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Preface

Originally introduced in [146, 153], Hybrid High-Order (HHO) methods provide a
framework for the discretisation of models based on Partial Differential Equations
(PDEs) with features that set them apart from traditional ones. The construction
hinges on discrete unknowns that are broken polynomials on the mesh and on its
skeleton, from which two key ingredients are devised:

(i) Local reconstructions obtained by solving small, embarrassingly parallel prob-
lems inside each element, and typically conceived so that their composition
with the natural interpolator of sufficiently smooth functions yields a physics-
and problem-dependent projector on local polynomial spaces;

(ii) Stabilisation terms that penalise residuals designed at the element level so
as to ensure stability while preserving the approximation properties of the
reconstruction.

These ingredients are combined to formulate local contributions, which are then
assembled as in standard Finite Element Methods. From this construction, several
appealing features ensue: the support of polytopal meshes and arbitrary approxima-
tion orders in any space dimension, an enhanced compliance with the physics, and a
reduced computational cost thanks to the compact stencil along with the possibility
of locally eliminating a large portion of the unknowns. This monograph provides
an introduction to the design and the mathematical aspects of HHO methods for
diffusive problems, along with a panel of applications to advanced models in com-
putational mechanics.

The support of polytopal meshes is perhaps the most defining feature of HHO
methods. Mesh generation and adaptation is often the bottleneck of computer as-
sisted modelling: despite the enormous progress in this field, traditional unstructured
meshes suffer from intrinsic drawbacks, and disposing of discretisation methods that
deliver high-order approximations on polytopal meshes constitutes a veritable tech-
nological jump. Let us consider a few examples. Capturing geometricmicrostructures
in the domain traditionally requires the use of small elements, which can significantly
add to the computational burden. With polyhedral meshes, on the other hand, one
can incorporate such geometric features into larger agglomerated elements [17, 36],
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thus achieving a significant cost reduction without compromising the accuracy. In
the context of conforming Finite Element Methods, local mesh adaptation requires
special strategies to either prevent or treat hanging nodes. When conforming mesh
refinement is performed, one typically faces the choice of accepting a degradation
of the mesh quality or renouncing the benefit of nested meshes. Polyhedral methods,
on the other hand, can usually treat hanging nodes seamlessly, and even support in-
novative strategies such as adaptive coarsening [36]; see, e.g., the a posteriori-based
adaptive HHO algorithm devised in [161] for electrostatic models. The seamless
support of meshes that are nonconforming in the traditional sense is also crucial for
models that feature inner interfaces. In geosciences applications, e.g., accounting for
the presence of fractures or faults in the subsoil is paramount to accurately reproduce
the flow patterns. In petroleum basin modelling, fractures are typically incorporated
into the numerical models by the mutual sliding of two portions of a corner-point
grid along the fracture plane, resulting in highly nonconforming meshes [192]. Poly-
topal methods offer a true advantage in this case, as no special strategy is required
to handle this situation; see, e.g., [105, 106], where HHO methods for Darcy flow
and passive transport in fractured porous media are devised and analysed, or [55],
where fracture networks are simulated using Virtual Element Methods.

Another key feature of HHO methods is compliance with the physics, meaning that
they can incorporate fundamental properties of the model into the design. Let us
examine a few examples. In the context of diffusive conservation laws in divergence
form, e.g., HHO schemes can typically be interpreted as enforcing polynomial mo-
ments of local balances with conservative numerical approximations of the fluxes;
see, e.g., [117] and [162, Section 4.3.2.5] concerning scalar linear diffusion problems,
[73, 149] concerning linear and nonlinear elasticity, [56, 72] on linear and nonlinear
poroelasticity, and [68] for the incompressible Navier–Stokes equations. Another
example of compliance with the physics is provided by the robustness with respect
to the variations of the problem coefficients; see, e.g., [147] concerning anisotropic
heterogeneous diffusion problems in mixed formulation. In some cases, robustness
can be extended to obtain a seamless treatment of singular limits of PDE models.
A first example is provided by the Péclet-robust HHO scheme of [144], which fully
supports locally degenerate diffusion with exact solutions that exhibit jumps inside
the domain; see also [152] for further insight into this topic. Another example is
provided by [69], where the authors propose an HHO scheme for the Brinkman
problem that is fully robust in the Darcy limit. In this case, a novel approach to the
analysis was also devised in order to identify the local (Darcy- or Stokes-dominated)
regime inside each element. A third example of a physics-compliant HHO scheme is
provided by [68, 157], where non-dissipative discretisations of the convective term
in the incompressible Navier–Stokes equations are proposed.

The construction of HHO methods is conceived so as to enable efficient sequential
and parallel implementations in arbitrary space dimension [114]. Both the recon-
struction and the stabilisation terms are devised at the element level, and the coupling
among neighbouring elements only occurs via the common face unknowns. As a
result, element unknowns can be eliminated prior to the assembly step by comput-
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ing a local Schur complement; see, e.g., [162, Section 4.3.2.4] and [154, Section
3.3.1]. This procedure is often referred to as “static condensation” in the Finite Ele-
ments literature, a term reminiscent of its origins in computational mechanics [206,
214]. For the HHO approximation of degree k ≥ 0 of a scalar three-dimensional
diffusion problem, the number of degrees of freedom after static condensation is
1
2 (k + 2)(k + 1)Nfaces, with Nfaces denoting the number of non-Dirichlet mesh faces.
For high polynomial degrees, this is a dramatic improvement over, e.g., vanilla im-
plementations of Discontinuous Galerkin methods, where the number of degrees of
freedom is 1

6 (k+3)(k+2)(k+1)Nel, with Nel denoting the number of mesh elements.
The improvement is even more dramatic when considering more complex models
such as those encountered in incompressible fluid mechanics. As noticed in [154] in
the context of the linear Stokes problem, it is possible in this case to devise a static
condensation strategy that, for any polynomial degree, leads to global systems with
only one pressure unknown per element; cf. also [157, Remark 6] for the extension
of such a strategy to the fully nonlinear Navier–Stokes problem.

To close this introductory section, we provide a brief historical overview of the
development of HHO methods. Hybrid High-Order methods in primal form were
originally introduced in [146] in the context of quasi-incompressible linear elasticity
models, with the first fully referenced publication [153] dating back to 2014. The
early steps in the development of the method were, on the one hand, the identification
of equilibrated tractions [149] and, on the other hand, its extension to locally variable
coefficients [150] and more general, possibly degenerate scalar second-order models
[144]. In parallel, the Mixed High-Order method was introduced in [147], and its
link with primal HHO methods first recognised in [8]. Among the first applications
to engineering problems, we can cite the a posteriori-driven adaptive algorithm for
electrostatics devised in [161]; see also [156]. A keystone in the understanding of
the relations between HHO and other hybrid methods is [117], where bridges are
built with Hybridisable Discontinuous Galerkin and High-Order Mimetic methods.
Further progress in this direction is made in [58], where a unified framework com-
prising a large number of mixed and hybrid methods is proposed, and in [145],
where HHO methods are bridged with Nonconforming Virtual Elements, and a
stable gradient reconstruction is proposed which enables the interpretation of both
methods as Gradient Discretisation Methods [174]. At the same time, a large effort
was undertaken for the application, and corresponding analysis, of HHO methods to
complex models, which are more realistic from the point of view of scientific and
engineering applications. A first remarkable contribution is the HHOmethod for the
Cahn–Hilliard problem designed and analysed in [107], which constitutes the first
application to nonlinear problems. Landmark contributions in this direction are the
papers [141, 142], which study the application of the HHOmethod to fully nonlinear,
Leray–Lions type elliptic models. Here, a systematic development of the tools for
the design and analysis of HHO methods for nonlinear problems was undertaken,
leading to key functional analysis results of broader applicability. A first example of
such results is the development of a framework for the study of the approximation
properties of projectors on local polynomial spaces, which also resulted in a change
of the canonical way of introducing HHO methods [162]. Another valuable set of
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results are Sobolev embeddings and compactness results for bounded sequences of
HHO functions, which form the cornerstone of the convergence analysis by com-
pactness [169, Section 1.2]. The application of HHO methods to more complex
models of engineering interest subsequently focused mainly on incompressible fluid
mechanics, solid mechanics, and geosciences. Concerning the first applicative field,
key contributions include the HHO method for the Stokes problem developed in
[8], later hacked in [99, 155] to robustly handle small values of the viscosity and
large irrotational body forces, and the HHO methods for the Navier–Stokes prob-
lem developed and analysed in [157] and [68], where a conservative formulation
based on Temam’s device is proposed. A recent contribution inspired by the HHO
literature is [98], where Bingham pipe flows are considered. We can also cite [9],
where the influence of dominant convection on the order of convergence is evaluated
using the Oseen model. Still in the context of fluid dynamics, [69] proposes and
analyses an HHO method for the Brinkman model, that is fully robust in both the
Stokes and Darcy limits. Key contributions to the application of HHO methods to
problems in solid mechanics include [73], concerning nonlinear elastic models valid
under the small deformation assumption, [60], on the application of HHOmethods to
Kirchhoff–Love plate bending problems, and, more recently, [4], on finite deforma-
tions of hyperelastic materials. Applications of the HHO technology to problems in
geosciences include fluid flows in fractured porous media [105, 106], miscible fluid
flows in porous media [14], as well as linear and nonlinear poroelasticity [56, 72]
possibly including stochastic coefficients [71]. Finally, more recent methodological
developments include, in particular, the extension of the HHO method to meshes
with curved faces [67], the treatment of unfitted interface problems [90] based on
the CutFEM technology [89], and its application to highly oscillatory elliptic models
[115]. We also point out here the analysis framework for methods in fully discrete
formulation developed in [143], which shows the benefits of this approach, origi-
nally adopted in the context of HHOmethods, when applied to other recent polytopal
technologies.

Other polytopal methods

Discretisation methods that support polytopal meshes and, possibly, arbitrary ap-
proximation orders have experienced a vigorous development over the last decade.
Novel approaches to the design and analysis have been developed or rediscovered
borrowing ideas from other branches of mathematics such as topology and geometry,
or expanding past their initial limits the original ideas underlying Finite Element or
Finite Volume Methods. A brief historical perspective focusing on diffusive prob-
lems is sketched in what follows.

Since their introduction, usually attributed to Tihonov and Samarskiı̆ [271], Finite
Volume Methods have been extensively used for the discretisation of PDE models
expressed as linear or nonlinear conservation laws in divergence form. The classi-
cal Two-Point Flux Approximation scheme requires, however, strict conditions of
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mesh-data compliance for consistency; see, e.g, the reference monograph [189].
Several lowest-order polytopal methods have therefore been developed in the Finite
Volumes spirit in an attempt to circumvent these conditions. In Multi-Point Flux
Approximation methods [1–3, 7, 181], consistent approximations of the flux are ob-
tained through local reconstructions involving elements that share a common node.
InMixed [172] and Hybrid [188] Finite VolumeMethods, a similar result is achieved
by introducing auxiliary unknowns at faces, which can in some cases be eliminated
resorting to local interpolation. In the Discrete Duality Finite Volume Method [137,
166, 208], two simultaneous discrete versions of the conservation law are solved
on primal and dual meshes, using both vertex and cell unknowns. All of the above-
mentioned methods possess local conservation properties on the primal mesh, and
enable an explicit identification of continuous approximations of the normal trace
of the flux. We refer the reader to [163, 169] for a more comprehensive list and a
critical review of Finite Volumes and related methods on generic polytopal meshes.
Over the years, polytopal Finite Volume Methods have been applied to a variety of
linear and nonlinear PDE models including, e.g., fully nonlinear elliptic problems
in divergence form [15, 170], miscible fluid flows in porous media [102, 104], the
incompressible Navier–Stokes equations [173, 202, 203], etc.

While classical Finite Element Methods are restricted to certain element geometries,
extensions to more general meshes are possible in some cases. Any polytopal mesh
can be split, e.g., into a simplicial conforming submesh over which standard Finite
Element Methods can be applied, possibly with some modifications. In [222], this
idea is applied to construct mixed Finite Element Methods on polytopal meshes by
solving local problems; see also [275, Section 7] for a discussion on this and related
approaches. Conforming P1 elements on a simplicial submesh are at the core of
the Vertex Approximated Gradient method, see [190] and [174, Section 8.5], which
additionally uses barycentric eliminations to prevent the submeshing from introduc-
ing additional unknowns, and mass-lumping to mitigate the issues of P1 elements
on coarse meshes in case of heterogeneities. It is also possible to construct Finite
Elements on certain types of polytopal elements without resorting to submeshing.
Various constructions of H1-conforming polygonal Finite Elements are explored,
e.g., in [265], where the authors compare Laplace [111, 210], Wachspress [276], and
mean value shape functions on convex polygons. Further related works include [266,
267]. Similar constructions are also possible for mixed Finite Elements. In [219],
H(div)-conforming Finite Elements on polygons and certain polyhedra are con-
structed using barycentric coordinates. A general construction of scalar and vector
Finite Elements families on convex polygonal and polyhedral elements is proposed
in [198], where basis functions are expressed in terms of barycentric coordinates and
their gradients; this approach is inspired by the Finite Elements Exterior Calculus
formalism [20, 24, 25]. Similar ideas are developed in [108] to devise H(curl) and
H(div) Finite Elements on polytopalmesheswith theminimumnumber of degrees of
freedom ensuring the appropriate global continuity. Constructions extending classi-
cal properties of nonconforming and penalised Finite Elements also include the ones
at the root of Cell Centered Galerkin [140] and generalised Crouzeix–Raviart [159]
methods. In the former case, a special subspace of piecewise linear polynomials with
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optimal approximation properties is identified and used within an interior penalty
Discontinuous Galerkin formulation. In the latter case, a construction is proposed
yielding the continuity at interfaces of the average values of traces on a simplicial
submesh which need not be constructed in practical computer implementations.

Lowest-order polytopal methods have also been developed starting from points of
view entirely different from those underpinning Finite Elements and Finite Volumes.
A particularly fruitful (direct or indirect) source of inspiration has been the classical
work of Whitney on geometric integration [279].

Mimetic Finite Differences are derived by mimicking the Stokes theorem to for-
mulate discrete counterparts of differential operators and L2-products; see, e.g., [221,
235] concerning the first extensions of this approach to polygonal and polyhedral
meshes, [86] on the convergence theory for mixed/hybrid versions of the method
(with primary unknowns on the mesh faces), and [82] on the nodal version (with
unknowns at the mesh vertices). A complete exposition of the mathematical aspects
underpinning the Mimetic Finite Difference method can be found in the research
monograph [50], where a panel of applications to various models is also discussed.
[175] showed that the mixed/hybrid flavor of the Mimetic Finite Difference method
[86, 87] is algebraically identical to Mixed and Hybrid Finite Volume Methods, and
that all these methods can be regarded as three different presentations of a generic
family, the Hybrid Mimetic Mixed method. The relation between Hybrid Mimetic
Mixed and the lowest-order version of HHO methods has been studied in [153, Sec-
tion 2.5] for pure diffusion and in [144, Section 5.4] for advection-diffusion-reaction.

In the Discrete Geometric Approach, originally introduced in [134] and extended
to polyhedral meshes in [132, 133], as well as in Compatible Discrete Operators
[62, 63], formal links with the continuous operators are expressed in terms of Tonti
diagrams [272, 273]. The latter enable the identification of analogies among physical
theories based on notions borrowed from algebraic topology. Compatible Discrete
Operator methods have been applied to a variety of models mainly issued from
applications in fluid mechanics, and including steady incompressible creeping flows
[64] and advection-diffusion equations [96]. The Discrete Geometric Approach, on
the other hand, has a variety of applications to problems in electromagnetism, in-
cluding: electrostatics [260], the Schrödinger equation [261], eddy currents with a
cohomology-based approach [165], and the explicit solution of the Maxwell equa-
tions [131]. Both the Compatible Discrete Operator method and the Discrete Geo-
metric Approach are strongly related to Hybrid Mimetic Mixed and nodal Mimetic
Finite Difference methods [61], and also to the lowest-order version of Mixed High-
Order methods [147, Section 3.5].

Several of the methods discussed above have been lately bridged or incorporated
into more recent technologies; see, e.g., [58].

High-order discretisations on general meshes that are possibly physics compliant
can be obtained by the Discontinuous Galerkin approach. Discontinuous Galerkin
methods were originally introduced in [256] for the approximation of first-order PDE
models, while their application to the discretisation of second-order PDE models on
standard meshes has been considered starting from the late 1970s in [21, 31, 32, 168,
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278], building on the original work of Nitsche [246, 247] on the weak enforcement
of boundary conditions. A second stage was inaugurated by the pioneering works
[123, 124, 126–128] in the late 1980s tackling hyperbolic and parabolic problems,
which led to an impetuous development, further boosted by the landmark papers [39,
40] on the application to the full viscous compressible Navier–Stokes model. This
second stage culminated in the unified analysis of [23]. A third development stage
was thrusted by [36] (see also the Ph.D. thesis [269] fromwhich this work emanates),
where Discontinuous Galerkin methods were first applied to polyhedral meshes ob-
tained by element agglomeration, and by [148], where a complete set of analysis
tools for polytopal Discontinuous Galerkin methods was first established; we also
refer to [19], where bubble stabilisation techniques on polygonal meshes in dimen-
sion 2 were developed. Subsequent works that deserve to be mentioned here include
[17, 91, 92]. Despite their enormous success, Discontinuous Galerkin methods can
have practical limitations in some cases. For problems in incompressible fluid me-
chanics, inf–sup stability is in general not available for equal-order approximations
on general meshes; see, e.g., the discussion in [151, Sections 6.1.2 and 6.1.5]. This
typically requires the introduction of non-physical pressure stabilisation terms. For
similar reasons, ad hoc strategies are required for quasi-incompressible problems in
linear elasticity; see, e.g., [160] and references therein. Additionally, unless special
measures are taken, denoting by d the space dimension, k the polynomial degree,
and Nel the number of mesh elements, the number of discrete unknowns in Discon-
tinuous Galerkin methods for scalar problems grows as

(k+d
d

)
Nel, and can therefore

become unbearably large, particularly for three-dimensional problems. Notice that
remedies are possible, including, e.g., the variation with fewer coupled unknowns
very recently pointed out in [236] and valid for general polyhedral meshes or, in
the context of the discretisation of conservation laws on standard meshes, the use of
nodal bases such as the ones discussed in [209, Chapter 6]. An extensive comparison
of Discontinuous Galerkin andHHOmethods on a variety of flat and curved two- and
three-dimensional meshes, including an assessment of the respective computational
cost, is contained in [67], to which we refer for further details.

