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Abstract Oriented boundary detection is a challenging

task aimed at both delineating category-agnostic object

instances and inferring their spatial layout from a sin-

gle RGB image. State-of-the-art deep convolutional net-

works for this task rely on two independent streams that

predict boundaries and occlusions respectively, although

both require similar local and global cues, and occlusions

cause boundaries. We therefore propose a fully convolu-

tional bicameral structuring, composed of two cascaded

decoders sharing one deep encoder, linked altogether by

skip connections to combine local and global features,

for jointly predicting instance boundaries and their un-

occluded side. Furthermore, state-of-the-art datasets

contain real images with few instances and occlusions

mostly due to objects occluding the background, thereby

missing meaningful occlusions between instances. For
evaluating the missing scenario of dense piles of objects

as well, we introduce synthetic data (Mikado), which

extensibly contains more instances and inter-instance

occlusions per image than the PASCAL Instance Oc-

clusion Dataset (PIOD), the COCO Amodal dataset

(COCOA), and the Densely Segmented Supermarket

Amodal dataset (D2SA). We show that the proposed
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network design outperforms the two-stream baseline and

alternative archiectures for oriented boundary detection

on both PIOD and Mikado, and the amodal segmenta-

tion approach on COCOA as well. Our experiments on

D2SA also show that Mikado is plausible in the sense

that it enables the learning of performance-enhancing

representations transferable to real data, while drasti-

cally reducing the need of hand-made annotations for

finetuning.

Keywords Instance boundary and occlusion detec-

tion · Fully convolutional encoder-decoder networks ·
Synthetic training data · Domain adaptation

1 Introduction

Delineating object instances and inferring their spatial

layout from a single RGB image is a core computer vi-

sion task with a plethoric range of real-time applications

in robotics, autonomous driving, medecine, and more.

Automating such a task remains challenging as a robot

must handle a broad variability of instance poses, light

conditions, textures, and shapes from a mere grid of

RGB values. Deep fully convolutional neural networks

(FCN) have become the state of the art for instance

segmentation in images due to their strong ability to

learn non-linear mappings between low-level inputs and

object-wise annotations. Two FCN-based paradigms

have emerged, considering instance localization as a late

or early task respectively, i.e. following or preceding

instance segmentation. The late-localization paradigm

consists in training a FCN to classify each pixel indepen-

dently of the instance it belongs to, either in binary form

by predicting whether it is an instance boundary [1–6],

or in a multi-class formulation by assigning a predefined
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Fig. 1: Example (left) of instance boundary (blue) and unoccluded side (orange) detection using different network

architectures (best viewed in color). False positive (in red rectangles) predicted by the two-stream baseline (c) are

removed by using instead two cascaded decoders sharing the same encoder (d) as proposed

(a) Input (b) Segmentation (c) Boundaries

Fig. 2: First row: unlike natural scenes (left) in which

most objects fit a rectangle, bounding boxes in piles of

objects (right) may often be equally shared by several

instances. Second row: state-of-the-art paradigms for

delineating instances using a fully convolutional network.

Instance boundary detection (c) is better suited for tack-

ling piles of similar objects, as end-to-end segmentation

(b) may result in classifying differently similar patterns

(a). Third row: other examples of dense piles of objects

occluding each other. An instance can occlude other

instances and be occluded at the same time

object category [7–10]. Instance segments are then built

upon the object boundary or category map, by combi-

natorial grouping of superpixels [11, 12], learning wa-

tershed segmentation [13], or using conditional random

fields [14,15]. Alternatively, instance segmentation has

been approached by first isolating each instance [16–20].

This early-localization approach typically consists in

using a “region proposal” sub-network [21] for detecting

all the rectangle regions that might contain an object,

and then a second sub-network for ranking and binariz-

ing each region proposal such that each pixel is classified

as being part of the instance or not, relatively to the

predicted bounding box. However, coloring all the pixels

of an instance becomes an ambiguous task if several

instances occluding each other equally share the same

region proposal, as illustrated in Figure 2. Unlike people

or cars in natural scenes, an instance in a pile does

not often fit a rectangle as it can remain at rest in any

pose. Furthermore, when a manufactured object is in-

stantiated multiple times like often in robotic setups,

it may mean as a consequence classifying differently

similar patterns, inconsistently with the translation in-

variance property of convolutional layers. An instance

in a dense pile of objects occluding each other may also

occlude other instances and be partially occluded at the

same time. Consequently, in order to finely understand

the spatial relations with each neighboring instance, oc-

clusions must be defined at boundaries. For all these
reasons, we consider in this work a FCN for classifying

pixels as instance boundary or not, but also for inferring

their nearby spatial layouts as a local binary problem.

Augmenting instance boundaries with an orientation

indeed enables the network to not only separate object

instances but also embed a local depth perception by

learning to order the boundary sides on a virtual depth

axis, from a single RGB image. Similarly to two-stream

network architectures aimed at fusing different modali-

ties [26,27], state-of-the-art networks for this task rely

on two independent streams that predict boundaries and

occlusions separately. Concretely, in the late-localization

paradigm, it consists in detecting respectively the in-
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BSDS-BOW [22] PIOD [23] Mikado (Ours)

COCOA [24] D2SA [25] Mikado+ (Ours)

Dataset
Average
image size

Number of
images

Number of
instances

Instances
per image

Inter-
instance
occlusions
per image

Background
pixels
per image

Ground-truth
annotations

BSDS-BOW1 [22] 432×369 200 – – – –

Human-made
PIOD [23] 469×386 10,100 24,797 2.5 1.3 69%

COCOA2 [24] 578×483 3,823 34,884 9.1 13.5 33%
D2SA2 [25] 1962×1569 5,600 28,703 5.1 2.8 79%

Mikado (Ours) 640×512 2,400 48,184 20.1 52.9 24% Computer-
generatedMikado+3 (Ours) 640×512 14,560 459,002 31.5 60.5 24%

1 the empty cells are due to the ground truth that consists only in object part-level oriented edges
2 the statistics are only on the train and validation subsets as the test subset is not provided
3 Mikado+ is an extension of Mikado used only to show the impact of a richer synthetic data distribution

Fig. 3: Samples and characteristics of state-of-the-art datasets for oriented boundary detection [22, 23] and amodal

instance segmentation [24, 25] compared to our synthetic dataset. Unlike the state-of-the-art datasets in which

occlusions are mostly due to objects occluding the background, Mikado contains more instances and occlusions

between instances per image, thus better representing the variety of occlusions

stance boundaries and their orientation [23]. In the early-

localization paradigm, it consists in coloring respectively

the visible instance mask and the mask including both

the visible and invisible instance parts [28], namely the

modal and amodal masks. However, occlusions are a

major source of instance boundaries. Considering occlu-

sions jointly with boundaries could thus provide much

richer information for scene understanding, as in a few

works prior to the use of FCN [29,30]. Humans indeed

leverage shadows and partially occluded patterns to

instantly detect object boundaries and guess simultane-

ously the spatial relations between instances. Moreover,

in state-of-the-art solutions, an instance-wise orientation

is assigned to object boundaries in natural scenes for
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Fig. 4: Overview of the Mikado pipeline (best viewed

in color). Given a mesh template and texture images,

piles of deformed instances are generated using a physics

engine. A top-view camera is then rendered to capture

RGB and depth. The synthetic images and their annota-

tions (ground-truth boundaries are in blue, unoccluded

side in orange) are finally prepared to be fed-forward

through the network

mostly describing which side is foreground, and which

side is background [23, 31]. In contrast with previous

works, we aim at addressing scenes composed of many

instances occluding each other, like in robotic setups, in

which the background is often hidden. In such configu-

rations, the network should learn to answer instead the

more general question “which side is above/before and

which one is below/behind?”. We therefore explore in

this paper novel FCN architectures for learning instance

boundaries and occlusions in a joint feature space, and

expectedly reaching better performances on both natural

scenes and piles of many instances. Merging boundaries

and occlusions in one training would also result in reduc-

ing the number of parameters, hence faster training at

equal hardware and less redundancies during backprop-

agation. Nevertheless, inferring fine-grained oriented

boundaries from a single RGB image using only a FCN

is challenging, because encoding object-level semantics

with a FCN requires pooling layers for feature aggre-

gation that gradually compress the spatial information.

