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Abstract

Agricultural economic literature shows the difficulties to manage insurance

contracts that include systemic risk. The aim of the paper is to present an

approach to overcome such difficulties. It is applied to a crop yield insurance

contract but can be extended to other insurance contracts such as revenue or

crop margin. On the one hand, the recommended strategy realizes the pooling

of farms risks, the technique usually used to manage insurance contracts. On

the other hand, this strategy realizes the transfer of the poolling risk to financial

markets, the technique used to manage farms systemic risks component. The

financial market model includes a crop yield futures contract, a price futures

contract, and a zero-coupon bond. It is shown in the theoretical approach that

this strategy allows for an intermediation for a risk-free management of such a

type of insurance contract.
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A Private Management Strategy for the Crop Yield

Insurer:

A Theoretical Approach & Tests

In recent research in agricultural economics, crop yield insurance and revenue

insurance are a major topic of discussion. Four main research areas are interesting

to recall. First of all, the farm risk management using insurance contracts is dealt

with in literature, see for example Coble et al. (2000) for modelisation or Sherrick

et al. (2004) for an empirical analysis of farmer’s demand. Secondly, it proposes

several models to estimate the contracts premiums (Stokes, 2000; Just et al., 1999).

Thirdly, it proposes a definition of optimal insurance contracts (Mahul and Wright,

2003). Finally, some authors such as Skees and Barnett (1999) deal with the role and

implication of government. But today we can observe that crop yield insurances in the

United States of America or in the European Union do not exist without government

reinsurance and/or subsidies. Our paper aims at dealing with the ability for an insurer

to design and manage a crop yield insurance contract without public reinsurance.

Agricultural risks are multidimensional. They include price, yield, quality and

production cost hazards. Moreover, they include a high systemic risk component

because of the high correlation among farm-level risks. Consequently, individual risks

are not independent and the law of large numbers does not apply. Whatever the

contract design or the premium, the annual Loss Ratio of insurer will be extremely

variable around the balance. Therefore, if an insurer pools a portfolio of several crop

insurance contracts, it will bear the systemic risk component. It does not usually

have enough equity to face up to this risk (Smith et al., 1994).

Miranda and Glauber (1997) argue that the systemic risk component is the major

obstacle that prevents an independent private crop insurance industry from emerging.

We agree with this statement, and this paper aims at overcoming the difficulty.
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The first idea is to have multi-year management to get the balance of the Loss

Ratio over several years. The law of large numbers over several years applies in

this reasoning. It implicitly assumes that the risk is independent from one year to

another and that there is neither a change in the climate nor an evolution of the

technical and economic environment. In this context, some authors determine a

contract that maximizes the profit utility of the insurer (Nelson and Loehman, 1987;

Ker and Goodwin, 2000). Others even argue such as Skees and Barnett (1999) that

crop yields are not insurable, which results in the need for public action.

Private reinsurance is the second idea to cope with this difficulty. Even at this

level, the pooling of production regions cannot be really achieved because the regions

are heterogeneous. The weather and technical and economic hazards can be very

different from one region to another irrespective of the size of the region (Turvey

et al., 1999; Mason et al., 2003).

A third idea is the transfer of the systemic component to financial markets, as

suggested by Miranda and Glauber (1997): “Clearly, neither insurance markets nor

options markets alone are capable of providing adequate individual crop loss risk pro-

tection in the absence of government support. However, insurance and option [or

futures] markets together, each performing within its inherent limitations and exer-

cising its own particular strengths, could provide a market solution to the crop risk

insurability problem.”

Considering the literature review of Tomek and Peterson (2001), the scientific

community deals abundantly with the use of futures and options by optimal hedg-

ing. In particular, Vukina et al. (1996) indicate that double hedging with price and

yield futures reduces farm risk better than just hedging with price futures markets.1

But, in addition, their work assess that, even in ideal conditions, double hedging is

not able to eliminate the risk generated by the covariance between price and yield.

