have used two variants of Flush+Flush attack
for experiments as well. One implementation with half key
retrieval and another implementation with full key retrieval,
which happens to be faster. Working principle of Flush+Flush
attack is similar to Flush+Reload attack, except the fact that it is
significantly stealthier due to flushing operation alone, i.e., with
no reload operation. It exploits the same hardware and software
vulnerabilities as Flush+Reload attack does, except that it
targets OpenSSL T-Table AES implementation. Unlike other
CSCAs, Flush+Flush does not perform significant memory
accesses, which reduces the number of additional cache misses
with minimal cache hits. Authors of Flush+Flush attack [2]
tried to detect their own attack using hardware events in Linux
but they declared that their attack is non-detectable with at
least 24 different hardware events in Linux syscall interface.
We tried two implementations of Flush+Flush to make sure the
accurate detection of this stealthy and non-detectable attack. In
this work, we show that Flush+Flush attack is detectable using
our proposed mechanism. We have taken one implementation
of Flush+Flush attack from their authors [2], which targets
first round of encryption to recover half-key. Whereas, for the
second implementation, we have taken Flush+Reload on AES
implementation from [12] and modified it ourselves for faster
and full-key recovery. Further details on Flush+Flush attack
are present in [2] and [12].

IV. PROPOSED RUN-TIME DETECTION MECHANISM

The challenge of designing a detection mechanism for
CSCAs is three-pronged. Firstly, detection mechanism would
slowdown in terms of overall encryption time and thus, it
can lead to significant performance overhead while trying to
achieve higher detection accuracy. Secondly, an accurate but
late detection is useless for run-time detection mechanisms.
Theoretically, detection of an attack after 50% of its completion
is considered as sufficient for a successful attack [3], [30]. Thus,
detection speed is equally important for run-time adaptation of
such mechanisms. And thirdly, a detection mechanism must
not lead to a higher number of False Positives (FPs) and False
Negatives (FNs) at run-time. We considered all these aspects in
our evaluations of the proposed run-time detection mechanism.
A. System Model

We have performed our proposed detection mechanism on
Linux Ubuntu 16.04.1 with kernel 4.13.0− 37 running on
Intel’s core i7 − 4770 CPU at 3.40-GHz. We validate our
detection mechanism on access driven CSCAs which are the
major threat for information leakage in cache hierarchy of
Intel’s architecture. In our detection mechanism, threat model
is same-core and cross-core SCAs. It assumed that operating
system is not compromised. Information of hardware events
can be retrieved by high-level software libraries/APIs such as;
PerfMon, OProfile, Perf tool, Intel Vtune Analyzer and PAPI.
We have used PAPI (Performance Application Programming
Interface) [31] library to access HPCs on Intel Core i7 machine.



Section IV-B provides details on selection of hardware events
using PAPI libraries for our machine learning models.

B. Selected Hardware Events as Useful Features

Hardware performance counters are supported by almost all
modern processors today. In order to access these counters,
software APIs are used. Performance API (PAPI) is one such
library that provides access to hundreds of events for Intel’s
architecture. These events provide access to core-wide, CPU-
wide and system-wide profiles of concurrent processes. Since
the scope of this work is limited to detection of access-
driven CSCAs, therefore, we consider only the events that
are plausibly affected by these attacks. The set of events
that we have tested includes total cache accesses and misses
for all levels of caches such as: L1 data cache misses (L1-
DCM), L2 total cache accesses (L2-TCA), L3 instruction cache
accesses (L3-ICA) etc. and other pipeline events like total
execution cycles (TOT-CYC) and branch mispredictions (BR-
MSP). Using these events, we collect a system-wide profile
for both benign and malicious processes while running state-
of-the-art CSCAs on Intel’s x86 architecture.

Fig. 1: Experimental results of two hardware events for
Flush+Reload (on RSA) and Flush+Flush (on AES) attacks.

Figure 1 illustrates the experimental data collected from two
hardware events that capture the behavior of L1 instruction
(left) and L1 data (right) cache misses during the operations of
RSA and AES cryptosystems while running under attack and
no attack scenarios. The attacks used to obtain these results are
Flush+Reload on RSA and Flush+Flush on AES cryptosystems.
Sampling frequency is shown on Y-axis, while magnitude of
measured events is shown on X-axis. Data in green represents
the execution of target cryptosystem under no attack, whereas,
in red it represents attack scenario.