A very fruitful attempt to overcome the limitations of Discontinuous Galerkin meth-
ods was undertaken in [100, 122], leading to Hybridisable Discontinuous Galerkin
methods. The key idea here is, starting from problems in mixed formulation, to intro-
duce auxiliary face unknowns enforcing the continuity of numerical fluxes through
interfaces. The resulting methods are amenable to hybridisation and static conden-
sation, and have a more favorable scaling of the number of discrete unknowns in
terms of the polynomial degree when compared to Discontinuous Galerkin meth-
ods. While most of the literature focuses on standard meshes, it has been recognised,
e.g., in [117] that the canonical versions of Hybridisable Discontinuous Galerkin
methods naturally extend to more general polytopal meshes. A different paradigm
for the extension to certain polytopal elements is provided by the very recent M-
decomposition techniques [119–121]. A recurrent research topic in the Hybridisable
Discontinuous Galerkin literature is the identification of superconvergent variations,
motivated by the analogy with classical mixed Finite Elements pointed out in [122].
In this respect, HHOmethods have brought two significant conceptual advances (see
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[117]): first, local reconstructions have been incorporated into the formulation of the
method rather than being used for post-processing; second, subtle local stabilisation
terms that satisfy richer consistency properties have been identified. As a result,
superconvergence of the scalar variable in HHO methods is built-in rather than
serendipitous. Achieving similar results for Hybridisable Discontinuous Galerkin
methods is possible using enhanced element spaces [228, 249]. Several links be-
tween Hybridisable Discontinuous Galerkin and other methods have been pointed
out over the years. Specifically, links with the Local Discontinuous Galerkin method
of [100, 130] and with the Staggered Discontinuous Galerkin method of [112] are
highlighted in [129, Section 6], where it is also shown that the Weak Galerkin meth-
ods of [240, 241, 277] enter the Hybridisable Discontinuous Galerkin framework;
see also [116] on this subject.

Another important family of arbitrary-order discretisation methods that support gen-
eral polytopal meshes is that of Virtual Elements. These can be described as Finite
Element Methods where explicit expressions for the basis functions are not avail-
able at each point; hence the term “virtual” in reference to the function space they
span. The degrees of freedom are selected so as to allow the computation of suitable
(problem-dependent) projections of virtual functions onto local polynomial spaces,
which are used in turn to formulate the Galerkin consistency terms. The polynomial
projections are typically nonconforming, so that this procedure results in a varia-
tional crime [263]. For this reason, stabilisation terms inspired by Mimetic Finite
Differences are required, which can be interpreted as penalisations of the difference
between the virtual solution and its polynomial projection. In their original formu-
lation, Virtual Elements were developed based on conforming virtual spaces; see,
e.g., [43, 44] for the H1-conforming case, [84] for the H(div)-conforming case, [54]
for the Hs-conforming case with s ≥ 1, and [45] for a more general overview of
both the H(div)- and H(curl)-conforming cases. More recently, a high-order version
of the Mimetic Difference Method for a pure diffusion problem was proposed in
[234], which was later reinterpreted as a nonconforming Virtual Element Method
and analysed in [26]. It was first recognised in [117, Section 2.4] that the resulting
method could be interpreted as a variation of the original HHOmethod with depleted
element unknowns. An attempt to provide a unifying perspective on various families
of hybrid and mixed methods was made in [58] where, in particular, bridges were
built between HHO andMixed High-Order methods on the one hand, and mixed and
nonconforming Virtual Element Methods on the other. Unified analyses of conform-
ing and nonconforming Virtual Element Methods for diffusive problems have been
recently proposed in [95], where a standard Finite Elements approach is adopted,
and in [143], based on the third Strang lemma; see Appendix A. For further insight
on Virtual Element Methods we refer the reader to Section 5.5.
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Outline of the book

This book is subdivided into two parts comprising, respectively, five and four chap-
ters. Part I lays the foundations of HHO methods by introducing the discrete setting
and discussing the construction and analysis of HHO schemes for linear models with
diffusion. Part II addresses the application of HHO methods to advanced models:
nonlinear diffusion operators, linear elasticity, and incompressible flows. The expo-
sition is completed by two appendices: the first one provides the main analysis tools
for HHO discretisations of linear models, while the second one covers the principles
related to the practical implementation of HHO methods.
For each of the models considered in this book, the exposition follows the same steps:
first, we introduce the appropriate local reconstruction operators, use them to build
the local contribution to the discrete problem, and show how the latter is assembled;
second, we discuss the well-posedness of the discrete problem, highlighting its key
stability properties; third, we carry out a convergence analysis. For linear problems,
the third step follows the abstract analysis framework of Appendix A. For nonlinear
problems, we develop ad hoc analysis strategies while still taking inspiration from
the concepts of stability and consistency used in the linear case.
We mention here that, throughout the book, we make the following abuse of lan-
guage (which is somehow standard in the context of numerical methods): when
writing “polynomial of degree k” we actually mean “polynomial of degree k or
less”. We also often do not make explicit that these polynomials are actually poly-
nomials of several variables (and that the degree always refers to the total degree).
Let us also notice that, the focus of this book being on polytopal methods, the expo-
sition typically concentrates on space dimensions d ≥ 2. The one-dimensional case
entails simple modifications, briefly mentioned in Remarks 1.13 and 2.10.

Foundations

Chapter 1 establishes the setting for the development and analysis of HHOmethods.
We start by discussing the appropriate notion of polytopal mesh. The main difference
with respect to the corresponding notion for Discontinuous Galerkin methods (see,
e.g., [151, Chapter 1]) lies in the definition of mesh faces which, for HHO methods,
are portions of hyperplanes. Since this book focuses on the so-called h-convergence
analysis (with h denoting, as usual, the meshsize), we next introduce the notion of
regular mesh sequence, which generalises the classical one encountered in Finite
Element Methods; see, e.g., [113, p. 111]. This concept is central to derive the
basic geometric and functional inequalities needed for the analysis. Notice that, in
this manuscript, we do not address the p- or hp-versions of the HHO method, where
convergence is attained by increasing the polynomial degree rather than (or on top of)
reducing the meshsize; see Remark 2.30 for references on this subject. The following
step consists in introducing some relevant function spaces: Lebesgue spaces, global
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and broken Sobolev spaces, as well as local and broken polynomial spaces. We
also prove some key functional results, namely (direct and) inverse Lebesgue and
Sobolev embeddings on local polynomial spaces, as well as continuous and discrete
local trace inequalities on mesh faces. The last section of Chapter 1 addresses the
cornerstone of HHO methods, namely projectors on local polynomial spaces. We
focus on two particularly relevant instances: L2-orthogonal projectors, obtained by
minimising the difference with respect to the projected function in the L2-norm, and
elliptic projectors, where the H1-seminorm of the difference is minimised instead. In
both cases, we study the continuity and approximation properties of these projectors
following the approach proposed in [141, 142], and based on the classical results of
[179]; see also [77, Chapter 4].

In Chapter 2 we introduce the basic principles of HHO methods using as a model
problem the Poisson problem. The starting point for the local construction is the
following key remark: given an integer k ≥ 0 and a mesh element T , the elliptic
projection of degree (k + 1) of a smooth function v can be computed using only the
L2-orthogonal projections of v of degree k onT and on each of its faces. This suggests
the construction of a scheme where we take as discrete unknowns polynomials of
degree k over T and its faces, without imposing any continuity property between
the mesh element unknown and the face unknowns, or among the face unknowns
themselves (which can, therefore, exhibit jumps at the element vertices in two space
dimensions and at the element edges in three space dimensions). The natural local
interpolator consists in L2-projecting smooth functions onto polynomials of degree
k over T , and polynomials of degree k over each face of T . Starting from this set of
discrete unknowns, we devise inside the mesh element a potential reconstruction of
degree (k+1), in such a way that its composition with the local interpolator coincides
with the elliptic projector. This local reconstruction emulates an integration by parts
formula over T with element-based and face-based unknowns playing the role of the
function in volume and boundary integrals, respectively. From the reconstruction,
we build a local contribution composed of two terms: the first is a consistent Galerkin
contribution, while the second is a stabilisation for which a set of abstract design
conditions are provided. Having defined a local contribution, the next step consists in
formulating and studying the discrete problem.We start by defining a global space of
discrete unknownswhich incorporates the single-valuedness of unknowns attached to
interfaces, as well as the Dirichlet condition on boundary faces. Vectors of discrete
unknowns in this space satisfy a discrete counterpart of the Poincaré inequality,
which yields the well-posedness of the discrete problem obtained by element by
element assembly of local contributions. The discrete problem can be equivalently
reformulated in terms of local balances, with numerical normal traces of the flux
that are continuous across mesh interfaces. We next estimate the discretisation error
applying the abstract results of Appendix A. Specifically, we show that the energy
norm of the error converges as hk+1 and that, under the usual elliptic regularity
assumption, its L2-norm converges as hk+2. The latter result highlights one of the
distinctive features of HHO methods [117], namely the fact that element-based
discrete unknowns superconverge to the L2-orthogonal projection of degree k of the
exact solution. To close the chapter, we briefly discuss the extension to more general
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boundary conditions and provide numerical evidence supporting the theoretical
estimates in both two and three space dimensions.

In Chapter 3 we consider the application of the HHO method to more complex
models. We first treat the case of anisotropic and heterogeneous diffusion under
the assumption that the diffusion coefficient is piecewise constant on a partition
of the domain to which the mesh complies. This kind of model is relevant, e.g.,
in geosciences applications, where it is used to describe Darcy flows in porous
media. The starting point is in this case an oblique version of the elliptic projector
which embeds a dependence on the local diffusion coefficient. Having assumed
that the latter is constant inside each element, the oblique elliptic projection of
degree (k + 1) of a smooth function can still be computed from its L2-orthogonal
projections of degree k on the element and each of its faces. Thus, we can build an
HHO method from the same set of discrete unknowns as for the Poisson problem by
introducing a diffusion-dependent potential reconstructionwhich, combinedwith the
local interpolator, yields the oblique elliptic projector. A delicate point in this case is
the robustness of themethodwith respect to the variations of the diffusion coefficient.
We give a detailed account of this point in the analysis by tracking the dependence
of the multiplicative constants on these variations. Specifically, we derive an energy-
norm error estimate that is (i) fully robust with respect to the heterogeneity of the
diffusion coefficient, meaning that this error is uniform with respect to the jumps of
the coefficient across interfaces, and (ii) partially robust with respect to the diffusion
anisotropy, with a mild dependence on the square root of the local anisotropy ratio.
We then extend the model by including first-order transport terms and reaction terms.
The discretisation of the former hinges on two contributions devised at the local level:
(i) a local reconstruction of the advective derivative which emulates an integration
by parts formula (but which, in general, does not return a projector when composed
with the local interpolator), and (ii) a stabilisation term which introduces some
upwinding by penalising the difference between element- and face-based unknowns.
A key point consists in this case in ensuring the robustness of the method when the
advection term is locally dominant, corresponding to large values of a local Péclet
number. We provide a detailed account of this point in the analysis by tracking the
dependence of the constants in the energy-norm error estimate. Specifically, we show
that, when using discrete unknowns of degree k ≥ 0, each element T of diameter hT
contributes to the error with a term of order h

k+ 1
2

T in the advection-dominated regime
and, coherently with the results for pure diffusion, of order hk+1

T in the diffusion-
dominated regime. This estimate also covers all intermediate regimes, and carries
out to the singular limit corresponding to locally vanishing diffusion, thus making
the method fully robust with respect to dominant advection. We also prove error
estimates in the L2-norm under the usual elliptic regularity assumption. Notice that,
in this case, we cannot prevent a dependence on the global anisotropy ratio and
Péclet number, since these quantities appear in the elliptic regularity estimate. We
close the chapter with a numerical illustration including two- and three-dimensional
tests.

Chapter 4 addresses two additional topics on purely diffusive models: a posteriori
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error analysis and locally varying diffusion. The goal of a posteriori error analysis
consists in estimating through a computable quantity the error between a known
numerical approximation and the unknown exact solution. This information can be
used, e.g., to drive local mesh refinement by identifying those elements where the
error is larger. This is a crucial point to fully exploit the potential of high-order
methods when the exact solution exhibits singularities, as is often the case for the
complex geometries encountered in applications. Following the seminal ideas of
Mikhlin [237] and Ladevèze [224] based on the Prager–Synge equality [252], we
derive an upper bound for the error – defined as the difference between the potential
reconstruction and the exact solution – in terms of three estimators measuring,
respectively, the lack of conformity of the method, the residual of the equation in
strong form, and the stabilisation. The upper bound is guaranteed, meaning that
the estimators are fully computable from known quantities. The estimators are also
locally efficient, that is, they provide local lower bounds of the error, making them
suitable to drive mesh refinement. Their practical performance in this context is
numerically demonstrated by solving three-dimensional singular problems with an
adaptive HHO algorithm. Interestingly, the support of general polyhedral elements
can be exploited in this case to perform local mesh coarsening instead of refinement,
which does not require to generate a novel mesh at each iteration. Mesh coarsening
as a means to reduce the computational cost while preserving geometric accuracy
was first proposed in [36] in the context of Discontinuous Galerkin methods, and
later pursued in [38, 41, 66] with particular focus on computational fluid mechanics.

The second section of Chapter 4 extends the results of the first section of Chapter 3
to models where the diffusion coefficient varies smoothly inside the mesh elements.
A key difference with respect to the piecewise constant diffusion case is that we
introduce here a richer reconstruction of the gradient using the full space of vector-
valued polynomials of total degree k, instead of the gradients of polynomials of total
degree (k + 1). This strategy, different from the one adopted in [150], is a precursor
to the developments of Chapter 6, where more complex nonlinear diffusion models
are considered. The main result of this section is an energy-norm error estimate
which shows that, when the diffusion coefficient varies inside mesh elements, the
contribution to the error of every mesh element is proportional to a full power (as
opposed to the half power found in Chapter 3) of the local anisotropy ratio. We
also derive an L2-norm estimate, showing that, also in this case, the HHO method
enjoys a superconvergence property of the element-based unknowns towards the
L2-orthogonal projection of degree k of the exact solution.

In Chapter 5 we study links between HHO methods and various other classical or
modern methods. We start by presenting a variant of the HHO method of Chapter
2, in which the element unknowns are polynomials of degree ` = k − 1 or k + 1
instead of ` = k. We show that the principles behind the design of HHO methods
can easily be adapted to this choice of unknowns, and lead to numerical schemes
that have the same O(hk+1) convergence rates in energy norm as the standard HHO
method corresponding to ` = k. A particular treatment has to be made in the case
(k, `) = (0,−1), where the absent element unknowns have to be reconstructed by
averaging face unknowns. In this case, the corresponding potential reconstruction is
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linked, through the interpolator of smooth functions, to a slightly different elliptic
projector in which the closure equation involves a certain average over the element
faces rather than the average over the element itself. The approximation properties
of this modified elliptic projector are analysed, and turn out to be similar to the ones
of the classical elliptic projector. An O(hk+2) superconvergence rate in L2-norm is
established for the (k, `)-variant of the HHOmethod, except in the case (k, `) = (1,0).
Numerical tests show indeed that, if (k, `) = (1,0), the rate of convergence in L2-norm
stagnates to O(hk+1) = O(h2), the same rate as in the energy norm.

Next, we consider two low-order methods and present their links with HHO. On
matching simplicial meshes, it is shown that the matrix of the variant of the HHO
method corresponding to (k, `) = (0,−1) is identical to that of the non-conforming P1

finite element method; only their source terms differ. On generic polytopal meshes,
we prove that the standard HHO scheme for k = 0 is a particular case of the Hybrid
Mimetic Mixed method [175]. Hence, HHO schemes can be seen as high-order
extensions on generic polytopal meshes of these two low-order methods.

We then analyse the links between the HHO method and the Mixed High-Order
method of [147]. The latter discretises the mixed formulation of the Poisson prob-
lem, a saddle-point problem on the pair of unknowns potential–flux. The potential
unknowns are broken polynomials of degree k on the mesh; the flux unknowns are
gradients of polynomials of degree k inside the elements, and polynomials of degree
k on each face – representing normal components of the fluxes. As for the HHO
method, the design of the Mixed High-Order scheme relies on local reconstructions
in the elements from the flux unknowns: a divergence in the space of polynomials
of degree k, and a flux in the space of gradients of polynomials of degree (k + 1).
When composed with the natural interpolator, the former coincides with the L2-
orthogonal projector of the divergence on the local polynomial space of degree k,
while the latter is polynomially consistent up to the degree (k + 1). As usual in
mixed methods, the global space accounts for the continuity of the normal fluxes
across the interface. We present an hybridisation of the Mixed High-Order method
in which this continuity condition is removed from the space and accounted for by
introducing Lagrange multipliers, polynomials of degree k on the faces that can be
interpreted as additional potential unknowns; this transforms the space of potential
unknowns into the standard space of unknowns for the HHO method of degree k.
After designing a potential-to-flux operator, we conclude this analysis by proving an
algebraic equivalence between theMixedHigh-Order scheme, its hybridised version,
and the HHO scheme (when the stabilisation term is chosen in a form that involves
the potential-to-flux operator).

The next link between the HHO method and other polytopal methods revolves
around Virtual Element Methods: we give a presentation of the HHO scheme for the
Poisson problem in the form of a Virtual Elements scheme. We start by identifying a
space of broken H1 functions on the mesh that is in one-to-one correspondence with
the space of HHO unknowns. These functions do not have explicit representations,
but are fully determined by the standard HHO degrees of freedom (L2-projections
on polynomials of degree k on the mesh elements, and L2-projections on polyno-
mials of degree k on the mesh faces). Through this correspondence, the potential
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reconstruction becomes the elliptic projector, and we can thus interpret the Galerkin
contribution of the HHO scheme in terms of the elliptic projections of virtual func-
tions. The stabilisation term is then seen as a penalisation of the defect between
virtual functions and polynomials of degree (k + 1). The same process carried out
on the (k, `)-variant of the HHO method, with ` = k − 1, gives the Nonconforming
Virtual Element Method of [26]. For the sake of completeness, we also address Con-
forming Virtual Element Methods in two space dimension, discussing the difference
with respect to HHO methods, and providing a non-standard analysis inspired by
that of HHO schemes; in particular, we study the approximation properties of the
projector, relevant to Conforming Virtual Elements, in W s,p-spaces with p possibly
different from 2.

The final section of this chapter shows that HHO methods can be embedded into
the Gradient Discretisation Method, a generic framework for the design and analysis
of numerical schemes for diffusion problems [174]. It consists in designing and
analysing schemes, for various elliptic and parabolic models, using three abstract
discrete elements – a finite-dimensional space, and two reconstruction operators
(function and gradient). The accuracy of schemes written in the form of a Gradient
DiscretisationMethod is assessed using three quantities only dependent on the choice
of space and reconstruction operators: a discrete Poincaré inequality, a measure of
approximability properties, and a measure of defect of conformity (how well a
discrete integration by parts formula is satisfied). We show that a proper choice of
the space and reconstruction operators lead to the HHO method, and we evaluate
the three aforementioned quantities, showing that they behave as expected for a
high-order scheme.