Opposed to this discrete time strategy, Guinvarc’h et al. (2004) propose continuous
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management strategy able to eliminate this “covariance” risk component. It is based

on the replicating portfolio of the revenue futures contract and uses both the crop

yield futures contract and the price futures contract. This strategy is applied by an

intermediary that offers a revenue futures or option contract.

Mason et al. (2003) propose to manage insurer (or reinsurer) risk with an optimal

double hedging as proposed by Vukina et al. (1996). They test this proposition in

the case of the Risk Management Agency’s reinsurance. It results that RMA’s risk is

indisputably reduced but the risk taken remains too high for a private insurer.

We choose to enhance the risk management problem of the crop yield insurer by

a continuous management strategy. While others have argued that it is impossible

for a insurer to offer insurance contracts that can deal with the multidimensional

farm risks without government support, we theoretically show that an insurer can

privately manage a crop yield contract that includes both systemic and idiosyncratic

risk components. The first section presents the theoretical approach of the model and

the second realizes the tests.

The theoretical approach

Our approach to crop yield insurer management is described in figure 1. The insurer

sells an insurance contract to the farmer, conserves the idiosyncratic risk component

and uses financial markets to transfer the multidimensional systemic risk component.

[Figure 1 about here.]

The first subsection defines the model and its assumptions. The second subsection

proposes an estimation of the crop yield insurance premium. Using this estimation, a

replicating portfolio is built in the third subsection allowing a self-financed strategy

to manage the insurance contract.
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The model and its assumptions

In order to develop the crop yield insurance contract, we first describe the farmer’s

financial loss brought about by the crop yield and then the contract indemnity. Next,

the model of financial markets is presented. It includes three contracts: the price

futures, the crop yield futures and the zero-coupon bond. We define the time de-

composition of the risk management of the crop yield insurance contract. At last, we

define the assumptions on the conditional density of losses.

The insurance contract

In the case of a crop yield insurance contract, the farmer’s indemnity (or compensa-

tion) depends on the potential financial loss suffered because of a low crop yield. We

assume that the insurer insures n farms for this contract. The farmer j has a crop

yield loss if his crop yield yj is smaller than a minimum yj
m. The quantity yj

m is the

smaller crop yield suitable for the farmer. The financial value of this loss `j is equal

to `j = pj × max(yj
m − yj, 0) where pj is the farm random unit price of the product

at the end of the production period (T +). Therefore, the concept of crop yield loss

includes both price hazard and crop yield hazard.

The mathematical indemnity function I(`j) defines the insurance contract. The

principle of indemnity2 requires that 0 ≤ I(`j) ≤ `j and that the function I increases

in `. Moreover, the model is designed for an indemnity proportional to the farm’s

loss. Then, I(`j) = λ`j where λ is a constant value in [0, 1]. In the model, the policy

holders are uniformly distributed throughout the area linked to the crop yield futures.

It is assumed there is no moral hazard.

Let us also specify two differences between a crop yield option and a crop yield

insurance contract: first of all, a crop yield option is unidimensional when crop yield

insurance is bi-dimensional (it does not depend on the random price). Secondly, a crop

yield option does not depend on the individual crop yield but on the area crop yield.
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The current Multiple Peril Crop Insurance (MPCI) indemnities are also different from

the crop yield insurance contract definition because they do not include the random

dimension of the price.