Since, Flush+Reload on RSA is based on Flush+Reload of
instructions in caches, Figure 1 shows that the magnitude of
instruction cache misses largely shifts to right under attack
creating a clear distinction between attack and no-attack cases.
Similarly, in case of Flush+Flush on AES, which is based on
flushing of data from caches, the magnitude of data cache
misses shifts to right under attack and a segregation between
attack and no-attack scenarios becomes visible. Although these
two cases (which show events under No-Load) seem easier to
handle for a detection mechanism, the distribution of events
can become more complicated under varying system loads and
that is where Machine Learning can help. The complete list of

L
D

A L
R

SV
M

N
ea

re
st

C
en

tr.
N

ai
ve

B
ay

es

K
N

N
D

um
m

y

Pe
rc

ep
tr

on

D
ec

is
io

nT
re

e

R
an

do
m

Fo
re

st
Q

D
A

N
eu

ra
lN

et
.

0

50

100

A
cc

ur
ac

y
of

M
L

m
od

el
s

(%
)

ZL ML HL

Fig. 2: Accuracy Comparison of machine learning models for
Flush+Reload (RSA) detection

hardware events used for detection of attack on RSA include:
L1-instruction cache misses, L3-instruction cache accesses,
L3-total cache misses and total execution cycles. The list of
hardware events for detection of attacks on AES include: L1-
instruction cache misses, L1-data cache misses, L3-total cache
misses and total execution cycles.

C. Selection criteria for machine learning models

In order to select most suitable models, experiments have
been performed 12 different machine learning classifiers from
both linear and non-linear categories as shown in Figure 2 and
3. A detailed review of these machine learning models can be
found in [32]. Here we discuss in detail, the rationale behind
selecting a sub-set of those models for further experimentation.
We rely on two basic parameters to choose machine learning
models: classification accuracy and implementation feasibility
for run-time detection. Figures 2 and 3 show the classification
accuracy of all machine learning models while detecting
Flush+Reload on RSA and Flush+Flush on AES, respectively.
In the first stage, we selected the machine learning models that
showed acceptable accuracy for detection of both attacks. This
leaves us with Linear Discriminant Analysis (LDA), Logistic
Regression (LR), Support Vector Machine (SVM), Naive Bayes,
K-Nearest Neighbor (KNN), Decision Tree, Random Forest
and Quadratic Discriminant Analysis (QDA). Since LDA and
QDA are extensions of Naive Bayes, we let go Naive Bayes
and picked LDA and QDA.

Decision Tree and Random Forest shown very good detec-
tion accuracy but they are not easy to implement at run-time
due to their tree-based nature which results in comparatively
higher performance overheads than linear models. Similarly,
KNN needed to use all data of the training set while performing
inference at run-time which leads to excessive storage and
performance overhead. Therefore, we picked LDA, LR, SVM
and QDA as final candidates for use in the proposed SCA
detection framework. Features collected from hardware events
show linearity when the encryption operation takes place under
RSA and AES cryptosystems.



L
D

A L
R

SV
M

N
ea

re
st

C
en

tr.
N

ai
ve

B
ay

es
K

N
N

D
um

m
y

Pe
rc

ep
tr

on

D
ec

is
io

nT
re

e
R

an
do

m
Fo

re
st

Q
D

A
N

eu
ra

lN
et

.

0

50

100

A
cc

ur
ac

y
of

M
L

m
od

el
s

(%
)

ZL ML HL

Fig. 3: Accuracy Comparison of machine learning models for
Flush+Flush (AES) detection.

D. Methodology

An abstract representation of our proposed detection mecha-
nism with LDA, LR, SVM and QDA machine learning models
is given in Figure 4. There are three significant steps of our
detection mechanism, namely, Training of machine learning
models, Run-time profiling and Classification & detection. In
the following, we explain each step in detail.

1) Training of machine learning models: The events which
are used for profiling (discussed in previous section), provide
us with a differentiation between attacking and non-attacking
processes for RSA and AES cryptosystems. We collected
training data of 1-Million samples from attack & no attack
execution scenarios using variable load conditions, which
helped us to train our machine learning models with this
classified data. Our training data contains equal number of
samples of both attack and no-attack scenarios. Sample size
of 1-Million for attack and no-attack samples is sufficient
enough to learn the small variations in victim’s behavior. We
have to apply training process once so that ML models learn
the behavior of attack by every possible execution scenario
(realistic load conditions). Once the attack behavior is learned,
it takes hardware events at run-time and detects attack on
the go. For validation purposes, we applied K−fold cross
validation technique [32] for all the models on the training
data to verify them before application on run-time detection.

