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Abstract

The binary partition tree (BPT) allows for the hierarchical representation of

images in a multiscale way, by providing a tree of nodes corresponding to image

regions. In particular, cuts of a BPT can be interpreted as segmentations of

the associated image. Building the BPT of an image then constitutes a rel-

evant preliminary step for optimization-based segmentation methods. A wide

literature has been devoted to the construction of BPTs, and their involvement

in such segmentation tasks. Comparatively, there exist few works dedicated to

evaluate the quality of BPTs, i.e. their ability to allow further segmentation

methods to compute good results. We propose such a framework for evaluating

the quality of a BPT with respect to the object segmentation problem, i.e. the

segmentation of one or several objects from an image. This framework is su-

pervised, since the notion of segmentation quality is not only depending on the

application but also on the user’s objectives, expressed via the chosen ground-

truth and quality metric. We develop two sides within this framework. First,

we propose an intrinsic quality analysis, that relies on the structural coherence

of the BPT with respect to ground-truth. More precisely, we evaluate to what

extent the BPT structure is well-matching such examples, in a set / combina-

torial fashion. Second, we propose an extrinsic analysis, by allowing the user

to assess the quality of a BPT based on chosen metrics that correspond to the

desired properties of the subsequent segmentation. In particular, we evaluate

to what extent a BPT can provide good results with respect to such metrics

whereas handling the trade-off with the cardinality of the cuts.
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model, supervised quality evaluation, mathematical morphology

1. Introduction

Carrying out segmentation on an image, which basically relies on the com-

putation a partition of its support, is a challenging task. This is mainly due to

the super-exponential number of possible partitions that exist for a given set of

pixels. In order to tackle this combinatorial issue, a classical solution consists of

defining—before the segmentation process—a lower-size subspace of candidate

partitions, within the whole research space of all the possible partitions.

The most popular way of defining such reduced partition spaces is to build

hierarchies of partitions. The purpose is then to pre-compute some image re-

gions whose union corresponds to non-overlapping covers of the image support.

This often leads to graph-based data structures organized as trees (i.e. rooted,

connected, acyclic graphs) that model partitions hierarchically organized with

respect to the refinement relation.

Since the pioneering works on tree structures for image processing and anal-

ysis (i.e. regular [1] and non-regular pyramids [2]), various kinds of hierarchies

of partitions have been proposed. Many of them were developed in the frame-

work of mathematical morphology [3]. These hierarchies are mostly intrinsic

image models; this means that the information required for building a tree

from an image is contained within the image. This is, for instance, the case of

component-trees [4] and multivalued component-trees [5] that rely on level-sets;

trees of shapes [6] and multivariate trees of shapes [7] based on isocontours;

hierarchical watersheds [8] (that rely also on a chosen gradient policy which

constitutes, in some way, an extrinsic meta-parameter); hyperconnection trees

[9], etc.

Some mixed hierarchies of partitions were also proposed. The most popular

are the binary partition trees (BPTs) [10] and their variants (see e.g. [11, 12]).

BPTs can be considered as mixed hierarchies since they rely not only on the

information directly embedded in the image, but also on extrinsic information,

namely prior knowledge related to sought structures of interest, modelled via

a metric. Then, both image and metric are involved in the construction of the

BPT data structure.

When dealing with an intrinsic image model, the quality of the segmenta-

tion result only depends on the efficiency of the segmentation algorithm, i.e.

the strategy for defining a relevant cut within the tree. By contrast, when deal-
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ing with a BPT (and, more generally, a mixed image model), the quality of

the segmentation result depends not only on the efficiency of the segmentation

algorithm, but also on the quality of the hierarchy of partitions built before-

hand. In other words, when considering BPT-based image processing, a good

segmentation algorithm has to be applied on a good image tree data structure.

A wide literature has been devoted to BPT-based segmentation, mostly in

the challenging context of remote sensing [13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

Various metrics were investigated (spectral, spatial, geometric, etc.) for building

BPTs. The design of these metrics (choice and combination) strongly influences

the resulting BPTs, i.e. the reduced search space for further segmentation, and

thus the quality of the subsequent segmentation result.

Comparatively to the rich panel of contributions geared towards building

BPTs and using them for segmentation purposes, the literature dedicated to

evaluating the quality of BPTs is much sparser. Indeed, (binary partition) trees

are complex objects that model sets of partitions. Then, they are structurally

more difficult and spatially more costly to analyze compared to single segmen-

tations which correspond to unique partitions [23, 24, 25, 26, 27, 28].

The contributions dedicated to BPT evaluation in the context of segmen-

tation can be subdivided in two families, that correspond to two paradigms of

segmentation. Indeed, the segmentation of an image is defined from the partition

of its support. On the one hand, this partition can be seen as the very segmen-

tation. In such case, the purpose is to maximize (resp. minimize) intra-region

(resp. inter-region) homogeneity with respect to given (spectral, semantic. . . )

properties. This is for instance the case in scene labelling in computer vision,

or in image classification in remote sensing. On the other hand, the partition

can be used only for identifying some objects of interest. In such context, an

object is defined by one region of the partition or the union of different regions

whereas all other regions are considered non-relevant. In other words, we are

only interested in parts of the image formed from unions of regions (namely the

foreground, or the object) versus the union of the remaining regions (namely

the background). In that case, we will speak about object segmentation, and

the final purpose is to interpret a given partition as a coarser binary partition.

This is for instance the case in medical imaging, when segmenting anatomical

structures (e.g. tumour lesions in an organ) or in remote sensing when looking

for specific objects (e.g. red-roof buildings).

Regarding the evaluation frameworks dedicated to the first kind of segmenta-

tions, that correspond to whole partitions of the image, the considered ground-
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truth is itself a partition, and the quality of the tree is related to the closeness of

its best induced partition with respect to this ground-truth. In this context, the

main quality scores considered are the precision, the recall and the F-measure

(their harmonic mean). This is for instance the case in [29], where these met-

rics are assessed by considering a subset of (horizontal) cuts, which number is

linear with respect to the size of the tree. In order to go beyond the case of

horizontal cuts (which are not necessarily those likely to provide the more rep-

resentative segmentation results), two approaches were proposed, that rely on

assumptions on the considered quality metrics, namely the ability of the optimal

partition of the image to be defined as the union of the optimal partitions of the

two half-images [30]; and the ability of the optimal cut to be the solution of a

linear fractional combinatorial optimization problem, which is the case for the

F-measure for boundary detection that relies on the precision/recall trade-off

[31]. A recent framework gathering these precision/recall-based strategies can

be found in [32].

Regarding the evaluation frameworks dedicated to the second kind of seg-

mentation, that corresponds to a binary partition of the image, to our best

knowledge, the closest work is the one proposed in [33] (see also [32]), which

is mainly geared towards evaluating the quality of trees with respect to fore-

ground / background markers. By contrast to the first category of evaluation

frameworks, the ground-truth considered in this second family are more simple,

since they are binary objects. In this context, the problem to be solved is no

longer about comparing how much two partitions are similar, but determining

how much a partition allows one to build a binary object. This requires, on the

one hand, to handle user-defined quality metrics that may be different from pre-

cision and recall. On the other hand, this also requires to assess the partitions

in a more intrinsic way since a “good” partition is not only a partition which

union of subsets leads to a fairly correct segmented object, but also a partition

with a sufficiently low number of elements and composed of regions individually

well-matching the object of interest. In the sequel, we propose a framework for

BPT quality evaluation in this context of object segmentation.

In the proposed framework, we allow the user to assess the quality of a BPT

based on chosen quality metrics that correspond to the desired properties of

a subsequent segmentation, but also by considering combinatorial properties

of the tree. More precisely, we evaluate to what extent some cuts of a BPT

can optimize such quality metrics, whereas handling the trade-off between the

metric and the size of the cut (with the assumption that the lower the size, the
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better the segmentation, with the best case where the segmentation result is

indeed given by exactly one node of the BPT).

This article is an extended and improved version of the conference articles

[34, 35, 36] which dealt either with intrinsic or extrinsic analysis frameworks ded-

icated to object segmentation from BPTs. The intrinsic framework introduced

in [35] is recalled with additional details, whereas a new extrinsic framework is

now proposed, building upon the preliminary approaches introduced in [34, 36].

An homogeneous formalism is now proposed in order to make the overall frame-

work more easily comprehensible. A new experimental section compares the

results of this framework with other frameworks mainly dedicated to partition-

based segmentation but applicable, under appropriate adaptations, to the case

of object segmentation.

The remainder of this article is organized as follows. In Section 2, we intro-

duce notations and we recall background notions related to BPTs, required to

make this article self-contained. In Section 3, we describe the problem that we

aim to tackle, namely the evaluation of the quality of a BPT as an efficient data

structure for carrying out segmentation via tree-cut computation. Sections 4–

5 describe the proposed evaluation framework and constitute the core of this

article. Section 6 proposes an experimental study dedicated to illustrate the

behaviour of the proposed framework in the context of natural image segmenta-

tion, and compare this framework to the closest ones of the literature. Section 7

concludes this article by emphasizing perspective works.

2. Background Notions

A list of the principal notations is provided in Appendix.

2.1. Image

An image I is defined on a nonempty, finite set of points Ω. In general,

such points are pixels (resp. voxels) in 2D (resp. 3D) images. The structural

properties between these points have to be explicitly considered. Practically,

the relevant information is the existence of a neighbourhood relation between

two points. We can model this information as an adjacency (i.e. irreflexive,

symmetric) relation on Ω, noted a. Then, the physical support of an image I

will be considered as the graph (Ω,a).