The financial contracts motions assumptions

We note Bt a zero-coupon bond with the continuous risk-free rate r. We note t

the time between 0 (the beginning of the quotation of both futures) and T (the

settlement time). W F
t and W Y

t stand for two one-dimensional standard Brownian

motions defined on filtered probability space (Ω,F , P). F is the price futures contract

and Y is the crop yield futures contract. At maturity, the price of the crop yield

contract is proportional to the area crop yield. We assume that F and Y are geometric

Brownian motions.3 The parameters of F are µF and σF and the parameters of Y

are µY and σY . Let us present the model of the financial market:

Ft = F0 +

∫ t

0

σF FudW F
u +

∫ t

0

µFFudu (1)

Yt = Y0 +

∫ t

0

σY YudW Y
u +

∫ t

0

µY Yudu (2)

Bt = exp(−r(T − t)) (3)

where µF , µY , σF > 0 and σY > 0 are known constants. The price motion of F and

Y are not independent so we note δ = cov(W F
u , W Y

u ). We assume that the covariance

δ between both Brownian motions is negative because generally the price increases

when production decreases.

We define Wt a two-dimensional Brownian motion by:

Wt =







W F
t

1√
1−δ2

(W Y
t − δW F

t )







By applying Girsanov’s theorem to Wt with the risk neutral probability,4 noted
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P
∗, we get W ∗

t (Musiela and Rutkowski, 1997, section 10.2):

W∗
t = Wt −

∫ t

0







σF 0

−δσF√
1−δ2

σY√
1−δ2













r − µF

r − µY






du (4)

It results that, under P
∗:

d







Ft

Yt






=







σF Ft 0

0 σY YT













1 0

δ
√

1 − δ2






.dW ∗ + r







Ft

YT






dt (5)

The time decomposition

The risk management can be split into two periods. We introduce the time T + ε,

that stays after T for a very little period ε. The first period begins at 0 and ends at

T and the second period begins at T and ends at T + ε.

We note T + the “right-limit” of T + ε when ε → 0. At time T , we assume that

the individual results (pj, yj) are not known. They are only known at T + and as a

result, the individual loss `j can be calculated.

In terms of model building, we use a retrospective reasoning (from T + to T and

from T to 0). In terms of insurer strategy management, it is naturally the reverse.

Then, in the second management step, we build an instantaneous insurance contract

that begins at T and finishes at T +. Its premium Prj(FT , YT ) is the conditional

expected value at T of the indemnity j knowing (FT , YT ). Then, the premium of the

instantaneous insurance contract depends on FT and YT . It is a common insurance

contract managed in a very short time (ε). Next, in the first management step, we

build a financial contract X j bought at t = 0 whose price at T accurately tallies with

the premium of the instantaneous insurance contract Prj(FT , YT ). It is a derivative

contract defined by its underlying assets (the crop yield futures, the price futures)

and its price at maturity (Prj(FT , YT ) at T ).
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[Figure 2 about here.]

At t = 0, the farmer is subscribing an insurance contract that, if needed, gives

an indemnity at T + that depends on this loss. It is the view of the insured farmer.

The insurer sells the farmer the financial contract Xj (at t = 0) whose value allows

the financing of the instantaneous insurance contract premium at T (figure 2) that,

if necessary, provide an indemnity with the farmer at T +.

The conditional density of losses

The moment T is the hinge between the two management operations. At this time,

the insurer needs an estimation of the instantaneous insurance contract premium.

Therefore, we introduce the conditional density f j
FT ,YT

of `j which depends on FT and

YT . For the second part of model, we need that f j
FT ,YT

was known and was twice

differentiable in the two variables.

We deduce the conditional density of loss from two assumptions. The first one

concerns the relation between yj and YT . We choose the most classical modelisation

used for example by Just et al. (1999), by Mahul and Wright (2003) and by Smith

et al. (1994):

yj = αj + βjYT + γjζ (6)

where αj, βj and γj are parameters of farm j and where ζ is a random variable

with E[ζ] = 0. By model building, the random values ζ and YT are independent.

Moreover, we assume that ζ is a standard normal random variable. This model was

analyzed recently by Ramaswami and Roe (2004). They showed in particular that

higher aggregation reduces the systemic risk component and increases the idiosyn-

cratic component.