2) Run-time Profiling: In the second phase, our detec-
tion mechanism collects run-time samples from the selected
hardware events. Our detection mechanism collects run-time
samples of hardware events by offering fine-grained and
coarse-grained profiling modes. In fact, these two modes of
profiling offer a trade-off between performance and the speed
of detection. For instance, in fine-grained mode, samples from
hardware events are collected at a higher frequency, which
subsequently leads to an early-stage detection of attacks but at
an increased performance overhead. In coarse-grain profiling
mode, the data samples are taken at a low frequency, which
takes longer time in detecting attacks. In this mode, however,
the performance overhead is minimal as the data samples from

hardware events are collected less frequently. Our detection
mechanism demonstrates successful detection in both cases,
i.e., before the completion of attack.

Fig. 4: Abstract view of detection mechanism.
3) Classification & Detection: In the third and last phase,

our detection mechanism utilizes run-time collected data
from previous phases for classification and detection purpose.
Collected data from run-time profiling phase is passed to
the machine learning models and classifiers at real-time
with prefixed frequency which serve as abnormality/anomaly
detector. On the basis of this trained data, every model classifies
the data into two categories: Attack or No Attack. Detection
accuracy is based on how well the model is learned or trained,
whereas, speed of detection and performance is dependent on
how fast we try to collect the samples.

V. EXPERIMENTS AND DISCUSSION
In order to validate our proposed detection mechanism, we

demonstrate three case studies with extensive experiments: 1)
Detection of Flush+Reload attack on RSA cryptosystem, 2)
Flush+Reload attack on AES cryptosytem and 3) Flush+Flush
attack on 2 different implementations of AES cryptosystem
(one is slow implementation with half key retrieval referred
as FF Imp1 and the other is a faster version with full key
retrieval referred as FF Imp2). All attack implementations on
AES have been tested under OpenSSL 0.9.7 and 1.0.1f versions
whereas, on RSA, Flush+Reload attack is tested under GnuPG
1.4.13 version as stated in the state-of-the-art. Our detection
mechanism efficiently detects Flush+Reload and Flush+Flush
attack techniques and will work the same way for its variants
too at run-time. In these case studies, we assess the detection
capability of machine learning models under realistic load
conditions. Current state-of-the-art demonstrates the effective-
ness of attacks and their detection & mitigation solutions
when victim and attacker are the only running processes and
there is no other load on the system. In practice, however,
the system is often running other processes concurrently with
the encryption operation. Thus, we examine our proposed
mechanism under realistic system load. We have generated
these variable system loads by concurrently executing selected
SPEC benchmarks in the background [33], such as gobmk,
mc f , omnet pp and xalancbmk, which offer memory-intensive



computations. There are three load conditions, namely; the Zero
Load (ZL) condition is the same as used in the state-of-the-art
that includes victim and attacker processes being the only load
on the system, the Medium Load (ML) condition includes at
least 2 benchmarks processes executing along-with victim and
attacker processes and the Heavy Load (HL) condition includes
at least 4 SPEC benchmarks processes executing along-with
victim and attacker processes. We collect hardware events at
run-time in fine-grain and coarse-grain detection modes. In
fine-grain mode, hardware events are collected after every 10
encryptions whereas, in coarse-grain mode, hardware events
are collected after every 50 or 100 encryptions. In this paper,
we present the results with fine-grain sampling frequency in
order to showcase that our detection mechanism is capable of
providing early detection of CSCAs.

A. Case Study-I: Detecting Flush+Reload on RSA

In this section, we present our first case study on detection
of Flush+Reload attack on RSA cryptosystem.

1) Detection Accuracy: Detection accuracy is one of the
primary indicators for evaluating a SCA detection framework.
We use percentage accuracy to show the validity of trained
machine learning models as we have used the same number
of no-attack and attack samples in the training and validation
data (i.e. attack and no-attack samples are not biased). Results
in Table I show the achieved accuracy of the selected machine
learning models. All four machine learning models show very
high and consistent accuracy under all load conditions. Even
under HL condition, the accuracy of LDA, LR and QDA stays
above 99% while SVM shows above 95% accuracy. Most
of the existing state-of-the-art detection mechanisms detect
CSCAs in ZL conditions. Our results demonstrate that the
proposed detection mechanism achieves very high accuracy
for Flush+Reload attack under realistic load conditions. The
primary reason behind this good accuracy of machine learning
models can be explained with the help of Figures 5 and
6. Figures 5 and 6 illustrate the variation in magnitude of
hardware events used for detection (also mentioned in Section
IV-B) under attack and no-attack scenarios for ZL and HL
conditions. Measurements show that all the features show
clearly distinctive behavior under ZL. Under HL, apart from
total number of execution cycles, the other features still
maintain distinctive behavior leading to good performance
of machine learning models.