Top-view camera (RGB and depth) rendering

SegmentationRGB Depth

Generating ground-truth boundaries and occlusions

Local depth-based
segmentations

Instance
boundaries

Boundaries and
unoccluded side

Training and test data preparation

Fig. 5: Pipeline for generating the ground-truth bound-

aries and occlusions (best viewed in color). At each

boundary pixel, a depth-based binary segmentation of

the neighborhood is performed to label each side, such

that the higher side is set to 1 and the lower side to

0. In the end, the ground truth consists of instance

boundaries (blue) and their unoccluded side (orange)

State-of-the-art networks for unoriented instance bound-

ary detection [1,2] are therefore derived from encoder-

decoder structuring [4, 8], whose decoder is aimed at

gradually recovering accurate object-level boundaries by
inversely leveraging the encoder feature maps. [2, 5] no-

tably introduced residual-like connections [32] between

the encoder and the decoder, advocating the superiority

of such connections over sequential structuring [4, 8]

and holistically-nested connections [3, 6] (c.f . Figure

6). Starting from [23], which proposed two indepen-

dent encoder-decoder streams with holistically-nested

connections, we build our two-stream baseline by replac-

ing their holistically-nested connections by residual-like

ones, consistently with the state of the art on single-

stream networks. We then propose a novel bicameral
structuring for jointly inferring boundaries and occlu-

sions, consisting in one encoder shared by two cascaded

decoders through multiple skip connections, as illus-

trated by Figure 1.

Furthermore, state-of-the-art datasets for oriented

boundary detection [23,31], and amodal segmentation

[24,25], are intrinsically designed for the foreground/back-

ground paradigm insofar as the number of instances per

image is limited and a large number of occlusions are

due to objects occluding the background, as shown by

Figure 3. However, various applications in robotics of-

ten address the case of dense piles of many instances,

in which the background is much less visible and oc-
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clusions are mostly between instances. Moreover, these

datasets suffer from biased data distributions due to

a limited content and error-prone hand-made annota-

tions. They can also hardly be extended, as producing

a pixel-wise ground truth for both instance boundaries

and occlusions is a tedious and time-consuming task for

human annotators. In order to better study occlusions

between instances, that are insufficiently represented in

the aforementionned datasets, we highlight the scenario

of many instances piled up in bulk by introducing an ef-

fective simulation-based pipeline, referred to as Mikado.
We show not only that the proposed network design

outperforms our baseline on both the state-of-the-art

real-world datasets and Mikado, but also that Mikado

is plausible in the sense of an effective transferability to

real data by a simple domain adaptation. In summary,

our contribution in this work is three-fold:

– a performance-enhancing bicameral network design,

consisting in two cascaded decoders sharing one deep

encoder, linked altogether by skip connections, for

jointly predicting instance boundaries and their un-

occluded side;

– synthetic data, referred to as Mikado, with extensibly

more inter-instance occlusions per image than the

PASCAL Instance Occlusion Dataset (PIOD) [23]

and the COCO Amodal dataset (COCOA) [24], for

better studying occlusions between instances;

– extensive experiments: on both PIOD and Mikado

for comparing network designs, including the state-

of-the-art approach [23] and a number of alternative
designs; on COCOA for comparing with the state-of-

the-art proposal-based approach [24] referred to as

amodal segmentation; on the D2S Amodal dataset

(D2SA) [25] for showing that Mikado is plausible for

real-world applications.

Our paper is organized as follows. After reviewing

the state of the art in Section 2, we describe the proposed

dataset in Section 3, the proposed network design in

Section 4, and our experimental protocol in Section 5.

Results are then discussed in Section 6.

2 Related Work

In this section, we review the state-of-the-art approaches

for detecting occlusions from single images, designing

and training a FCN for inferring full-resolution pixel

labels, and making annotated data for oriented boundary

detection.

Occlusion detection Finding occlusion relations has most-

ly been studied jointly with depth estimation in multi-

view contexts [34–36] and motion sequences [37–43], as

occlusions often translate into missing pixel correspon-

dences in different points of view or consecutive frames.

Some recent works have more ambitiously focused on

predicting a dense depth map from a monocular im-

age [44–46], but the results are still less accurate than

standard multi-view 3D reconstruction algorithms, and

these techniques require ground-truth depth maps dif-

ficult to obtain. Considering a single point of view for

inferring occlusions instead of accurate distances from

the camera seems however more prone to success, as

occlusions consist in binarized differences of depth at ob-
ject boundaries while still conveying the notion of depth

ordering. [22] firstly proposed a two-stage approach con-

sisting in using an edge detector [47] to extract gradient-

based features for a conditional random field (CRF) that

performs local foreground/background classifications.

Because local gradient-based features are limited for un-

derstanding occlusions, [48] introduced 3D cues within a

similar procedure, by making assumptions on the global

3D structure of the scene (sky, ground). Observing that

detecting objects and foreground/background occlusions

are actually coupled tasks, object part segmentation and

figure/ground organization were later recovered in a sin-

gle step using angular embedding [30]. However, as an-

gular embedding and CRFs both require expensive com-

putational time at large scales, [29] suggested a faster

simultaneous edge and foreground/background detection

by leveraging structured random forests [49], but still

using hand-crafted features derived from a limited set of

contour token clusters. More recently, in order to avoid

human biases when defining features, a convolutional

neural network (CNN) was instead employed to produce

contextual feature representations [31] or to learn pixel-
centric pairwise relations for affinity and figure/ground

embedding [50]. Towards end-to-end training, and in the

footsteps of fully convolutional networks (FCN) for pixel-

wise classification, two approaches have lately emerged.

The first approach [24], namely amodal instance segmen-
tation, follows the two-step early-localization paradigm

of region proposal-based instance segmentation, but

aims instead at predicting for each instance the mask

including both the visible and the non-visible instance

parts. An estimation of the instance occlusion rate can

then be obtained by comparing the predicted modal

(visible parts only) and amodal masks. This approach

however cumulates the drawbacks of region-based in-

stance segmentation, discussed in our introduction, and

the difficulty of coloring something invisible, thus re-

sulting in low instance boundary accuracy. The second

approach [23] follows the late-localization paradigm and

consists in a two-stream FCN that predicts indepen-

dently boundaries and their occlusion-based orientation

in one forward pass. More precisely, [23] set up one
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(a) Sequential

in out1

(b) Holistic

in out1

(c) Residual

Fig. 6: State-of-the-art encoder-decoder archi-

tectures for instance boundary detection (best

viewed in color), using a VGG16-based [33]

encoder. Legend is the same as Figure 1

in out1out2

(a) Shared encoder

in out1 out2

(b) Cascaded decoders

in out1 out2

(c) Multi-task

Fig. 7: Alternative architectures also considered for jointly pre-

dicting boundaries and occlusions (best viewed in color), using

a VGG16-based [33] encoder and a residual-like structure as

decoder template. Legend is the same as Figure 1

in out1 out2

(a) With connections

in out1 out2

(b) Without connections

Fig. 8: A bicameral structure with (a) and with-

out (b) residual-like connections between the

encoder and decoders (best viewed in color).

Legend is the same as Figure 1

in out1 out2

(a) M3-B1

in out1 out2

(b) M2-B2

in out1 out2

(c) M1-B3

Fig. 9: Hybrid architectures that merge multi-task (“M”) and

bicameral (“B”) decoder designs at different stages, using a

VGG16-based [33] encoder (best viewed in color). Legend is the

same as Figure 1

stream of the network to predict the raw orientation of

a local unit vector specifying the occlusion relations by

a left-hand rule, and used a logistic loss function that

strongly penalizes wrong directions but only weakly tan-

gent directions. However, to ensure a local continuity,

the orientation predictions have to be further “adjusted”

using the local tangent vectors of the predicted bound-

aries as the network may not predict similar orientations

for neighbourhood pixels. There is indeed no constraints

ensuring a local continuity of the network prediction,

all the more as the ground-truth orientation map is

noisy itself. To overcome this issue and remove any post-

processing step, we propose instead to reformulate the

occlusion prediction as a local binary segmentation prob-

lem near boundaries. Both modelled as binary maps,

boundaries and occlusions can then be detected using

a single fully convolutional encoder-decoder structure

equipped with residual-like connections, i.e. the pro-

posed bicameral design, thus efficiently sharing features

instead of using two independent encoders.

Encoder-decoder networks Inspired by auto-encoders for

unsupervised representation learning, encoder-decoder

networks have been firstly introduced for single-task

setups, such as semantic segmentation [8] and instance

contour detection [4], in order to recover accurate bound-

aries despite the resolution loss when encoding object-

level semantics. The encoder produces deep hierarchical

features, and the decoder gradually outputs a binary

or category map using symmetric unpooling stages (c.f .

Figure 6a). To keep the upsampling efficient, the de-

coder typically uses max-unpooling layers that take the

pooling indices from the encoder max-pooling layers.