On the one hand, the crop yield is always positive and on the other hand loss is

defined only if crop yield is less than yj
m. Therefore, the loss is found if 0 < yj < yj

m.
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We deduce that loss exist if ζ verifies:

κj =
−αj − βjYT

γj

< ζ <
yj

m − αj − βjYT

γj

= ηj

The second assumption concerns the farm price at time T +. We assume that the

farm crop price pj is the future price FT . It results that `j = FT × max(yj
m − yj).

Therefore, the indemnity does not take account of the farm price basis risk in this

model.

From Equation 6 and the ` definition, we conclude that the conditional density

of losses f j
FT ,YT

is a normal density with mean FT (yj
m − αj − βjYT ) and standard

deviation FT γj.

Estimation of the insurance contract premium

First, we calculate the premium Prj(FT , YT ) of the instantaneous insurance contract

at time T . This conditional value allows us to define the settlement price of the

derivative. Second, we calculate the derivative price at 0 and deduce the crop yield

insurance contract premium.

The price of the instantaneous insurance contract

The price of the instantaneous insurance contract is defined by:

Prj(FT , YT ) = ET [I(`j)|FT , YT ]
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Using the conditional density function, the expected indemnity may be calculated as

follows:

Prj(FT , YT ) =

∫ +∞

0

f j
FT ,YT

(`j)I(`j)d`j

=

∫ ηj

κj

Fλ(yj
m − αj − βjY − γjζ)f(ζ)dζ

= Fλ(yj
m − αj − βjY )

∫ ηj

κj

f(ζ)dζ

+Fλγj

∫ ηj

κj

−ζf(ζ)dζ

where f is the standard normal density function. We observe that f ′(ζ) = −ζf(ζ)

and obtain the estimated premium of the instantaneous insurance contract:

Prj(FT , YT ) = Fλ(yj
m − αj − βjY ) (N(ηj) − N(κj)) + Fλγj (f(ηj) − f(κj)) (7)

where N is the normal standard cumulative function.

The price of the derivative contract

The price of the derivative contract X j is equal to Prj(FT , YT ) at T . We know that

X∗
T = e−rTPrj(FT , YT ) is a square-integrable random variable under the martingale

measure P
∗. Therefore, from the martingale representation property, we conclude that

there exists one and only one predictable process θ such that the stochastic integral

X∗
t = EP∗[X∗

T ] +

∫ t

0

θudW ∗
u (8)

follows a (square-integrable) continuous martingale under P
∗. We deduce that the

value Xt of the derivative at t is equal to ert
EP∗[X∗|Ft]. This value must be estimated

using numerical procedures because an explicit formula is not available.

The premium of the crop yield insurance contract at subscription time t0 is equal

10



to the value πt0(X) of the derivative. Moreover, we note that the premium depends on

the price of futures contracts. The premium can differ from one year to another. For

earlier subscriptions, markets have less information, so anticipations are just based

on historical grounds. Therefore, if the subscription is early (at time 0), the premium

should be stable from year to year.

Now, we know the price of the crop yield insurance contract and the next subsec-

tion presents the insurance contract management strategy.

The insurance contract management strategy

As presented in figure 2, the insurer breaks down the crop yield insurance contract

management into two steps. This subsection presents both the pooling step and the

financial step.

Pooling of the instantaneous insurance contract step: from T to T +

At T , the insurer receives the premium Prj(FT , YT ) to pool farmers’ risks at T +. FT

and YT are known. Then, for the n insured farms, we get:

E

[

aj

n
∑

j=1

I(`j)

∣

∣

∣

∣

∣

FT , YT

]

=

n
∑

j=1

ajE[I(`j)|FT , YT ] =

n
∑

j=1

ajPrj(FT , YT )

where (aj)0≤i≤n represent the respective planted surface of the n insured farms. If

assumptions are verified, the error pooling is:

n
∑

j=1

ajγjζj

For all YT , we note that
∑n

j=1 yj converges to YT in probability when n is increasing

because the n policy holders are uniformly distributed throughout the area. Because

of the independence between YT and (ζj)0≤j≤n
, it results that error pooling5 converges
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in probability to 0.