Fig. 5: Experimental results on 2 selected hardware events
under ZL conditions for RSA encryption: With & Without
Flush+Reload Attack

Fig. 6: Experimental results on 2 selected hardware events
under HL conditions for RSA encryption: With & Without
Flush+Reload Attack.

2) Detection Speed: Another important indicator to
evaluate any run-time intrusion detection mechanism is the
detection speed. Detection speed is an indirect reflection
of how aggressively the detector profiles hardware events,
which also affects the resultant performance overhead of
the detection mechanism. Detection speed is a trade-off
between how quickly an attack can be detected and how
much overhead detection would cost. Flush+Reload is a
single encryption attack [1]. For Flush+Reload, we consider
detection speed as percentage of bits that are encrypted before
the attack is successfully detected by our proposed detection
mechanism. Various attacks [3], [30] have demonstrated that
theoretically it is sufficient to retrieve 50% bits of secret key
for a successful attack and other 50% bits of secret key can be
reverse-engineered. Thus, a safe upper bound on the detection
speed would be the detection before encryption of 50% of
the bits of secret key i.e. before the encryption of 512 bits
out 1024 bits in our case. As shown in Table I, all machine
learning models used by the proposed detection mechanism
are able to detect the attack way before this safe-bound. In all
cases, the detection mechanism is able to detect Flush+Reload
attack in the first 20 bits out of 1024 bits of RSA’s execution.

3) Confusion Matrix: Detection of SCAs is a binary classi-
fication problem i.e. attack or no-attack. Therefore, detection
inaccuracy can be further divided into false positives (cases
when a no-attack condition is detected as an attack) and false
negatives (cases when an attack condition is detected as no-
attack) to analyze detection results in detail. Table I shows
false positives and negatives exhibited by all machine learning
models while detecting Flush+Reload on RSA. As shown
in Table I, for LDA, LR and QDA majority of the miss-
classifications belong to FPs, which can be considered less
dangerous than FNs. In case of SVM, the behavior is different,
exhibits more FN compared to FP under ZL and HL conditions.

4) Performance Overhead: Performance degradation is
another key aspect to judge the applicability of detection
mechanisms in real-time systems. In Section V-A2, it has been
discussed that the detection granularity defines how efficiently
the detection mechanism profiles hardware events and makes
detection decisions which influence the performance of victim
processes. Our proposed detection mechanism incurs 1−2%
performance degradation to the victim process while run-time
profiling and detection mechanism is active. These results are
achieved with the highest sampling frequency of performance



events. With the reduced sampling frequency, the performance
overhead can be further reduced.

TABLE I: Results using LDA, LR, SVM & QDA models for
Flush+Reload attack detection with RSA

Model Loads Accuracy
(%)

Speed
(%)

FP
(%)

FN
(%)

Overhead
(%)

LDA
ZL 99.5 0.9 .498 .002

0.9ML 99.5 0.9 0.49 .01
HL 99.4 0.9 .527 .073

LR
ZL 99.5 0.9 0.5 0

1.6ML 99.5 0.9 .494 .006
HL 99.5 0.9 .462 .038

SVM
ZL 98.8 0.9 0.4 .78

1.3ML 90 0.9 0.17 9.83
HL 95.8 0.9 3.21 .99

QDA
ZL 99.5 0.9 0.5 0

0.6ML 99.5 0.9 .494 .006
HL 99.4 0.9 0.57 .03

TABLE II: Results using LDA, LR, SVM & QDA models for
Flush+Reload attack detection with AES

Model Loads Accuracy
(%)

Speed
(%)

FP
(%)

FN
(%)

Overhead
(%)

LDA
ZL 99.8 20 0.06 0.14

7.8ML 93.9 20 6.1 .018
HL 91.5 20 6.3 2.2

LR
ZL 99.9 40 0.1 0

2.7ML 88.4 40 11.6 0
HL 96.8 40 3.16 0.04

SVM
ZL 99.9 20 0.1 0

3.9ML 88.5 20 11.5 0
HL 96.7 20 3.25 .05

QDA
ZL 99.6 20 0.22 0.18

8.3ML 93.8 20 6.13 .07
HL 91.5 20 5.9 2.6

B. Case Study-II: Detecting Flush+Reload on AES
1) Detection Accuracy: Table II shows the achieved ac-

curacy of machine learning models under different system
conditions for Flush+Reload attack with AES. Under ZL
condition all models are able to show very high accuracy (above
99%). The accuracy decreases as system load is increased.
However, LR and SVM are still able to show above 96%
accuracy under HL conditions.