The image I takes its values in a space V. There is no actual requirement

with regard to this value space. In general, V is a scalar space (e.g. a set of
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real or integer values) in the case of monovalued images, or a Cartesian set of

such spaces in the case of multi-/hyperspectral images. Hypotheses on V have

no impact on the very structure of a BPT. They can, however, be involved in

the parametrization of its construction process.

Practically, an image can then be formalized as a function I : Ω → V.

For BPT construction and handling issues, we will mainly consider its spatial

support Ω and its graph-based structure (Ω,a).

2.2. Binary Partition Tree

A BPT associated to (Ω,a) is a tree T = (N ,↘), i.e. a directed, connected,

acyclic graph. In particular, the set N which is a part of the power-set of Ω is

the union of three subsets:

• R = {Ω} (we will note NΩ = Ω);

• B;

• L = {{x}}x∈Ω (we will note Nx = {x});

such that for any N ∈ R ∪ B (resp. L), there exist exactly two (resp. no)

N ′ ∈ N satisfying N ↘ N ′ and N is the union of these two elements; and

for any N ∈ B ∪ L (resp. R), there exists exactly one (resp. no) N ′ ∈ N
satisfying N ′ ↘ N . In such conditions, we have in particular |R| = 1, |L| = |Ω|,
|B| = |Ω| − 2, and |N | = 2|Ω| − 1.

Less formally, a BPT T of (Ω,a) provides a family N of subsets of Ω. These

subsets are hierarchically organized from the whole set Ω to the singleton sets

{x}, x ∈ Ω, with respect to the inclusion relation. This hierarchical organization

is characterized by the fact that an element N of N , which is not a singleton

set, is associated via↘ to exactly two elements N1, N2 of N that form a binary

partition of N .

We use the standard terminology of trees: the elements of N are the nodes

of T, the node Ω is the root of T, the singleton nodes of L are the leaves of T.

By construction, for any two nodes of N , the intersection between them

implies that one is included in the other.

2.3. Construction of a Binary Partition Tree

A BPT T can be built from a graph (Ω,a) either in a top-down or a in

bottom-up fashion. Hereinafter, we describe a bottom-up way of building a

BPT, i.e. from the leaves up to the root, which corresponds to the historical
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way, originally described in [10]. The set of leaves L is straightforwardly defined

from the elements of Ω. The construction of T consists of progressively merging,

by union, these elements in order to define nodes of increasing size. In practice,

the merging order of couples of nodes is related to a chosen merging criterion,

based on a given metric on nodes.

A supplementary constraint is given, in practice, when building a BPT. The

merging operation has to occur between adjacent nodes. This is why a BPT is

built on a graph (Ω,a), and not only on a set Ω. In particular, the set of leaves

L is endowed with an adjacency relation aL trivially inherited from a, leading

to a graph (L,aL) isomorphic to (Ω,a).

The BPT describes the progressive collapsing of (L,aL) onto the trivial

graph ({Ω}, ∅). This process consists of defining a sequence (Gi = (Ni,aNi
))ni=0

(with n = |L|− 1) as follows. First, we set G0 = (L,aL). Then, for each i from

1 to n, we choose—according to a given metric—two nodes N1 and N2 of Gi−1

such that N1aNi−1
N2, and we define Gi such thatNi = (Ni−1\{N1, N2})∪{N},

with N = N1 ∪N2. In other words, we replace these two nodes by their union.

The adjacency aNi
is defined accordingly from aNi−1

: we remove the edge

(N1, N2), and we replace each edge (N1, N3) and/or (N2, N3) by an edge (N,N3).

The BPT T is built in parallel to this progressive collapsing from G0 to Gn.

We define a sequence (Ti)
n
i=0 as follows. We set T0 = (N0, ∅) = (L, ∅). Then, for

each i from 1 to n, we build Ti from Ti−1 by adding the new node N = N1∪N2,

and the two edges N ↘ N1 and N ↘ N2. The BPT T is finally defined as Tn.

3. Problem Statement

3.1. Tree Cuts, Partitions and Segmentation

Defining a cut within a BPT (and, more generally, within a tree) consists

of defining a subset of nodes which are all independent with respect to the

hierarchical organization of the tree. In other words, two nodes N,N ′ ∈ N such

that N = N0 ↘ N1 ↘ . . . ↘ Nk = N ′ cannot both belong to a same cut.

Trivial examples of cuts of a BPT T are the singleton cut R = {NΩ} formed by

the only root, and the cut L = {Nx}x∈Ω formed by all the leaves.

A cut is said total if it is maximal for the inclusion relation, i.e. if we cannot

add a new node hierarchically independent from all the nodes of the cut. For

instance, R and L are total cuts. A total cut of T is indeed a partition of Ω.

From a segmentation point of view, a total cut allows one to subdivide the whole

image support into elementary regions, generally assumed to be homogeneous
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(e.g. spectrally or semantically). In other words, a total cut provides a global

segmentation of the scene visualized in the image. This can be useful e.g. for

scene labelling in computer vision or for classification purpose in remote sensing.

A cut is said partial if it is not necessarily maximal for the inclusion rela-

tion. In other words, a partial cut (or simply, a cut) is any subset of a total

cut. Equivalently, a partial cut of T is a partition of a subset of Ω. From a

segmentation point of view, a partial cut allows one to discriminate a region of

the image composed by the union of all the nodes inside it, namely the object

(or the set of objects, or foreground) from the remainder of the image support,

namely the background. In other words, a (partial) cut provides a binary (ob-

ject vs. background) segmentation of the image. This can be useful e.g. for

object detection or image analysis where only a part of the scene is semantically

relevant.

The equivalence between cuts and partitions allows for the use of BPTs as a

data structure for image segmentation. In the sequel, we will focus on the case

of (partial) cuts and their use for object segmentation.

3.2. BPTs as Research Spaces for Segmentation

Based on the above remarks, a BPT constitutes a relevant data structure for

image segmentation. In particular, as any of its (partial) cuts provides an object

segmentation, it constitutes a research space containing potential segmentation

results associated to a given image.

The main virtues of a BPT are its low size and its hierarchical structure.

First, it contains 2|L| − 1 nodes, with |L| = |Ω|; in other words, the size of T

is linear with respect to the image size, i.e. |N | = Θ(|Ω|). Second, the BPT is

a (binary) tree structure. This organization of nodes enables the development

of efficient “divide-and-conquer” strategies [37], that can lead to low time cost

algorithms.

At first sight, BPTs then appear as very good data structures for image

segmentation, allowing us to obtain (partial) cuts / object segmentations in a

fast and efficient way. Actually, BPTs are indeed very good data structures for

such purpose, provided they are correctly built. This notion of BPT quality is

directly related to the way the BPT is built, given a particular metric impacting

the node merging order and for a particular application.

Indeed, BPTs are low-size data structures, that give access to possible par-

titions of Ω. However, the space of partitions of a set Ω is huge, and grows

at a super-exponential (|Ω||Ω|) rate with respect to its size. As a direct conse-
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Figure 1: Tree reduction (see Section 4.1). From left to right: a whole tree T; the subset NG

of nodes of N (in blue); the subtree TG composed of the nodes of NG; the spatial embedding
of the nodes NG with respect to the ground-truth example G.

Figure 2: Example of a unary node N with respect to a ground-truth G (see Section 4.1).
We have N ↘ N ′ and N ∩G = N ′ ∩G, whereas N ′ ⊂ N . The only other node N ′′ ⊂ N such
that N ↘ N ′′ does not intersect G.

quence, the quality of T has a direct impact on the efficiency of any subsequent

algorithm that will use it for segmentation purpose.

Being able to evaluate the quality of a BPT built on an image is then of

paramount importance.

4. Intrinsic Quality Analysis of a Binary Partition Tree

Assessing the quality of a BPT is equivalent to assessing the relevance of its

construction, i.e. the relevance of the features used for successively merging the

nodes from the leaves up to the root. In the context of object segmentation,

the BPT quality corresponds to its ability to allow for the segmentation of an

object of interest exemplified by a ground-truth defined as a subset G of Ω.

A first quality analysis can be carried out by directly observing the BPT with

respect to the ground-truth. Indeed, the BPT provides, by its inner structure

and its spatial embedding, information about its relevance and its ability to

allow for the segmentation of objects similar to this ground-truth.

4.1. Tree Reduction Based on the Ground-Truth

Our purpose, in this first quality analysis, is to evaluate to what extent a

BPT T defined on (Ω,a) provides nodes matching with a given ground-truth
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example G ⊆ Ω. The set of nodes N of T can be subdivided into two families:

those that intersect G, and those that do not. The second family is useless here

for this analysis. Then, we focus only on the nodes N ∈ N intersecting G.

The subset of such nodes can be easily computed in a bottom-up fashion,

by first selecting all the leaves L ∈ L that intersect G and then preserving

iteratively all the parent nodes connected to any such leaves by the ↘ relation,

until the root NΩ, that necessarily satisfies this property (see Figure 1).

The obtained subset of nodes of N , noted NG, induces a subtree TG of T,

of root NΩ and with a set of leaves LG that correspond to the leaves of L which

intersect G. By construction, this subtree TG may not be binary. This means

that there may exist nodes N of NG that have exactly one child node in NG.

This happens when the only other child node of N does not intersect G (see

Figure 2). Such nodes N are called unary nodes, by contrast with the binary

nodes that still have their two children nodes in NG.