Financial step: from 0 to T

The quotation of Xj on the market does not look feasible first because this derivative

contract is more complex than an European option. Second, the derivative is specific

to the insurer, limiting its potential liquidity. Even if the designed derivative is not

quoted, we are able to compute its price under the model assumptions at any time.

Thus, the insurer has to manage the derivative directly on the two futures Ft and Yt

(delta hedging). Then, in order to describe the management strategy from 0 to T , its

replicating portfolio should be built.

A portfolio is described by the line matrix (φF , φY , φB) where φF is the number

of price futures contracts, φY is the number of crop yield futures contracts and φB is

the number of unit bonds.

Proposition 1 The self-financing replicating portfolio φ of X j is given by:

φu =

(

∂Xu

∂Fu

,
∂Xu

∂Yu

, Xu −
∂Xu

∂Fu

Fu − ∂Xu

∂Yu

Yu

)

(9)

Proof.

On the one hand, Equation 8 gives:

dX∗
u = θudW ∗

u = hu.







dF ∗

dY ∗






= hu.







dF

dY






− rhu.







Fu

Yu






du (10)

where we have put

hu = exp−r(T − u)θu







1 0

−δ√
1−δ2

1√
1−δ2













1/σF F ∗
u 0

0 1/σY Y ∗
u






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Knowing that dX∗
u = dXu − rXdt, it results that φB = Xu − hu.







Fu

Yu






. On the

other hand, we applied Itô’s formula to X:

dXu =
∂Xu

∂u
du +

∂Xu

∂Fu

dFu +
∂Xu

∂Yu

dYu +
1

2

∂Xu

∂F 2
u

(σF F ∗
u )2du

+
∂Xu

∂FuYu

< (σF F ∗
u , 0), (δσY Yu,

√
1 − δ2σY Yu) > du +

1

2

∂Xu

∂Y 2
u

(σY Y ∗
u )2du

Using identification between the last equation and equation 10, we deduce that hu =

(∂Xu

∂Fu
, ∂Xu

∂Yu
), and then that φF = ∂Xu

∂Fu
and φF = ∂Xu

∂Yu
. It can easily be checked that

dφu = dXu because X∗ is a martingale under the measure P
∗. The portfolio φ is then

self-financing.

Using this self-financing strategy, the insurer can manage the derivative contract

Xj. If assumptions are acceptable, the financial strategy error depends on the fre-

quency where futures positions of the replicating portfolio are adjusted.

Tests

This subsection aims at illustrating the theoretical results with tests of the strategy

management. Tests are realized for each step of the insurance management strategy.

The first subsection presents the test of the premium of the instantaneous insurance

contract and the second presents the test of the derivative strategy management.

Test of the premium of the instantaneous insurance contract

This subsection aims at testing the second strategy step and is split into three parts.

The first one describes the used data and the second one proposes the tests. The

third and last subsection comments the theoretical results and the tests.
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The crop yield data of Illinois State

The used county yield historical data of Illinois State during 1972–2002 are public

data of the National Agricultural Statistics Service.6 The Illinois State includes 102

counties. For each year, we know the area crop yield and the cumulative planted acre

of each county. The used price data provides from University of Illinois Endowment

Farm Division, and are detrend using US tresory historical rates data.

The yield data were adjusted for trends to reflect the 2002 production levels.

The trend rate, obtained with an exponential regression of Illinois State annual yield

during 1973–2002, is 1.22% per year. The crop average yield of Illinois producers is

144.95 bushels per acre with an annual coefficient of variation of 13.95% (a minimum

of 86.48 and a maximum of 171.68). Data include extreme events as the low yield

crop of the years 1983 and 1988.

The range correlation between the county crop yield noted Yit and the State crop

yield during 1973–2002 is [0.51, 0.94] with a mean of 0.84. Therefore, the county crop

yield risk includes systemic and idiosyncratic risk components.