2) Detection Speed: For Flush+Reload attack on AES [12],
we sample performance counters after every 10 encryptions.
Here, the detection speed is defined in terms of encryptions by
which the attack is detected taken as a percentage of total 250
encryptions, which is the number of encyprtions an attacker
performs to complete the attack. For example, a detection
speed of 20% means that the attack was detected by the first
50 encryptions. As shown in Table II, all machine learning
models except LR are able to detect attack in all cases by first
50 encryptions. In case of LR, the detection is achieved by
first 100 encryptions, i.e., below 50% of 250 encryptions).

3) Confusion Matrix: Table II shows the distribution of
inaccuracy shown by all machine learning models into false
positives and false negatives while detecting Flush+Reload
attack on AES. It can be observed that for almost all cases,
the majority of the inaccuracies shown by all machine learning
models fall into the category of false positives.

4) Performance Overhead: The performance overhead of
run-time detection for all machine learning models is shown in
Table II. LDA and QDA models show slightly high overhead,
while the other two models exhibit a reasonable performance
overhead. The primary reason for a relatively high overhead
for detection of Flush+Reload attack on AES is high resolution
sampling of performance counters which is necessary to
detect Flush+Reload attack on AES before significant security
degradation occurs (i.e. before 50 encryptions).

C. Case Study-III: Detecting Flush+Flush on 2 different
Implementations of AES

Most of the existing CSCA research works have not exper-
imented with the attacks like Flush+Flush due to its stealth
and non-detectable nature. According to [2], it is virtually
impossible to detect the thread responsible for Flush+Flush
attack due to absence of any abnormality in cache misses
and hits for the attacker process. However, this does not stop
from detecting the presence of a Flush+Flush attack as victim
process results into more cache misses and accesses because
of high speed flushing from the attacker process.

TABLE III: Results using LDA, LR, SVM & QDA models
for Flush+Flush attack (FF Imp1) detection

Model Loads Accuracy
(%)

Speed
(%)

FP
(%)

FN
(%)

Overhead
(%)

LDA
ZL 99.9 25 .075 .025

1.18ML 98.7 25 1.16 0.14
HL 95.2 12.5 4.57 0.23

LR
ZL 91.7 12.5 0 8.3

1.10ML 83.1 25 14.3 2.7
HL 75.9 25 24 0.1

SVM
ZL 97.4 12.5 0 2.6

0.8ML 70.6 12.5 27.8 1.60
HL 63.2 12.5 36 0.8

QDA
ZL 99.9 12.5 0.09 0.01

1.2ML 98 12.5 1.99 .008
HL 91.1 12.5 8.85 0.05

TABLE IV: Results using LDA, LR, SVM & QDA models
for Flush+Flush attack (FF Imp2) detection

Model Loads Accuracy
(%)

Speed
(%)

FP
(%)

FN
(%)

Overhead
(%)

LDA
ZL 99.8 0.2 .042 .158

3.5ML 98.2 0.2 1.4 0.40
HL 80.2 0.1 8.2 11.6

LR
ZL 88.8 0.3 2.2 9

3.4ML 86.8 0.4 5.9 7.3
HL 76.5 0.8 5.9 17.6

SVM
ZL 85.2 0.1 14.2 0.6

3.7ML 73.3 0.1 25.4 1.3
HL 66.7 0.8 19.6 13.7

QDA
ZL 89.7 0.2 10.1 0.2

4.5ML 82.1 0.2 17.1 0.80
HL 69.1 0.8 15.1 15.8

1) Detection Accuracy: Table III and IV show the detection
accuracy of all machine learning models for FF Imp1 and
FF Imp2 of Flush+Flush attack. LDA and QDA show very high
accuracy under all load conditions for detection of FF Imp1
of Flush+Flush attack on AES. The high inaccuracy of LR



Fig. 7: Selected hardware events under HL conditions for AES
encryption: With & Without Flush+Flush (FF Imp1) Attack.

and SVM models under HL conditions can be explained
with the help of Figure 7, which show the behavior of used
hardware performance counters under attack and no-attack for
HL conditions. In case of HL condition, it is evident that all the
features start to overlap under attack and no-attack scenarios as
shown in Figure 7. This behavior of overlapping features makes
it harder for machine learning models to properly discern attack
scenario from no-attack scenario. However, it is interesting
to see that the LDA and QDA models are still able to show
good accuracy in case of HL condition (95.20%). Similar kind
of results are observed for FF Imp2 of Flush+Flush attack.
LDA shows the highest detection accuracy in comparison to
the other models as shown in Table IV.