An important property of a unary node N is that its intersection with G is

exactly the same as for its only child N ′ in NG. In other words, for a unary node

N , we have N ∩G = N ′ ∩G, whereas N ′ ⊂ N . This means that a unary node

increases the amount of false positive material with respect to G, compared to

its descendants.

In particular, this is true in the upper part of the tree TG, between the root

NΩ and the first binary node NG of TG. Indeed, except in the case where NΩ

is itself a binary node in NG, there exists, within NG, a sequence of successive

nodesNΩ = N0 ↘ N1 ↘ . . .↘ Nk = NG (k ≥ 1) such that allNi (0 ≤ i ≤ k−1)

are unary. In such case, we can relevantly remove from TG all these nodes Ni to

finally preserve as root the first binary node NG (see Figure 1). By construction,

NG is the smallest node of N that includes G.

In order to reduce the space cost of TG in a lossless way, it is also possible to

remove the children of the nodes N that are included in G. Indeed, such nodes

have their children also included in G. The only useful information to be stored

in N is the number ` of leaves of the subtree of root N that also gives access to

the number of nodes implicitly modeled by N , namely 2`− 2.

The final subtree (still noted TG, by abuse of notation) contains all the nodes

of interest of T, with respect to the ground-truth G. Its combinatorial analysis

then allows us to obtain first information about the quality of the BPT with

respect to the provided ground-truth.
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4.2. Relevance of the Quality Analysis

The analysis of the (sub)tree TG provides information about the relevance—

with respect to the ground-truth example G—of the way of choosing successively

the couples of nodes to merge.

The initial set of leaves is often chosen as L = {{x}}x∈Ω, which means

that each leaf corresponds to exactly one point of the image. For practical

reasons, L can sometimes be defined as a set of larger nodes (e.g. flat zones

or superpixels). The choice of this initial partition is generally non-correlated

to the node-merging strategy. Nevertheless, it has an important impact on the

relevance of the proposed evaluation framework. In particular, two properties

of this initial partition are crucial.

Granularity. The granularity γ derives from the ratio between the size of G (i.e.

its number of points) and the size of LG (i.e. the number of leaves that intersect

G). It is defined as:

γ =
(

1 + log10

|G|
|LG|

)−1

(1)

and lies in (0, 1]. The higher the granularity γ, the more relevant the intrinsic

quality analysis carried out on TG.

To illustrate this fact, we consider two extremal examples. Let us suppose

that γ = 1. This means that the number of leaves that intersect G is equal to

the number of points of G. Then, each leaf contains exactly one point of G, and

the ability of the BPT to allow for the definition of a cut that correctly fits G

highly depends on the way to progressively merge the nodes. By contrast, let

us suppose that γ = 1/(1 + log10 |G|) ' 0 (i.e. its minimal value). This means

that one leaf already includes G, thus TG is a trivial tree composed of one node.

Then, the initial partition already determines the adequacy between the BPT

and G; the way of building the tree has no actual influence. More generally,

the proposed logarithmic formulation of granularity (which differs from the one

initially proposed in [35, (6)]), allows to better model the difference of order of

magnitude between the size of the ground-truth and the number of leaves that

intersect it. Indeed, a granularity γ = 1
k corresponds to a difference of k − 1

orders of magnitude, i.e. a ratio of 10k−1.

Discordance. The discordance δ is defined as the relative quantitative error on

the size of G induced by LG, and more precisely by the nodes that partially
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intersect G. It is defined as:

δ =
1

|G|
∑

L∈LG

min{|L \G|, |L ∩G|} (2)

and lies in [0, 1]. The lower the discordance, the more relevant the intrinsic

quality analysis carried out on TG. To illustrate this fact, let us consider two

extremal examples. Let us suppose that δ = 0. This means that the initial

partition provides a set of leaves that perfectly fits G. Then, the quality of

the BPT directly depends on the ability to progressively merge these nodes in

order to retrieve G. By contrast, let us assume that δ = 1. This means that

many leaves of L (and actually all the leaves of LG) intersect both G and the

remainder of Ω. Then, the ability to finally obtain a good segmentation of G is

quite low and weakly depends on the ability to merge the nodes when building

the BPT.

Both granularity and discordance have to provide satisfactory values if one

wants to relevantly assess the structural quality of a BPT. For G sufficiently

large, a high value of granularity will imply a low discordance. However, the

counterpart is not true: a low discordance can be obtained for a low value of

granularity (e.g. if a leaf L already fits G). As a consequence, it is important

to carefully compute these two scores before any such study.

Of course, such precaution becomes useless if the initial partition L is isomor-

phic with Ω, i.e. when the initial partition is composed of leaves that correspond

to points of the image. Indeed, in such case, we have γ = 1 and δ = 0: the

quality of the final BPT only depends on the node merging process, since the

latter is not biased by the initial grouping of points into primitive regions.

Remark. Various metrics have been defined in the literature for assessing the

quality of a partition with respect to a ground-truth, essentially for evaluating

superpixel paradigms [38]. Two of these metrics, dedicated to measure under-

segmentation errors, are close to the discordance δ, namely the opposite of the

Achievable Segmentation Accuracy (ASA) defined in [39] and the undersegmen-

tation error UE defined in [40]. These metrics have been designed for assessing

the similarity between two partitions, with the underlying assumptions that

they both present comparable properties. Our hypotheses are somewhat dif-

ferent. Indeed, we assess the adequacy of the initial set of leaves L, namely a

partition of Ω, with a ground-truth G which is a subset of Ω. However, G may

also be implicitly seen as a (binary) partition of Ω, namely ΠG = {G,Ω \ G}.
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In this context, we can rewrite the opposite of ASA [38, (3)] and UE [38, (4)]

under our hypotheses, leading to the two following formulae:

1−ASA(ΠG,L) =
1

|Ω|
∑

L∈LG

min{|L \G|, |L ∩G|} =
|G|
|Ω|

δ (3)

UE(ΠG,L) =
2

|Ω|
∑

L∈LG

min{|L \G|, |L ∩G|} =
2|G|
|Ω|

δ (4)

In other words, under our specific hypotheses, the both metrics 1 − ASA and

UE (which are the same here, up to a multiplicative factor) differ from the

discordance δ by the fact that δ normalizes the pointwise measured error by

the size of the ground-truth G. By contrast, the normalization carried out in

(3–4) relies on the size |Ω| of the image support, since these metrics are natively

defined for comparing two partitions with same properties, and in particular

with comparable cardinalities. In our case, it is of course relevant to normalize

with respect to |G| instead of |Ω| since the relative error should depend on the

considered ground-truth, and not of the overall size of the image. Concerning

the granularity γ, we did not find similar metrics in the literature. Indeed, the

purpose is here to estimate how much a partition subdivides a ground-truth

object. As a consequence, such metric cannot be compared to metrics which

purpose is to assess the correspondence between partitions with comparable

cardinalities.

4.3. Intrinsic Quality Analysis

From now on, we assume that both the γ and δ scores are sufficiently good

to carry out an intrinsic quality analysis. In other words, we assume that

the partition of the leaves of the BPT T is sufficiently fine, and globally well-

fitting the ground-truth example G. (Otherwise, it is plain that the user has to

reconsider his/her way to define the initial partition, in order to adapt it to the

targeted objects.)

4.3.1. Combinatorial Analysis

The (sub)tree TG is composed of n nodes (including one root and ` leaves)

and n − 1 edges (defined from the ↘ relation between parent-child nodes).

Observing the status of these nodes and carrying out a combinatorial analysis

on the different populations provide us with quality clues of the BPT.

Let us first introduce the following terminology. A node N of NG is pure

(resp. impure) if N ⊆ G (resp. N 6⊆ G).
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Figure 3: From left to right: a unary node N (impure) composed of one (impure) node N ′

and one node N ′′ out of G; the set LG of leaves intersecting G; the subset of pure leaves of
LG; the subset of impure leaves of LG.

The classification of the leaves of LG into pure / impure can be made easily

by observing their support, compared to G (see Figure 3). We set `p and `i

the number of pure and impure leaves, respectively. In particular, we have

`p + `i = `, with ` of the same order as |G|, due to high granularity hypothesis.

The purity / impurity of the other nodes can be determined easily, by con-

sidering that:

• if N is a unary node, then it is impure;

• if N is a binary node, with N ↘ N ′, N ′′, then

– if N ′ or N ′′ is impure, then N is impure;

– if N ′ and N ′′ are pure, then N is pure.

A good BPT construction, i.e. leading to a BPT that may allow to carry

out an accurate segmentation of a target object, should preserve as much as

possible the purity of nodes, and avoid (1) to merge pure and impure nodes,

and (2) to increase the size of impure nodes. Based on these assertions:

• the merging leading to a binary node from two pure nodes in TG is a good

operation, as it allows one to converge towards G;

• the merging leading to a binary node from two impure nodes in TG is a

neutral operation; it avoids to deteriorate pure areas and to increase the

amount of points out of G;

• the merging leading to a binary node from a pure and an impure node in

TG is a bad operation, as it makes the result diverging from G;

• the merging leading to a unary node in TG is a bad operation, as it creates

from an impure (and sometimes pure) node another impure node with a

greater amount of points out of G.
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By simply observing the subtree TG, it is possible to count the number of

each kind of nodes: ui, bpp, bii and bpi, for the unary nodes, and binary nodes

built from pure–pure, impure–impure, pure–impure couples, respectively. We

have ui + bpp + bii + bpi + `p + `i = n, and a good BPT should minimize ui

and bpi, whereas maximizing bpp and bii. In particular, a perfect BPT should

satisfy: 
ui = 0

bpp = `p − 1

bii = `i − 1

bpi = 1

(except when `i = 0, where bpp should be equal to `− 1, and all others to 0).