Of course, the perfect conditions to test the first step of the insurer management

strategy need a set of farm crop yield data. However, the county yield data let us

carry out a significant test of the management strategy because the county crop yield

risk includes, as farm risk, systemic and idiosyncratic components.

Pooling tests description

Because we used county yield data, the tested contract is similar to the Group Risk

Plan and the Group Risk Income Plan. The loss of the county i is `i = FT ×max(yi
m−

Yit) and the indemnity is defined by I(`i) = `i because λ is chosen equal to 1. The

county parameters αi, βi and γi of Equation 6 are estimated using the ten previous

years’ values. According to our assumptions (normal distribution of ζ), we use least

square regression for estimation. The minimum yield Yim of the county depends on
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these historical results and a unique value Ym using the relation:

Yim = αi + βiYm (11)

Therefore, the premium of the instantaneous contract g(FT , YT , i) can be computed

for each county for each year. According to our assumptions, the insured area ratio

is uniform throughout the State. Because of the high variability of the instantaneous

contract premium, the usual loss ratio (Indemnities/Premiums) is unadapted. There-

fore, we test if the error ξ of the instantaneous contract management is near to 0 each

year, where:

ξ = Indemnities−Premiums =
102
∑

i=1

ai F ×max(Yim − yi, 0)−
102
∑

i=1

ai g(F, Y, i) (12)

where ai is the planted corn area ratio of the county i. Because we need the ten

previous years values to define the parameters, all results concern the period 1982–

2002.

Instantaneous insurance contract management tests results

Let us specify that the indemnity standard deviation are 37.57, 28.89 and 21.33

($/acre) where Ym are equal respectively to 135, 125 and 115 (bu/acre). Knowing

that average indemnities per acre are respectively $19.28, $13.06 and $8.73, it results

that the indemnity coefficients of variation are respectively 195%, 221% and 244%.

As presented by Miranda and Glauber (1997), the percentage of variability observed

for conventional insurance lines is very lower (e.g. Auto collision: 6%, Workers com-

pensation: 9%, Crop hail: 15%).7 Moreover, it is interesting to relate this value to

the concept of solvency margin. The legal safety minimum of the solvency margin

is around 15% to 20% of premium in most of European Countries. Then, we clearly

deduce that traditional private insurance is not able to support this high variability.
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However, the standard deviation of error ξ of the instantaneous contract is signif-

icantly smaller than the indemnity variability. They are respectively 3.34, 3.48 and

3.43 ($/acre), then they represent 17%, 27% and 39% of the average indemnities. This

results are still higher than variability coefficients of conventional insurance lines but

this values are now close. Moreover, let us precise that double static hedging of Mason

et al. (2003), mentioned in introduction, reduces the standard deviation around by

half. The derivative X i are really more effective.

The errors are illustrated in figure 3 when Ym = 125 (the error is null if the point

is on the bisecting line). Errors are really small if we consider that on the one hand

we only used basic assumptions and, on the other, the tested period includes extreme

events.8

[Figure 3 about here.]

Test of the derivative strategy management

We use for the test of the first step, the corn yield futures quotation data during

1997-1998. This subsection aims at testing the financial management step of the crop

yield contract. First, it describes the Chicago Board of Trade quotations data used.

It then proposes the tests and, finally, presents and comments the tests results.

The CBOT quotation data

The data of the Chicago Board of Trade used are quotations of the corn price futures

and the Illinois crop yield futures during 1995–2000. For the crop yield futures, we

only take into account the settlement of January 1997 and January 1998 because

more liquidity has be founded (respectively 42 and 140 contracts exchanged). The

corresponding corn price futures are respectively December 1996 and December 1997.

Moreover, the risk-free rate of 1996 used is 5,20% and that of 1997 is 5,14% (From

Econstat, US Treasury Instrument).
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The financial management tests description

The test uses exactly the theoretical strategies presented in the previous section.