2) Detection Speed: The first implementation (FF Imp1)
of Flush+Flush on AES [2], needs to perform at least 350-
400 encryptions whereas, the second faster implementation
(FF Imp2) of Flush+Flush on AES (modified from [12]), takes
around 50,000 encryptions to complete the attack. Thus, in both
cases, a detection of Flush+Flush attack would only be useful if
it is made before the completion of 400 (FF Imp1) and 50,000
(FF Imp2) encryptions of AES. So, for Flush+Flush attack
on AES, the detection speed is defined in terms of number of
encryptions needed to detect the attack taken as a percentage
of 400 (FF Imp1) and 50,000 (FF Imp2) encryptions (upper
bound). As an example, a detection speed of 12.5% (for
FF Imp1) would mean that detection is achieved by first 50
encryptions. Whereas, a detection speed of 0.2% (for FF Imp2)
would mean that detection is achieved by first 100 encryptions.
Both implementations of Flush+Flush attack on AES are shown
in Table III and IV. The first implementation (FF Imp1) of
Flush+Flush attack is detected by first 50 encryptions in most
of the cases. Detection is achieved by 100 encryptions in
the other cases. The second implementation (FF Imp2) of
Flush+Flush attack is detected by first 100 encryptions in most
of the cases and at maximum the attack is detected by first
400 encryptions which is far below 50% completion of total
50,000 encryptions.

3) Confusion Matrix: Table III and IV show breakdown of
miss-classifications of all machine learning models into FPs
and FNs while detecting both implementations of Flush+Flush
attack on AES. For first implementation (FF Imp1) of
Flush+Flush on AES, for most of the cases the majority of
mispredictions falls into FPs. A few cases (SVM and LR
under ZL) where majority of errors falls into false negatives
category, have very high accuracy and the actual number of

false negatives and positives for them is very low. Similar is the
case for the second implementation (FF Imp2) of Flush+Flush
attack on AES where most of the miss-classifications belong
to FNs category.

4) Performance Overhead: All four machine learning
models incur small profiling and detection overhead for both
implementations of Flush+Flush attack as shown in Table III
and IV. FF Imp1 in Table III shows maximum overhead of
1.18 in the case of LDA while, FF Imp2 in table IV shows
degradation of maximum 4.5% in case of QDA, which is still
reasonable.

VI. COMPARATIVE ANALYSIS WITH STATE-OF-THE-ART

Table V provides a comparative analysis of our proposed
detection technique with state-of-the-art. We provide this
comparison with respect to the detection accuracy, speed,
performance overhead and system load conditions in order to
provide the reader with a perspective related to the existing
techniques. Details on these techniques are already discussed
in Section II-B. Authors in [23] detect Flush+Reload at an
accuracy of F-score=0.93 before the 1/5th of completion of
the attack in presence of noise in the background. F-score
is a measure of accuracy in statistical analysis of binary
classification. This technique, however, doesnot discusses the
impact on performance degradation. The HexPADS [24] claims
to have detected Flush+Reload and Prime+Probe attacks at
100% accuracy with 2% overhead. These results are reported
under No load conditions, which may lead to erronous accuracy
and increased overhead under noisy system load conditions.
There is no discussion of how fast HexPADS can detect any of
the tested attacks. The CloudRadar [16] claims to have detected
Prime+Probe and Flush+Reload attacks at 100% accuracy and
5% overhead under No Load conditions as well. This technique
also suffers from the same issues as HexPADS. Techniques
proposed in [25] detects Flush+Reload and Prime+Probe
attacks at 97% and 98% accuracy, respectively, and within 2%
detection speed in presence of background noise but did not
discuss the overhead of by proposed mechanism. Technique
proposed in [34] claims to detect template attacks with 99%
accuracy but does not provide detection speed, overhead and
any variations in system load conditions. Technique proposed
in [26] claims to work 100% accurately on Prime+Probe attack
with 2% overhead. Authors, however, do not provide any results
on the detection speed. Also, the percentage of false negatives
increase under load conditions for the proposed technique.
Technique proposed in [27] claims to detect Flush+Reload at
100% accuracy in isolated conditions and there is no discussion
on the impact of detection speed and overhead under load
conditions. Similarly, The SCADET technique proposed in
[28] claims to perform 100% accurately under different load
conditions but detection speed and performance overhead of
this mechanism is not discussed. Whereas, it raises false alarms
in load conditions and trace timing is long in some cases, which
is not suitable for early stage detection.