However, such an architecture requires the network to

restore accurate boundaries only from the last encoder

activation maps, where information is the most spatially

compressed. Instead of a progressive decoding, [3, 6] in-

troduced holistically-nested connections for a late fusion

of all the encoder feature maps upsampled to the image

scale, thus giving a multiscale view to the decoder (Fig-

ure 6b). Similarly to two-stream designs aimed at fusing

different modalities [26,27], the two-stream baseline for
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Fig. 10: Sachet texture (top) and background (bottom) images used for generating the proposed Mikado dataset

oriented boundary detection [23] employed independent

encoder-decoder streams with holistically-nested con-

nections. This architecture however hardly allows for

learning a joint feature representation of boundaries and

occlusions due to direct connections between each inter-

mediate feature map and the output layer from which

starts the backpropagation. In the context of semantic

segmentation, [51] proposed to merge local and global

semantics through a dual-task training, consisting in

jointly decoding pixel labels and inferring image labels

after the encoder. Image-level classification is however

unfeasible in our object category-agnostic problem, al-

though detecting instance boundaries and inter-instance

occlusions require global cues as well. Combining pro-

gressive upsampling with connections to the latent fea-

ture representations at each scale can be achieved al-

ternatively by residual-like connections [32] between

the encoder and decoder (Figure 6c), as proposed in

single-task networks [1,2, 5]. Residual-like connections

notably proved to be superior to holistically-nested ones

for single-stream encoder-decoder networks [2]. Indeed,

by giving each decoder stage access to both the up-

sampled previous one and the corresponding encoder

activation maps, the network can gradually merge the

higher-level semantics of the previous scale with the

spatial information lost during encoding at the current

scale. Performing such a combination besides reduces

the checkerboard artifacts inherent to unpooling [52].

In contrast with two independent multiscale streams,

the proposed bicameral design employs skip connections

to combine local and higher-level cues from a single

feature space for detecting both boundaries and nearby

occlusions.
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PIOD [23] Mikado (Ours)

(a)

(b)

(c)

(d)

Fig. 11: Comparative results for instance boundary (blue) and unoccluded side (orange) detection on PIOD and

Mikado (best viewed in color). From top to bottom: input (a), ground truth (b), prediction using the two-stream
baseline (c), using the proposed architecture (d). Red rectangles highlight some false positive predicted by the

baseline network that are erased when cascading decoders

PIOD [23] Mikado (Ours)

Architecture
Number of Boundaries Occlusions Boundaries Occlusions
parameters ODS AP ODS AP ODS AP ODS AP

Two streams (Baseline) 46,839,938 (×1.0) .673 .708 .681 .733 .755 .832 .788 .872
Shared encoder 32,125,250 (×.69) .692 .732 .686 .738 .769 .847 .792 .876

Cascaded decoders 29,949,250 (×.64) .694 .735 .689 .748 .766 .844 .795 .880
Multi-task decoder 23,420,770 (×.50) .691 .731 .679 .731 .767 .845 .795 .880

Bicameral decoder 34,301,250 (×.73) .697 .738 .692 .747 .769 .847 .801 .884

Table 1: Best F-score on dataset scale (ODS) and average precision (AP) for instance boundary and occlusion

detection on two datasets using different architectures. The bicameral decoder, which combines a shared encoder

and cascaded decoders, outperforms the two-stream baseline and a multi-task decoder as well
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Fig. 12: Precision-recall curves for instance boundary (left) and unoccluded side (right) detection on PIOD (dashed

lines) and Mikado (solid lines) using different architectures (best viewed in color)
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Architecture
Encoder Number of Boundaries Occlusions
backbone parameters ODS AP AP60 ODS AP AP60

Two streams (Baseline)
VGG16 [33]

46,839,938 (×1.0) .673 .708 .476 .681 .733 .518

Bicameral decoder
34,301,250 (×.73) .697 .738 .517 .692 .747 .532

DenseNet121 [53] 33,009,846 (×.70) .712 .761 .529 .714 .778 .556

Table 2: Best F-score on dataset scale (ODS) and average precision (AP) for instance boundary and occlusion

detection on PIOD [23] using different backbones. Plugging a bicameral decoder to a deeper encoder with dense
blocks [53] enables to capture a finer representation of the object boundaries and nearby occlusions

PIOD [23] Mikado (Ours)

Architecture
Number of Boundaries Occlusions Boundaries Occlusions
parameters ODS AP ODS AP ODS AP ODS AP

Two streams (Baseline) 46,839,938 (×1.0) .673 .708 .681 .733 .755 .832 .788 .872
Multi-task decoder 23,420,770 (×.50) .691 .731 .679 .731 .767 .845 .795 .880

M3-B1 hydrid decoder 23,548,802 (×.50) .691 .735 .683 .734 .767 .845 .796 .879
M2-B2 hydrid decoder 24,060,866 (×.51) .692 .738 .685 .740 .769 .848 .797 .881
M1-B3 hydrid decoder 26,108,994 (×.56) .693 .737 .685 .739 .771 .848 .802 .885

Bicameral decoder 34,301,250 (×.73) .697 .738 .692 .747 .769 .847 .801 .884

Table 3: Best F-score on dataset scale (ODS) and average precision (AP) for instance boundary and occlusion

detection on two datasets using different levels of layer sharing between the branches of a bicameral decoder

Loss functions Beyond the scope of this work but worth

mentionning, recent works [1, 54] focused on novel loss

functions for learning crisper and thinner boundaries

without post-inference step. Due to the imbalanced dis-

tribution of boundary and non-boundary pixels, training

FCNs for object boundary detection is commonly driven

by a balanced cross-entropy loss function, but it pro-

duces thick edges, ultimately thinned by non-maximum

suppression [2–6, 23]. To address this concern, [1, 54]

respectively introduced the Dice loss, which basically

compares the similarity between two sets, and edge

alignment during training by solving a minimum cost bi-

partite assignment problem. In the context of object de-

tection, which faces the same class-imbalance issue, [55]

also introduced the so-called focal loss to put more fo-

cus on the hard misclassified training examples. In this

work, we focus on the network architecture and train-

ing data, and leave for future work the introduction of

these novel loss functions. In all our experiments, we use

balanced cross-entropy loss functions, but perform eval-

uation without non-maximum suppression, which may

artificially improve precision, as presented in Section 4.

Datasets Occlusion boundary detection from a single

image raised interest with the BSDS Border Ownership

dataset (BSDS-BOW) [22], derived from the BSDS500

dataset [56] for object contour detection, which contains

200 natural images manually annotated with object

part-level oriented contours. As state-of-the-art FCNs

require more training data, [23] recently presented a

dataset larger than BSDS-BOW, namely the PASCAL

Instance Occlusion Dataset (PIOD), comprising about

10,000 manually annotated natural images from the

PASCAL VOC Segmentation dataset [57]. Similarly for

amodal instance segmentation, [24, 25] have proposed

real-world datasets, namely the Densely Segmented Su-

permarket Amodal dataset (D2SA) and the COCOA

Amodal dataset (COCOA). These latter datasets are

subsets of much larger datasets for instance segmenta-

tion in the early-localization paradigm, COCO [58] and

D2S [25] respectively, but augmented with the ground-

truth amodal annotations, that can be derived for ori-

ented boundary detection (c.f . Section 5). Despite their

challenging instance intra-class variability, the support

images contain few instances and are limited in terms

of inter-instance occlusions. However, in robotic setups,

scenes are often composed of many instances occluding

each other. Applying on such scenes a model trained

on PIOD or COCOA would give poor results since

these datasets provide mostly foreground/background

boundary examples for training. As extending hand-

labeled real-world datasets is a time-consuming task,

D2SA partly alleviates this concern by artificially over-

laying manually delineated instances for creating fake

images with more instances, but at the cost of lighting

inconsistencies at instance boundaries. The images from

these datasets suffer besides from missing or ambiguous

ground-truth annotations, thereby introducing a human

bias during training and test. To address these issues,

synthetic datasets [59, 60] have emerged for learning

and evaluation as they offer a fully controlled environ-

ment and a perfect ground truth. Recently proposed for
evaluating pose detection and estimation, the Siléane

dataset [60], generated using Blender [61], consists of

top-view depth maps depicting piles of many rigid in-
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(a) Raw (b) Jittered (c) Blurred (d) Final

(e) Raw (f) Recolored (g) Darkened (h) Final

Fig. 13: First row: to avoid overfitting the noise-free

generated pixels, value jittering (b) and gaussian blur

(c), using random parameters within predefined intervals,

are successively applied (d) on our synthetic images

(a). Second row: in Mikado+ only, random under/over-

exposition (f) and RGB channel permutation (g) are
both applied as well (h) to enrich the generated data

distribution (e).

stances of some CAD models. Similarly, [59] compared

methods for end-to-end instance segmentation from syn-

thetic depth maps of scanned objects instantiated in
bulk. From these observations, we propose to make

and use synthetic data for oriented boundary detection

from a single image, emphasizing inter-instance occlu-

sions that are under-represented in the state-of-the-art

datasets.