Applications to advanced models

In Chapter 6 we consider the extension of HHO methods to fully nonlinear elliptic
equations involving Leray–Lions operators [230], which contain the p-Laplacian
as a special case. These operators appear in various physical models including,
e.g., glacier motion [201], incompressible turbulent flows in porous media [164],
and flow around airfoils [200]; they can also be regarded as a simplified version
of the viscous term in power-law fluids. From a mathematical standpoint, Leray–
Lions elliptic problems involve two important novelties compared to the models
covered in Chapters 2–5, namely the presence of nonlinearities and the fact that
their weak formulation is naturally posed in a non-Hilbertian setting. An important
consequence of the first point is that the convergence analysis cannot solely rely on
error estimates. Such estimates are attainable for particular Leray–Lions operators
(notably, the p-Laplacian), but impossible to prove for other models for which the
solution may not be unique [174, Remark 2.42]. In order to circumvent this difficulty,
we resort to compactness arguments inspired by the Finite Volumes literature; see,
e.g., [189] and references therein. Compactness arguments have been traditionally
employed also for the convergence analysis of conforming Finite Element Methods
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for nonlinear problems (an example is provided by [231]), and only recently applied
to the nonconforming setting; see, e.g., [148] and references therein. Here, we
further extend these techniques to the fully discrete high-order setting in which
HHO methods are formulated. Specifically, after introducing a discrete version of
the W1,p-norm which enables us to emulate a Sobolev structure on the space of
discrete unknowns introduced in Chapter 2, we show that the latter is continuously
or compactly embedded into Lq(Ω) for suitable values of the exponent q. This
embedding is established by comparing the order k ≥ 0 HHO space and operators
on a polytopal mesh with its order 0 version on a simplicial submesh, and by
invoking the discrete functional analysis results developed in an abstract low-order
setting in [174]. Having established this new framework for the analysis, we follow
the usual principles to formulate an HHO scheme for Leray–Lions elliptic operators.
For a given integer k ≥ 0, the local contribution revolves around the reconstruction,
introduced in Chapter 4, of the gradient in the full space of vector-valued polynomials
of total degree k. As originally observed in [145, Section 4.1], this choice is required
here to preserve a scaling of the consistency error analogous to the one observed
for linear problems. The second local ingredient is a non-Hilbertian version of the
stabilisation term, which ensures stability with respect to the discrete W1,p-norm.
The convergence analysis is then carried out using two approaches: on the one
hand, adapting the ideas of Appendix A, we establish convergence rates for regular
solutions of the p-Laplace equation by deriving error estimates that generalise the
ones derived in Chapter 2 for the linear case; on the other hand, we exploit the
novel discrete functional analysis tools developed in the first part of this chapter
to demonstrate convergence for more general Leray–Lions operators. The error
estimates are illustrated by a numerical validation for various values of the index p.

Chapter 7 deals with the linear elasticity model describing the small deformations
of a linear isotropic (Hookean) body under load. We consider the model in its
primal formulation, where the unknown is a vector-valued function representing the
displacement field. The main difference with respect to the scalar diffusion models
considered in Chapters 2 and 3 is that, in this case, the symmetric part of the gradient
(representing the strain tensor) replaces the gradient in the constitutive law linking
the stress and strain fields. A relevant consequence from the mathematical point of
view is that the well-posedness of the continuous problem hinges on Korn’s instead
of Poincaré’s inequality. To derive an HHO discretisation, we start by introducing
a novel (strain) projector on local polynomial spaces obtained by minimising the
difference with respect to the projected function measured by the L2-norm of the
symmetric part of the gradient. Optimal approximation properties for this projector
follow from a discrete counterpart of Korn’s second inequality valid inside mesh
elements, with a constant independent of the element shape and with an explicit
dependence on the meshsize. Following similar ideas as in Chapter 2 we show that,
given an integer k ≥ 0 and a smooth enough vector-valued function over a mesh
element T , the strain projection of degree (k + 1) of the function can be computed
from its polynomial L2-projections over T and its faces. On the one hand, this
prompts us to introduce an HHO space where the discrete unknowns are vector-
valued polynomials of total degree k over each mesh element and face; equipped
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with a discrete norm which mimics the L2-norm of the strain tensor, this space
satisfies a discrete version of Korn’s first inequality. On the other hand, it suggests
to define a local reconstruction of the displacement field which, composed with the
natural interpolator, yields the strain projector of degree (k + 1). This displacement
reconstruction is used to formulate a stabilisation term whereas, for the consistent
term, we use the symmetric part of a full gradient reconstruction defined in the spirit
of Chapter 4. The latter choice enables the treatment of the full physical range for
the Lamé parameters. The analysis for the resulting scheme is carried out using the
abstract framework of Appendix A showing, for k ≥ 1, convergence in hk+1 and hk+2

for the energy- and L2-norms of the error, respectively. Crucially, the provided error
estimates are robust in the quasi-incompressible limit corresponding to bodies which
deform at constant volume. This is a crucial advantage with respect to, e.g., lowest-
order H1-conforming Finite Elements, which are known to provide unsatisfactory
results in this case [30]. We next discuss a possible modification of the method
which enables the use of the lowest-order version corresponding to k = 0. The
key idea consists in adding a novel term penalising the jumps of the displacement
reconstruction across interfaces. This new term allows us to recover stability, from
which optimal error estimates can be inferred. A panel of numerical examples closes
this chapter.

Chapters 8 and 9 deal with PDE problems arising in incompressible fluid mechanics.
We start in Chapter 8 with creeping flows of Newtonian, uniform density fluids
modelled by the Stokes equations, which express the fundamental principles of
momentum and mass conservation. In this setting, the conservation of mass takes
the form of a zero-divergence constraint on the velocity, with the pressure acting
as the corresponding Lagrange multiplier. Thus, the weak formulation has a saddle
point structure, whose well-posedness hinges on the inf–sup stability of the pressure-
velocity coupling. Deriving numerical approximations of saddle-point problems is
not straightforward in the classical conforming Finite Elements framework since,
unlike coercivity, inf–sup stability is not inherited by the discrete problem [57].
The HHO discretisation of the Stokes problem hinges on the space of vector-valued
discrete unknowns of degree k ≥ 0 introduced in Chapter 7 for the velocity, and on
the space of broken polynomials of the same degree for the pressure. Based on the
local velocity unknowns, two reconstructions are introduced inside each element:
(i) a velocity reconstruction of degree (k + 1) obtained mimicking the procedure
introduced in Chapter 2 and (ii) a divergence reconstruction of degree k which,
applied to the interpolate of a local velocity field, yields the L2-projection of the
divergence of that field. These reconstructions are used to formulate the discrete
counterparts of the viscous and pressure-velocity coupling terms, which are then
assembled element by element. The choice of the discrete space for the pressure
and the definition of the divergence reconstruction enable the use of the classical
Fortin technique [194] to prove discrete stability and well-posedness. As for most
of the other models considered in this book, it is possible to reformulate the HHO
method for the Stokes problem in terms of conservative numerical fluxes, thus
building a bridge with Finite Volume Methods. The analysis yields convergence
in hk+1 for the energy norm of the error on the velocity and the L2-norm of the
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error on the pressure. An improved estimate in hk+2 for the L2-norm of the error on
the velocity is derived under a suitable elliptic regularity assumption. To close this
chapter, we address the topic of pressure-robustness. Specifically, we show that, by
hacking the discretisation of the right-hand side, we can reproduce at the discrete
level an important property of the continuous problem, namely that modifying the
irrotational part of body forces only affects the pressure, leaving the velocity field
unaltered. Mimicking this property at the discrete level yields error estimates for the
velocity where the multiplicative constant in the right-hand side is independent of
the pressure, whence the term pressure-robustness.

In Chapter 9 we tackle the HHO discretisation of the full Navier–Stokes equations.
The difference with respect to the Stokes problem considered in Chapter 8 is the
presence of a nonlinear convective term, which is at the root of physically relevant
phenomena such as turbulence. A key remark is that, when wall boundary conditions
are enforced, this term does not contribute to the kinetic energy balance obtained
taking the velocity as a test function in the momentum equation. This property,
along with boundedness and consistency, turns out to be one of the key design
assumptions on the discrete convective trilinear form associated with this nonlinear
term. With these assumptions, we show well-posedness of the discrete problem
under the usual small data condition, as well as a convergence estimate similar to the
one obtained for the Stokes problem. For the sake of completeness, we also discuss
the possibility of including a convective (upwind-like) stabilisation term, although
numerical experiments indicate that this is typically not necessary in practice. We
next discuss two discrete trilinear forms that match the design assumptions: the first
is inspired by a skew-symmetric reformulation of the continuous trilinear form, and
hinges on a reconstruction of the gradient in the space of polynomials of degree
2k; the second is inspired by Temam’s modification [268] of the continuous trilinear
form, originally considered in the context of Finite Element Methods. The advantage
of this second trilinear form over the one inspired by the skew-symmetric approach
is that it enables a flux formulation of the HHO scheme for the Navier–Stokes
equations. We next examine the convergence of the method for general, possibly
large, data. Using the compactness techniques introduced in Chapter 6, we show
strong convergence (up to the extraction of a subsequence) of the velocity in Lp(Ω)d
for p ∈ [1,∞) if d = 2 and p ∈ [1,6) if d = 3, of the strain rate in L2(Ω)d×d , and of the
pressure in L2(Ω). These results classically extend to the whole sequence of discrete
solutions when the continuous solution is unique. The numerical performance of
the method is showcased on a panel of classical test cases, including the two- and
three-dimensional lid-driven cavity problems.

Audience

This book is primarily intended for graduate students and researchers in appliedmath-
ematics and numerical analysis, who will find here valuable analysis tools of general
scope. It can also prove a precious instrument for graduate students and researchers
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in engineering sciences and computational physics interested in the mathematical
aspects underpinning HHO and polytopal methods. The book addresses both basic
and advanced models encountered in these fields, and pays particular attention to
practically relevant issues such as robustness with respect to the model parameters.
The reader is assumed to be familiar with the standard theory of conforming Finite
Elements, including weak formulations of model problems and error analysis, and to
have some acquaintance with the basic PDEs in continuum mechanics. Special care
has been devoted to making the exposition as self-contained as possible. The mate-
rial in the book has already been utilised by the authors to give lectures and courses
at Université de Montpellier (France), Monash University (Australia), Institut Henri
Poincaré (France), Università di Bergamo (Italy), Université Côte d’Azur (France),
and several other prestigious institutions.

The general level of the book is best suited for specialised graduate-level courses.
An introductory course can be designed based on Chapters 1 and 2 together with
Appendices A and B. A more advanced course would complement these with one
of Chapters 3 or 4. For an expert course, start with the introductory material and
add either Chapters 4 and 6 (to tackle strongly non-linear problems), or Chapters 7
and 8 (to sample linear solid and fluid mechanics), or Chapters 8 and 9 (to focus on
models of incompressible flows).

HHO libraries

As of today, HHO methods have been implemented in several open source
codes including, on the academic side, the SpaFEDte (https://github.com/
SpaFEDTe/spafedte.github.com), the HArD::Core (https://github.com/
jdroniou/HArDCore) and the POLYPHO (http://www.comphys.com) libraries
and, on the industrial side, the Code_Aster (https://www.code-aster.org) and
Code_Saturne (https://www.code-saturne.org) simulators by EDF. Most of
the schemes presented in the following chapters can be found in these libraries,
which may help beginners as well as advanced users to get a practical grasp on HHO
methods.

Compiled languages are typically best suited to match the computational re-
quirements of polytopal methods. The above libraries are therefore written in C or
C++. To facilitate practical initiation to the basics of HHO, an Octave/MATLAB
implementation of the HHO scheme for the 2D Poisson problem can be found here
https://github.com/jdroniou/HHO-Lapl-OM/. However, the intrinsic limita-
tions of interpreted languages mean that only the simplest cases (relatively low
polynomial degrees and small meshes) can be run with this code. A more serious
usage of HHO schemes requires one of the other aforementioned libraries.

https://github.com/SpaFEDTe/spafedte.github.com
https://github.com/SpaFEDTe/spafedte.github.com
https://github.com/jdroniou/HArDCore
https://github.com/jdroniou/HArDCore
http://www.comphys.com
https://www.code-aster.org
https://www.code-saturne.org
https://github.com/jdroniou/HHO-Lapl-OM/
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Chapter 1
Setting

In this chapter we introduce the setting for the development and analysis of Hybrid
High-Order (HHO) methods. These methods are built upon general meshes possibly
including polytopal elements and non-matching interfaces. In Section 1.1 we give a
precise definition of polytopal mesh, and introduce the notion of regular sequence of
h-refined polytopal meshes. In Section 1.2 we recall some basic notions on standard
Lebesgue and Sobolev spaces, on the space H(div;Ω), and on polynomial spaces.
We next introduce the first building block of HHOmethods, namely local polynomial
spaces, and prove some fundamental results for the analysis including, in particular,
the comparison of Lebesgue and Sobolev (semi)norms defined on such spaces, as
well as local trace inequalities valid on regularmesh sequences. Section 1.3 is devoted
to the second key ingredient in HHOmethods: projectors on local polynomial spaces.
After introducing the corresponding notion, we study their approximation properties
in an abstract framework, then apply the abstract results to two particularly relevant
instances, the L2-orthogonal and elliptic projectors. Finally, Section 1.4 contains
technical results required for non-star-shaped elements. All the results established in
this chapter on generic polytopal elements and meshes apply to “usual” polytopes,
such as triangles/tetrahedra or rectangles/hexahedra commonly encountered in Finite
Element Methods.

1.1 Mesh

The starting point to write the HHO discretisation of a PDE problem is a suitable
decomposition (mesh) of the domain in which the problem is set. The meshes
supported by HHO methods are more general than those encountered in standard
Finite Element Methods, and possibly include general polytopal elements and non-
matching interfaces. The goal of this section is to introduce precise notions of mesh
and h-refined mesh sequence suitable for the analysis.

3
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1.1.1 Polytopal mesh

We start by defining the notion of simplex and polytopal set.

Definition 1.1 (Simplex and polytopal set). Let an integer d ≥ 2 be fixed. Given
a set of vertices P B {P0, . . . ,Pd} ⊂ Rd such that the family of vectors {P1 −
P0, . . . ,Pd − P0} is linearly independent, the interior of the convex hull of P is a
simplex of Rd . For each integer i ∈ {0, . . . , d}, the convex hull of P \ {Pi} is a
simplicial face.

A polytopal set (or polytope) is a connected set that is the interior of a finite union
of closures of simplices.

According to the previous definition, if d = 2, a simplex is an open triangle and a
polytope is an open polygonal set; if d = 3, a simplex is an open tetrahedron and a
polytope is an open polyhedral set.

To identify the meshsize and express the shape regularity properties of a set, not
necessarily polytopal, we introduce the following notions:

Definition 1.2 (Diameter and inradius). Given an open bounded connected set
X ⊂ Rd , we define its diameter hX as

hX B sup{dist(x, y) : x, y ∈ X}. (1.1)

The inradius rX of X is the radius of the largest ball included in X .

Throughout the rest of this book, we make the following assumption, without nec-
essarily recalling it at each occurrence, on the domain Ω over which the models are
set. Note that this assumption implies in particular that Ω does not have any cracks,
i.e., it lies on one side of its boundary ∂Ω.

Assumption 1.3 (Domain Ω) A space dimension d ≥ 2 being fixed,Ω is a polytopal
set of Rd .

The following definition of polytopal mesh, closely inspired by [174, Definition 7.2],
enables the treatment of meshes as general as the ones depicted in Fig. 1.1:

Definition 1.4 (Polytopal mesh). A polytopal mesh of Ω is a coupleMh =

(Th,Fh) where:
(i) The set of mesh elements (or mesh cells) Th is a finite collection of

nonempty disjoint polytopes T with boundary ∂T and diameter hT such
that the meshsize h satisfies

h = max
T ∈Th

hT

and it holds
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(a) Matching triangular (b) Nonconforming (c) Polygonal (d) Agglomerated

Fig. 1.1: Examples of polytopal meshes in two and three space dimensions. The
triangular and nonconforming meshes are taken from the FVCA5 benchmark [207],
the polygonal mesh from [159, Section 4.2.3], and the agglomerated polyhedral mesh
from [161].

Ω =
⋃
T ∈Th

T .

(ii) The set of mesh faces Fh is a finite collection of disjoint subsets of Ω
such that, for any F ∈ Fh , F is a non-empty open connected subset of
a hyperplane of Rd and the (d − 1)-dimensional Hausdorff measure of
its relative boundary F\F is zero. We denote by hF the diameter of F.
Further assume that:

(a) For each F ∈ Fh , either there exist distinct mesh elements T1,T2 ∈ Th
such that F ⊂ ∂T1 ∩ ∂T2 and F is called an interface, or there exists
one mesh element T ∈ Th such that F ⊂ ∂T ∩ ∂Ω and F is called a
boundary face;

(b) The set of mesh faces is a partition of the mesh skeleton, i.e.,⋃
T ∈Th

∂T =
⋃
F ∈Fh

F .

Interfaces are collected in the set F i
h
and boundary faces in F b

h
, so that

Fh = F i
h
∪ F b

h
. For any mesh element T ∈ Th ,

FT B {F ∈ Fh : F ⊂ ∂T}

denotes the set of faces contained in ∂T . Symmetrically, for any mesh
face F ∈ Fh ,

TF B {T ∈ Th : F ⊂ ∂T} (1.2)
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is the set containing the one or two mesh elements sharing F. Finally,
for all T ∈ Th and all F ∈ FT , nTF denotes the unit normal vector to F
pointing out of T .

Notice that, in the above definition, the terminology “mesh face” is preferred
over “face” or “edge” when d = 2. The reason is twofold: on the one hand, this
makes the discussion dimension-independent whenever possible; on the other hand,
it emphasises the fact that themesh faces do not necessarily coincide with the faces of
the polytopal elements inTh . The latter fact provides the increased flexibility required,
e.g., to handle nonconforming junctions such as the one depicted in Fig. 1.2: this
case can be simply dealt with by treating each face containing hanging nodes as
multiple coplanar mesh faces.

Fig. 1.2: Treatment of a nonconforming junction (red) as multiple coplanar faces.
Gray elements are pentagons, white elements are squares.

Remark 1.5 (Other notions of polytopal meshes). In the context of Discontinuous
Galerkin methods, the notion of mesh face for polytopal meshes proposed in [36,
148] and [151, Chapter 1] is different from the one introduced in Definition 1.4: in
these references, interfaces and boundary faces are simply defined as, respectively,
the intersection of the closures of two distinct mesh elements and the intersection
of the closure of one mesh element with the domain boundary. As a consequence,
mesh faces are possibly non-planar and even non-connected. This is possible because
Discontinuous Galerkin methods feature only element-based unknowns, and links
among elements are established through boundary terms involving their averages and
jumps across faces. In HHOmethods, on the other hand, transmission conditions are
enforced via face-based discrete unknowns, which requires simpler face geometries.

Remark 1.6 (Curved faces). Following [67], it is possible to construct optimally
convergent HHO methods on meshes featuring curved faces that result from high-
order geometric mappings. This requires to adapt the polynomial degree on mesh
faces by accounting for the so-called effective mapping order; see also [65] and the
precursor work [22] on this subject. We also refer the reader to [85] concerning the
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extension of the Mimetic Finite Difference method to meshes with curved faces, and
to [52] on similar developments for Virtual Element Methods.

1.1.2 Regular mesh sequence

When studying the convergence of HHO methods with respect to the meshsize h,
one needs to make assumptions on how the mesh is refined. The ones provided here
are inspired by [151, Chapter 1], and refer to the case of isotropic meshes with non-
degenerate faces. Isotropic means that we do not consider the case where elements
become more and more stretched when refining. Non-degenerate faces means, on
the other hand, that the diameter of each mesh face is uniformly comparable to that
of the element(s) the face belongs to. To formulate the regularity assumptions, we
need the notion of matching simplicial mesh, which corresponds to the standard one
in the context of Finite Element Methods.