Futures positions are adjusted each quotation day (at closing price). To get close

to real conditions, the geometric Brownian motions parameters of futures contracts

are estimated on the previous year quotation using the classical method presented by

Hull (2000). The covariance between the two Brownian motions is estimated by the

instantaneous correlation between Ft and Yt. For the 19 December 1996 settlement

test, we used the following parameters: µF = 0, 07, σF = 0, 268, µY = −0, 06,

σY = 0, 0556, ρ = −76, 68% and r = 5, 07%. For the 19 December 1997 settlement

test, we used: µF = −0, 082, σF = 0, 244, µY = −0, 019, σY = 0, 0580, ρ = −93, 15%

and r = 5, 02%.

We choose to test the derivative contract management in the case of the Cham-

paign county of Illinois. These parameters of the crop yield hazard are estimated in

the previous subsection. In 1996, the estimation gives αi = −22.67, βi = 1.22 and

γi = 14.39, and in 1997 αi = −23.71, βi = 1.23 and γi = 14.39.

As in the instantaneous contract management test, we examine three different

contracts. λ = 100% for each contract and Ym are respectively 135, 125 and 115

bu/acre. Using Champaign parameters, we deduce that Yim are respectively 141.88,

129.69 and 117.50 bu/acre in 1996 and respectively 142.28, 129.98 and 119.69 bu/acre

in 1997.

Moreover, an explicit formula of the derivative price is not available. Then, the

price Xt must be estimated:

Xt = ert
EP∗[X∗]

= e−r(T−t)
EP∗

[

FT λ
(

(yj
m − αj − βjYT ) (N(ηj) − N(κj)) + γj (f(ηj) − f(κj))

)]

Let us introduce a control variate E(FT , YT ) = FT × max(Yim − αi − βiYT , 0) or
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βiFT × max(Ym − YT , 0). First, we note that Prj(FT , YT ) ≥ E(FT , YT ) and that

Prj(FT , YT ) ≈ E(FT , YT ) for extreme values of YT . Secondly, we recognize that

E is the difference between two geometric Brownian motions and then E could be

assimilated with an exchange option. More precisely, E(FT , YT ) is equal in law to

max(S1
T − S2

T ) when S1 and S2 are two geometric Brownian motions with: S1
T =

βiFT Ym, S2
T = βiFT YT , σ1 = σF , σ2 =

√

σ2
F + σ2

Y + 2δσF σY and the correlation

coefficient:

δS =
σ2

F + δσF σY

σ1σ2

As proved by Guinvarc’h et al. (2004) in the same framework, it results under P
∗ that

S1
t = βiFtYm and that S2

t = βi × exp((r + δσF σY )(T − t)) × FtYt. Thirdly, the price

of this exchange option is known by the Margrabe (1978) formula. Also, we deduce

that E is a suitable control variate to estimate Prj(FT , YT ). Then, we would like to

estimate the value of the replicating portfolio φu. We note that:

∂Xu

∂Fu

=
∂Xu

∂X∗
u

∂X∗
u

∂F ∗
u

∂F ∗
u

∂Fu

= eru ∂X∗
u

∂F ∗
u

e−ru =
∂X∗

u

∂F ∗
u

Moreover, ∂
∂F ∗

u
X∗

T exist and is continuous. Then:

∂Xu

∂Fu

=
∂

∂F ∗
u

EP∗[X∗
T ] = EP∗[

∂

∂F ∗
u

X∗
T ]

Using the definition of Prj(FT , YT ), we deduce that ∂XT

∂Fu
= XT

Fu
. Moreover, knowing

that ∂
∂Yu

Prj(FT , YT ) = −FT λβi (N(ηi) − N(κi)), we also obtain that:

∂Xu

∂Yu

= −EP∗ [e−r(T−t) × FT λβi(N(ηi) − N(κi))]

Therefore, we are able to estimate the portfolio φu used in the risk management

strategy of the crop yield insurance contract.
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Financial management tests results and comments

Table 1 presents the tests results. In spite of the low liquidity of the crop yield

futures, we obtain a low error for the management strategy. The financial management

strategy stated in the theoretical section is then performed to manage a portfolio of

crop yield insurance contract.