3 The Mikado Data

In this section, we describe the proposed pipeline for

generating the synthetic Mikado data, and its extension

Mikado+.

Data generation Similarly to [59,60], we generate syn-

thetic data using custom code on top of Blender [61]

by simulating scenes of objects piled up in bulk and

rendering the corresponding top views, as depicted in

Figure 4. More precisely, after modelling a static open

box and, on top, a perspective camera, between 2 and 40

object instances, in random initial pose, are successively

dropped above the box using Blender’s physics engine

(a video showing the generation of a scene is provided

in supplementary material). We then render the camera

view, and the corresponding depth image, using Cycles

render engine. In this configuration, we ensure a large

pose variability, a lot of inter-instance occlusions, and

the ground-truth occlusion boundaries can be trivially

derived from depth.

Mikado Mikado+

Mesh templates 1 4

Backgrounds 40 600
Textures 120 2,400
Images 2,400 14,560

Table 4: Differences between the proposed Mikado data

and its extension Mikado+

However, differently from [59,60], we consider here

piles of many instances with inner variability and using

only RGB. We generate RGB images of sachets piled

up in bulk by randomly applying global and local defor-

mations to one mesh template of sachet that we texture

successively with one out of 120 texture images of sa-

chets retrieved using the Google Images search engine1

and manually cropped to remove any background. Each

scene is composed of many instances using the same

texture image so as to make the occlusions between in-

stances more challenging to detect. Besides, to prevent

the network from simply substracting the background,

we apply to the box a texture randomly chosen among 40

background images, retrieved using the Google Images

search engine as well. A comprehensive overview of the

textures and background images used for generating the

dataset is provided in Figure 10. Between each image

generation, we also randomly jitter the cameras and

light locations to prevent the network from learning a

fixed source of light, and so fixed reflections and shad-

ows. The proposed dataset finally comprises on average

20.1 instances per image, hence 8 times more instances

and 40 times more inter-instance occlusions per image

than PIOD. Figure 3 provides samples and sums up the
Mikado characteristics compared to the state-of-the-art

datasets for oriented boundary detection [23, 31] and

amodal instance segmentation [24,25].

Furthermore, to study the benefits of a richer syn-

thetic data distribution, we additionally make an ex-

tension of Mikado, namely Mikado+ (c.f . Figure 3),

following the same proposed generation pipeline but

using more mesh templates (sachet, square sachet, box,

cylinder-like shape), and more texture and background

images. Table 4 sums up the differences between Mikado

and Mikado+.

Data augmentation As our RGB images are generated

using heuristic rendering models, the training and eval-

uation may be biased by a lack of realism in the sense

that, unlike physical sensors and despite the large vari-

ability of textures, deformations, and simulated specular

reflections, a noise-free pixel information is provided to

1 https://images.google.com/
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the network. To remedy this issue, we dynamically filter

one image out of two with a gaussian blur and jitter

independently the RGB values, as shown in Figure 13,

randomly at both training and testing time. The pa-

rameters for gaussian filtering and value jittering are

randomly chosen within empirically predefined intervals.

This prevents the network from overfitting the too per-

fect synthetic color variations. In addition to dynamic

blurring and RGB jittering, the Mikado+ images are

also augmented with random permutation of the RGB

channels and random under or over-exposition, as also
illustrated by Figure 13. Unlike Mikado, Mikado+ thus

depicts more color and lighting variations as well.

Data plausibility check We create Mikado for evaluating

the scenario of many similar instances piled in bulk.

Such a scenario, often encountered in real-world robotic

applications such as bin-picking, is missing from PIOD

and COCOA. In a limited manner, D2SA addresses this

case by overlaying manually isolated instances into fake

training images [25]. To compare with this augmenta-

tion strategy, that we refer to as D2SA+, and show that

the proposed synthetic data is plausible for real-world

applications, we evaluate the transferability of features

learned from Mikado to real data. In line with [62], fea-
tures learned from a source domain are transferable if

they can be repurposed and boost generalization on a

target domain. Specifically, we train the proposed net-

work on Mikado, then retrain on D2SA only the decoders

and some of the top encoder blocks, as deep features

transition from general to specific by the last layers.
Furthermore, as a proof of the benefits of synthetic data

in contrast with hardly extensible real-world datasets,

we study how a richer synthetic data distribution, i.e.

Mikado+, impacts the domain adaptation. As the ranges

of texture, shape, and pose variations are more widely

represented in Mikado+, better transferable invariants

are expected to be learned.

4 Network Design

In this section, we first describe the proposed bicameral

structuring in contrast with the two-stream baseline and

alternative network designs. Second, we detail our loss

function compared to the baseline.

Bicameral structuring and alternative designs Along

strong texture variations and shadows, partially hidden

patterns are also cues for understanding both boundaries

and occlusions between object instances but they require

a more global perception to be detected. Meanwhile, de-

tecting an occlusion can be interpreted as assigning a

relative depth to the sides of a flat separation between

(a) (b) (c)

c1 c2

c3 c4

c1 c2

c3 c4

c1 c2

c3 c4

∑
i={1,...,4} wici∑
i={1,...,4} w′

ici

w1(c1 + c3)

w′
1(c2 + c4)

w1 max(c1, c3)

w′
1 max(c2, c4)

(f)

(e)

(d)

Fig. 14: Left: state-of-the-art convolutional block types:

sequential [33] (a); residual [32] (b); dense [53] (c). Right:

skip connection types, here for linearly merging, using

parameters wi and w′i, two 2-channel feature vectors

(c1, c2) and (c3, c4) into a new 2-channel one (red): by

element-wise max (d); by element-wise sum (e); concate-

nation (f). Best viewed in color

two instances. We therefore argue that separating in-

stances and detecting occlusions are intrinsically chained

tasks, that could rely upon a common scene representa-

tion. From these core intuitions, we introduce a novel

nework design, referred to as bicameral structuring, that

jointly infers instance boundaries and the local depth

ordering of their sides, as depicted in Figure 1d. More

precisely, a bicameral structuring is composed of two

cascaded decoders, chained together and to one deep

encoder with skip-layer connections between each un-
pooling stage. As occlusions are often near boundaries,

the first decoder is assigned to boundaries, and the

second decoder in cascade to predict their unoccluded

side. In order to assess the roles of feature sharing and

cascaded decoding in the proposed network design, we

compare the proposed bicameral architecture with four
alternative architectures:

– a two-stream encoder-decoder (Fig. 1c), i.e. our base-

line introduced in [23], for which the streams are

dedicated to boundaries and occlusions respectively;

– a network with two independent decoders sharing

the same encoder (Fig. 7a);

– two decoders in cascade after one encoder (Fig. 7b);

– a multi-task decoder that predicts both boundaries
and occlusions (Fig. 7c).

Encoder backbone For fair comparison, each network has

the same VGG16-based [33] encoder, and is equipped

with residual-like [32] connections, also referred to as

skip connections, between the encoder and the decoder(s)

for progressively combining local and global features

when decoding. Note that we arbitrarily choose VGG16

as backbone for our experiments, but any backbone is

virtually suitable. To advocate this claim, we compare bi-

cameral designs with a VGG16-based and DenseNet121-

based encoder respectively. In contrast with VGG16,
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which interleaves sequential convolutional blocks and

pooling layers, DenseNet121 [53] emphasizes the concept

of residual connections by introducing multiple residual

connections inside each convolutional block, resulting in

a deeper chain of dense blocks. The differences between

sequential, residual and dense convolutional blocks are

illustrated in Figure 14. Following our network repre-

sentation in Fig. 1, we point out that, if we describe

skip connections in a dense block as “vertical” dense

connections, then bicameral connections, i.e. skip con-

nections between the decoders and the encoder, can
then be interpreted as “horizontal” dense connections.

Decoder(s) All the compared networks share the same

convolutional hyperparameters for their decoder(s). Spe-

cifically, for each decoder, the kernel of each convolu-

tional layer is a 5×5 square, and the four convolutional

blocks have, respectively from bottom to top, 256, 128,

64 and 32 filters. We additionally assess whether fea-

ture sharing can apply to the branches of a bicameral

decoder by comparing hybrid architectures that merge

multi-task and fully bicameral designs (Figure 9).

Skip connections To study what skip connections bring

in the bicameral structuring, we compare bicameral de-

signs with and without such connections (Figure 8). We

also try out different skip connection types (c.f . Fig.