Definition 1.7 (Matching simplicial mesh). Mh = (Th,Fh) is a simplicial mesh of
Ω if, for all T ∈ Th , T is a simplex of Rd .Mh is a matching simplicial mesh of Ω
if it is a simplicial mesh and the following additional conditions hold: (i) For any
T,T ′ ∈ Th with T ′ , T , the set ∂T ∩ ∂T ′ is the convex hull of a (possibly empty)
subset of the vertices of T ; (ii) The set Fh is composed of the simplicial faces of the
elements in Th .

The following definition introduces the notion, illustrated in Fig. 1.3, of matching
simplicial submesh of a polytopal mesh.

Definition 1.8 (Matching simplicial submesh). LetMh = (Th,Fh) be a polytopal
mesh of Ω. We say that Mh = (Th,Fh) is a matching simplicial submesh ofMh if:
(i) Mh is a matching simplicial mesh of Ω; (ii) for any simplex τ ∈ Th , there is a
unique mesh element T ∈ Th such that τ ⊂ T ; (iii) for any simplicial face σ ∈ Fh
and any mesh face F ∈ Fh , either σ ∩ F = ∅ or σ ⊂ F.

The regularity requirements for sequences of refined polytopal meshes are ex-
pressed in terms of a corresponding sequence of matching simplicial submeshes.
We emphasise the fact that the simplicial submesh is merely a theoretical tool, and
needs not be constructed in practice.

Definition 1.9 (Regular mesh sequence). Denote by H ⊂ (0,+∞) a count-
able set of meshsizes having 0 as its unique accumulation point. A family of
meshes (Mh)h∈H = (Th,Fh)h∈H is said to be regular if there exists a real num-
ber % ∈ (0,1), independent of h and called themesh regularity parameter, such
that, for all h ∈ H , there exists a matching simplicial submeshMh = (Th,Fh)
ofMh that satisfies the following conditions:
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Fig. 1.3: Example of a matching simplicial submesh (dashed lines) of the non-
conforming mesh in Fig. 1.1b.

(i) Shape regularity. For any simplex τ ∈ Th , denoting by hτ its diameter
and by rτ its inradius, it holds

%hτ ≤ rτ ; (1.3)

(ii) Contact regularity.For anymesh elementT ∈ Th and any simplex τ ∈ TT ,
where TT B {τ ∈ Th : τ ⊂ T} is the set of simplices contained in T , it
holds

%hT ≤ hτ . (1.4)

Remark 1.10 (Matching simplicial mesh sequences). If, for all h ∈ H ,Mh is match-
ing simplicial, we can simply take Mh = Mh . In this case, the contact regularity
condition (1.4) is trivially verified for any % ∈ (0,1), and the shape regularity re-
quirement (1.3) coincides with the classical one for Finite Element Methods; see,
e.g., [113, Eq. (3.1.43)] or [183, Definition 1.107].

Remark 1.11 (Degenerate faces). A framework allowing for face degeneration has
been proposed in [92] in the context of interior-penalty Discontinuous Galerkin
methods, allowing one to use a discrete trace inequality sharper than (1.55) below;
see also [16, 94]. In principle, one expects that this framework could be used herein
with an appropriate adaptation of the penalty strategy. Notice, however, that the
number of globally coupled unknowns in HHO methods is proportional to the
number of mesh faces, so one should always make sure that the number of faces
of each element stays bounded while refining. For this reason, we do not develop
further this point here, and refer to the above references for details.
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1.1.3 Geometric bounds on regular mesh sequences

We collect in the following lemma some useful geometric bounds that hold on regular
mesh sequences. Here and throughout the book, |X |n denotes the n-dimensional
Hausdorff measure of a set X (length if n = 1, area if n = 2, volume if n = 3).

Lemma 1.12 (Geometric bounds on regular mesh sequences). Let (Mh)h∈H de-
note a regular mesh sequence in the sense of Definition 1.9. Then, the following
results hold:

(i) Bound on the number of faces. There is an integer N∂ ≥ d + 1, depending only
on % and d, such that

sup
h∈H

max
T ∈Th

card(FT ) ≤ N∂. (1.5)

(ii) Comparison of element and face diameters. For all h ∈ H , all T ∈ Th , and all
F ∈ FT , it holds that

2%2hT ≤ hF ≤ hT . (1.6)

(iii) Comparison of diameters and measures of elements and faces. For all h ∈ H ,
all T ∈ Th , and all F ∈ Fh , it holds that(

|Bd |d %2d
)

hd
T ≤ |T |d ≤ |Bd |dhd

T (1.7)

and (
|Bd−1 |d−1%

2(d−1)
)

hd−1
F ≤ |F |d−1 ≤ |Bd−1 |d−1hd−1

F , (1.8)

where, for n = d or n = d − 1, Bn is the unit ball in Rn.

Proof. (i) Bound on the number of faces.We start by proving that there is an integer
N ≥ 0, depending only on % and d, such that

sup
h∈H

max
T ∈Th

card(TT ) ≤ N, (1.9)

which means that every mesh element is decomposed into a number of submesh
simplices that is bounded uniformly in h. Since each T ∈ Th is contained in a ball of
radius hT and each τ ∈ Th contains a ball of radius rτ , we have that

|Bd |dhd
T ≥ |T |d =

∑
τ∈TT

|τ |d ≥
∑
τ∈TT

|Bd |drdτ

≥
∑
τ∈TT

|Bd |d %dhd
τ Eq. (1.3)

≥
∑
τ∈TT

|Bd |d %2dhd
T Eq. (1.4)

= card(TT )|Bd |d %2dhd
T ,

(1.10)
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and (1.9) follows with N the smallest natural number greater than %−2d . For all
h ∈ H and all T ∈ Th , let now

FT B {σ ∈ Fh : σ ⊂ ∂T}

denote the set of simplicial subfaces that lie on the boundary of T . Then, we have
that

card(FT ) ≤ card(FT ) ≤ (d + 1) card(TT ) ≤ (d + 1)N, (1.11)

where we have used in the second bound the fact that a d-simplex has exactly (d + 1)
faces, and (1.9) to conclude. The bound (1.5) follows with

N∂ = (d + 1)N .

(ii) Comparison of element and face diameters. Let a meshsize h ∈ H , a mesh
element T ∈ Th , and a mesh face F ∈ FT be fixed. Since F ⊂ T , it holds that
hF ≤ hT , which is the second inequality in (1.6). To prove the first inequality, let
σ ∈ Fh be such that σ ⊂ F, denote by hσ its diameter, and let τ ∈ TT be a simplex
such that σ is contained in the boundary of τ. Let Bd(x,rτ) be a ball of radius rτ (the
inradius of τ) centred at x and included in τ, and let βσ be the intersection of this
ball with the hyperplane parallel to σ and going through x (see Fig. 1.4). Then βσ
has diameter 2rτ . Let H be the homothecy with centre the vertex Pσ of τ opposed
to σ and that sends x on σ. H has ratio λ > 1, and sends βσ onto H(βσ) ⊂ σ (this
is due to the fact that τ is a simplex). Hence, the diameter 2λrτ of H(βσ) is less than
the diameter of σ, which shows that hσ ≥ 2rτ .

Bd(x,rτ)

Pσ

x

βσ

τ

σ

H(βσ)

Fig. 1.4: Justification of hσ ≥ 2rτ for the proof of (1.6).

It therefore holds that
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hF ≥ hσ ≥ 2rτ ≥ 2%hτ ≥ 2%2hT , (1.12)

where we have used the shape (1.3) and contact regularity (1.4) conditions in the
third and fourth inequalities, respectively.

(iii) Comparison of diameters and measures of elements and faces. The estimates
(1.7) follow from (1.10), noticing that card(TT ) ≥ 1. The upper bound on |F |d−1
in (1.8) is a simple consequence of the definition of hF , which ensures that F is
contained in a ball of radius hF in the hyperplane (of dimension d − 1) that it spans.
For the lower bound, we recall that, with the notations used in the proof of Point (ii),
F contains σ ⊃ H(βσ), where H(βσ) is a ball, in the hyperplane spanned by F, of
radius λrτ ≥ rτ . Hence,

|F |d−1 ≥ |Bd−1 |d−1rd−1
τ ≥ |Bd−1 |d−1(%2hT )d−1,

where the conclusion follows from (1.12). The lower bound on |F |d−1 stated in (1.8)
then follows from (1.6). ut
Remark 1.13 (Modification in dimension d = 1). In dimension d = 1, Ω is an open
interval and a mesh is a subdivision ofΩ into intervals. The concept of regular mesh
sequence in this situation is the following: There exists % > 0 such that, for all h ∈ H
and all intervals T,T ′ ∈ Th sharing a common endpoint, %hT ≤ hT ′ . A “face” F is
then just a node and therefore has zero diameter. The relation (1.6) no longer holds,
but is also not necessary to the analysis. Also, whenever a length scale associated to
a node F ∈ Fh is needed in this case, one can use, instead of hF = 0, the average of
the lengths of the intervals sharing F.

1.2 Function spaces

The functional setting for the design and analysis of HHO methods is given by local
and broken versions of the usual Lebesgue, Sobolev, H(div;Ω), and polynomial
spaces on polytopalmeshes. The corresponding notions are introduced in this section.

1.2.1 Lebesgue and Sobolev spaces

We give here the definitions of the usual Lebesgue and Sobolev spaces, recall some
basic facts, and introduce the notion of broken Sobolev space on a polytopal mesh.

1.2.1.1 Lebesgue spaces

Let X denote an open bounded subset of Rn, n ≥ 1. In practice, the dimension n
will usually be equal to d (e.g. when X is Ω or a mesh element), or d − 1 (e.g. when
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X is a mesh face). We consider functions v : X → R that are Lebesgue measurable
and we denote by

∫
X
v(x) dx the Lebesgue integral of v over X , when it exists (that

is, v is non-negative or integrable). Whenever no ambiguity can arise, we omit both
the dependence on x and on the measure in integrals, and simply write

∫
X
v. Let

p ∈ [1,∞] be a real number. We set

‖v‖Lp (X) B


(∫

X

|v |p
) 1

p

if p ∈ [1,∞),
inf{M ∈ R : |v(x)| ≤ M for a.e. x ∈ X} if p = ∞.

(1.13)

We define the Lebesgue space

Lp(X) B {
v Lebesgue measurable : ‖v‖Lp (X) < ∞

}
.

Equipped with the norm ‖·‖Lp (X), Lp(X) is a Banach space (see, e.g., [186, p. 249]
or [81, Proposition 9.1]). Moreover, if p < +∞, the space C∞c (X) spanned by
infinitely differentiable functions with compact support in X is dense in Lp(X).

Remark 1.14 (The case p = 2). For p = 2, L2(X) is a real Hilbert space when
equipped with the scalar product

(v,w)X B
∫
X

vw

and the associated norm ‖·‖X . In what follows, we adopt the convention that the
index X is omitted from both the inner product and the norm when X = Ω. The
same notation will be used for the spaces L2(X)d and L2(X)d×d of vector- and tensor-
valued, square-integrable functions. The use of a special notation for the case p = 2
is justified by the fact that the construction underlying HHO methods is inherently
L2-based, even when these methods are used for the approximation of problems
posed in a non-Hilbertian setting such as the ones considered in Chapter 6.

A useful tool in Lebesgue spaces is the Hölder inequality: For all couples of
conjugate Hölder exponents (p,q) ∈ [1,∞]2 such that 1

p +
1
q = 1, all v ∈ Lp(X), and

all w ∈ Lq(X), there holds vw ∈ L1(X) and∫
X

|vw | ≤ ‖v‖Lp (X)‖w‖Lq (X).

The particular case p = q = 2 corresponds to the Cauchy–Schwarz inequality. The
following generalisation of the Hölder inequality will also be useful to us: For all
(p,q,r) ∈ [1,∞]3 such that 1

p +
1
q +

1
r = 1, all v ∈ Lp(X), w ∈ Lq(X) and z ∈ Lr (X),

there holds vwz ∈ L1(X) and∫
X

|vwz | ≤ ‖v‖Lp (X)‖w‖Lq (X)‖z‖Lr (X).
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Most of the time, we will use this inequality with (p,q,r) = (2,2,∞) and, for the
analysis of Navier–Stokes equations in Chapter 9, with (p,q,r) = (2,4,4). Straight-
forward generalisations of the Hölder inequality to products of four functions will
also be occasionally required in Chapter 9 to estimate boundary contributions related
to the convective term in the momentum equation.

1.2.1.2 Sobolev spaces

Let X be as in the previous section and consider the Cartesian basis of Rn with
coordinates (x1, . . . , xn). For i ∈ {1, . . . ,n}, we denote by ∂i the distributional partial
derivative with respect to xi . For an n-tuple α = (α1, . . . , αn) ∈ Nn, ∂αv denotes the
distributional derivative ∂α1

1 · · · ∂αn
n v of v, with the convention that ∂(0,...,0)v B v.

For all p ∈ [1,∞], we define the p-normonRn such that, for all x = (x1, . . . , xn) ∈ Rn,

‖x‖p B

(

n∑
i=1
|xi |p

) 1
p

if 1 ≤ p < ∞,

max
1≤i≤n

|xi | if p = ∞.
(1.14)

Remark 1.15 (Notation for the Euclidean norm). For the Euclidean norm obtained
taking p = 2 in (1.14) we also use the less obtrusive notation |·| in the following
chapters.

For any real number p ∈ [1,∞] and any integer s ≥ 0, we define the Sobolev
space

W s,p(X) B {
v ∈ Lp(X) : ∂αv ∈ Lp(X) ∀α ∈ As

n

}
,

with
As
n B {α ∈ Nn : ‖α‖1 ≤ s} . (1.15)

We notice that
W0,p(X) = Lp(X).

The Sobolev norm ‖·‖W s ,p (X) and seminorm |·|W s ,p (X) are defined such that

‖v‖W s ,p (X) B
∑
α∈As

n

‖∂αv‖Lp (X),

|v |W s ,p (X) B
∑

α∈Nn , ‖α ‖1=s
‖∂αv‖Lp (X).

(1.16)

This choice enables a seamless treatment of the case p = ∞. Equipped with the norm
‖·‖W s ,p (X), W s,p(X) is a Banach space. The usual gradient operator ∇ : W1,p(X) →
Lp(X)n is such that, for all v ∈ W1,p(X),
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∇v B
©«
∂1v
...
∂nv

ª®®¬ .
We classically denote by W s,p

0 (X) the closure of C∞c (X) in W s,p(X).

Remark 1.16 (Hilbert spaces). For p = 2, we introduce the special notations

Hs(X) B W s,2(X) and Hs
0 (X) B W s,2

0 (X).

These notations are reminiscent of the fact that Hs(X) and Hs
0 (X) are Hilbert spaces

when equipped with the scalar product

(v,w)H s (X) B
∑
α∈As

n

(∂αv, ∂αw)X .

The corresponding norm is equivalent to (but not coincident with if s , 0) the one
obtained setting p = 2 in (1.16).

In the context of diffusive PDE problems set on a d-dimensional domain Ω as in
Assumption 1.3, the flux (see the introduction to Chapter 2 for this nomenclature) is
a vector-valued function that belongs to the space

H(div;Ω) B
{
τ = (τ1, . . . , τd) ∈ L2(Ω)d :

d∑
i=1

∂iτi ∈ L2(Ω)
}
. (1.17)

We classically denote the divergence
∑d

i=1 ∂iτi of τ by ∇·τ. For a given p ∈ [1,∞],
we generalise H(div;Ω) to the Lp setting

W p(div;Ω) B {
τ ∈ Lp(Ω)d : ∇·τ ∈ Lp(Ω)} . (1.18)

Of course, H(div;Ω) = W 2(div;Ω).

1.2.2 Broken Sobolev spaces

LetMh denote a polytopal mesh of Ω in the sense of Definition 1.4. With s and p
as in the previous section, we define the broken Sobolev space

W s,p(Th) B
{
v ∈ Lp(Ω) : v |T ∈ W s,p(T) ∀T ∈ Th

}
.

The broken Sobolev norm and seminorm are defined similarly to (1.16): For p < ∞,
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‖v‖W s ,p (Th ) B
∑
α∈As

n

( ∑
T ∈Th

‖∂αv‖p
Lp (T )

) 1
p

,

|v |W s ,p (Th ) B
∑

α∈Nn , ‖α ‖1=s

( ∑
T ∈Th

‖∂αv‖p
Lp (T )

) 1
p

.

(1.19)

For p = ∞, we set

‖v‖W s ,∞(Th ) B
∑
α∈As

n

max
T ∈Th

‖∂αv‖L∞(T ),

|v |W s ,∞(Th ) B
∑

α∈Nn , ‖α ‖1=s
max
T ∈Th

‖∂αv‖L∞(T ).
(1.20)

The case s = 1 will play an important role in the rest of this book, and deserves
further discussion. Functions in W1,p(Th) do not admit a global weak gradient in
general. We can, however, define the broken gradient operator ∇h : W1,p(Th) →
Lp(Ω)d such that, for all v ∈ W1,p(Th),

(∇hv) |T B ∇(v |T ) ∀T ∈ Th . (1.21)

Similarly, setting

W p(div;Th) B
{
τ ∈ Lp(Ω)d : τ |T ∈ W p(div; T) ∀T ∈ Th

}
(where W p(div; T) is defined by (1.18) with Ω = T), the broken divergence ∇h · :
W p(div;Th) → Lp(Ω) is given by, for all τ ∈ W p(div;Th),

(∇h ·τ) |T B ∇·(τ |T ) ∀T ∈ Th .

For any F ∈ F i
h
, denote by T1 and T2 the distinct elements of Th such that

F ⊂ ∂T1 ∩ ∂T2. In what follows, we fix an arbitrary numbering of T1 and T2 and
introduce the jump operator such that, for any function v smooth enough to admit a
(possibly two-valued) trace on F,

[v]F B
(
v |T1

)
|F −

(
v |T2

)
|F . (1.22)

Throughout the rest of the book, in order to alleviate the notation, we will omit the
restriction to F when using the definition (1.22) and simply write [v]F = v |T1 − v |T2 .
We also let (see Fig. 1.5)

nF B nT1F = −nT2F .

On boundary faces, we take nF to be the unit normal vector to ∂Ω pointing out
of Ω. An important characterisation of functions in W p(div;Ω) is contained in the
following lemma.

Lemma 1.17 (Characterisation of W p(div;Ω)). Let a real number p ∈ [1,∞] be
fixed, and let τ ∈ W1,p(Th)d . Then, τ ∈ W p(div;Ω) if and only if
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T1 T2
F

nF = nT1F

nT2F

Fig. 1.5: Arbitrary numbering of the elements around a face F, and oriented normal
nF .

[τ]F ·nF = 0 ∀F ∈ F i
h . (1.23)

Remark 1.18 (Additional regularity).The regularity τ ∈ W1,p(Th)d can beweakened
into τ ∈ W p(div;Th), but the values of τ on each side of F ∈ F i

h
have then to be

understood in a weak sense (these “traces” might not be functions on the interfaces,
see [151, Section 1.2.6] and references therein). This subtlety will however not be
useful in this book.