From this classification of nodes, and the combinatorial analysis of their

population, it is then possible to build a wide range of structural measures

that quantify the difference of quality between BPTs. Two examples of such

structural measures are:

C1 =
bpp + bii

ui + bpp + bii + bpi
(5)

C2 =
bpp

bpp + bpi
(6)

which take their values in [0, 1]. The higher the value, the better the BPT. In

particular, C1 evaluates the ability of a BPT to avoid mixing pure and impure

nodes whereas C2 evaluates its ability to preserve nodes pure.

4.3.2. Quantitative Analysis

A more quantitative assessment of the quality of a BPT can also be carried

out by observing the lowest set including G and the greatest set included in G

which can be built from TG.

Let us first focus on the lowest set including G. By construction, this set

is indeed the root of TG, namely NG. The interesting information carried by

NG is the amount of points outside G. More precisely, this amount |NG \G| =
|NG|−|G| has to be compared to the amount that could be theoretically obtained

from the initial partition of the leaves LG, namely |
⋃
LG \G| = |

⋃
LG| − |G|.

Computing the difference or the ratio between these two values, namely:

Q1 = |NG| − |
⋃
LG| (7)

Q2 =
|NG| − |G|
|
⋃
LG| − |G|

(8)
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(possibly normalized by the size of G) allows us to assess the quantitative error

related to the existence of unary nodes in TG, i.e. the addition of non-relevant

zones to the expected exhaustive segmentation of G. The lower these values, the

better the ability of the BPT to use at best the adequacy of the initial partition

to the ground-truth. It is worth mentioning that these metrics are relevant when

the object G is small compared to the image (e.g. in remote sensing images);

indeed, when G is large (e.g. in natural images) it often happens that NG is

very close (or even equal) to G, and in such case, Q1 and Q2 do not provide

useful information on the quality of the BPTs.

Second, let us focus on the greatest set included in G. It is defined as the

union of all the pure nodes of NG whose parents are impure; we note this set

Np. A quality metric can be defined as the ratio between this number |Np| of

pure nodes with impure parents, and the number of the (pure) leaves of the

BPT that lie into G; we note Lp this set of leaves. The quality metric is then

defined as:

Q3 =
|Np|
|Lp|

(9)

and it takes its values in (0, 1]. The lower this metric, the better the BPT.

Indeed, Q3 = 1 means that all the leaves of Lp are also nodes of Np; in other

words, it was not possible to merge any two pure leaves to build a pure node. By

contrast, Q3 ' 0 means that the number of nodes of Np is very low compared

to the number of pure leaves of Lp; in other words, nearly all these pure leaves

could be merged together whereas preserving the purity of the induced nodes.

5. Extrinsic Quality Analysis of a Binary Partition Tree

Beyond the intrinsic quality criteria provided by its hierarchical structure,

the relevance of a BPT is also related to its ability to provide good segmentation

results with respect to the user’s point of view. In this context, evaluating the

quality of a BPT requires to define a dedicated quality metric, namely a function

Λ, which associates a value Λ(S) ∈ R to each potential object segmentation

S ⊆ Ω. This metric Λ is determined by the user and depends on his/her

expectations regarding the properties of the result S. Most of the time, such

quality metric Λ depends on a ground-truth G ⊆ Ω, that corresponds to the

perfect expected segmentation; in such cases it is denoted as ΛG.

The core idea is to find a (partial) cut C ⊆ N within the BPT T forming a

segmented region S(C) =
⋃
C ⊆ Ω that optimizes the quality metric Λ, i.e. to
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solve the following optimization problem:

Ĉ = arg max
C⊆N

Λ(S(C)) (10)

This equation would remain valid even if C was not a cut but only a subset

of N , since the definition of S(C) from C is made by union, and then hides the

effects of overlapping between nodes. However it is indeed sufficient to consider

the actual (partial) cuts within N , since for any segmentation induced by a

subset of N , there exists a (partial) cut C such that S(C) is this segmentation.

More generally, there may exist many (partial) cuts that lead to a same

segmentation. This derives from the fact that if two nodes N1, N2 belong to a

cut whereas N = N1 ∪N2 is also a node (i.e. N is the parent node of N1, N2),

then N1 and N2 can be replaced by N within the cut without modifying the

induced segmentation. In practice, for a given segmentation, i.e. for a given set

of cuts leading to a same segmentation, we will always consider the cut of lower

size, i.e. the cut which is the closest from the root. This choice is motivated by

the fact that the smaller the cut, the better the ability of the BPT to allow for

the chosen segmentation (the best scenario being a segmentation directly given

by a unique node, i.e. a singleton cut).

Since we consider exactly one cut per potential segmentation, namely the

cut involving the least number of nodes, there is a bijection between these cuts

C and the induced segmentations S(C). In this context, for the sake of concision,

we will note Λ(C) instead of Λ(S(C)).
Under these hypotheses, the total number of cuts to be consisered for solving

the optimization problem (10) is 2|L| with1 |L| ≤ |Ω| (vs. 22|L|−1 if we had

considered all the subsets of N ).

5.1. Space Reduction

The optimization problem (10) admits a solution, since the number of con-

sidered cuts is finite, but the space of potential solutions is exponentially high.

In order to reduce the size of this problem, some hypotheses can be made, in

particular when the metric Λ relies on a ground-truth G.

On the one hand, one can assume that a node that is fully outside G does

not contribute by its own to the solution Ĉ. In other words, such node may be

potentially relevant only if its parent node intersects G. By contraposition, if

1|L| = |Ω| if we consider that each leaf is composed of one point of Ω, and |L| < |Ω| if we
define the leaves from a partition of Ω obtained e.g. by a superpixel preprocessing.
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a node does not intersect G, one can remove its two children nodes and their

induced subtrees. This is equivalent to preserve the smallest binary subtree of

the BPT that contains all the nodes that intersect G. The only remaining nodes

of this subtree that do not intersect G are then those required to preserve this

subtree binary.

On the other hand, if a node is fully inside G, one can also assume that

it will contribute to the definition of the optimal segmentation more relevantly

than any of its strict subsets. Consequently, one can remove its two children

nodes and their induced subtrees.

As in Section 4.1, it is also possible to choose as root for this binary subtree

the node NG, namely the smallest node of N that includes G.

The binary subtree finally obtained provides a reduced subset of nodes (noted

NG from now on) and in particular of leaves (noted LG from now on), that can

be relevantly used for solving (10). This number of leaves |LG| is lower or equal

to |NG|, with in general |NG| � |L|, and the number of cuts to be considered

is then 2|LG| � 2|NG| � 2|L|.

5.2. Partial Cut Construction

In order to solve the optimization problem (10), it is indeed required to

compute the value of Λ for the segmentation associated to each candidate cut

within the considered (sub)tree. Based on the above discussion, there exist

exactly 2|LG| cuts leading each to a distinct segmentation. A simple way of

defining these 2|LG| segmentations is to consider the power set of LG. Indeed,

each subset of leaves corresponds to exactly one cut C and one segmentation

S(C). In other words, generating the exhaustive set of segmentations / cuts can

be carried out by a simple scanning of the power-set of LG.

However, a cut defined as a subset of leaves of LG is not necessarily a valid

cut for our criteria, since there may exist another cut of lower size, leading to the

same segmentation, as discussed above. For instance, the cut LG (corresponding

to the whole set of leaves) leads to a segmentation result which is equal to NG,

whereas the cut {NG} (composed by a single node, namely the root of TG)

leads to the same segmentation; in this example, the “good” cut is {NG} and

not LG. In order to identify the cuts of lowest size leading to the segmentations

of interest, it is possible to rely on a simple recursive approach. In particular,

for a (sub)tree TN with a root N , two cases can occur: (1) if N is the only node
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of the tree, namely a leaf, then the set of correct cuts Π(N) is defined as:

Π(N) = {∅, {N}} (11)

whereas (2) if N has two children nodes N1 and N2, then the set of correct cuts

Π(N) is (recursively) defined as:

Π(N) = {U(p) | p ∈ Π(N1)×Π(N2)} ∪ {{N}} \ {{N1, N2}} (12)

where U is the binary union function defined as U((X,Y )) = X∪Y . (In (12), the

minimality of the cuts is guaranteed by the “∪{{N}} \ {{N1, N2}}” operation,

which substitutes {{N}} to {{N1, N2}}, since N = N1 ∪ N2.) The set of the

correct cuts in TG is then defined as Π(NG). It has a size 2|LG|, and can be

computed in a time O(2|LG|) if the tree is well-balanced.

Despite the potentially low size of the set of leaves LG (compared to L and

Ω), the time and space complexity for exhaustively exploring the whole set of

candidate cuts for solving (10) remains exponential. In the next sections, we in-

vestigate exact and approximated ways of solving (10) under certain constraints

/ hypotheses, and thus assessing the quality of a BPT with respect to Λ.

5.3. Exact Problem Solving: The Case of Small Cuts

In first approximation, one may assume that the best segmentation result

with respect to Λ may be obtained from exactly one node of the tree. In other

words, this would mean that there exists one node N within the nodes of NG

such that the cut defined as the singleton {N} leads to a segmentation S({N}) =

N that maximizes Λ, and is then a solution of (10). Following this hypothesis

of one-node optimal cut, solving (10) would only require to test each node of

the subtree TNG
. Since these nodes are already available within the subtree,

the computational cost of such approach is λ|NG|, where λ is the time cost for

computing Λ on a given segmentation.