14): concatenation (our default choice for all the other

experiments); element-wise max; element-wise sum. We

choose concatenation by default because one can for-

mally expect element-wise max and sum operations to be

obtained using concatenation. Indeed, let N ∈ N? be the

depth of two layers to merge, and e, d, f ∈ RN feature

vectors respectively for the encoder, the decoder, and the

resulting fusion. Let w,w′ ∈ RN×N be trainable parame-

ters. Using element-wise max operators, ∀k ∈ {1, ..., N},
fk =

∑N
i=1 wik max(eik, dik). Using element-wise sum

operators, ∀k ∈ {1, ..., N}, fk =
∑N

i=1 wik(eik +dik). Us-

ing concatenation, ∀k ∈ {1, ..., N}, fk =
∑N

i=1(wikeik +

w′ikdik). If needed, an element-wise sum operator can

then be modelled by setting w = w′. Similarly, an

element-wise max operator can be obtained by setting

wik = 0 or w′ik = 0 depending on which of the ith

encoder or decoder channel has greater importance.

Loss function As commonly adopted, we use a balanced

sigmoid cross-entropy loss function for learning object

boundaries as a binary map [2–6]. The two terms of the

loss function are weighted in order to counterbalance the

low number of boundary pixels against non-boundary

pixels. In our experiments, we set these weights such that

the “contour pixel” penalty is 10 times more important

than the “non-contour” term, regardless of the dataset.

We are aware of more recent loss functions [1, 54, 55]

but we leave the introduction of these loss functions for

future work.

In the two-stream baseline [23], the stream for oc-

clusions consists in inferring the raw orientation θ ∈
(−π, π] of a local unit vector specifying the occlusion

relation by a left-hand rule, independently of the stream

for boundaries. Their orientation learning is driven by

a logistic loss function that strongly penalizes wrong

directions but only weakly tangent directions. However,

a consistency check between boundaries and orientations

is required after each forward pass, by using the local

tangent vectors of the predicted boundaries for adjust-
ing the predicted orientations, since by construction,

there is no mechanism enforcing a local continuity of

the network prediction.

By using instead a single encoder-decoder structure,

and reformulating the occlusion prediction as a local

binary segmentation problem close to instance boundary
detection, we can overcome this limitation. In practice,

near each boundary pixel, we propose to set the side

which is above the other one to “1”, and the side below

to “0”. More precisely, for generating the ground-truth

occlusion binary maps, we sweep all the ground-truth

instance boundaries, and for each boundary pixel, we

binarize the centered local region by computing the

mean Z-offset in each segment of the region. In the end,

a ground-truth occlusion map is a binary map whose

positive pixels are the instance boundaries slightly trans-

lated to one side or another, according to the relative

depth difference of the boundary sides, as illustrated

by the final ground-truth image in Figure 5. Note that

boundary pixels are set to 0 in the occlusion map. Occlu-
sion can then also be learned using a balanced sigmoid

cross-entropy loss function.

Formally, let p ∈ P be a pixel location – typi-

cally P = {1, ..,W} × {1, ..,H} for an image of width

W ∈ N∗ and height H ∈ N∗ – and σ : R → [0, 1], x 7→
(1 + exp(x))−1 the canonical sigmoid function. We note

N = {1, .., N} where N ∈ N∗ is the number of training

images, and Mp ∈ V the value at location p ∈ P in a

matrix M ∈ VP . With the proposed formulation for oc-

clusions, the network jointly minimizes two cross-entropy

loss functions Lb (Eq. 1) and Lo (Eq. 2), respectively for

instance boundaries and occlusions, defined as follows:

Lb(θ) = −
1

|N ||P|
∑
n∈N

∑
p∈P

αY n
p log(σ(Fb(X

n, θ)p))

+ (1− Y n
p ) log(1− σ(Fb(X

n, θ)p))) (1)
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Fig. 15: Training (solid lines) and test (dashed lines) errors for instance boundary (top) and occlusion (bottom)

detection on PIOD (left) and the Mikado dataset (right) using different network architectures (best viewed in

color). Lower boundary and occlusion errors are reached when jointly predicting boundaries and occlusions (green,

blue, yellow, purple) rather than independently (red)
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Fig. 16: Training (solid lines) and test (dashed lines) errors for instance boundary (top) and occlusion (bottom)

detection on PIOD (left) and the Mikado dataset (right) using a bicameral decoder with and without residual-like

connections (best viewed in color). Relatively to the initialization, a better error minimization is achieved when

using connections between the encoder(s) and decoder(s) at each scale for learning jointly boundaries and occlusions
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Lo(θ) = −
1

|N ||P|
∑
n∈N

∑
p∈P

αZn
p log(σ(Fo(X

n, θ)p)) +

((α− 1)Y n
p + 1)(1− Zn

p ) log(1− σ(Fo(X
n, θ)p))) (2)

where {(Xn, Y n, Zn) ∈ (R3)P×{0, 1}P×{0, 1}P}n∈N is

the training dataset of RGB images Xn, associated with

their ground-truth binary maps Y n and Zn respectively

for boundaries and occlusions. If a pixel p ∈ P of the

image Xn is an instance boundary then Y n
p = 1, else

Y n
p = 0. If p is the unoccluded side of an instance

boundary then Zn
p = 1, else Zn

p = 0. Fb(X, θ) ∈ RP
designates the network prediction for boundaries, and

Fo(X, θ) ∈ RP for occlusions, using the parameters

θ. In practice, α = 10. The factor ((α − 1)Y n
p + 1)

in Eq. 2 ensures consistency with Eq. 1, as we want

the intersection between the boundary and occlusion

binary maps to be empty. Basically, this factor enables
to give the “is-not-unoccluded-side” penalty as much

importance as the “is-unoccluded-side” term when a

pixel in the occlusion map is a boundary, i.e. Y n
p = 1

and Zn
p = 0.

Note that when generating the ground-truth occlu-

sion map, local patches that contain more than two

segments are fully set to 0 as they cannot be binarized.

This proves to be a reasonable limitation as in practice

an overwhelming majority of boundary pixels are be-

tween only two instances or between an instance and

the background (e.g ., 97.1% of the boundary pixels in
Mikado, and 99.4% in PIOD). We leave for future work

the study of the minority of pixels at the junction of

more than two instances.

5 Experimental Setup

In this section, we describe our experiments to evaluate

the proposed network architecture and the jointly pro-

posed synthetic data. We design our experimental setup

to answer the three following questions:

1. Is the proposed bicameral structuring the best archi-

tecture for oriented boundary detection?

2. How does the late-localization paradigm compare

with the early-localization paradigm?

3. Is the proposed synthetic Mikado data plausible for

real-world applications?

We answer these questions by conducting three sets of

experiments for respectively comparing:

1. the proposed bicameral design with our two-stream

baseline and alternative architectures, presented in

Section 4, on PIOD [23] and Mikado;

2. the proposed bicameral design with the amodal seg-

mentation approach on COCOA [24];

3. different pretraining and finetuning conditions for

transfer learning [62] from the proposed synthetic

data to real images on D2SA [25].

More precisely, each set of experiments is respectively

composed of comparisons between:

1. (a) the bicameral design and our two-stream baseline

built from [23] (Fig. 1, 11, 12, 15 and Tab. 1);

(b) the bicameral design and alternative architec-

tures (Fig. 15 and Tab. 1);

(c) bicameral designs with different levels of layer

sharing in the bicameral decoder (Tab. 3);

(d) bicameral designs with and without skip connec-

tions (Fig. 16, 17, 18 and Tab. 5);

(e) bicameral designs with different type of skip con-

nections (Fig. 14 and Tab. 5);

(f) bicameral designs with different encoder back-

bones (Tab. 2);

2. (a) the bicameral design and the two-stream encoder-

decoder network for amodal instance segmenta-

tion [24] (Fig. 19, 20 and Tab. 7);

(b) the bicameral design and the amodal segmenta-

tion approach per instance type, i.e. things and

stuff (Figure 20 and Tab. 7);

3. (a) bicameral networks finetuned on D2SA without

and after pretraining on Mikado, with different

encoder block at which the network is choped

and retrained (Fig. 22), to expose the most trans-

ferable features learned from Mikado (Fig. 21 and

Tab. 9);

(b) bicameral networks finetuned on D2SA using

the most transferable synthetic features and dif-

ferent number of finetuning images, to reduce
the need of hand-made annotations and compare

with the augmentation strategy of [25], referred

to as D2SA+ (Fig. 23).

(c) bicameral networks finetuned on D2SA using the

most transferable features learned from Mikado

or Mikado+, to show the impact of a richer syn-

thetic data distribution (Mikado+) on domain

adaptation (Fig. 23).