Proof. Let ϕ ∈ C∞c (Ω). Integrating by parts element by element, and accounting for
the fact that ϕ is smooth inside Ω and vanishes on ∂Ω, we obtain∫

Ω

τ·∇ϕ =
∑
T ∈Th

∫
T

τ |T ·∇ϕ

= −
∑
T ∈Th

∫
T

(∇·τ |T )ϕ +
∑
T ∈Th

∑
F ∈FT

∫
F

(τ |T ·nTF )ϕ

= −
∑
T ∈Th

∫
T

(∇·τ |T )ϕ +
∑
F ∈Fh

∫
F

( ∑
T ∈TF

τ |T ·nTF

)
ϕ

= −
∫
Ω

(∇h ·τ)ϕ +
∑
F ∈Fi

h

∫
F

[τ]F ·nFϕ.

(1.24)

In the third line, we have exchanged the sums over faces and elements according to∑
T ∈Th

∑
F ∈FT

• =
∑
F ∈Fh

∑
T ∈TF

• (1.25)

and used the fact that ϕ is continuous across interfaces, while the conclusion holds
using the definition of the jumps across internal faces and the fact that ϕ vanishes
on boundary faces.

Assume that (1.23) holds. Then, (1.24) shows that∫
Ω

τ·∇ϕ = −
∫
Ω

(∇h ·τ)ϕ, (1.26)
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which precisely states that ∇·τ = ∇h ·τ ∈ Lp(Ω), and thus that τ ∈ W p(div;Ω).
Conversely, if τ ∈ W p(div;Ω), then∇·τ = ∇h ·τ and thus (1.26) holds. Combined

with (1.24), this gives ∑
F ∈Fi

h

∫
F

[τ]F ·nFϕ = 0.

Fix F ∈ F i
h
. Take g ∈ C∞c (F) and extend it into a function ϕ ∈ C∞c (Ω)whose support

does not intersect any other face. With this choice, the relation above shows that∫
F
[τ]F ·nFg = 0. Since this holds for any g ∈ C∞c (F), this shows that [τ]F ·nF = 0

on F, and thus that (1.23) holds. ut

The following corollary will often be invoked in the exposition.

Corollary 1.19 (Cancellation of boundary terms). Take p ∈ [1,∞], and let
p′ ∈ [1,∞] be such that 1

p +
1
p′ = 1. Let τ ∈ W p(div;Ω) ∩W1,p(Th)d and

(ϕF )F ∈Fh denote a family of functions such that ϕF ∈ Lp′(F) for all F ∈ Fh .
Then, it holds ∑

T ∈Th

∑
F ∈FT

∫
F

(τ |T ·nTF ) ϕF =
∑
F ∈Fb

h

∫
F

(τ·nF ) ϕF . (1.27)

In particular, if ϕF = 0 or τ·nF = 0 for all F ∈ F b
h
,∑

T ∈Th

∑
F ∈FT

∫
F

(τ |T ·nTF ) ϕF = 0. (1.28)

Remark 1.20 (Regularity assumptions).As in Remark 1.18, we notice that the results
of Corollary 1.19 extend to certain situations where τ does not belong to W1,p(Th)d .
Essentially, if τ ∈ W p(div;Ω) and the family (ϕF )F ∈Fh are such that (τ |T ·nTF )ϕF
makes sense, for all F ∈ Fh , as an integrable function over F, then (1.27) and (1.28)
hold.

Proof. Exchanging the order of the summations over elements and faces according
to (1.25), we can write∑

T ∈Th

∑
F ∈FT

∫
F

(τ |T ·nTF ) ϕF =
∑
F ∈Fh

∫
F

( ∑
T ∈TF

τ |T ·nTF

)
ϕF

=
∑
F ∈Fi

h

∫
F
���

��([τ]F ·nF ) ϕF +
∑
F ∈Fb

h

∫
F

(τ·nF ) ϕF ,
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where, in the second line, we have split the summation over Fh = F i
h
∪ F b

h
, used the

definition (1.22) of the jump operator for the first term, and invoked Lemma 1.17 to
cancel the normal jumps of τ across interfaces. ut

A characterisation of W1,p(Ω) can be deduced from the previous lemma.

Lemma 1.21 (Characterisation ofW1,p(Ω)). Let a real number p ∈ [1,∞] be fixed.
Then, a function v ∈ W1,p(Th) is in W1,p(Ω) if and only if

[v]F = 0 ∀F ∈ F i
h . (1.29)

Proof. Let (ei)i=1,...,d be the canonical basis of Rd . For i ∈ {1, . . . , d}, consider
τi = vei ∈ W1,p(Th)d .

If v ∈ W1,p(Ω), then τi ∈ W1,p(Ω)d ⊂ W p(div;Ω) and thus, by Lemma 1.17,
for any F ∈ F i

h
, we have 0 = [τi]F ·nF = [v]F ei ·nF . Since, for any F ∈ F i

h
, there is

at least one i such that ei ·nF , 0, we deduce that [v]F = 0 on F.
Conversely, if [v]F = 0 on any F ∈ F i

h
, then [τi]F = 0 on all interfaces and

Lemma 1.17 shows that τi ∈ W p(div;Ω). Since ∇·τi = ∂iv, this partial derivative
of v belongs to Lp(Ω). Being true for all i ∈ {0, . . . , d}, this shows that v ∈ W1,p(Ω).

ut

1.2.3 Polynomial spaces

The discrete unknowns in HHO methods are local polynomials over mesh elements
and faces. The goal of this section is to make this notion precise and to recall some
fundamental inequalities that hold on local polynomial spaces.

1.2.3.1 The polynomial space Pln

Let n ≥ 1 and l ≥ 0 be two integers and, recalling (1.15), set

N l
n B card(Al

n) =
(
l + n

n

)
. (1.30)

We define the space of n-variate polynomials of total degree l as

Pln B

{
p : Rn → R : ∃(γα)α∈Al

n
∈ RN l

n such that

p(x) =
∑
α∈Al

n

γαx
α for all x ∈ Rn

}
,

where, for a given multi-index α ∈ Al
n, we have set
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xα B xα1
1 · · · xαn

n .

We recall that “polynomial of degree l” is actually an abuse of terminology, com-
mitted throughout the book, for “polynomial of degree l or less”. The dimension of
the vector space Pln is

dim(Pln) = N l
n. (1.31)

1.2.3.2 Local and broken polynomial spaces

Definition 1.22 (Local polynomial space). Let X ⊂ Rn, n ≥ 1, be an open bounded
connected set, and let an integer l ≥ 0 be fixed. The local (real-valued) polynomial
space Pl(X) is defined as the space spanned by the restrictions to X of functions in
the polynomial space Pln.

More generally, if V is a finite-dimensional vector space, the V-valued local
polynomial space Pl(X; V) is the space of functions f : X → V such that the
components of f on a basis of V belong to Pl(X); we note that this definition does
not depend on the chosen basis (if the components in one basis are polynomial, then
the components in any basis are polynomial).

HHO methods hinge on local polynomial spaces defined over mesh elements and
faces.
Proposition 1.23 (Dimension of local polynomial spaces on mesh elements and
faces). LetMh = (Th,Fh) denote a polytopal mesh in the sense of Definition 1.4.
Then it holds, for all T ∈ Th ,

dim(Pl(T)) = N l
d (1.32)

and, for all F ∈ Fh ,
dim(Pl(F)) = N l

d−1. (1.33)

Proof. Relation (1.32) is an immediate consequence of (1.31), and of the fact that
two polynomial functions that coincide on the set T , which is non-empty and open
in Rd , coincide everywhere, so that Pl

d
3 f 7→ f |T ∈ Pl(T) is an isomorphism.

Relation (1.33), on the other hand, hinges on the assumption that faces are planar
and non-degenerate: For any face F, there is a unique affine hyperplane HF in Rd
containing F, and in which F is open. Take an affine bijective mappingTF : Rd−1 →
HF . The space Pl(HF ) can be described as Pl(HF ) = Pld−1 ◦ T−1

F , so that Pl(HF )
is isomorphic to Pl

d−1 and has dimension N l
d−1. Finally, with the same argument as

for Pl(T), since F is non-empty and open in HF , we see that Pl(F) is isomorphic to
Pl(HF ) (hence also to Pld−1). ut
Definition 1.24 (Broken polynomial space). LetMh = (Th,Fh) denote a polytopal
mesh ofΩ in the sense of Definition 1.4, and let an integer l ≥ 0 be given. We define
the broken polynomial space

Pl(Th) B
{
vh ∈ L1(Ω) : vh |T ∈ Pl(T) ∀T ∈ Th

}
.
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Crucially, the functions in Pl(Th) are possibly discontinuous at the interfaces in F i
h
.

1.2.4 Convention for inequalities up to a positive constant

Throughout this book, many geometric or functional estimates are written in terms of
inequalities that hold up to a multiplicative quantity depending on some parameters
and independent of others. We therefore write

“A . B (resp. A & B) with hidden constant depending only on X , Y , etc.”

to mean that there exists C depending only on X , Y , etc. such that A ≤ CB (resp.
A ≥ CB). Similarly,

“A . B (resp. A & B) with hidden constant independent of X , Y , etc.”

means that there existsC independent of X ,Y , etc. such that A ≤ CB (resp. A ≥ CB).
The notation

A ' B

is used as a shorthand for A . B and B . A, with the prescribed dependency of the
hidden constants. Unless otherwise specified, when these notations are used inside
the proof of a certain estimate, it is assumed that the dependency of the hidden
constants is the same as for the estimate itself.

1.2.5 Lebesgue and Sobolev embeddings in local polynomial spaces

The following result enables the comparison of Lebesgue norms on local polynomial
spaces.

Lemma 1.25 (Direct and inverse Lebesgue embeddings in local polynomial
spaces). Let n ≥ 1 be a natural number and X be an open bounded connected
subset of Rn, with inradius rX and diameter hX . Let % > 0 be a real number such
that

%hX ≤ rX . (1.34)

Let an integer l ≥ 0 and two real numbers q,m ∈ [1,∞] be fixed. Then, for all
w ∈ Pl(X), it holds that

‖w‖Lq (X) ' |X |
1
q − 1

m
n ‖w‖Lm(X), (1.35)

where we recall that |X |n denotes the Lebesgue measure of X in Rn, and the hidden
constants depend only on n, l, %, q and m. The norm equivalence (1.35) also holds,
with the same dependency of the hidden constants, if X is an open bounded connected
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subset of Rn such that

X =
⋃

Y ∈TX

Y and card(TX ) ≤ %−1, (1.36a)

with TX denoting a family of open connected subsets of X that satisfy

%hY ≤ rY and %hX ≤ hY ∀Y ∈ TX . (1.36b)

Remark 1.26 (Inverse embeddings). For w ∈ Pl(X) and q ≤ m, the inequality

‖w‖Lq (X) . |X |
1
q − 1

m
n ‖w‖Lm(X), (1.37)

with hidden constant having the same dependency as in (1.35) (actually, in this
case, the hidden constant is 1), is a classical direct Lebesgue embedding due to the
Hölder inequality. If m < q, on the other hand, it holds solely because we consider
polynomials. In this case, as hX → 0, we have |X |n → 0, and thus the scaling factor

|X |
1
q − 1

m
n explodes since its exponent is negative.

Remark 1.27 (Conditions (1.36) for mesh elements and faces). The geometrical con-
ditions of Lemma 1.25 are met by X element or face of a polytopal mesh from a
regular sequence (cf. Definition 1.9). When X = T ∈ Th , it suffices to take TX = TT ,
so that (1.36a) holds owing to (1.9) and replacing % with min(%,N−1), while the
conditions (1.36b) coincide with (1.3) and (1.4), respectively. When X = F ∈ Fh ,
on the other hand, we can take TX = FF , with FF denoting the set of simplicial
subfaces σ ⊂ F. Property (1.36a) holds by (1.11). To check condition (1.36b), let
σ ∈ FF be given, and let T ∈ TF and τ ∈ TT be such that σ ⊂ ∂τ. Reasoning as in
Point (ii) of the proof of Lemma 1.12, it is inferred that hσ ≤ hτ ≤ %−1rτ ≤ %−1rσ .
Moreover, we can write hF ≤ hT ≤ %−1hτ ≤ 1

2 %
−2hσ , where we have used (1.4)

and (1.12) in the second and third inequalities, respectively. Hence, the regularity
conditions (1.36b) follow replacing % with min(2%2, %).

Proof (Lemma 1.25). (i) Proof of (1.35) with X satisfying (1.34). Since the indices
m and q play symmetrical roles in (1.35), we only have to extend (1.37) to arbitrary
q and m. For x ∈ Rn and r ≥ 0, let Bn(x,r) denote the ball of centre x and radius r ,
and set, for the sake of brevity, Bn B Bn(0,1). By (1.34) and the definitions of hX

and rX , there is xX ∈ X such that

Bn(xX, %hX ) ⊂ X ⊂ Bn(xX, hX ). (1.38)

Hence, |Bn |n%nhn
X ≤ |X |n ≤ |Bn |nhn

X and thus

|X |n ' hn
X . (1.39)

Let
X̂ B

1
hX
(X − xX ).
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Using the linear change of variable X 3 x 7→ x̂ = 1
hX
(x − xX ) ∈ X̂ and the relation

(1.39), we see that, for any s ∈ [1,∞],

‖w‖Ls (X) = h
n
s

X ‖ŵ‖Ls (X̂) ' |X |
1
s
n ‖ŵ‖Ls (X̂), (1.40)

where we have set ŵ(x̂) B w(xX + hX x̂) and, here, the hidden constants in '
additionally depend on s. Assume now that, for all v̂ ∈ Pl(X̂),

‖v̂‖Lq (X̂) . ‖v̂‖Lm(X̂). (1.41)

Then, combining this inequality with (1.40) for s = q and s = m, since ŵ ∈ Pl(X̂),
we have

‖w‖Lq (X) . |X |
1
q
n ‖ŵ‖Lq (X̂) . |X |

1
q
n ‖ŵ‖Lm(X̂) ' |X |

1
q − 1

m
n ‖w‖Lm(X),

and the lemma is proved.
It remains to establish (1.41). To this end we notice that, by (1.38), we have

Bn(0, %) ⊂ X̂ ⊂ Bn. (1.42)

Since ‖·‖Lq (Bn) and ‖·‖Lm(Bn(0,%)) are both norms on Pl(Rn) (any polynomial that
vanishes on a ball vanishes everywhere), they are equivalent on this finite dimensional
space. Hence, for all v̂ ∈ Pl(X̂), considering v̂ as an element of Pl(Rn),

‖v̂‖Lq (Bn) . ‖v̂‖Lm(Bn(0,%)), (1.43)

with hidden constant depending only on n, q, l, m and %. To prove (1.41), it then
suffices to write, using (1.42),

‖v̂‖Lq (X̂) ≤ ‖v̂‖Lq (Bn) . ‖v̂‖Lm(Bn(0,%)) ≤ ‖v̂‖Lm(X̂).

(ii) Proof of (1.35) with X satisfying (1.36). In view of Remark 1.26, it suffices to
prove (1.37) for q > m. By virtue of the first inequality in (1.36b) and Point (i) in
this proof it holds, for any Y ∈ TX ,

‖w‖Lq (Y) . |Y |
1
q − 1

m
n ‖w‖Lm(Y). (1.44)

Using successively the definition (1.1) of hX , the second and then first inequalities
in (1.36b), and finally the definition of rY , we can estimate

|X |n ≤ |Bn |nhn
X ≤ |Bn |nhn

Y %
−n ≤ |Bn |nrnY %

−2n ≤ |Y |n%−2n,

so that, in particular, |Y |
1
q − 1

m
n . |X |

1
q − 1

m
n since 1

q − 1
m < 0 having assumed q > m.

Using ‖w‖Lm(Y) ≤ ‖w‖Lm(X) (a consequence of (1.36a)), we infer from (1.44) that
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‖w‖Lq (Y) . |X |
1
q − 1

m
n ‖w‖Lm(X). (1.45)

We now distinguish two cases: q < ∞ and q = ∞. If q < ∞, taking the power q of
the above inequality and summing over Y ∈ TX , we infer

‖w‖q
Lq (X) ≤

∑
Y ∈TX

‖w‖q
Lq (Y) . card(TX )|X |1−

q
m

n ‖w‖q
Lm(X).

Using the bound on card(TX ) stated in (1.36a), estimate (1.37) follows. If q = ∞, on
the other hand, we observe that ‖w‖L∞(X) = maxY ∈TX ‖w‖L∞(Y) (a consequence of
(1.36a)) and take the maximum over Y ∈ TX of (1.45) to obtain (1.37). ut
In practice, one is also interested in the comparison of Sobolev seminorms of local
polynomial functions. A key intermediate result in this direction is provided by the
following lemma.

Lemma 1.28 (Discrete inverse inequality in local polynomial spaces). Let X be
an open bounded connected subset ofRn that satisfies (1.34) or (1.36). Let an integer
l ≥ 0 and a real number p ∈ [1,∞] be fixed. Then, the following inverse inequality
holds: For all v ∈ Pl(X),

‖∇v‖Lp (X)n . h−1
X ‖v‖Lp (X), (1.46)

with hidden constant depending only on n, %, l and p.

Proof. (i) Proof of (1.46) with X satisfying (1.34). We use the same notations and
change of variable

X 3 x 7→ x̂ =
1

hX
(x − xX ) ∈ X̂

as in Point (i) of the proof of Lemma 1.25. Since v̂(x̂) = v(xX + hX x̂), we have

∇̂v(x̂) B ∇v(xX + hX x̂) = h−1
X ∇̂v̂(x̂),

where ∇ is the gradient with respect to x ∈ X and ∇̂ is the gradient with respect
to x̂ ∈ X̂ . Hence, applying (1.40) to s = p and w = components of ∇v, and using
X̂ ⊂ Bn, we obtain

‖∇v‖Lp (X)n ' |X |
1
p
n ‖∇̂v‖Lp (X̂)n = |X |

1
p
n h−1

X ‖∇̂v̂‖Lp (X̂)n

≤|X |
1
p
n h−1

X ‖∇̂v̂‖Lp (Bn)n . (1.47)

Note that the polynomial ∇̂v̂, originally defined on X̂ , has been naturally extended
into a polynomial on Bn. Let us endow the spaces Pl(Bn) and Pl−1(Bn)n with their
respective Lp-norms. Since ∇̂ is a linear mapping between these finite-dimensional
spaces, it is continuous with a norm bounded above by a constant depending only on
these spaces, that is, depending only on n, l and p. Hence, (1.47) can be continued
writing
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‖∇v‖Lp (X)n . |X |
1
p
n h−1

X ‖v̂‖Lp (Bn) . |X |
1
p
n h−1

X ‖v̂‖Lp (Bn(0,%)) ≤ |X |
1
p
n h−1

X ‖v̂‖Lp (X̂),

where the second inequality follows from (1.43) with q = m = p, and the conclusion
from Bn(0, %) ⊂ X̂ . The proof of (1.46) with X satisfying (1.34) is completed
invoking (1.40) with s = p and w = v.