However, it is not frequent that an optimal cut be composed of exactly

one node. In practice, for obtaining a correct segmentation from a BPT, it is

generally required to consider a cut with (not too) many nodes. If this number

p of nodes and the size of NG are both small enough, then (10) can be solved

exactly—under the additional constraint that the sought optimal cut has a size

lower than p—in a time λ
∑p

k=0

(|NG|
k

)
= O(λ|NG|p), by generating and testing

the small cuts from the subtree TG. In practice, these small cuts can be simply

obtained from (11–12) by removing all the cuts of size strictly greater than p.
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This can be done, for instance, by setting U(X,Y ) = X ∪ Y if |X ∪ Y | ≤ p and

∅ otherwise. In other words a polynomial time cost is required for the exact

solving of (10) for small cuts, which is tractable for size of cuts sufficiently low.

5.4. Exact Problem Solving: The Case of Separable Optimal Cuts

In the most favourable cases, the chosen quality metric Λ induces a property

of separability (or closely related properties) on the optimal cuts. Previous

works dedicated to such hypotheses may be found e.g. in [37, 41]. This means

that the optimal cut / segmentation with respect to Λ within a tree of root N

is defined as the union of the two optimal cuts / segmentations within the two

subtrees which roots are the two chidren nodes N1 and N2 of N . (Examples of

such metrics ΛG are the amount of true positives |S ∩G|, the (opposite) of the

amount of false positives −|S \G|, or positive linear combinations of both.)

In such case, the optimization problem (10) can be solved by setting:

Ĉ(N) = arg max{Λ(∅),Λ({N})} (13)

if N has no chidren nodes, and:

Ĉ(N) =

{
{N} if Ĉ(N1) = {N1} and Ĉ(N2) = {N2}
Ĉ(N1) ∪ Ĉ(N2) otherwise

(14)

if N has two chidren nodes N1 and N2. The solution of (10) is then defined as

Ĉ(NG). From this formulation, one can observe that it is sufficient to investigate

each leaf independently in order to determine the best segmentation and the

associated best cut in a time O(λ|NG|).
However, it may happen that the best cut is composed of too many nodes

with respect to the user’s expectation, as previously observed in a closely related

study [30]. Then, inspired by [30], it is possible to constrain (10) to find the

best cut being composed of at most p nodes for a given p, or more generally to

find the p+ 1 best cuts composed of k nodes, respectively, for any k in [0, p]. To

this end, it is then required to enrich (13–14), by storing a vector V = [Ĉi]pi=0 of

cuts Ci of size i instead of one cut. More precisely, the i-th element (i ∈ [0, p])

of this vector contains the optimal cut of size i (if such cut exists) at the current

stage. In particular, (13) then becomes:

V̂(N) = [∅, {N}, nil, . . . , nil]

where nil means that there exists no optimal cut of the corresponding size;
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whereas (14) becomes:

Ĉ0(N) = ∅

Ĉ1(N) =


arg max


Λ(Ĉ0(N1) ∪ Ĉ1(N2))

Λ(Ĉ1(N1) ∪ Ĉ0(N2))

Λ({N})

 if

{
Ĉ1(N1) = {N1}
Ĉ1(N2) = {N2}

arg max

{
Λ(Ĉ0(N1) ∪ Ĉ1(N2))

Λ(Ĉ1(N1) ∪ Ĉ0(N2))

}
otherwise

Ĉ2(N) =



arg max

{
Λ(Ĉ0(N1) ∪ Ĉ2(N2))

Λ(Ĉ2(N1) ∪ Ĉ0(N2))

}
if

{
Ĉ1(N1) = {N1}
Ĉ1(N2) = {N2}

arg max


Λ(Ĉ0(N1) ∪ Ĉ2(N2))

Λ(Ĉ1(N1) ∪ Ĉ1(N2))

Λ(Ĉ2(N1) ∪ Ĉ0(N2))

 otherwise

Ĉk(N) = arg max{Λ(Ĉi(N1) ∪ Ĉk−i(N2))}ki=0 ∀k ∈ [3, p]

with nil ∪ X = X ∪ nil = nil for any set X. Based on this formulation, the

vector V(NG) can be computed in a time O(λ|NG|p2), which remains tractable

even for high values of p. This vector V(NG) provide the p+ 1 exact solutions

to the optimization problem (10), under the constraints that the partial cuts

are of sizes k ∈ [0, p].

5.5. Approximate Problem Solving: The Case of Separable Metrics

We now consider a case of separability more general / less restrictive than the

previous one. We assume that the useful information required to compute the

value Λ for a given segmentation / cut within a tree of root N can be directly

obtained from the information associated to the two induced cuts within the

subtrees of roots N1 and N2 where N1, N2 are the children nodes of N .

Under these hypotheses, we note K the function which provides, for any

cut, the information that allows us to compute its value for Λ, and we note Ξ

the function that explicitly computes this value from the information. In other

words, we have:

Λ(C) = Ξ(K(C)) (15)

Due to the above separability property, we assume that it is possible to compute

the information associated to a cut from the information associated to two

cuts which subdivide it. We note Φ the function that allows to carry out this

agglomerative computation. As a consequence, we then need to explictly define

K for the end-cases, namely K(∅) and K({L}) for any L ∈ LG, whereas for any
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other cut C we have:

K(C) =

{
Φ(K({N1}),K({N2})) if C = {N} = {N1 ∪N2}
Φ(K(C1),K(C2)) otherwise, with C = C1 ∪ C2

(16)

In other words, we need to define Ξ, Φ, K(∅) and K({L}).
In order to exemplify these notions, let us consider three metrics, namely

the Dice score ΛD
G , the Jaccard index ΛJ

G and the “true positive minus false

positive” metric ΛP
G (evoked in the previous subsection), all with respect to a

ground-truth G. These three metrics, defined as:

ΛD
G(S) =

2|S ∩G|
|S|+ |G|

(17)

ΛJ
G(S) =

|S ∩G|
|S ∪G|

(18)

ΛP
G(S) = |S ∩G| − |S \G| (19)

are indeed separable and each of the Λ?
G can be defined from (15–16) by con-

sidering the following definitions of Ξ?
G, Φ?

G, K?
G(∅) and K?

G({L}):

KD
G (∅) = KJ

G(∅) = KP
G(∅) = (0, 0)

KD
G ({L}) = (|L ∩G|, |L|)

KJ
G({L}) = KP

G({L}) = (|L ∩G|, |L \G|)

and:

ΦD
G = ΦJ

G = ΦP
G({L}) = ((x1, y1), (x2, y2)) 7→ (x1 + x2, y1 + y2)

and:

ΞD
G = (x, y) 7→ 2x

y + |G|

ΞJ
G = (x, y) 7→ x

y + |G|

ΞP
G = (x, y) 7→ x− y

Let us now consider one cut C? within the set of the |2L| considered cuts of

the processed subtree TNG
. As discussed above, this cut corresponds to one of

the |2LG | possible segmentations which can be obtained from this subtree, and

this cut is completely determined by the choice of a subset L? of leaves within
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LG. More precisely, this cut C? induced by L? is defined as C? = CL?
(NG) with:

CL?
(N) = {N} ∩ L?

if N is a node of the subtree TNG
without children nodes, and:

CL?
(N) =

{
{N} if CL?

(N1) = {N1} and CL?
(N2) = {N2}

CL?
(N1) ∪ CL?

(N2) otherwise

if N has two chidren nodes N1 and N2 in TNG
.

This cut C? can be computed in a time O(|LG|). Based on (15–16) we can

compute the value Λ(C?) in a time O((ϕ+ k)|LG|+ ξ) where ξ, k and ϕ are the

time costs of the application of the functions Ξ, Φ and K, respectively.

It is important to note that it is also possible to compute the Λ values for all

the intermediate cuts leading from the void or singleton cuts computed at the

leaves of the subtree TNG
, up to its root. In such case, (15) is no longer applied

once, but |NG| times, and the overall time cost becomes O(ξ(ϕ + k)|LG|). As

a counterpart, it becomes possible to compute the Λ value(s) of no longer one

but many cuts, with a number that varies between 1 in the worst case and |NG|
in the best case.

For many metrics, the time cost for the functions Ξ, Φ and K is constant,

and in such case, the time cost for computing the Λ value(s) of a cut C? and

all the induced cuts within the subtrees of TNG
is indeed O(|LG|). This is for

instance the case of the three metrics exemplified above.

The overall number of cuts is 2|LG|. As a consequence, due to the exponen-

tial size of this space of potential solutions, an exhaustive research is generally

intractable. Nevertheless, due to the time cost of the evaluation a single cut

and the possibility to compute many results when scanning once the tree, it is

possible to carry out a partial research over (more than) n cuts in a time cost

O(n|LG|).
In addition, if we store the K information at each node of the subtree TNG

when processing it for a given cut C?, then it is possible to compute Λ for a cut

C′? which differs in exactly one leaf node compared to C? (plus the Λ values for

the intermediate cuts) in a time O(log2 |NG|) if the tree is well-balanced.

In other words, by combining a random exploration of n cuts and neighbour-

ing explorations of m cuts around each of these n cuts, we can compute the Λ

values for (at least) O(nm) cuts in a time O(n|LG|+ nm log2 |LG|). In partic-

ular, the values of n and m can be defined by the user depending on his/her
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tolerance to the uncertainty associated to a non-exhaustive exploration of the

research space.