Let us finally address some concerns that the reader

may have regarding our experimental setup:

– We leave out the BSDS Border Ownership dataset

[22] as it contains only 200 images, and mostly be-

cause the ground truth does not define instance

boundaries but object part-level edges.

– We compare the late and early-localization paradigms

only on COCOA because amodal segmentation re-

quires the amodal instance masks, which are not
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PIOD [23] Mikado (Ours)

(a)

(b)

(c)

Without With Without With Without With Without With

Fig. 17: Comparative results for instance boundary (blue) and unoccluded side (orange) detection on PIOD and

Mikado using a bicameral decoder with and without residual-like connections by concatenation (c.f . Figures 6a and

6c). From top to bottom: (a) input and ground truth, (b) activation map after the affine transformation following
the first unpooling layer of the boundary branch, (c) final detection. Combining spatial information and higher-level

semantics at each scale using residual-like connections between the encoder and decoders enables to detect instance

boundaries earlier when decoding

PIOD [23] Mikado (Ours)
Residual-like Boundaries Occlusions Boundaries Occlusions
connections? (Type) ODS AP AP60 ODS AP AP60 ODS AP AP60 ODS AP AP60

No .693 .744 .495 .692 .749 .520 .759 .834 .686 .793 .878 .748
Yes (Element-wise max) .685 .729 .512 .676 .731 .522 .755 .830 .676 .786 .871 .735
Yes (Element-wise sum) .687 .730 .505 .678 .731 .514 .761 .838 .685 .791 .876 .743
Yes (Concatenation) .697 .738 .517 .692 .747 .532 .769 .847 .698 .801 .884 .758

Table 5: Best F-score on dataset scale (ODS), average precision (AP) and average precision in high-recall regime

(AP60) for instance boundary and occlusion detection on two datasets using a bicameral decoder with and without

residual-like connnections. Residual-like connections by concatenation between the encoder and the decoder(s)

enable to better detect boundaries and occlusions as local and global cues are combined at each scale when decoding
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Fig. 18: Precision-recall curves for instance boundary (left) and unoccluded side (right) detection on PIOD (dashed

lines) and Mikado (solid lines) using a bicameral decoder with and without residual-like connections by concatenation

between the encoder and decoders (best viewed in color)
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Mikado PIOD [23] COCOA [24] D2SA [25] D2SA+1 [25] Mikado+
Training images 13,600 9,600 12,800 512 2,960 28,800

Validation images 800 800 1,424 56 328 4,800
Test images 4,800 800 1,323 5,992 5,992 –

Training iterations 34,000 18,000 24,000 960 5,550 108,000
Training epochs 20 15 15 15 15 30
In experiments2 1a–f 2a–b 3a–c 3b–c

1 refers to the augmentation strategy of [25], consisting in creating fake images by overlaying isolated instances
2 refers to the experiments presented in Section 5

Table 6: Per-dataset folds for our cross-validation experiments after offline data augmentation

available in PIOD and not generated in Mikado. For

training the proposed network on COCOA and com-

paring with amodal segmentation, we turn both the

COCOA ground truth and the precomputed results

of [24] into oriented instance boundaries.

– We consider D2SA instead of PIOD or COCOA for

transfer learning from Mikado because the texture,

shape, and pose distributions of PIOD and COCOA

are very different from Mikado. Indeed, [63,64] show

that a low divergence between the source and target

domain distributions is a necessary condition for the

success of domain adaptation. Table 8 empirically

shows that this condition is not met for Mikado and

PIOD. Unlike PIOD and COCOA, which contain

natural images of indoor and urban scenes with

people, cars and animals, D2SA and Mikado both

contain top-view images of household objects in bulk.

Data preparation To robustly assess the generalizability

of each model, each experiment is cross-validated using
three folds, except for the amodal segmentation results

as we use the precomputed binary outputs made publicly

available by the authors. To present more significative

results when comparing architectures, curves and scores

are averaged on the three folds. For training, the net-

works are not directly fed with the original images but

several sub-images randomly extracted from each origi-

nal image, and augmented offline with random geometric

transformations (flipping, scaling and rotation). Note

that performances are not impacted by cropping given

that the networks are fully convolutional. Table 6 details

the folds for each dataset and the related experiments.

We also point out some experiment-dependent details:

– Folds of Mikado and Mikado+ are defined such that

a texture appears only in one of the three subsets.

– Folds of PIOD, COCOA and D2SA are defined with

respect to the initial split proposed by their authors.

Specifically, the original training images are used for

training or validation in our folds, and the original

validation images for test. The original test images

are never used as they are not publicly available.

– For comparing with amodal segmentation, we use the

precomputed binary outputs made publicly available

by the authors. We derive the oriented boundaries

from both the COCOA ground truth and their pre-

computed results alike: after intersecting the modal

and amodal masks of an instance, amodal pixels that

don’t belong to the intersection are considered closer

to the camera than the pixels of the intersection.

This gives an orientation to the instance boundaries,

i.e. the boundaries of the modal mask.

– When finetuning on D2SA in experiments 3a–c, we

define a block as a set of convolutional layers be-

tween two pooling layers; a VGG16-based encoder is

therefore composed of 5 blocks (c.f . Fig. 22). A block

is said “frozen” when its corresponding parameters

remain unchanged during finetuning.

Training settings For each dataset and each experiment,

each network is trained and tested using Caffe [66], and

the exact same settings (including fixed random seeds).

At training time, we use the Adam solver [67] with

β1 = .9, β2 = .999, ε = 10−8, a fixed learning rate of

10−4, a weight decay of 10−4, a `2 regularization, and a

batch size of eight 256×256 images. The training images

are randomly permuted at each epoch. As we solve a

non-convex optimization problem, without theoretical

convergence guarantees, the number of training itera-

tions is chosen for each dataset from an empiric analysis

on training and validation subsets. As generally adopted,

the optimization is stopped when the validation error

stagnates or increases while the training error keeps de-

creasing. Please note that although the chosen stopping

criterion may not be optimal for reaching the best per-

formances on each dataset, it is however sufficient for sig-
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(a)

(b)

(c)

(d)

Fig. 19: Comparative results for instance boundary (blue) and unoccluded side (orange) detection on COCOA (best

viewed in color). From top to bottom: input (a), ground truth (b), prediction by amodal instance segmentation [24]

(c), prediction using the proposed network (d). Unlike the proposed approach, using a region proposal-based

detection qualitatively leads to coarse segmentations and non-detected instances

All regions Things1 only Stuff1 only
Boundaries Occlusions Boundaries Occlusions Boundaries Occlusions

Approach ODS AP ODS AP ODS AP ODS AP ODS AP ODS AP
Amodal segmentation [24]2 .492 – .529 – .536 – .608 – .489 – .397 –

Ours .666 .694 .637 .673 .666 .690 .640 .674 .687 .727 .648 .693

1 things are objects with well-defined shape (e.g. car, person) and stuff instances amorphous regions (e.g. grass, sky) [65]
2 the evaluation is performed on the binary segment proposals made available by the authors

Table 7: Comparative performances for instance boundary and unoccluded side detection on COCOA [24]. Whereas

the proposed network equally performs on things and stuff, oriented boundary detection by amodal instance

segmentation tends to focus on things and miss stuff instances
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Fig. 20: Precision-recall curves for instance boundary (left) and unoccluded side (right) detection on COCOA

comparing bicameral structuring against amodal instance segmentation [24]. Best viewed in color
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nificative comparative performances on a given dataset

since each network in a comparison is trained under the

exact same conditions. For all experiments, except fine-

tuning from weights pretrained on Mikado or Mikado+

in experiments 3a–c, each network has its encoder initial-

ized with weights pretrained on ImageNet [68], and its

decoder(s) with the Xavier method [69]. The decoders

are also equipped with dropout layers (with a ratio of

0.5) after each convolutional block at training time, to

avoid overfitting.

Evaluation metrics As commonly adopted [4,6,49,70–

76] since [47], we compute at test time precision and

recall, and typical derived metrics: the best F-score on

dataset scale (ODS) and the average precision (AP).

Whereas ODS highlights one binarization threshold that

gives the best compromise between recall and precision,

AP conveys the aera under the precision-recall curve

over the full recall interval. For some experiments, we

also consider the average precision in high-recall regime

(AP60), that is the precision averaged on the recall in-

terval [0.6, 1]. As matching tolerance, i.e. the maximum

`2-distance to the closest ground-truth pixel for a pixel

predicted positive to be considered as a good hit, we con-

sider a hard value of 0 pixels for Mikado (which contains
perfect ground-truth boundaries) but a state-of-the-art

value of τ = 0.0075
√
W 2 +H2(' 2.7 pixels in our eval-

uations) for PIOD, COCOA and D2SA that contain

approximative hand-made annotations, where W ∈ N?

and H ∈ N? are respectively the image width and height.