(ii)Proof of (1.46)with X satisfying (1.36).By virtue of the first inequality in (1.36b)
together with Point (i) in this proof, it holds, for all Y ∈ TX ,

‖∇v‖Lp (Y)n . h−1
Y ‖v‖Lp (Y) . h−1

X ‖v‖Lp (X), (1.48)

where we have used, in the second bound, the second inequality in (1.36b) to-
gether with Y ⊂ X . We then conclude as in Point (ii) of the proof of Lemma
1.25. If p < ∞, taking the power p of (1.48), summing over Y ∈ TX , using
‖∇v‖p

Lp (X)n ≤
∑

Y ∈TX
‖∇v‖p

Lp (Y)n (a consequence of (1.36a)), and taking the pth
root of the resulting inequality proves (1.46) since card(TX ) . 1 by (1.36a). If
p = ∞, on the other hand, we take the maximum of (1.48) overY ∈ TX and conclude
observing that ‖∇v‖L∞(X)n = maxY ∈TX ‖∇v‖L∞(Y)n . ut

The following corollary, whose proof results from a combination of Lemmas 1.25
and 1.28 and is left as an exercise to the reader, states inverse Sobolev embeddings
valid in local polynomial spaces.

Corollary 1.29 (Inverse Sobolev embeddings in local polynomial spaces). Let X
be an open bounded connected subset of Rn that satisfies (1.34) or (1.36). Let three
integers l ≥ 0, r ≥ 0, and m ≥ 0 be given such that

r ≤ m, (1.49)

as well as two real numbers p,q ∈ [1,∞]. Then, for any w ∈ Pl(X),

|w |Wm,p (X) . hr−mX |X |
1
p − 1

q
n |w |W r ,q (X) (1.50)

with hidden multiplicative constant depending only on n, %, l, r , m, p, and q.

Remark 1.30 (Condition (1.49)). Corollary 1.29 obviously cannot hold if m < r and
m ≤ l. To check this point, consider for w a polynomial of degree exactly m (that
is, w has a non-zero coefficient on at least one monomial of total degree m): the
left-hand side of (1.50) does not vanish, while the right-hand side does if r > m.

1.2.6 Local trace inequalities on regular mesh sequences

Trace inequalities enable the control of face norms through element norms. They
play an important role in the analysis of HHO methods, which rely on a mixture of
element-based and face-based terms. For a givenmesh elementT ∈ Th , the following
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lemma shows that the control of the Lp-norm of a (smooth enough) function on a
face F ∈ FT requires the control of the Lp-norm of both the function and its first
derivatives insideT , and makes explicit the dependency of the constants with respect
to hT .

Lemma 1.31 (Continuous local trace inequality). Let (Mh)h∈H denote a
regular mesh sequence in the sense of Definition 1.9, and let a real number
p ∈ [1,∞] be fixed. Then, for all h ∈ H , all T ∈ Th , all F ∈ FT , and all
v ∈ W1,p(T),

‖v‖Lp (F) . h
− 1

p

T

(
‖v‖Lp (T ) + hT ‖∇v‖Lp (T )d

)
(1.51)

with hidden constant depending only on d, %, and p.

Proof. We first consider the case p < ∞. Let T ∈ Th and F ∈ FT . Assume first
that T is simplicial. Since C1(T) is dense in W1,p(T) (see, e.g., [6, Theorem 3.22]),
it suffices to prove (1.51) for v ∈ C1(T), the general case being then obtained
approximating v by such smooth functions. For v ∈ C1(T), we notice that |v |p is at
least Lipschitz-continuous (and thus in W1,∞(T)), with ∇|v |p = p sign(v)|v |p−1∇v
(the function |v |p actually belongs to C1(T) if p > 1).

Consider the function ϕF : T → Rd such that, for all x ∈ T ,

ϕF (x) =
|F |d−1
d |T |d (x − PF ),

where PF denotes the vertex in the simplex T opposite to F; cf. Fig. 1.6. The func-

F

PF

dTF

T

Fig. 1.6: Notation for the proof of Lemma 1.31.

tion ϕF coincides with the lowest-order Raviart–Thomas–Nédélec shape function
associated to the face F; it has normal component identically equal to one on F and
identically equal to zero on the remaining faces in FT (see, e.g., [57, Section 2.3.1],
[58, Example 4], or [183, Section 1.2.7] for further details). Using this fact, we have
that
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‖v‖p
Lp (F) =

∫
F

|v |p =
∑

F′∈FT

∫
F′
|v |p(ϕF ·nTF′)

=

∫
T

∇·(|v |pϕF ) =
∫
T

|v |p(∇·ϕF ) +
∫
T

p sign(v)|v |p−1ϕF ·∇v,

where the third equality follows from the divergence theorem, valid since |v |p ∈
W1,∞(T). Since

∇·ϕF =
|F |d−1
|T |d and ‖ϕF ‖L∞(T )d ≤

|F |d−1hT
d |T |d ,

we infer, using for the second term the generalised Hölder inequality with exponents
(p′,∞, p), p′ being such that 1

p +
1
p′ = 1, that

‖v‖p
Lp (F) ≤

|F |d−1
|T |d ‖v‖

p

Lp (T ) +
|F |d−1hT

d |T |d p‖v‖p−1
Lp (T )‖∇v‖Lp (T )d . (1.52)

Since T is simplicial, denoting by dTF the orthogonal distance between PF and F
and by rT the inradius of T , we have that

|T |d
|F |d−1

=
dTF

d
≥ rT

d
≥ %hT

d
. (1.53)

Combined with (1.52), this yields the following trace inequality on simplices:

‖v‖p
Lp (F) ≤ %−1h−1

T

(
d‖v‖p

Lp (T ) + p‖v‖p−1
Lp (T )hT ‖∇v‖Lp (T )d

)
.

Using, if p > 1, the Young inequality ab ≤ ap

p +
bp′

p′ for the second term gives

‖v‖p
Lp (F) ≤ %−1h−1

T

(
(d + p − 1)‖v‖p

Lp (T ) + hp
T ‖∇v‖

p

Lp (T )d
)

≤ (d + p − 1)%−1h−1
T

(
‖v‖Lp (T ) + hT ‖∇v‖Lp (T )d

)p
.

(1.54)

After taking the power 1/p, (1.51) followswith hidden constantC = (d+p−1) 1
p %−

1
p .

Let us now turn to the general case where T belongs to a polytopal mesh. For
each σ ∈ FF , with FF collecting the simplicial subfaces of F, let τσ ∈ Th denote
the simplex contained in T of which σ is a face. Observing that we can apply the
continuous trace inequality for simplices (1.54) to σ and τσ (this is possible owing
to (1.3)), we obtain
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‖v‖p
Lp (F) =

∑
σ∈FF

‖v‖p
Lp (σ)

≤ %−1
∑
σ∈FF

h−1
τσ

(
(d + p − 1)‖v‖p

Lp (τσ ) + hp
τσ ‖∇v‖pLp (τσ )d

)
Eq. (1.54)

≤ %−2h−1
T

∑
σ∈FF

(
(d + p − 1)‖v‖p

Lp (τσ ) + hp
T ‖∇v‖

p

Lp (τσ )d
)

Eq. (1.4)

≤ %−2h−1
T

(
(d + p − 1)‖v‖p

Lp (T ) + hp
T ‖∇v‖

p

Lp (T )d
) ⋃

σ∈FF
τσ ⊂ T,

and (1.51) for p < ∞ follows with hidden constant C = (d + p − 1) 1
p %−

2
p .

In the case p = ∞, a function v ∈ W1,∞(T) is actually continuous over T and
‖v‖L∞(T ) = maxx∈T |v(x)|. We therefore simply have ‖v‖L∞(F) ≤ ‖v‖L∞(T ), which
implies (1.51) with hidden constant 1. ut

The result of Lemma 1.31 can be simplified for local polynomial functions in view
of the inverse inequality of Lemma 1.28, as made precise in the following lemma.

Lemma 1.32 (Discrete local trace inequality). Let (Mh)h∈H denote a reg-
ular mesh sequence, and let a real number p ∈ [1,∞] and an integer l ≥ 0 be
fixed. Then, for all h ∈ H , all T ∈ Th , all F ∈ FT , and all v ∈ Pl(T),

‖v‖Lp (F) . h
− 1

p

T ‖v‖Lp (T ) (1.55)

with hidden constant depending only on d, %, p, and l.

Proof. It suffices to combine the continuous local trace inequality (1.51) with the
inverse inequality (1.46) applied to X = T , which is made possible by Remark 1.27.

ut

Remark 1.33 (Inequalities for piecewise polynomial functions). The direct and in-
verse Lebesgue embeddings (Lemma 1.25), discrete inverse inequality (Lemma
1.28), inverse Sobolev embeddings (Corollary 1.29) and discrete local trace in-
equality (Lemma 1.32) also hold for functions that are piecewise polynomial on a
subdivision (Si)i∈I of the considered set X or T , provided that (a) each Si has a
diameter comparable (with constant %) to the diameter of the set X or T , and (b) each
Si satisfies the geometric condition (1.34) or (1.36). This can be seen applying the
same kind of argument as in Step (ii) of the proof of Lemma 1.25, using the fact that
(a) and (b) above imply a bound on card(I) that only depends on %.
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1.3 Projectors on local polynomial spaces

In this section we study projectors on local polynomial spaces, which play a key role
in the design and analysis of HHO methods.

1.3.1 Definition and examples

Definition 1.34 (Projector on a local polynomial space). Let an integer l ≥ 0 and
an open bounded connected set X ⊂ Rn, n ≥ 1, be given. Let W be a vector space
such that Pl(X) ⊂ W . A linear mapping Πl

X : W → Pl(X) is a projector on the local
polynomial space Pl(X) if it is onto and idempotent, i.e., Πl

X ◦ Πl
X = Π

l
X .

The following proposition provides a simple condition to check that a projector
meets the requirements of Definition 1.34, namely the invariance of polynomials
under projection.

Proposition 1.35 (Characterisation of projectors on local polynomial spaces).
Let an integer l ≥ 0 and an open bounded connected set X ⊂ Rn, n ≥ 1, be given.
Let W be a vector space such that Pl(X) ⊂ W . A linear mapping Πl

X : W → Pl(X)
is a projector on the local polynomial space Pl(X) in the sense of Definition 1.34 if
and only if, for any v ∈ Pl(X),

Π
l
Xv = v. (1.56)

Proof. Let us first assume that Πl
X is onto and idempotent, and let us prove (1.56).

Take v ∈ Pl(X). Since Πl
X is onto, there exists w ∈ W such that v = Πl

Xw. Taking
the projection of this equality and using the idempotence property, we obtain

Π
l
Xv = Π

l
X (Πl

Xw) = Πl
Xw = v,

which is (1.56).
Assume now (1.56). Then, since Pl(X) ⊂ W , we have that

Pl(X) = Πl
XP

l(X) ⊂ Πl
XW ⊂ Pl(X),

which shows that Πl
XW = Pl(X), i.e., Πl

X is onto. Moreover, using again the poly-
nomial invariance (1.56) we have, for any w ∈ W , that Πl

X (Πl
Xw) = Πl

Xw, which
proves that Πl

X is idempotent. ut
We next discuss two key examples of projectors on local polynomial spaces: the

L2-orthogonal and elliptic projectors.

Definition 1.36 (The L2-orthogonal projector). The L2-orthogonal projector (in
short, L2-projector) π0,l

X : L1(X) → Pl(X) is defined as follows: For all v ∈ L1(X),
the polynomial π0,l

X v ∈ Pl(X) satisfies

(π0,l
X v − v,w)X = 0 ∀w ∈ Pl(X). (1.57)
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Existence and uniqueness of π0,l
X v immediately follow from the Riesz representation

theorem in Pl(X) for the standard L2(X)-inner product. Moreover, we have the
following characterisation:

π0,l
X v = argmin

w∈Pl (X)
‖w − v‖2X,

which is proved observing that (1.57) is the Euler equation for the aboveminimisation
problem; see, e.g., [12, Chapter 10]. This means that π0,l

X v is the element of Pl(X)
that minimises the distance from v in the L2(X)-norm. To check that π0,l

X satisfies
(1.56) (and hence, by Proposition 1.35, that it meets the conditions of Definition
1.34) it suffices to observe that, if v ∈ Pl(X), then (1.57) with w = π0,l

X v − v ∈ Pl(X)
implies π0,l

X v − v = 0. It can also be checked that π0,l
X is a linear operator. The details

are left to the reader.

Remark 1.37 (Case l = 0). The lowest-order L2-projector satisfies

π0,0
T v =

1
|T |d

∫
T

v =
1
|T |d (v,1)T ∀v ∈ L1(T). (1.58)

In the construction of HHO methods carried out in the following chapters, for
a given polytopal mesh Mh = (Th,Fh), we will need the L2-projectors on Pl(T),
T ∈ Th , and Pl(F), F ∈ Fh . We will also need the vector and tensor versions of the
L2-projector, obtained by applying π0,l

X component-wise and denoted with the bold
symbol π0,l

X . Finally, in some circumstances the following global (patched) version
of the L2-orthogonal projector will be useful.

Definition 1.38 (Global L2-orthogonal projector on broken polynomial spaces).
Given a polynomial degree l ≥ 0 and a polytopal meshMh = (Th,Fh), we define the
global L2-orthogonal projector π0,l

h
: L1(Ω) → Pl(Th) as follows: For all v ∈ L1(Ω)

and all T ∈ Th ,
(π0,l

h
v) |T = π0,l

T v |T . (1.59)

Definition 1.39 (The elliptic projector). The elliptic projector π1,l
X : W1,1(X) →

Pl(X) is defined as follows: For all v ∈ W1,1(X), the polynomial π1,l
X v ∈ Pl(X)

satisfies
(∇(π1,l

X v − v),∇w)X = 0 ∀w ∈ Pl(X) (1.60a)

and
(π1,l

X v − v,1)X = 0. (1.60b)

By the Riesz representation theorem in∇Pl(X) for the L2(X)n-inner product, (1.60a)
defines a unique element ∇π1,l

X v ∈ ∇Pl(X), and thus a polynomial π1,l
X v up to an

additive constant. This constant is fixed by (1.60b).
Notice that (1.60) is equivalent to requiring that

(∇(π1,l
X v − v),∇w)X + (π1,l

X v − v, π0,0
X w)X = 0 ∀w ∈ Pl(X). (1.61)
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This can be seen by adding (1.60a) to (1.60b) multiplied by π0,0
X w to get (1.61);

conversely, apply (1.61) with w − π0,0
X w (resp. w = 1) to recover (1.60a) (resp.

(1.60b)).
Observing that (1.60a) is trivially verified when l = 0, it follows from (1.60b)

that π1,0
X = π

0,0
X . The following characterisation holds:

π1,l
X v = argmin

w∈Pl (X), (w−v,1)X=0
‖∇(w − v)‖2X,

which is proved observing that (1.60) is the Euler equation for the aboveminimisation
problem; see, e.g., [12, Chapter 10]. Let us check that π1,l

X satisfies the polynomial
invariance condition (1.56) (and hence, by Proposition 1.35, that it meets the re-
quirements of Definition 1.34). Let v ∈ Pl(X) and observe that, by (1.60a) with
w = π1,l

X v − v ∈ Pl(X), ∇(π1,l
X v − v) = 0. As a result, π1,l

X v and v only differ by a
constant, which must be zero in view of (1.60b). We leave it to the reader to check
that π1,l

X is a linear operator.
When constructing theHHO approximation of the Poisson problem on a polytopal

meshMh = (Th,Fh) in Chapter 2, the elliptic projectors π1,l
T , T ∈ Th , will play a key

role. Other examples of projectors that will be encountered and studied in this book
include: the oblique elliptic projector of Section 3.1.2, relevant in the discretisation of
anisotropic diffusion; the modified elliptic projector of Section 5.1.2, with a closure
equation involving an average on the boundary of the element (instead of the average
(1.60b) on the element itself); and the strain projector of Section 7.2.2, used in the
context of linear elasticity.

1.3.2 Approximation properties of bounded projectors on local
polynomial spaces

We study in this section the approximation properties of projectors on local poly-
nomial spaces. We start with an abstract result, which states that projectors that are
bounded in a suitable (small) set of Sobolev seminorms have optimal approximation
properties in all Sobolev seminorms. Optimal means here that the error committed
approximating a smooth function v by its projection has the same scaling in the
diameter hX as the error with respect to the best approximation of v in the selected
Sobolev seminorm.

Such approximation properties are established under geometrical assumptions on
the sets. The simplest one is the following.

Definition 1.40 (Star-shaped set). A non-empty open set X ⊂ Rn of boundary
∂X is star-shaped with respect to a point x ∈ X if, for any y ∈ ∂X , the segment
{αx + (1 − α)y : α ∈ (0,1)} is contained in X .

This is the notion used, e.g., in the main approximation results of [77, 179]. In
the present context, however, we have to expand this notion in order to cover the
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case where the set X coincides with an element or face of a polytopal mesh from a
regular sequence. We therefore introduce the following generalisation of the notion
of star-shaped set:

Definition 1.41 (Set connected by star-shaped sets). An open bounded set X of
Rn is connected by star-shaped sets with parameter θ > 0 if X is connected and if
there exists a family of open subsets (Xi)i=1,...,N of X such that

X =
N⋃
i=1

Xi , N ≤ θ−1 , (1.62a)

∀i ∈ {1, . . . ,N} , Xi is star-shaped with respect to all points
in a ball of radius θhXi ,

(1.62b)

and
∀i ∈ {2, . . . ,N} , ∃ j ∈ {1, . . . , i − 1} such that
Xi ∩ Xj contains a ball of radius θhX .

(1.62c)

The main interest of this notion for us is that it covers the elements and faces in a
polytopal mesh of a regular mesh sequence.

Lemma 1.42 (Mesh elements and faces are connected by shar-shaped sets). Let
(Mh)h∈H = (Th,Fh)h∈H be a regular mesh sequence in the sense of Definition 1.9.
Then, for all h ∈ H , any T ∈ Th and any F ∈ Fh is connected by star-shaped
sets in the sense of Definition 1.41, with parameter θ depending only on d and % in
Definition 1.9.

Proof. See Section 1.4.2.

Lemma 1.43 (W s,p-approximation forW-bounded projectors). Assume that X ⊂
Rn is connected by star-shaped sets with parameter θ > 0 in the sense of Definition
1.41. Let a real number p ∈ [1,∞] and four integers l ≥ 0, s ∈ {0, . . . , l + 1}, and
q,m ∈ {0, . . . , s} be fixed. Denote by Πq,l

X : Wq,p(X) → Pl(X) a projector on the
local polynomial space Pl(X) in the sense of Definition 1.34. Assume that it holds,
with hidden constant depending only on n, θ, l, s, q, m, and p: For all v ∈ Wq,p(X),

If m < q, |Πq,l
X v |Wm,p (X) .

q∑
r=m

hr−mX |v |W r ,p (X), (1.63a)

If m ≥ q, |Πq,l
X v |W q ,p (X) . |v |W q ,p (X). (1.63b)

Then, for all v ∈ W s,p(X), with hidden constant having the same dependencies as
above,

|v − Πq,l
X v |Wm,p (X) . hs−m

X |v |W s ,p (X). (1.64)

Proof. We first notice that (1.62) in Definition 1.41 implies (1.36) with % = θ.
Hence, the inverse Sobolev embeddings of Corollary 1.29 apply to X , with hidden
constant having the same dependency as in (1.63).
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We consider the following representation of v:

v = Qsv + Rsv, (1.65)

whereQsv ∈ Ps−1(X) ⊂ Pl(X) is an averagedTaylor polynomial, while the remainder
Rsv satisfies, for all r ∈ {0, . . . , s},

|Rsv |W r ,p (X) . hs−r
X |v |W s ,p (X). (1.66)

A proof of this result for X star-shaped with respect to all points in a ball of radius
θhX is given in [77, Lemma 4.3.8]. Its extension to X connected by star-shaped sets
is detailed in Section 1.4.1 below. Since Πq,l

X is a projector, it holds by Proposition
1.35 that Πq,l

X (Qsv) = Qsv so that, taking the projection of (1.65), it is inferred

Π
q,l
X v = Qsv + Π

q,l
X (Rsv).