[Table 1 about here.]

This strategy is illustrated in figure 4 with the Champaign parameters when Ym

is chosen at 135. The value of Xt reaches a minimum of $2.71 and a maximum of

$38.71. Then, the figure shows that management strategy is suitable to manage the

large variations of Xt.

[Figure 4 about here.]

The beginning value of derivative (X0) is $21.48 and this settlement value is $32.56.

The result of the financial management strategy gives $34.07. Therefore, the set-

tlement error is equal to $-1.51. In respect of the volatility of the derivative price,

errors are acceptable. Both the instantaneous insurance premium tests and the finan-

cial tests prove the practical ability for an insurer to manage a crop yield insurance

contract.

Conclusion

Can a private insurer manage an agricultural crop insurance contract that includes

a large systemic risk component without public reinsurance? As a conclusion to this

paper, it is theoretically feasible and practically manageable under the existence of

adequate futures contracts (mainly, the crop yield futures contract). This manage-

ment strategy questions therefore the relationship between private insurance activities

and public intervention.
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A strong implication of the above model is the need for insurance companies to

have access to financial markets. Today, the worlds of finance and insurance are

tightly linked so they are technically able to unite their expertise. However, there is

a legal issue as regulations in many countries usually limit the capacity of actors to

combine their expertise.

The strategy proposed in this paper opens commercial prospects for insurers. Fur-

thermore, it could open opportunities for financial markets to include new contracts.

If this model offers interesting prospects, it has some limits. The main limit of this

work is market completeness. Our model assumes the existence of the price futures

contract and the crop yield futures contract. The Chicago Board of Trade quoted

crop yield contracts from 1995 to 2000. The contract was removed due to market

imbalance and therefore a lack of liquidity. The Exchange has been working on many

contract improvements in order to reopen this market for different agricultural crops.

The model of a crop insurance contract, as developed in this paper, could bring an

additional and important liquidity to this incoming market.
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Notes

1Two years later, Li and Vukina (1998) measured the effectiveness of this hedging

for North Carolina producers.

2According to this principle, the insured cannot profit from a loss.

3Abundant literature deals with a more adapted financial model that includes

stochastic volatility and/or jump processes. Particularly, our assumption implies log-

normality for crop yields while they tend to be negatively skewed. Nevertheless, this

assumption is the standard of continuous time financial models proposed by Black

and Scholes (1973) and it may enable us to prove the interest of our insurance risk

management approach.

4
P
∗ is the unique measure equivalent to P where







F ∗
t

Y ∗
t






is a local martingale

under P
∗.

5As shown by Ramaswami and Roe (2004), (ζj)j=1,...,n are not independent. Then,

we cannot apply the central limit theorem to prove the convergence in probability of

the error pooling.

6www.usda.gov/nass/

7US statistics during 1963–1992.

8In 1988 for example, indemnities reached 36% of the possible maximum indemnity

estimated at $350 per acre (
∑102

i=1 ai F × Yim).
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Dec 1996 Dec 1997
Ym 135 125 115 135 125 115
Beginning Price 13.04 3.83 0.73 21.48 7.91 1.99
Settlement Price 12.13 3.03 0.45 32.56 12.97 3.38
Strategy Results 13.69 3.56 0.44 34.07 13.59 3.44
Error -1.56 -0.53 0.01 -1.51 -0.62 -0.06
Min Xt 11.58 2.91 0.44 2.71 0.46 0.05
Max Xt 52.58 22.71 6.78 38.71 16.62 4.87

Table 1: Financial management strategy tests results.
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