We perform evaluation without non-maximum suppres-
sion, which may artificially improve precision.

6 Discussion

In this section, we argue in light of our experimental

results that the proposed bicameral structuring is the

best design for oriented boundary detection and that the

jointly proposed synthetic data is plausible for real-world

applications.

Shared encoding features instead of independent streams

Our comparative experiments between single encoder-

based designs (Fig. 1 and 7) and independent streams

(Fig. 1) confirm that separating instances and inferring

their spatial layout can be done with a single scene repre-

sentation. Figure 15 shows that using a shared encoder,

multi-task, cascaded or bicameral design instead of the

two-stream baseline results in reaching lower boundary

and occlusion test errors on both PIOD and Mikado.

This is corroborated by Table 1 where the proposed

bicameral and alternative architectures outperform the

baseline by more than 2 points in ODS and AP, on

both PIOD and Mikado for boundary detection. The

joint feature representation can reach a higher expres-

sive power using a deeper encoder composed of dense

blocks, instead of sequential ones (Fig. 14). Table 2 re-

ports a gain in AP of more than 6 points for boundaries

and more than 4 points for occlusions over the two-

stream baseline when building the bicameral encoder

on DensetNet121 [53] instead of VGG16 [33]. This also

illustrates that a bicameral structuring can apply to any

encoder backbone, whatever the depth and the type of

convolutional blocks.

Bicameral structuring instead of alternative designs

A closer look at Figure 15 shows that the cascaded

design reaches the lowest occlusion test error on both

PIOD and Mikado. This suggests that chaining occlu-

sion to boundary detection eases the backpropagation

for occlusion prediction, as the decoder for occlusions

may leverage a hierarchical feature representation of

flat instance boundaries instead of undecoded image

features. A gain in AP is achieved by cascaded decoders

over the baseline (1.5 point up on PIOD, 1 point up

on Mikado) but also the shared encoder design (1 point

up on PIOD) for which decoders are independent. How-

ever, Table 1 shows that cascaded decoders are slightly

less efficient for detecting boundaries on Mikado than a

multi-task decoder or two independent decoders sharing

the same encoder. This is explained by the impossibility

of the occlusion decoder to influence directly the encoder

blocks. This trade-off is overcame by the bicameral de-

sign, which combines cascaded decoders both directly

linked to the single encoder and has consequently the

largest area under the precision-recall curve in Figure 12.

The proposed bicameral structuring also outperforms a

multi-task design. Table 1 notably reports that merging
decoders limits the expressive power in favor of bound-

aries on PIOD. The obtained scores are well illustrated

by the comparative predictions in Figure 11 where one

can observe more closed boundaries and many false pos-

itive, mostly occlusions, predicted by the baseline and

removed when instead decoding in cascade from a joint

feature space.

Partially shared or independent decoding features A bi-

cameral structuring outperfoms a multi-task design but

one may also wonder whether partial feature sharing

can apply to the bicameral decoder branches. Table

3 presents the performances obtained with three hy-

brid architectural variations between multi-task and

bicameral designs (Fig. 9), each one introducing feature

sharing at different levels of decoding. On PIOD, a bi-

cameral decoder remains superior to all hybrid decoders,

notably by about 1 point higher in ODS and AP for
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Tests on Mikado (Ours)

Trained on
Boundaries Occlusions
ODS AP ODS AP

Mikado (Ours) .769 .847 .801 .884
PIOD [23] .300 .233 .326 .267

Tests on PIOD [23]

Trained on
Boundaries Occlusions
ODS AP ODS AP

PIOD [23] .697 .738 .692 .747
Mikado (Ours) .405 .350 .400 .349

Table 8: Cross-dataset performances between Mikado and PIOD using a bicameral design. Both datasets perform

poorly on each other because they follow very different texture, shape, and pose distributions

(a)

(b)

(c)

(d)

Fig. 21: Comparative results for instance boundary (blue) and unoccluded side (orange) detection on D2SA (best

viewed in color). From top to bottom: input (a), ground truth (b), prediction using the proposed network trained on

D2SA (c), using the proposed network pretrained on Mikado then finetuned on D2SA with the first three encoder

blocks frozen (d). Pretraining the proposed network on Mikado before finetuning on D2SA leads to a visually

significant improvement in the quality of the results

occlusions. On Mikado, sharing the first bottom decoder

stage (M1-B3 design), which conveys object-level seman-

tics, slightly improves performances. This suggests that

the task specialization, for boundaries and occlusions

respectively, may occur at a more local scale in decoding,

either because of the higher density of inter-instance

occlusions in Mikado, or due to the shape similarity of

the Mikado instances. Unlike any of the hybrid designs,

the bicameral decoder nevertheless achieves strong ODS

and AP on both PIOD and Mikado. We thus advise to

consider boundaries and occlusions separately by default

after unpooling the encoder feature maps with lowest

resolution.

Skip connections for combining local and global cues

Partially hidden patterns are a major source of bound-

aries and occlusions. A perception at both local and

global scales is however required to understand that

an instance is partially occluded. By construction, an

encoder-decoder network combines local and global cues

by stacking convolutional and pooling/unpooling layers.

This combination is enhanced by residual-like connec-

tions at each scale between the encoder and decoder(s),

as it enables to gradually combine the unpooled higher-

level semantics with the spatial information lost after

pooling. Figure 17 qualitatively shows what such con-

nections bring: instance boundaries are detected earlier,

thus giving the network more flexibility to adjust the

following transformations and activations towards the

desired output. These observations are corroborated by

the scores in Table 5 and the precision-recall curves in

Figure 18. A bicameral structuring with residual-like

connections (Figure 8a) outperforms a bicameral design

without such connections (Figure 8b) by 1 point in ODS

and AP on Mikado. The obtained scores on PIOD are

here impacted by the encoder initialization, which was

obtained using a skip-connection free architecture. As

a result, the backpropagation flow along the skip con-
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in out1 out2

(a) Frozen: 1

in out1 out2

(b) Frozen: 1, 2

in out1 out2

(c) Frozen: 1 to 3

in out1 out2

(d) Frozen: 1 to 4

in out1 out2

(e) Frozen: 1 to 5

Fig. 22: A bicameral structure with different frozen encoder blocks (best viewed in color). Frozen convolutional

layers are in pink. The rest follows the same legend as Figure 1

Pretraining Finetuning Number of real Frozen encoder Boundaries Occlusions
on Mikado on D2SA [25] training images blocks? (Fig. 22) ODS AP ODS AP

No Yes
438

None
.700 .715 .725 .756

Augmented (D2SA+) [25] .783 .792 .785 .795

Yes

No 0 – .652 .649 .458 .400

Yes 438

None .780 .808 .794 .830
1 .783 .803 .797 .829

1, 2 .780 .802 .793 .827
1, 2, 3 .793 .819 .810 .849

1, 2, 3, 4 .759 .799 .769 .819
1, 2, 3, 4, 5 .767 .815 .773 .823

? a block is a set of convolutional layers between two pooling layers; a VGG16-based encoder is therefore composed of 5 blocks

Table 9: Comparative performances of the proposed network on D2SA [25] using different pretraining conditions.

Performances on both boundaries and occlusions are maximized when freezing at finetuning time the first three

encoder blocks pretrained on Mikado

nections drastically reshapes the encoder from the first

iteration, whereas the encoder of the skip connection-free

design is only slighty affected by the backpropagation

signals coming from the decoders. This mostly impacts

the scores on PIOD because the encoders are initialized
with weights pretrained on ImageNet, whose object type

and context distributions are much closer to PIOD than

Mikado. The skip connection-free design thereby starts

to train on PIOD with already meaningful image fea-

tures, unlike the bicameral design with skip connections
on PIOD and both designs on Mikado. Figure 16 indeed

reports that the bicameral network without skip connec-

tions starts with a lower training error on PIOD. Despite

this disadvantage at training time, a bicameral design

with residual-like connections shows a better precision

in high-recall regime on PIOD, as shown by Figure 18.

Table 5 confirms a gain of more than 1 point in AP60

when adding skip connections.

Concatenation instead of alternative merging operators

In all of our experiments, we consider skip connections

by concatenation instead of alternative operators (Fig.

14), because we formally expect better performances

from concatenation (c.f . Section 4). Table 5 confirms

our expectation: concatenation produces better experi-

mental results than element-wise sum or max operators.