6. Experiments

To illustrate our framework and show its usefulness, as well as its versatility,

we involve it in a classical segmentation task of natural images from well-known

datasets, often considered in computer vision challenges. In particular, we use

our framework for assessing the relevance of various features, based on color

homogeneity and simple geometric properties, for the construction of BPTs

dedicated to allow for the segmentation of semantic objects.

We recall that the purpose of this experimental study is not to evaluate

the gain of considering BPT-based segmentation procedures vs. other state-

of-the-art segmentation algorithms. (In particular, we do not compare BPTs

with other segmentation paradigms.) The purpose is to show that the proposed

BPT evaluation framework can be used to determine the most relevant BPT

construction features among a population of candidate features.

For the sake of research reproducibility, and for making this work actually

useful for the community, an implementation of the proposed framework can be

found at the following url: https://github.com/yonmi/TreeEvaluation.

6.1. Datasets

Three image collections are used in this experimental study. Such datasets

are classically considered in computer vision challenges; they contain natural

images representing various scenes:

• the Grabcut [42] dataset which is composed of 50 images representing

quite complex shapes but where the foreground and background present

disjoint color distributions;

• the Weizmann-1-object [43] dataset (called “Weizmann” in the sequel)

which contains 100 color images quite similar to Grabcut;

• the Visual Object Classes Challenge 2012, segmentation task (VOC2012-

segmentation) [44] (called “VOC” in the sequel) from which we consider

an illustrative subset of 26 images2. This dataset has simpler shapes

than Grabcut and Weizmann but more complex appearances, where back-

ground and foreground color distributions may sometimes overlap.

2http://host.robots.ox.ac.uk/pascal/VOC/voc2012/segexamples/
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Figure 4: Examples of color images from the three considered datasets (left), with their
associated ground-truths (middle; see Section 6.1) and their associated superpixel partition
(right; see Section 6.2) Top: Grabcut. Center: Weizmann. Bottom: VOC.

All the images from these three datasets are endowed with ground-truths. For

both Grabcut and Weizmann, each ground-truth image is binary and delineates

one single object of interest whereas in VOC, different objects of interest can be

observable in the ground-truth image, each one associated with a unique label

value (in such case, we choose one of these objects). Examples of color images

and their associated ground-truths are presented in Figure 4.

In the sequel, a color image I : Ω → N3 associates to each point x ∈ Ω a

RGB triple of spectral intensities: I(x) = (IR(x), IG(x), IB(x)). In our specific

case, Ω is a matrix of pixels, namely a subset of the Cartesian grid.

6.2. Initial Partitioning

As discussed in Section 4.2, a BPT is built from a set of leaves which can

be either the pixels of the image or some regions obtained from a preprocessing

step, for instance a superpixel partitioning. In our experiments, we consider

such superpixel partitioning and we rely on the well-known SLIC method [45].

SLIC is a classical superpixel approach, that builds image segments using a k-

means clustering in the color-(x,y) space. Despite its simplicity, SLIC adheres

well to object boundaries and is recognized as faster and more memory efficient
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Figure 5: Granularity γ (left) and discordance δ (right) mean values for the tested images
of the datasets Grabcut, Weizmann and VOC, depending on the density (x-axis) and the
compacity (y-axis). The results are expressed in log-space (log10 for compacity and log2 up to
a multiplicative factor of 250 for the size of the partition, which derives from the compacity).

than most of the state-of-the-art approaches for generating superpixels.

The main two parameters of SLIC are the compactness of the superpixels,

noted c?, that trades off color similarity and spatial proximity, and the number

of centers for k-means, noted s?, that defines the number of superpixels within

the computed partition. For our experiments, we fix these parameters in order

to define superpixel partitions of the images of each of the three considered

datasets.

These parameters are defined with respect to the two measures of granularity

γ (1) and discordance δ (2) given in Section 4.2. For each image, we compute

a SLIC partition with parameters c? within the set of values [10−2, 102] and

s? within the set of values [250 · 21, 250 · 27]. For couples of values (c?, s?)

sampled in the research space, we then compute the average values of the two

measures γ and δ over all the images. From these results, illustrated in Figure 5,

we empirically choose the following values: c? = 32 and s? = 1 400. This

globally corresponds to the point of coordinates (2.5, 1.5) in the two subfigures,

which presents a good compromise between a reasonably high granularity (with

superpixels of approximately 100 pixels) and a low discordance (around 0.06).

The induced partitions for the three datasets are exemplified in Figure 4.

6.3. Construction Features

The construction of a BPT requires to choose features involved in the def-

inition of the region model and a merging criterion for assessing the relevance

of merging two nodes / regions.
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6.3.1. Region Model – Color and Geometry Features

For defining the region model that describes each region / node of the BPT,

we first consider colorimetric features. Such features are classically chosen as

they provide necessary criteria for merging two nodes (i.e. two nodes with very

different color values will not be merged in priority). For a given node N , let

us consider two characteristics:

• the range of the pixel intensity values for each image channel

[v−b (N), v+
b (N)], where v?b provides the extremal values for the b-th spec-

tral band in I (i.e. in Ib);

• the mean of the pixel intensity values for each image channel µb(N) =
1
|N |
∑|N |

x=1 Ib(x).

We also consider simple shape features as proposed in [46]. A simple yet

important one takes into account the region / node area |N | in the region model

since size independent color-based measures tend to build trees with few large

nodes and a large number of extremely small ones. When involving region area

information (noted A) during the creation of the nodes of the tree, the cost of

merging for small regions decreases, forcing small regions / nodes to be merged

together first and promoting the creation of larger nodes.

Another geometric information that can be considered is the contour of the

regions. As we focus on natural images, most “semantic” objects are compact

and regular, leading to quite simple contours. Consequently the analysis of

shape complexity, such as the perimeter P of the regions, can provide additional

information for building nodes better corresponding to such objects.

6.3.2. Merging Criterion

For each pair of adjacent regions Ni, Nj , characterized with the 4 features

described above (v?b , µb, A, P), we compute several dissimilarity measures as-

sessing their likeness, involving differently these feature values between pairs

of regions. The lower the values of these measures, the more similar the two

regions, and the higher the priority for their merging during the BPT construc-

tion.

Different merging criteria are then proposed, based on various strategies

and involving different combinations of features, that lead to the construction

of different variants of BPTs:

• The first purely-colour merging criterion function Ocolour is defined as the

increase of the range of the pixel intensity values for each radiometric
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band, induced by the putative fusion of incident regions:

Omin-max
colour (Ni, Nj) =

1

3

3∑
b=1

max{v+
b (Ni), v

+
b (Nj)} −min{v−b (Ni), v

−
b (Nj)}

(20)

• Regarding mean-based colour merging criteria, two functions were pro-

posed in [46, (2,4)], which assess the deviation between the mean values

of each of the two nodes compared to the union of both:

OMSE
colour(Ni, Nj) =

1

|Ni|+ |Nj |
∑

x∈Ni∪Nj

‖I(x)− µ(Ni ∪Nj)‖22 (21)

OWSDM
colour (Ni, Nj) =

∑
k∈{i,j}

|Nk|.‖µ(Nk)− µ(Ni ∪Nj)‖22 (22)

with µ(N) = 1
|N |
∑

y∈N I(y).

• As mentioned above, it is also possible to consider a term related to

the contour complexity of the merged regions, as proposed in [46]. The

adopted measure computes the increase in perimeter of the new region

with respect to the largest of the two merged regions: ∆P (Ni, Nj) =

min(Pi,Pj) − 2Pi,j where Pi, Pj are the perimeters of Ni, Nj , respec-

tively, and Pi,j is the length of the frontier between the regions. The term

that measures contour complexity is then:

Ocontour(Ni, Nj) = max{0,∆P (Ni, Nj)}

that sets to 0 negative increments that occur for instance when a region

is nested by the other. Color and contour similarity measures are linearly

combined as:

Ocol-cont(Ni, Nj) = αOcolour(Ni, Nj) + (1− α)Ocontour(Ni, Nj) (23)

In our study, this trade-off value α is empirically set based on preliminary

experiments. It is worth mentioning that this parameterization is partic-

ularly difficult since a normalization is required in order to make Ocolour

and Ocontour comparable in terms of values, whereas the actual choice of

α already requires to run the method many times.
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6.4. Compared Frameworks

In order to emphasize the differences of behaviour between our framework

and other (close) frameworks proposed in the literature, we propose some adap-

tations of the following frameworks, since they are not directly applicable under

the given hypotheses of object segmentation.

• The framework proposed in [33] relies on object and background mark-

ers, and aims at computing the largest nodes including the object marker

whereas not intersecting the background marker. Such framework can be

adapted to our hypotheses. In particular, we can build from a binary

ground-truth G ⊆ Ω two markers GF and GB for the foreground and

background (by eroding them), respectively, defined as GF = G	 E and

GB = (Ω \ G) 	 E for a given structuring element E. For such set of

markers, we can compute the largest nodes that include GF without in-

tersecting GB (which is equivalent to computing the cut with the minimal

number of nodes for such property). By considering increasing sets of

structuring elements E, starting from E = ∅, it is then possible to study

the evolution of the F-measure of the segmented object vs. the associated

ground-truth, with respect to the size of E.