Subtracting this equation from (1.65), we arrive at v − Πq,l
X v = Rsv − Πq,l

X (Rsv).
Hence, passing to the seminorm and using a triangle inequality, we obtain

|v − Πq,l
X v |Wm,p (X) ≤ |Rsv |Wm,p (X) + |Πq,l

X (Rsv)|Wm,p (X). (1.67)

For the first term in the right-hand side, the estimate (1.66) with r = m readily yields

|Rsv |Wm,p (X) . hs−m
X |v |W s ,p (X). (1.68)

Let us estimate the second term in (1.67). If m < q, using the boundedness assump-
tion (1.63a) followed by the estimate (1.66), it is inferred

|Πq,l
X (Rsv)|Wm,p (X) .

q∑
r=m

hr−mX |Rsv |W r ,p (X)

.

q∑
r=m

hr−mX hs−r
X |v |W s ,p (X) . hs−m

X |v |W s ,p (X).

If, on the other hand, m ≥ q, using the inverse Sobolev embeddings (1.50) followed
by assumption (1.63b) and the estimate (1.66) with r = q, it is inferred that

|Πq,l
X (Rsv)|Wm,p (X) . hq−m

X |Πq,l
X (Rsv)|W q ,p (X)

. hq−m
X |Rsv |W q ,p (X) . hs−m

X |v |W s ,p (X).

In conclusion we have, in either case m < q or m ≥ q,

|Πq,l
X (Rsv)|Wm,p (X) . hs−m

X |v |W s ,p (X). (1.69)

Using (1.68) and (1.69) to estimate the first and second terms in the right-hand side
of (1.67), respectively, the conclusion follows. ut
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We close this section with a technical lemma which will play an important role in
the study, carried out in the following section, of the approximation properties of the
L2-orthogonal and elliptic projectors.

Lemma 1.44 (Lp-boundedness of L2-orthogonal projectors on local polynomial
subspaces). Let X denote an open bounded connected set of Rn, n ≥ 1, let two
integers l ≥ 0 and m ≥ 1 be fixed, and let P be a subspace of Pl(X)m. We consider
the L2-orthogonal projector ΠP : L1(X)m → P such that, for all Φ ∈ L1(X)m,

(ΠPΦ − Φ,Ψ)X = 0 ∀Ψ ∈ P . (1.70)

Let a real number p ∈ [1,∞] be given and, if p , 2, assume that X satisfies (1.34)
or (1.36). Then, for all Φ ∈ Lp(X)m,

‖ΠPΦ‖Lp (X)m . ‖Φ‖Lp (X)m (1.71)

with hidden constant equal to 1 if p = 2 and depending only on n, l, m, % and p
otherwise.

Proof. (i) The case p = 2. Using (1.70) with Ψ = ΠPΦ and the Cauchy–Schwarz
inequality, it is inferred that

‖ΠPΦ‖2X = (Φ,ΠPΦ)X ≤ ‖Φ‖X ‖ΠPΦ‖X,

and thus, simplifying by ‖ΠPΦ‖X ,

‖ΠPΦ‖X ≤ ‖Φ‖X . (1.72)

(ii) The case p > 2. Using the inverse Lebesgue embeddings on local polynomial
spaces of Lemma 1.25 followed by (1.72) and the Hölder inequality (with functions
Φ, 1 and exponents p

2 ,
p

p−2 ), it is inferred that

‖ΠPΦ‖Lp (X)m . |X |
1
p − 1

2
n ‖ΠPΦ‖X ≤ |X |

1
p − 1

2
n ‖Φ‖X . ‖Φ‖Lp (X)m ,

which proves (1.71) for p > 2.

(iii) The case p < 2. We first observe that, using the definition (1.70) of ΠP twice,
for all Φ,Ψ ∈ L1(X)m we have that∫

X

(ΠPΦ)·Ψ =
∫
X

(ΠPΦ)·(ΠPΨ) =
∫
X

Φ·(ΠPΨ).

Hence, with p′ such that 1
p +

1
p′ = 1, it holds
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‖ΠPΦ‖Lp (X)m = sup
Ψ∈Lp′ (X)m , ‖Ψ ‖

Lp′ (X )m=1

∫
X

(ΠPΦ)·Ψ

= sup
Ψ∈Lp′ (X)m , ‖Ψ ‖

Lp′ (X )m=1

∫
X

Φ·(ΠPΨ)

≤ sup
Ψ∈Lp′ (X)m , ‖Ψ ‖

Lp′ (X )m=1
‖Φ‖Lp (X)m ‖ΠPΨ‖Lp′ (X)m , (1.73)

where we have used the Hölder inequality to conclude. Use (1.71) for p′ > 2 to write
‖ΠPΨ‖Lp′ (X)m . ‖Ψ‖Lp′ (X)m = 1 and plug this bound into (1.73) to conclude the
proof of (1.71). ut

1.3.3 Approximation properties of the local L2-orthogonal and
elliptic projectors

Theorem 1.45 (Approximation properties of the L2-orthogonal projector
on elements and faces). Let (Mh)h∈H = (Th,Fh)h∈H be a regular mesh
sequence in the sense of Definition 1.9. Let a polynomial degree l ≥ 0, an
integer s ∈ {0, . . . , l + 1}, and a real number p ∈ [1,∞] be given. Then, for
any X element or face ofMh , all v ∈ W s,p(X), and all m ∈ {0, . . . , s},

|v − π0,l
X v |Wm,p (X) . hs−m

X |v |W s ,p (X). (1.74)

Moreover, if s ≥ 1, for all T ∈ Th , all v ∈ W s,p(T), all F ∈ FT , and all
m ∈ {0, . . . , s − 1}, it holds that

h
1
p

T |v − π0,l
T v |Wm,p (F) . hs−m

T |v |W s ,p (T ). (1.75)

In (1.74) and (1.75), the hidden constants depend only on d, %, l, s, and p.

Proof. Let X denote an element or face ofMh . Using Lemma 1.44 with P = Pl(X)
(which is possible in view of Remark 1.27), we have the following boundedness
property for π0,l

X : For all v ∈ Lp(X),

‖π0,l
X v‖Lp (X) . ‖v‖Lp (X).

The estimate (1.74) is then an immediate consequence of Lemma 1.43 with q = 0
and Π0,l

X = π
0,l
X (notice that Lemma 1.43 applies to X as a consequence of Lemma

1.42).



1.3 Projectors on local polynomial spaces 35

Let us now turn to the trace approximation property (1.75). Take α ∈ Nd−1 such
that ‖α‖1 = m. Apply the continuous trace inequality (1.51) with v replaced by
∂α(v− π0,l

T v) (the derivative being taken with respect to Cartesian coordinates along
the hyperplane spanned by F) to get

h
1
p

T ‖∂α(v − π0,l
T v)‖Lp (F) . ‖∂α(v − π0,l

T v)‖Lp (T ) + hT ‖∇∂α(v − π0,l
T v)‖Lp (T )

. |v − π0,l
T v |Wm,p (T ) + hT |v − π0,l

T v |Wm+1,p (T ).

Invoke then (1.74) for X = T twice, first with m and then with (m + 1) instead of m
(note that, by assumption, m + 1 ≤ s), to deduce

h
1
p

T ‖∂α(v − π0,l
T v)‖Lp (F) . hs−m

T |v |W s ,p (T ) + hT hs−m−1
T |v |W s ,p (T )

. hs−m
T |v |W s ,p (T ).

Estimate (1.75) follows summing over α ∈ Nd−1 such that ‖α‖1 = m. ut
Some remarks are in order to highlight relevant consequences of Theorem 1.45.

Remark 1.46 (Local Poincaré–Wirtinger inequality). From (1.58) and (1.74) with
p = 2, l = 0, s = 1, and m = 0, we infer a local Poincaré–Wirtinger inequality,
which will often be invoked in the following chapters: For any T ∈ Th and any
v ∈ H1(T) such that

∫
T
v = 0,

‖v‖T . hT ‖∇v‖T (1.76)

with hidden constant depending only on d and %.

Remark 1.47 (W s,p-boundedness of L2-orthogonal projectors on elements and
faces). For any X element or face of a mesh Mh and any v ∈ W s,p(X), it holds
with hidden constant depending only on d, %, s, and p:

|π0,l
X v |W s ,p (X) . |v |W s ,p (X), (1.77)

which expresses the fact that the L2-orthogonal projector on Pl(X) is bounded in any
Sobolev seminorm. To prove (1.77), it suffices to use the triangle inequality to write

|π0,l
X v |W s ,p (X) ≤ |π0,l

X v − v |W s ,p (X) + |v |W s ,p (X)

and conclude using (1.74) with m = s for the first term. We notice, in passing, that
the hidden constant in (1.77) is equal to 1 if s = 0 and p = 2 (see Point (i) in the
proof of Lemma 1.44).

Theorem 1.48 (Approximation properties of the elliptic projector on ele-
ments). Let (Mh)h∈H = (Th,Fh)h∈H be a regular mesh sequence in the sense
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of Definition 1.9. Let a polynomial degree l ≥ 0, an integer s ∈ {1, . . . , l + 1},
and a real number p ∈ [1,∞] be given. Then, for all T ∈ Th , all v ∈ W s,p(T),
and all m ∈ {0, . . . , s},

|v − π1,l
T v |Wm,p (T ) . hs−m

T |v |W s ,p (T ). (1.78)

Moreover, if m ≤ s − 1, for all F ∈ FT ,

h
1
p

T |v − π1,l
T v |Wm,p (F) . hs−m

T |v |W s ,p (T ). (1.79)

The hidden constants in (1.78) and (1.79) depend only on d, %, l, s, and p.

Proof. The proof of (1.78) is obtained applying Lemma 1.43 (this is possible in view
of Lemma 1.42) with q = 1 and Π1,l

T = π
1,l
T , provided that we can establish (1.63).

Combining this result with the continuous trace inequality (1.51) yields (1.79), in
a similar way as in the proof of Theorem 1.45. To prove that the condition (1.63)
holds, we distinguish two cases corresponding, respectively, to m ≥ 1 and m = 0.

(i) The case m ≥ 1. We need to show that (1.63b) holds, i.e., for all v ∈ W1,p(T),

|π1,l
T v |W 1,p (T ) . |v |W 1,p (T ). (1.80)

By definition (1.60a) of π1,l
T , it holds, for all v ∈ W1,1(T),

∇π1,l
T v = Π∇Pl (T )∇v, (1.81)

where Π∇Pl (T ) denotes the L2-orthogonal projector on ∇Pl(T) ⊂ Pl−1(T)d . Then,
(1.80) is proved observing that, by definition (1.16) of the |·|W 1,p (T )-seminorm,
and invoking (1.81) and the Lp-boundedness of Π∇Pl (T ) resulting from (1.71) with
P = ∇Pl(T), we have

|π1,l
T v |W 1,p (T ) . ‖∇π1,l

T v‖Lp (T )d = ‖Π∇Pl (T )∇v‖Lp (T )d . ‖∇v‖Lp (T )d . |v |W 1,p (T ).

(ii) The case m = 0. We need to prove that (1.63a) holds, i.e., for all v ∈ W1,p(T),

‖π1,l
T v‖Lp (T ) . ‖v‖Lp (T ) + hT |v |W 1,p (T ). (1.82)

Let v ∈ W1,p(T) and set v B π0,0
T v. By (1.58) and the closure condition (1.60b)

in the definition of the elliptic projector, we also have that v = π0,0
T (π1,l

T v). The
approximation property (1.74) of the L2-projector (applied with m = 0 and s = 1 to
π1,l
T v instead of v) therefore gives

‖π1,l
T v − v‖Lp (T ) . hT |π1,l

T v |W 1,p (T ).
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We infer
‖π1,l

T v‖Lp (T ) ≤ ‖π1,l
T v − v‖Lp (T ) + ‖v‖Lp (T )

. hT |π1,l
T v |W 1,p (T ) + ‖π0,0

T v‖Lp (T )
. hT |v |W 1,p (T ) + ‖v‖Lp (T ),

where we have inserted ±v inside the norm and used the triangle inequality in the
first line, while the terms in the second line have been estimated using (1.80) for the
first one and (1.77) with (l, s) = (0,0) and X = T for the second one. This establishes
(1.82) and concludes the proof. ut
Remark 1.49 (Estimates in fractional Sobolev spaces). Lemma 1.43 and Theorems
1.45 and 1.48 have been stated for simplicity in integral Sobolev spaces, that is,
considering only the case where s and m are integers. However, using standard
interpolation techniques (see, e.g., [233, Theorem 5.1]), it is easily deduced from
the integer case that the estimates in these theorems also hold for non-integer s and
m within the admissible bounds (that is, s ∈ [0, l + 1] or s ∈ [1, l + 1], and m ∈ [0, s]
or m ∈ [0, s − 1]).

1.4 Technical results on sets that are connected by star-shaped
sets

1.4.1 Approximation by local polynomials

As announced in the proof of Lemma 1.43, we prove in this section that the de-
composition (1.65)–(1.66) of functions in W s,p(X) holds when X is connected by
star-shaped sets, in the sense of Definition 1.41.

The ideas developed here are inspired by [179, Section 7], in which it is shown
that a polynomial approximation property holds on a connected finite union of open
sets provided that it holds on each set. However, this setting does not enable a proper
tracking of the dependency of the constants involved in the estimates. We will show
that the notion of set connected by star-shaped sets enables such a tracking.

Theorem 1.50 (Local polynomial approximations of W s,p-functions). Let X ⊂
Rn be connected by star-shaped sets with parameter θ, in the sense of Definition
1.41, and take an integer s ≥ 0 and a real number p ∈ [1,∞]. Let v ∈ W s,p(X).
Then, there exists Qsv ∈ Ps−1(X) such that, for all r ∈ {0, . . . , s},

|v −Qsv |W r ,p (X) . hs−r
X |v |W s ,p (X), (1.83)

with hidden constant depending only on n, s, p, r and θ.

Proof. Let (Xi)i=1,...,N be the sets given by Definition 1.41. By [77, Chapter 4]
and (1.62b), for each i ∈ {1, . . . ,N} there exists Qs

Xi
v ∈ Ps−1(Xi) such that, for all

r ∈ {0, . . . , s},
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|v −Qs
Xi
v |W r ,p (Xi ) . hs−r

Xi
|v |W s ,p (Xi ) . hs−r

X |v |W s ,p (X), (1.84)

the second inequality following from Xi ⊂ X . Each polynomial function Qs
Xi
v can

obviously be uniquely extended into a polynomial in Ps−1(X). We will prove that
Qsv B Qs

X1
v satisfies (1.83).

Let us start with a preliminary estimate. Using the same arguments as in Point (i)
of the proof of Lemma 1.25, that is to say a translation and scaling argument, and the
equivalence of norms on Ps−1(Rn), we see that, for any ball Bn(x, θhX ) contained in
X , there holds

‖w‖Lp (X) . ‖w‖Lp (Bn(x,θhX )) ∀w ∈ Ps−1(X),

with hidden constant depending only on n, s, p and θ. Take w ∈ Ps−1(X) and apply
this estimate to its derivatives ∂αw ∈ Ps−r−1(X) ⊂ Ps−1(X), with α ∈ Nn such that
‖α‖1 = r , to get

|w |W r ,p (X) . |w |W r ,p (Bn(x,θhX )) ∀w ∈ Ps−1(X). (1.85)

We now turn to the proof that Qs
X1
v satisfies (1.83). By (1.62c), X1 ∩ X2 contains

a ball Bn(x, θhX ). Applying (1.85) to this ball and w = Qs
X1
v −Qs

X2
v yields

|Qs
X1
v −Qs

X2
v |W r ,p (X) . |Qs

X1
v −Qs

X2
v |W r ,p (Bn(x,θhX ))

. |Qs
X1
v − v |W r ,p (Bn(x,θhX )) + |v −Qs

X2
v |W r ,p (Bn(x,θhX ))

. |Qs
X1
v − v |W r ,p (X1) + |v −Qs

X2
v |W r ,p (X2)

. hs−r
X |v |W s ,p (X),

where we have inserted ±v into the seminorm and used the triangle inequality to
pass to the second line, used the fact that Bn(x, θhX ) ⊂ X1 ∩ X2 in the third line, and
concluded invoking (1.84) with i = 1,2.

Following similar arguments we obtain, for all i ∈ {1, . . . ,N},

|Qs
X1
v −Qs

Xi
v |W r ,p (X) . hs−r

X |v |W s ,p (X). (1.86)

This estimate is established by strong induction on i. In the inductive step, which
assumes that (1.86) holds with i replaced by any j ∈ {1, . . . , i − 1}, we use (1.62c) to
estimate |Qs

Xi
v −Qs

Xj
v |W s ,p (X) for some j < i (as for |Qs

X1
v −Qs

X2
v |W r ,p (X) above),

invoke the induction hypothesis to estimate |Qs
X1
v −Qs

Xj
v |W r ,p (X), and conclude by

triangle inequality.
As a consequence, for all i ∈ {1, . . . ,N},

|Qs
X1
v − v |W r ,p (Xi ) . |Qs

X1
v −Qs

Xi
v |W r ,p (Xi ) + |Qs

Xi
v − v |W r ,p (Xi )

. hs−r
X |v |W s ,p (X), (1.87)
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where we have inserted ±Qs
Xi
v into the seminorm and used the triangle inequality

in the first line, and invoked (1.86) and (1.84) to conclude.
The proof for p < ∞ is completed using (1.62a) and invoking (1.87) to write

|Qs
X1
v − v |W r ,p (X) ≤

(
N∑
i=1
|Qs

X1
v − v |p

W r ,p (Xi )

)1/p
. hs−r

X |v |W s ,p (X).

For p = ∞, we conclude the proof by taking the maximum of (1.87) over i ∈
{1, . . . ,N}. ut

1.4.2 The case of mesh elements and faces

In this section, we prove Lemma 1.42, that is, we show that elements and faces of a
regular mesh sequence are connected by star-shaped sets.

Proof (Lemma 1.42). We only present the proof for a mesh element, the case of a
face being similar. Let h ∈ H andMh = (Th,Fh) be a matching simplicial submesh
ofMh given by Definition 1.9. In this proof, the hidden constants in . depend only
on d and %.

(i) Preliminary result on simplices. Let τ ∈ Th and σ ∈ Fτ be a face of τ. Let

τ̂ B

{
x = (x1, . . . , xd) ∈ Rd : xi > 0 ∀i = 1, . . . , d ,

d∑
i=1

xi < 1

}
be the reference simplex and

σ̂0 B

{
x = (x1, . . . , xd) ∈ Rd : xi > 0 ∀i = 1, . . . , d ,

d∑
i=1

xi = 1

}
be the face of τ̂ opposite to 0 (see Fig. 1.7 for an illustration of these sets and of the
arguments to follow).