Enforcing sum or max operations indeed introduces ar-

bitrary correspondences between the feature channels

to merge. As a result, the low-level encoder activations
may be overconsidered in the decoder, thus generating

more false positives. Concatenation, as proposed, leaves

more degrees of freedom for merging the channels, as

each weight for their linear combination before activa-

tion is learned during backpropagation. Skip connections
that turn out irrelevant can thus be switched off by the

decoder, with near-zero weights.

Late instead of early instance localization Another state-

of-the-art approach [24] for instance boundary and oc-

clusion detection, referred to as amodal instance segmen-

tation, follows instead an early-localization paradigm. It

consists in first detecting rectangle regions that contain

an instance, then inferring for each proposal the corre-

sponding modal and amodal masks, i.e. respectively the

visible instance parts and the mask including both the

visible and invisible instance parts. Our comparative

experiments however show that, unlike the proposed

approach, amodal segmentation leads to coarse and non-
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Fig. 23: Performances of the proposed bicameral network pretrained on Mikado/Mikado+ then finetuned on D2SA

with the encoder blocks 1, 2, 3 frozen, with respect to the number of real images retained for finetuning. Exploring

a wider range of configurations in simulation (Mikado+) enables to learn more abstract local representations of the

boundaries and occlusions, thus achieving state-of-the-art performances while drastically reducing the number of

real images for finetuning. Best viewed in color

detected boundaries, as illustrated by Figure 19. These

observations are corroborated by Table 7 and Figure

20 that report a gain in ODS of 17.4 points for bound-

aries and 10.8 points for occlusions using our approach.

Amodal segmentation indeed conveys the drawbacks

of region proposal-based segmentation, in particular:

misdetections and non-detections due to errors from

the region proposal network; binary segmentations in-

consistent with the translation invariance property of

convolutional layers if the box proposal contains several

instances. This latter ambiguity is compounded when

amodally coloring an instance, as a pixel which actually

hides an instance should be activated although it belongs

to another instance. The proposed network overcomes

these limitations by postponing instance localization:

each pixel is jointly classified as boundary or not and

assigned with an occlusion-based orientation indepen-

dently of the instance bounding box it belongs to. In

addition, amodal segmentation employs a two-stream

network whose streams are independent and dedicated

to modal and amodal segmentations respectively, sim-

ilarly to our baseline for oriented boundary detection.

When comparing the modal and amodal masks for es-

timating the occlusion rate of an instance, mismatches

between the two masks are very likely to occur, thus

inducing false positive in the boundary and occlusion

maps. Moreover, per-category scores in Table 7 high-

light that amodal segmentation leads to better results on

things than stuff while the proposed network performs

equally on both classes. The stuff category indeed in-

cludes amorphous regions (pieces of grass, clouds, walls)

that can be missed by the region proposal generator

or considered as background when inferring the binary

segmentation of a region.

Synthetic data instead of hand-made annotations As

Mikado is a computer-generated dataset, one may raise

the question whether it is realistic. The answer is ob-

viously no, but we argue that it is plausible for both

a significative evaluation and real-world applications.

First, when comparing network designs, the same over-

all relative results are obtained on PIOD, a dataset of

manually annotated natural images. Second, the syn-

thetic features learned from Mikado can be repurposed

for inference on real images. Specifically, Mikado en-

ables a transferable feature learning in line with [62],

i.e. first training the network on a source dataset, then

retraining only the task-specific layers on the target

one. In our transfer learning experiments, we show that
using local features pretrained on Mikado enables much
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(a)

(b)

(c)

Fig. 24: Instance boundaries (blue) and their unoccluded side (orange) detected using our architecture (c) on PIOD

images (a), annotated by humans (b). The proposed network is able to fairly predict non-annotated boundaries

and better delineate instances coarsely annotated by humans. Best viewed in color

better results on D2SA, a dataset of real-world piles

of supermarket items [25]. As reported by Table 9 and

qualitatively corroborated by Figure 21, a gain of more

than 10 points in AP for boundaries and 9 points for

occlusions is achieved when finetuning the proposed net-

work on D2SA with the first three encoder blocks frozen
(c.f . Figure 22) after pretraining on Mikado, instead

of training all the layers only on D2SA. This suggests

that a network trained on Mikado can learn a more gen-

eral concept of depth ordering as our dataset presents

a wider variety of occlusion relations, including both

inter-instance and object/background boundaries. [25]

also introduces an augmentation procedure to enrich

the training subset with more piles of objects (D2SA+).

Their procedure consists in creating new images by over-

laying manually isolated instances. Table 9 reports that

our simulation-based pretraining outperforms D2SA+

as well. Despite the domain shift, simulation enables

more physics-consistent rendering at boundaries and

less redundancy in terms of poses, unlike brute-force

overlaying of instance segments from real images. Fur-

thermore, almost equivalent performances on D2SA are

achieved, while reducing the number of costly human-

labeled real images for finetuning. Figure 23 shows that

a bicameral network finetuned on D2SA, with the first
three encoder blocks frozen after pretraining on Mikado,

using only 25% of the initial D2SA finetuning subset

still outperforms a bicameral network trained only on

D2SA or D2SA+.

Synthetic data for learning better transferable invariants

Unlike real-world datasets, a synthetic dataset is readily

extensible. By enriching Mikado with 20 times more

texture images, 15 times more background images and

4 mesh templates, namely Mikado+, we expect more

transferable local and global invariants to be learned

as the ranges of color, texture, shape, and pose vari-

ations are better represented. Table 9 indeed reports

that pretraining on Mikado+ instead of training only

on D2SA increases AP by 10.1 points for boundaries

and 7.8 points for occlusions while using only 13% of
the initial D2SA finetuning set (Figure 23). This corre-

sponds to a gain of 3.4 points for boundaries and 4.1

points for occlusions over using Mikado in the same

conditions. These observations imply that Mikado+ en-

ables to learn more abstract local representations than

Mikado. However, when applied on D2SA without fine-

tuning, the Mikado+ model proves less effective than

the model pretrained on Mikado. Consistently with the

results after finetuning on D2SA, this could be explained

by an overgeneralization of the task-specific layers. The

neurons indeed co-adapt to capture the most discrim-

inative patterns that are not likely to be the colors

nor the object and background textures in Mikado+.

An over-randomization of the colors and textures may

disconnect the learned representations from concrete

examples. This has nevertheless the advantage of eas-

ing the finetuning on D2SA, as the real-world scenes

then appear as a specific variation consistent with the

learned abstract representations. All these observations
are incentives to favour synthetic training data when

pixel-wise annotations on real-world images are hardly

collectable. Hand-made annotations may also hinder the

training due to their inaccuracy and incompleteness. As

illustrated by Figure 24, the bicameral network is able

to fairly predict non-annotated boundaries, e.g . internal

boundaries of instances with holes, missing instances, or

instances ambiguously considered as part of the back-

ground. Furthermore, objects with complex shape, such
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as houseplants, which are often coarsely annotated by

humans, are finely delineated by the proposed network.

7 Conclusion

In this paper, we addressed the problem of delineating

object instances and inferring their spatial layout from a

single RGB image. Unlike the state-of-the-art approach

which consists in two independent FCN streams, we

argued that boundaries and occlusions can be obtained

from a joint feature space. As a result, we proposed
a parameter-saving network design composed of a sin-

gle encoder shared by two cascaded decoders through

skip-layer connections, for jointly predicting instance

boundaries and their unoccluded side. Furthermore, as

occlusions between instances are under-represented in

the related state-of-the-art datasets (PIOD, COCOA,

D2SA), which are costly to extend as they contain man-

ually annotated real images, we introduced a pipeline

for generating synthetic images of textured objects piled

up in bulk, namely Mikado. Our ablation study and

comparative experiments with the two-stream baseline

and alternative architectures showed that the proposed

bicameral structuring gives the best overall results on

both PIOD and Mikado. The proposed design, which

postpones instance localization, also outperforms on

COCOA the state-of-the-art amodal segmentation ap-

proach, which by contrast rely on rectangle region pro-

posals to first isolate instances. We finally proved that

our synthetic imagery is plausible for real-world ap-

plications. Our experiments on transfer learning from

Mikado to D2SA showed that using local synthetic fea-

tures enables better real-world performances than using

only real images. We also highlighted that enriching

the synthetic data distribution enables to extract more

abstract representations, thus achieving state-of-the-art

performances while reducing by more than 85% the

number of real images for finetuning. As future work,
we plan to further our results on joint representation

learning for multiple tasks by exploring a “multicameral”

FCN-based structuring for jointly inferring the instance

locations and categories as well. We also consider more

advanced unsupervised domain adaptation techniques to

bridge the reality gap without the need of annotated real

images, while building a significantly larger synthetic

dataset for real-world robotic setups.
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