Based on the comparison provided in Table V, our proposed
detection mechanism evidently performs better under stringent



evaluation metrics. Our mechanism works for a larger set
of attacks while performing run-time detection. We have
provided results for four attacks on different cryptosystems,
namely: Flush+ Reload on RSA, Flush+Reload on AES,
Flush+Flush on AES half-key (FF Imp1) and Flush+Flush on
AES full-key (FF Imp2). Reported accuracy of our mechanism
for these attacks is 99.51%, 99.99%, 99.99% and 99.8%,
respectively. Similarly, the detection speed is reported as
< 0.9%, < 40%, < 25% and < 0.8%, respectively. Moreover,
under any load conditions, the performance overhead of our
proposed mechanism remains < 8%.

TABLE V: Comparative analysis of proposed detection mech-
anism with state-of-the-art [Note: NA refers to Not Available].

Ref. Attack Accuracy Speed Overhead Load/Noise

[23]
Flush+Reload F-score

0.93
1/5th of
attack
comple-
tion

NA Yes
(Apache)

[24]
Flush+Reload
Prime+Probe

100% NA < 2% No

[16]
Prime+Probe
Flush+Reload

100% NA w.r.t
to key
comple-
tion

< 5% No

[25]
Flush+Reload
Prime+Probe

97%,
98%

2% NA Yes
(SPEC)

[34]
Template At-
tacks

>99% NA NA No

[26]
Prime+Probe 100% NA 2% Yes (CIW)

[27]
Flush+Reload 100% NA NA No

[28]
Prime+Probe 100% NA NA Yes (Open

source)
Our
Re-
sults

Flush+Reload
(RSA)
Flush+Reload
(AES)
Flush+Flush
(AES,
FF Imp1)
Flush+Flush
(AES,
FF Imp2)

99.51%,
99.99%,
99.99%,
99.8%

0.9%,
<40%,
<25%,
<0.8%

< 8% Yes
(Memory
Intensive
SPEC
bench-
marks)

VII. CONCLUSIONS

This paper presents a novel run-time detection mechanism for
access-driven CSCAs on Intel’s x86 architecture. The proposed
detection mechanism is capable of detecting a large set of CSCAs with
considerably high detection accuracy & speed while incurring mini-
mum performance overhead under variable system load conditions.
The paper provides experimental validation on 04 state-of-the-art
CSCAs under stringent evaluation metrics. Our results show detection
accuracy up to 99.51% for Flush+Reload attack on RSA, incurring a
worst-case performance overhead of only 1.63% and 99.99% accuracy
on AES while incurring a performance overhead of 8.28% under noisy
system load. For Flush+Flush attack, the detection accuracy of up to
99.97% and 99.85% is achieved for two different implementations
of attack on AES with a performance overhead of 1.18% & 3.51%,
respectively. The novelty in this work lies in the fact that we were
able to detect high-resolution attacks, such as Flush+Reload, and
stealthy attacks, such as Flush+Flush, on different cryptosystems
under realistic system load conditions using machine learning models
with selected hardware events.

VIII. ACKNOWLEDGEMENTS

This research work is partially supported by PHC PERIDOT project
e-health.SECURE (Pak-France) and NCCS, Pakistan.

REFERENCES

[1] Y. Yarom and K. Falkner, “FLUSH+RELOAD: A high resolution, low
noise, L3 cache side-channel attack,” in USENIX Security 14, p. 719.

[2] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A
fast and stealthy cache attack,” in DIMVA, 2016, pp. 279–299.

[3] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and counter-
measures: The case of AES,” CT-RSA, pp. 1–20, 2006.

[4] Q. Ge, Y. Yarom, D. Cock, and G. Heiser, “A survey of microarchitectural
timing attacks and countermeasures on contemporary hardware,” IACR
Crypt. ePrint Arch., p. 613, 2016.