• The framework proposed in [30] aims at computing the optimal cut of a

tree for a given quality metric that allows to compute such optimal cut

from the union of the optimal cuts of the two subtrees. Such a framework

is initially proposed for partition comparison metrics, but it remains valid

for other kinds of metrics, and in particular metrics for object vs. cut

comparison. As initially observed in [30], providing the only optimal cut

is not sufficient for assessing the quality of the segmentation, since such

cut may optimize the chosen metric whereas being composed of (too)

many nodes. In such case, this optimal cut and the associated optimal

metric value do not necessarily characterize the quality of the BPT. For

implementation purpose, we slightly modified this framework based on our

approach proposed in Section 5.3. More precisely, instead of computing

the best cut, we compute the best cuts for each cardinality within [0, p],

p > 0, by assuming that a good cut provides not only a good metric value,

but also has a low cardinality, as initially suggested in [30]. We consider

this slightly modified framework for the quality metric defined in (19).
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6.5. Results

In this section, we present the results of our proposed evaluation framework

and, as comparative study, those of [33] and [30] for BPTs built from the images

contained in the three datasets: Grabcut, Weizmann and VOC. We considered

six kinds of BPTs, built with the previously mentioned criteria, plus a random

one which is used as baseline:

• As a naive baseline, we first build a random BPT. To this end, we choose,

at each iteration, a pair of nodes to merge randomly, among all the pairs of

adjacent nodes. No colorimetric proximity information is thus considered.

The underlying idea is to highlight the behavior of the chosen merging

criteria (and region model) and the limit scores of the quality criteria

proposed in this work;

• Min-max (20);

• MSE (21);

• WSDM (22);

• Min-max + contour (20, 23);

• MSE + contour (21, 23);

• WSDM + contour (22, 23).

The metrics chosen for evaluation purposes of the seven kinds of BPTs are:

• C1, C2, Q3 (5, 6, 9) for the proposed intrinsic analysis (the metrics Q1 and

Q2 (7, 8) are not considered here due to the large size of the ground-truth

objects with respect the size of the images; under such assumption, both

metrics do not provide relevant information on the quality of the BPTs);

• the F-measure (i.e. the harmonic mean of precision and recall) of the

largest object vs. the ground-truth, and its evolution with respect to the

size of the structuring element for [33];

• the true positives minus false positives measure (noted TPFP) (19), nor-

malized by the size of the ground-truth, and its evolution with respect to

the size of the optimal cut for [30];

• the Dice measure (17) for the proposed extrinsic analysis.
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Table 1: Measures C1, C2, Q3 (mean values) for the intrinsic analysis of the BPTs built from
the images of the Grabcut dataset (see Sec. 6.5.1). The best scores are higlighted in bold.

Grabcut
C1 C2 Q3

Random 0.163 0.262 0.737
Min-max 0.629 0.701 0.299
MSE 0.453 0.528 0.472
WSDM 0.636 0.707 0.293
Min-max + contour 0.519 0.572 0.427
MSE + contour 0.491 0.612 0.388
WSDM + contour 0.631 0.707 0.290

Table 2: Measures C1, C2, Q3 (mean values) for the intrinsic analysis of the BPTs built from
the images of the Weizmann dataset (see Sec. 6.5.1). The best scores are higlighted in bold.

Weizmann
C1 C2 Q3

Random 0.190 0.277 0.720
Min-max 0.741 0.815 0.186
MSE 0.549 0.613 0.387
WSDM 0.715 0.843 0.157
Min-max + contour 0.691 0.770 0.230
MSE + contour 0.599 0.687 0.312
WSDM + contour 0.709 0.834 0.166

Table 3: Measures C1, C2, Q3 (mean values) for the intrinsic analysis of the BPTs built from
the images of the VOC dataset (see Sec. 6.5.1). The best scores are higlighted in bold.

VOC
C1 C2 Q3

Random 0.135 0.232 0.766
Min-max 0.521 0.549 0.447
MSE 0.420 0.392 0.608
WSDM 0.586 0.594 0.403
Min-max + contour 0.422 0.430 0.567
MSE + contour 0.480 0.526 0.474
WSDM + contour 0.597 0.617 0.383

6.5.1. Intrinsic Analysis

For each one of the three datasets, the mean values of the C1, C2, Q3 mea-

sures were computed for each of the seven kinds of BPTs built from the images.

The results are reported in Tables 1–3.

6.5.2. Evaluation Framework Adapted From [33]

For each one of the three datasets, the F-measure values obtained with the

adapted framework from [33] are provided for foreground / background markers

generated by erosion with structuring elements of increasing sizes (we consider a

square structuring element of size 2k+1 with increasing values k ∈ [0, 10]). The
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closer the results to 1, the better the segmentation. The results are provided in

Figure 6 for each of the seven kinds of BPTs built from the images.

6.5.3. Evaluation Framework Adapted From [30]

For each one of the three datasets, the mean TPFP value of the optimal cuts

of size s varying in [0, 30] are computed for the seven ways of building BPTs. In

order to make these mean values meaningful, the TPFP values are normalized,

for each image, by the size of the ground-truth. These optimal TPFP values are

computed following the algorithmic process proposed in Section 5.4, following

the framework developed in [30]. The results are reported in Figure 7.

6.5.4. Extrinsic Analysis

We finally compute the Dice scores for the three datasets and the seven

ways of building BPTs. To this end, we rely on the approximate approach

detailed in Section 5.5 in order to estimate these scores without computing

them exhaustively on the whole space of possible cuts.

In order to carry out a reasonably low number of computations for each

random set of cuts, we perform a seeded random search. More precisely, for

each BPT, we determine 1 000 000 cuts subdivided into 10 000 series of 100 cuts.

Each series of 100 cuts is built from a seed cut, namely the cut that optimizes the

TPFP measure, by iteratively modifying randomly the contribution of exactly

one leaf to the segmentation (addition or removal) with respect to the previous

cut. In other words, we randomly build 10 000 paths of length 100 within the

space of segmentations starting from this seed, in order to explore the space

of potential segmentation more densely around a region that is assumed to be

close to the optimum (since Dice and TPFP, although different, present close

properties). As in Section 6.5.3, we store the best Dice score for each size of cut

associated to the segmentations. The mean results for each dataset and each

feature are provided in Figure 8.

6.6. Discussion

The results obtained from both our intrinsic / extrinsic frameworks and the

two frameworks adapted from [33] and [30] lead globally to the same conclusions

(note that the framework [30] is also adapted based on our own extrinsic frame-

work). They emphasize the superiority of WSDM, which is slightly better than

Min-Max and significantly better than MSE. They also show that, for a given

metric, the BPTs contain more relevant nodes for Grabcut and Weizmann than
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Figure 6: F-measure of the segmentations obtained from the seven kinds of BPTs, with
respect to the size 2k + 1 of the structuring elements used for erosion (background and fore-
ground) of the ground-truth (see Sec. 6.5.2). Top: Grabcut. Middle: Weizmann. Bottom:
VOC. BPTs built with Min-max (blue, squares), MSE (red, triangles) and WSDM criteria
(green, disks) and random (black, diamonds) with (dashed) or without additional contour
information (plain) for Min-max, MSE and WSDM.
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Figure 7: Normalized (mean) value of the TPFP measure for the optimal cuts of a given
size from the seven kinds of BPTs, with respect to the size of the cut (see Sec. 6.5.3). Top:
Grabcut. Middle: Weizmann. Bottom: VOC. BPTs built with Min-max (blue), MSE (red)
and WSDM criteria (green) and random (black) with (dashed) or without additional contour
information (plain) for Min-max, MSE and WSDM.
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Figure 8: Normalized (mean) value of the Dice measure for the (near-)optimal cuts of a given
size from the seven kinds of BPTs, with respect to the size of the cut (see Sec. 6.5.4). Top:
Grabcut. Middle: Weizmann. Bottom: VOC. BPTs built with Min-max (blue), MSE (red)
and WSDM criteria (green) and random (black) with (dashed) or without additional contour
information (plain) for Min-max, MSE and WSDM.
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for VOC, which is indeed a dataset with more complex images (Weizmann also

appears as a little bit more challenging than Grabcut).

These results are qualitatively confirmed by a visual inspection of horizontal

cuts of the BPTs for WSDM, Min-Max and MSE for three images representative

of the three datasets, illustrated in Figures 9–11. In these images, we can observe

that WSDM better preserves the structure of the car, in Figure 9, compared to

Min-Max and a fortiori MSE, proposing a more degraded result. For the tree in

Figure 10, WSDM and Min-Max provide satisfactory results, where the tree is

not fused with the background of the image, whereas MSE is not able to preserve

this separation. The behaviour of Min-Max is, however, less homogeneous than

WSDM, with large regions of the tree that hardly fuse with small regions. In

Figure 11, that corresponds to the most challenging dataset, WSDM and Min-

Max also behave better than MSE, which rapidly fuses the background with

parts of the motorcycle. By contrast, WSDM and Min-Max better preserve

the motorcycle, with however improved details in WSDM. One has to keep in

mind that these examples illustrate horizontal cuts of the BPTs, whereas it

is of course possible to define non-horizontal cuts for building segmentations.

However, these horizontal cuts characterize the global behaviour of the BPTs

construction, and their ability to allow more or less easily to discriminate objects

of interest. This visual inspection then confirms the consensual conclusions of

the different tested frameworks.

It also appears that for a given metric, the version without additional contour

is always better than the version with contours. This tends to confirm the fact

that it is indeed difficult to easily normalize two submetrics of distinct semantics

and define a trade-off parameter between them in order to build a mixed metric

for BPT construction. This difficulty to easily build mixed metrics is a well-

known fact in image processing approaches based on the optimization of an

energy. This fact had led us to investigate alternative ways of building BPTs

from multiple features in [12].

From a general point of view, it appears that the four frameworks, namely

our intrinsic and extrinsic ones, and the two frameworks adapted from [33] and

[30] constitute relevant approaches for assessing the quality of a BPT, since they

provide homogeneous results, that seem to be confirmed by a visual inspection

of the data. Our intrinsic framework has the virtue to provide scalar results,

that can be easily interpreted, and not to require additional computation time,

since these scalar results are obtained from values directly computed during

the construction of the BPT. The other three frameworks require the inspec-
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tion of chosen metrics (here, F-measure, TPFP and Dice) and their evolution

with respect to the size of the cuts computed from the BPT. In particular, the

framework proposed by [30] can only deal with specific metrics, for which the

computation of the optimal cut is expressed a separable problem. The frame-

work adapted from [33] can deal with any metrics, but requires the computa-

tion of background and foreground markers, which can be problematic when

the ground-truth are small objects (which was not the case here). Our extrinsic

framework deals with separable metrics, and does not require such markers, but

it requires the computation of a large set of cuts, but with a low computational

cost, in particular sublinear compared to the size of the investigated subtree.

One can observe however, that a limited number of cuts can be sufficient if

the random search is initialized in relevant parts of the research space. Here,

investigating 106 cuts per BPT (compared to the exponential number of pos-

sible cuts) was indeed sufficient to conclude, despite approximated results that

explain the irregular shape of the computed curves (see Figure 8) compared e.g.

to the smooth shape of Figure 7.

As a conclusion, it appears that the proposed intrinsic and extrinsic frame-

works provide relevant results, that corroborate the evaluations carried out from

the frameworks adapted from [33] and [30]. They also present properties which

are complementary to these existing / adapted frameworks, providing a novel

contribution to the state of the art of BPT analysis in the context of object

segmentation.

7. Concluding Remarks

7.1. Direct Extensions

The extrinsic quality analysis process discussed here has been presented for

one given ground-truth example G. However it can involve many ground-truth

examples for the analysis of a BPT on a given image, without loss of generality.

In particular, if various examplesGi ⊂ Ω are provided, it is generally sufficient to

choose them sufficiently distant from each other for assuming that their global

processing is equivalent to the union of their individual processings, as their

respective partial cut may then not interact.

It is also worth mentioning that the proposed process allows for uncertainty

handling. On the one hand, defining the Gi in a fuzzy way is tractable, since

they are only involved in the computation of Λ. On the other hand, even for

crisp Gi examples, the use of metrics Λ involving uncertainty (e.g. via distance
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Figure 9: Horizontal cuts of the BPTs obtained from the image of Figure 4 (first row),
representative from the Grabcut dataset. First line: image, ground-truth and initial SLIC
partition. First column: BPT built with WSDM. Second column: BPT built with Min-Max.
Third column: BPT built with MSE. From second to fifth rows: horizontal cuts with 40, 50,
60, and 70 nodes. Each node is represented with a false colour, for the sake of visualization.
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Figure 10: Horizontal cuts of the BPTs obtained from the image of Figure 4 (first row),
representative from the Weizmann dataset. First line: image, ground-truth and initial SLIC
partition. First column: BPT built with WSDM. Second column: BPT built with Min-Max.
Third column: BPT built with MSE. From second to fifth rows: horizontal cuts with 40, 50,
60, and 70 nodes. Each node is represented with a false colour, for the sake of visualization.
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Figure 11: Horizontal cuts of the BPTs obtained from the image of Figure 4 (first row), rep-
resentative from the VOC dataset. First line: image, ground-truth and initial SLIC partition.
First column: BPT built with WSDM. Second column: BPT built with Min-Max. Third
column: BPT built with MSE. From second to fifth rows: horizontal cuts with 40, 50, 60, and
70 nodes. Each node is represented with a false colour, for the sake of visualization.
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maps from the borders of Gi) remains compliant with the proposed algorithmic

process.

Finally, as one quality score ΛGi(Ŝi) can be obtained for each ground-truth

example Gi, it is possible to combine these individual results in order to obtain

a global quality score ΛG?(Ŝ?) of the BPT with respect to the whole set of these

ground-truth examples.

The very first idea for defining ΛG?(Ŝ?) is indeed to compute an average

value of all the local quality scores, i.e. ΛG?(Ŝ?) = 1/k
∑k

i=1 ΛGi(Ŝi). How-

ever, each Gi may be endowed with a given semantic label. In such case, it

may be important to consider this semantic information to avoid potential bias

effects. In particular, it is relevant to model the relative importance of each se-

mantic class C. In complex cases, it may be also relevant to model the relative

importance of each segment within each class.

To this end, we can define a weighted formulation of the global quality score

as:

ΛG?(Ŝ?) =
∑
C

wC

∑
Gi∈C

wiΛGi(Ŝi)

with
∑

C wC = 1 and
∑

Gi∈C wi = 1. The weights wC can be used to assess the

relative importance of each semantic class C. The weights wi can be used for

normalizing the local quality metric or to discriminate the importance of each

example. They can also be used for quantifying the relevance / confidence of a

ground-truth example.

The use of semantic information for designing the global quality metric also

argues in favour of the possible design of nonlinear definitions of ΛG?(Ŝ?). Two

specific formulations can be proposed:

Λmin
G? (Ŝ?) = min

C

∑
Gi∈C

wiΛGi(Ŝi)

Λmax
G? (Ŝ?) = max

C

∑
Gi∈C

wiΛGi(Ŝi)

The first allows to determine BPTs that are able to efficiently characterize all

the classes of ground-truth examples; the second provides a way to determine

BPTs that detect (at least) one among a set of given classes.

7.2. Perspectives

The proposed evaluation framework can be used both in a retrospective

or a prospective way. In the prospective way, it can help for the meta-

parametrization of BPTs, e.g. for applications involving multifeature BPTs, a
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variant recently introduced by [12] for building BPTs from many images and/or

many construction metrics. In the retrospective way, it can allow the expert user

to assess his/her choices in terms of BPT construction metrics. In particular,

he/she can verify, a posteriori, (combination) which metric(s), among several

existing ones, is the best for a given segmentation application. In this context,

this evaluation framework could be generalized to other hierarchical structures

to help their comparison, in particular in the recently field of hierarchical model

fusion [47].
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trinsic quality analysis of binary partition trees, in: ICPRAI, International

Conference on Pattern Recognition and Artificial Intelligence, Proceedings,

2018, pp. 114–119.

[36] P. Cettour-Janet, G. Valette, L. Lucas, H. Meunier, G. Loron, N. Bednarek,

F. Rousseau, N. Passat, Hierarchical approach for neonate cerebellum seg-

mentation from MRI: An experimental study, in: ISMM, International

45



Symposium on Mathematical Morphology, Proceedings, Vol. 11564 of Lec-

ture Notes in Computer Science, 2019, pp. 483–495.

[37] L. Guigues, J.-P. Cocquerez, H. Le Men, Scale-sets image analysis, Inter-

national Journal of Computer Vision 68 (2006) 289–317.

[38] D. Stutz, A. Hermans, B. Leibe, Superpixels: An evaluation of the state-

of-the-art, Computer Vision and Image Understanding 166 (2018) 1–27.

[39] M. Van den Bergh, X. Boix, G. Roig, B. de Capitani, L. Van Gool, SEEDS:

Superpixels extracted via energy-driven sampling, in: ECCV, European

Conference on Computer Vision, Proceedings, Vol. 7578 of Lecture Notes

in Computer Science, 2012, pp. 13–26.

[40] P. Neubert, P. Protzel, Superpixel benchmark and comparison, in: Forum

Bildverarbeitung, 2012.

[41] B. R. Kiran, J. Serra, Global-local optimizations by hierarchical cuts and

climbing energies, Pattern Recognition 47 (2014) 12–24.

[42] A. Blake, C. Rother, M. A. Brown, P. Pérez, P. H. S. Torr, Interactive image

segmentation using an adaptive GMMRF model, in: ECCV, European

Conference on Computer Vision, Proceedings, Vol. 3021 of Lecture Notes

in Computer Science, 2004, pp. 428–441.

[43] S. Alpert, M. Galun, R. Basri, A. Brandt, Image segmentation by proba-

bilistic bottom-up aggregation and cue integration, in: CVPR, Computer

Vision and Pattern Recognition, 2007.

[44] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, A. Zisserman,

The Pascal Visual Object Classes (VOC) challenge, International Journal

of Computer Vision 88 (2010) 303–338.

[45] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC
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Appendix A. Principal Notations

• Ω: Set of elements composing the support of an image.

• V: Set of values.

• I: Image (I : Ω→ V).

• G: Ground-truth defined on I (G ⊆ Ω).

• S: Segmentation defined on I (S ⊆ Ω).

• a: Adjacency relation.

• ↘: Predecessor or parent-child relation.

• G: Graph.

• T: Tree.

• N : Set of nodes of a tree.

• N : Node of a tree (N ∈ N and N ⊆ Ω).

• R: Singleton set of the root of a tree (R ⊆ N ).

• B: Set of the nodes of a tree which are neither root nor leaves (B ⊆ N ).

• L: Set of the leaves of a tree (L ⊆ N ).

• L: Leaf of a tree (L ∈ L).

• C: Cut of a tree (C ⊆ N ) .

• γ: Granularity metric (1).

• δ: Discordance metric (2).

• `: number of leaves.

• u: number of unary nodes.

• b: number of binary nodes.
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