[5] S. A. et al, “Cross-VM cache-based side channel attacks and proposed
prevention mechanisms: A survey,” Journal of Network and Computer
Applications, pp. 259 – 279, 2017.

[6] X. Jin, H. Chen, X. Wang, Z. Wang, X. Wen, Y. Luo, and X. Li, “A
simple cache partitioning approach in a virtualized environment,” in
IEEE ISPA, Aug 2009, p. 519.

[7] H. Raj, R. Nathuji, A. Singh, and P. England, “Resource management
for isolation enhanced cloud services,” in CCSW, 2009, pp. 77–84.

[8] F. Liu and R. B. Lee, “Random fill cache architecture,” in MICRO.
[9] T. Kim, M. Peinado, and G. Mainar-Ruiz, “STEALTHMEM: System-

level protection against cache-based side channel attacks in the cloud,”
in USENIX Conference on Security Symposium, 2012, pp. 11–11.

[10] P. K. et al, “Spectre attacks: Exploiting speculative execution,” 2018.
[11] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard,

P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown.”
[12] G. Irazoqui, M. S. Inci, T. Eisenbarth, and B. Sunar, “Wait a minute! a

fast, cross-VM attack on AES,” in RAID 17.
[13] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar,

“Cache attacks enable bulk key recovery on the cloud.” CHES, 2016.
[14] D. Gruss, R. Spreitzer, and S. Mangard, “Cache template attacks:

Automating attacks on inclusive last-level caches,” in USENIX, 2015.
[15] M. Godfrey and M. Zulkernine, “Preventing cache-based side-channel

attacks in a cloud environment,” IEEE TCC, vol. 2, no. 4, 2014.
[16] T. Zhang, Y. Zhang, and R. B. Lee, “CloudRadar: A real-time side-

channel attack detection system in clouds,” in RAID, 2016.
[17] Z. Zhou, M. K. Reiter, and Y. Zhang, “A software approach to defeating

side channels in last-level caches,” in ACM SIGSAC, 2016.
[18] Z. Wang and R. B. Lee, “New cache designs for thwarting software

cache-based side channel attacks,” in ISCA, 2007, pp. 494–505.
[19] D. Cock, Q. Ge, T. Murray, and G. Heiser, “The last mile: An empirical

study of timing channels on seL4,” in ACM SIGSAC, 2014.
[20] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side

channels and their use to extract private keys,” in ACM CCS, 2012.
[21] M. Godfrey and M. Zulkernine, “A server-side solution to cache-based

side-channel attacks in the cloud,” in IEEE CLOUD, 2013.
[22] D. Gruss, C. Maurice, A. Fogh, M. Lipp, and S. Mangard, “Prefetch

side-channel attacks: Bypassing smap and kernel ASLR,” in ACM CCS.
[23] M. Chiappetta, E. Savas, and C. Yilmaz, “Real time detection of cache-

based side-channel attacks using hardware performance counters,” Appl.
Soft Comput., 2016.

[24] M. Payer, “HexPADS: a platform to detect “stealth“ attacks,” in ESSoS,
2016.

[25] Z. Allaf, M. Adda, and A. Gegov, “A comparison study on Flush+Reload
and Prime+Probe attacks on AES using machine learning approaches,”
UKCI, 2017.

[26] M.-M. Bazm, T. Sautereau, M. Lacoste, M. Sudholt, and J.-M. Menaud,
“Cache-based side-channel attacks detection through intel cache monitor-
ing technology and hardware performance counters,” in FMEC, 2018.

[27] S.-h. PENG, Q.-f. ZHOU, and J.-l. ZHAO, “Detection of cache-based
side channel attack based on performance counters,” DEStech, 2017.

[28] M. Sabbagh, Y. Fei, T. Wahl, and A. A. Ding, “SCADET: a side-channel
attack detection tool for tracking Prime+ Probe,” in ICCAD, 2018.

[29] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games – bringing
access-based cache attacks on AES to practice,” in IEEE SSP, 2011.

[30] Y. Yarom, D. Genkin, and N. Heninger, “CacheBleed: a timing attack
on OpenSSL constant-time RSA,” Journal of Crypt. Engg. 2017.

[31] “Performance application programming interface,” 2018, http://icl.cs.utk.
edu/papi/.

[32] C. M. Bishop, Pattern Recognition and Machine Learning, 2006.



[33] “https://www.spec.org/benchmarks.html,” 2018.
[34] M. A. et al, “Performance counters to rescue: A machine learning based

safeguard against micro-architectural side-channel-attacks,” Crypt., 2017.