Since τ contains a ball of radius & hτ , by [174, Lemma 8.8] there exists an affine
mapping φ(·) = x0 + M · of Rd , with M an invertible matrix, such that φ(τ̂) = τ
and ‖M−1‖2 ≤ C0h−1

τ with C0 depending only on d and % (here, ‖·‖2 is the norm
induced on the space of matrices by the Euclidean norm |·| of Rd). Possibly upon a
permutation of the vertices of τ, we can assume that φ sends σ̂0 onto σ.

Since the centre of mass xσ of σ is the barycentre of its vertices, it is sent by φ−1

to the centre of mass xσ̂0 of σ̂0. Let y ∈ Rd be on the same side of σ as τ and such
that

|y − xσ | < 1
2C0

hτ .

Then, applying φ−1,
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τ̂

xσ
σ

φ−1
σ̂0

xσ̂0

φ

Image through φ−1 of half of Bd(xσ, hτ/(2C0))

τ

Half of Bd(xσ, hτ/(2C0))

1/2
0

Fig. 1.7: Illustration of Point (i) in the proof of Lemma 1.42.

|φ−1(y) − xσ̂0 | = |φ−1(y) − φ−1(xσ)| = |M−1(y − xσ)|

< ‖M−1‖2 1
2C0

hτ ≤ 1
2
.

Hence, φ−1(y) ∈ τ̂ since τ̂ is the reference simplex, and therefore contains the half
ball of radius 1

2 centred at xσ̂0 and on the same side of σ̂0 as τ̂. This proves that
y = φ(φ−1(y)) ∈ φ(τ̂) = τ. In other words, we have proved what is illustrated on the
right of Fig. 1.7:

τ contains a half ball, centred at xσ and of radius & hτ ,
that lies on the same side of σ as τ.

(1.88)

(ii) Construction of the family (Xi)i=1,...,N . Let T ∈ Th and τ, τ′ ∈ Th be two
simplices in T that share a common face σ ∈ Fh . Owing to (1.88) and (1.4), each of
τ and τ′ contains a half ball centred at xσ and of radius & hT . Let rσ be the smallest
of the radii of these two half balls, so that rσ & hT , and set Bσ B Bd(xσ,rσ).

A family (Xi)i=1,...,N satisfying (1.62) for X = T is constructed the following
way. We first list the simplices τ1, . . . , τr of TT = {τ ∈ Th : τ ⊂ T} in such a
way that, for any i ∈ {2, . . . ,r}, there exists j < i such that τi and τj share a face.
Then, denoting by Fi

τ the set of internal faces of τ ∈ TT (that is, the faces shared by
another simplex in TT ), the union in (1.62a) is written as

T = τ1 ∪
⋃
σ∈Fi

τ1

Bσ ∪ τ2 ∪
⋃
σ∈Fi

τ2

Bσ ∪ · · · ∪ τr−1 ∪
⋃

σ∈Fi
τr−1

Bσ ∪ τr . (1.89)

The order in which the τj and Fi
τj

are listed is important, but the order in which we
list each Bσ in

⋃
σ∈Fi

τ j
Bσ is not. This union satisfies (1.62a) since the number of

its elements is bounded above by (d + 2) card(TT ) (each simplex τ ∈ TT has at most
(d + 1) internal faces), and card(TT ) . 1 by (1.9). It obviously satisfies (1.62b) by
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the regularity assumption (1.3) on the simplices, and the fact that all the balls in the
family have radius & hT and are star-shaped with respect to all their points.

Finally, (1.62c) comes from the order chosen on the simplices. Indeed, considering
first the case of a simplex τi , i ≥ 2, in the list (1.89), τi has a face σ in common with
some τj for j < i. The ball Bσ corresponding to this face σ therefore appears in the
list before τi , in the union overFi

τj
, and by construction τi ∩Bσ contains half ofBσ .

This ball has radius & hT , so its half contains a ball of radius & hT /2 & hT . If we
consider now the case of a ballBσ in the union over someFi

τj
in the list (1.89), then

the simplex τj appears before Bσ in the list and Bσ ∩ τj contains half of Bσ which,
as above, contains a ball of radius & hT . This completes the proof of the lemma. ut

Remark 1.51 (Optimality of the choice of (Xi)i=1,...,N ). The sets constructed in this
proof are far from being optimal in terms of their numbers, or the sizes of the
balls contained in their pairwise intersections. For a given explicit polytopal set
T , a simple inspection usually identifies a small family made of two or three sets.
However, establishing a generic proof of the existence of these (Xi)i=1,...,N requires
to only rely on the definition of an element in a regular family of meshes, which is
what we did above.





Chapter 2
Basic principles of Hybrid High-Order methods:
The Poisson problem

In this chapter we introduce the main ideas underlying HHO methods, using to this
purpose the Poisson problem: Find u : Ω→ R such that

−∆u = f in Ω, (2.1a)
u = 0 on ∂Ω, (2.1b)

where Ω is an open bounded polytopal subset of Rn, n ≥ 2, with boundary ∂Ω and
f : Ω → R is a given volumetric source term, assumed to be in L2(Ω). Recalling
the notation introduced in Remark 1.14 for L2-products, the starting point to devise
an HHO discretisation is the following classical weak formulation of problem (2.1):
Find u ∈ H1

0 (Ω) such that

a(u, v) = ( f , v) ∀v ∈ H1
0 (Ω), (2.2)

where the bilinear form a : H1(Ω) × H1(Ω) → R is such that

a(u, v) B (∇u,∇v). (2.3)

In what follows, the quantities u and −∇u will be referred to, respectively, as the
potential and the flux.

Throughout the rest of this chapter, (Mh)h∈H = (Th,Fh)h∈H denotes a regular
mesh sequence in the sense of Definition 1.9. This fact is explicitly recalled only in
the statements of central results for the sake of easy consultation. HHO methods are
based on discrete unknowns that are broken polynomials over mesh elements and
faces, and rely on two key ingredients: (i) problem-dependent local reconstructions
obtained by solving small, trivially parallel problems on each mesh element T ∈ Th ,
and (ii) stabilisation terms penalising high-order differences. These ingredients are
combined to formulate local contributions, which are then assembled as in Finite
Element Methods. The reconstruction is usually conceived so that its composition
with the interpolator coincides with a projector on a local polynomial space.

43
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In Section 2.1 we decline these general ideas for the Poisson problem, starting
with a key remark: For any mesh element T ∈ Th , the elliptic projection of degree
(k + 1) of a function can be computed from its L2-orthogonal projections of degree
k on T and on each of its faces. This remark motivates:

(i) the choice of a local space of discrete unknowns Uk
T spanned by polynomials

of degree k ≥ 0 on T and on each of its faces, the latter possibly discontinuous
at face boundaries;

(ii) the choice of a local interpolator from smooth functions to Uk
T constructed

from the L2-orthogonal projections of degree k on T and on each of its faces;
(iii) the introduction of a local potential reconstruction operator pk+1

T : Uk
T →

Pk+1(T) whose composition with the interpolator on Uk
T coincides with the

elliptic projector of degree (k + 1).
From these ingredients, we devise the local approximation aT of the continuous
bilinear form a defined by (2.3). The local bilinear form aT is composed of two terms:
a standard Galerkin contribution and a stabilisation term. The latter is conceived so
that stability and boundedness hold with respect to a suitable H1(T)-like seminorm,
and that polynomial consistency up to degree (k + 1) is verified.

In Section 2.2 we introduce the global space of discrete unknowns with single-
valued interface values (meaning that the interface unknowns match from one ele-
ment to the adjacent one), as well as a global bilinear form ah obtained by element by
element assembly of the local contributions aT , T ∈ Th . Based on these ingredients,
we formulate the discrete problem and discuss its well-posedness. We close this
section by showing that the HHO method is locally conservative on each element,
and identify a computable expression for the normal trace of the numerical flux. This
interpretation highlights the different roles of the equations associated to element
and face unknowns: the former correspond to local balances inside each element,
whereas the latter enforce the continuity of fluxes. These balance and continuity
equations lead to an interpretation of HHO schemes as high-order Finite Volume
schemes.

In Section 2.3 we carry out an exhaustive error analysis of the method based on
the abstract framework of Appendix A. Specifically, we show that the approximation
error measured in the energy norm converges as hk+1. A similar convergence rate is
then proved for the global potential reconstruction in Pk+1(Th), obtained by glueing
together the local reconstructions, and for its jumps. Finally, under the usual elliptic
regularity assumption, we show that improved convergence in hk+2 holds for the
L2-norm of the error. The latter result hinges on a key feature of HHO methods,
namely the superconvergence of element-based unknowns.

In Section 2.4 we briefly discuss other boundary conditions. Finally, in Section
2.5, we illustrate the theoretical results with numerical examples in two and three
space dimensions.
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2.1 Local construction

Let a polynomial degree k ≥ 0 and a mesh element T ∈ Th be given. We introduce
the local ingredients underlying the HHO construction: the discrete unknowns, the
interpolator, the potential reconstruction operator, and the local approximation of
the continuous bilinear form defined by (2.3).

2.1.1 Computing the local elliptic projection from L2-projections

Consider a function v ∈ W1,1(T). We note the following integration by parts formula,
valid for all w ∈ C∞(T):

(∇v,∇w)T = −(v,∆w)T +
∑
F ∈FT
(v,∇w·nTF )F . (2.4)

Let us specialise (2.4) to w ∈ Pk+1(T). Observing that ∆w ∈ Pk−1(T) ⊂ Pk(T) and
using the definition (1.57) of π0,k

T , we can write (π0,k
T v,∆w)T instead of (v,∆w)T in

the right-hand side. Moreover, for all F ∈ FT , we have that (∇w) |F ∈ Pk(F)d by
Definition 1.22 of local polynomial spaces and that nTF ∈ P0(F)d by the planarity
of faces (see Definition 1.4), so that (∇w) |F ·nTF ∈ Pk(F). Hence, invoking the
definition (1.57) of π0,k

F , we can further replace (v,∇w·nTF )F by (π0,k
F v,∇w·nTF )F

in the right-hand side. Finally, using the definition (1.60a) of the elliptic projector
π1,k+1
T , we can write (∇π1,k+1

T v,∇w)T instead of (∇v,∇w)T in the left-hand side. In
conclusion, we have that

(∇π1,k+1
T v,∇w)T = −(π0,k

T v,∆w)T +
∑
F ∈FT
(π0,k

F v,∇w·nTF )F . (2.5a)

Notice that, here and in what follows, it is understood that the L2-projectors over
faces act on the traces of the considered functions. On the other hand, using again
the definition (1.57) of π0,k

T , we have that

0 = (π1,k+1
T v − v,1)T = (π1,k+1

T v − π0,k
T v,1)T . (2.5b)

The relations (2.5) show that computing the elliptic projection π1,k+1
T v does not

require the full knowledge of the function v. All that is required is

(i) π0,k
T v, the L2-projection of v on the local polynomial space Pk(T);

(ii) for all F ∈ FT , π0,k
F v, the L2-projection of the trace of v on Pk(F).

Remark 2.1 (Choice of the polynomial degree for the element-based L2-projector).
In (2.5a), since ∆w ∈ Pk−1(T), we could have replaced π0,k

T with π0,`
T for any

` ≥ max(0, k − 1). The same holds in (2.5b). This choice leads to variations of the
method, discussed in Section 5.1.
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2.1.2 Local space of discrete unknowns

The discussion in the previous section motivates the introduction of the following
space of discrete unknowns (see Fig. 2.1):

Uk
T B

{
vT = (vT , (vF )F ∈FT ) : vT ∈ Pk(T) and vF ∈ Pk(F) ∀F ∈ FT

}
. (2.6)

•

•

•
•

•

•

k = 0

•

••

••

••
•• ••

••

k = 1

••
•

•••

• ••

••
•

••
•

•••

•••
k = 2

••••• •

Fig. 2.1: Discrete unknowns in Uk
T for k ∈ {0,1,2}. The dots represent the number

of unknowns attached to an element or face, in dimension d = 2. When writing the
HHO scheme (2.48), the discrete unknowns attached to elements (in grey) can be
eliminated by static condensation; see Section B.3.2 for further details.

On Uk
T , we define the H1-like seminorm ‖·‖1,T such that, for all vT ∈ Uk

T ,

‖vT ‖1,T B
(
‖∇vT ‖2T + |vT |21,∂T

) 1
2
,

|vT |1,∂T B
( ∑
F ∈FT

h−1
F ‖vF − vT ‖2F

) 1
2

,

(2.7)

where hF denotes the diameter of F. The negative power of hF in the second term
ensures that both contributions have the same scaling. The discrete unknowns cor-
responding to a smooth function v ∈ W1,1(T) are obtained via the local interpolator
IkT : W1,1(T) → Uk

T such that

IkT v B (π0,k
T v, (π0,k

F v)F ∈FT ). (2.8)

The next proposition states a boundedness property of this interpolator that will be
instrumental to the analysis of the HHO method.

Proposition 2.2 (Boundedness of the local interpolator). For all T ∈ Th and all
v ∈ H1(T),

‖IkT v‖1,T . |v |H1(T ), (2.9)

where the hidden constant depends only on d, % and k.
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Proof. Expanding the local seminorm according to its definition (2.7) and recalling
the definition (2.8) of IkT , we get

‖IkT v‖21,T = ‖∇π0,k
T v‖2T +

∑
F ∈FT

h−1
F ‖π0,k

F v − π0,k
T v‖2F

. ‖∇v‖2T +
∑
F ∈FT

h−1
F ‖π0,k

F v − π0,k
T v‖2F , (2.10)

where the inequality follows from the boundedness properties of π0,k
T resulting from

(1.77) with X = T , l = k, p = 2, and s = 1. To bound the second term in (2.10),
we observe that, using the linearity and idempotency of π0,k

F followed by its L2-
boundedness expressed by (1.77) with X = F, l = k, p = 2, and s = 0, we have

‖π0,k
F v − π0,k

T v‖F = ‖π0,k
F (v − π0,k

T v)‖F ≤ ‖v − π0,k
T v‖F . h

1
2
T |v |H1(T ),

where the conclusion follows from the trace approximation property (1.75) of π0,k
T

with l = k, p = 2, s = 1, and m = 0. Using the above estimate together with
hT
hF
≤ 1

2%2 (see (1.6)) and the uniform bound (1.5) on the number of faces of T , we
obtain ∑

F ∈FT
h−1
F ‖π0,k

F v − π0,k
T v‖2F .

∑
F ∈FT

hT
hF
|v |2

H1(T ) . |v |2H1(T ).

Plugged into (2.10), this concludes the proof of (2.9) after observing that, by defini-
tion (1.16) of the Sobolev seminormwith X = T , s = 1, and p = 2, ‖∇v‖T . |v |H1(T ).

ut

2.1.3 Potential reconstruction operator

Inspired by (2.5), we introduce the potential reconstruction operator pk+1
T : Uk

T →
Pk+1(T) such that, for all vT ∈ Uk

T ,

(∇pk+1
T vT ,∇w)T = −(vT ,∆w)T +

∑
F ∈FT
(vF ,∇w·nTF )F ∀w ∈ Pk+1(T) (2.11a)

and
(pk+1

T vT − vT ,1)T = 0. (2.11b)

For future use, we also note the following equivalent statement of (2.11a), obtained
integrating by parts the first term in the right-hand side: For all w ∈ Pk+1(T),

(∇pk+1
T vT ,∇w)T = (∇vT ,∇w)T +

∑
F ∈FT
(vF − vT ,∇w·nTF )F . (2.12)
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Remark 2.3 (Equivalent definition of pk+1
T ). Letting λT , 0, it is useful to notice that

equations (2.11) can be equivalently reformulated as: For all w ∈ Pk+1(T),

(∇pk+1
T vT ,∇w)T + λT (pk+1

T vT , π
0,0
T w)T

= (∇vT ,∇w)T +
∑
F ∈FT
(vF − vT ,∇w·nTF )F + λT (vT , π0,0

T w)T . (2.13)

This can be seen summing (2.12) (equivalent to (2.11a)) and (2.11b) multiplied by
λT π

0,0
T w to get (2.13); conversely, applying (2.13) with w − π0,0

T w (resp. w = 1/λT ),
we recover (2.12) (resp. (2.11b)). In the practical implementation, the parameter λT
can be tuned so as to improve the conditioning of the local problem matrix; see
Section B.2.1.

The local reconstruction pk+1
T vT is a polynomial function on T one degree higher

than the element-based discrete unknown vT . Comparing (2.5) and (2.11) shows
that, for all v ∈ W1,1(T),

pk+1
T IkT v = π

1,k+1
T v, (2.14)

i.e., the composition of the reconstruction operator with the interpolator gives the
elliptic projector of degree (k + 1). This commutation property is illustrated in Fig.
2.2.

W1,1(T) Uk
T

Pk+1(T)

I kT

π1,k+1
T pk+1

T

Fig. 2.2: Illustration of the commutation property (2.14) of pk+1
T .

An immediate consequence of (2.14) together with Theorem 1.48 is that pk+1
T IkT has

optimal approximation properties in Pk+1(T).

2.1.4 Local contribution

Inside T , we approximate the continuous bilinear form a defined by (2.3) by the
discrete bilinear form aT : Uk

T ×Uk
T → R such that, for all uT , vT ∈ Uk

T ,

aT (uT , vT ) B (∇pk+1
T uT ,∇pk+1

T vT )T + sT (uT , vT ), (2.15)

where the first term in the right-hand side is responsible for consistency, while
sT : Uk

T × Uk
T → R is a local stabilisation bilinear form, whose role is to ensure
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the coercivity of the discrete problem defined by (2.48) below. The following design
conditions have been originally proposed in [58]:

Assumption 2.4 (Local stabilisation bilinear form sT ) The local stabilisation bi-
linear form sT : Uk

T ×Uk
T → R satisfies the following properties:

(S1) Symmetry and positivity. sT is symmetric and positive semidefinite;
(S2) Stability and boundedness. There is a real number η > 0 independent of h and

T such that, for all vT ∈ Uk
T ,

η−1‖vT ‖21,T ≤ aT (vT , vT ) ≤ η‖vT ‖21,T ; (2.16)

(S3) Polynomial consistency. For all w ∈ Pk+1(T) and all vT ∈ Uk
T , it holds

sT (IkTw, vT ) = 0. (2.17)

Some comments are in order.

Remark 2.5 (Local stabilisation bilinear form sT ). Condition (S1) is a natural re-
quirement reflecting the fact that, at the discrete level, we wish to preserve both
the symmetry and the positive semidefinite nature of a. Condition (S2) implies, in
particular, that aT vanishes if one of its arguments is the interpolate of a constant
function, and that the converse is also true:

aT (wT , vT ) = 0 ∀vT ∈ Uk
T ⇐⇒ there exists c ∈ R such that wT = IkT c. (2.18)

While it can be checked that the above condition is indeed sufficient to ensure the
uniqueness of the solution to the discrete problem (2.48) below, in (S2) we also
stipulate that the equivalence between ‖·‖1,T and the seminorm induced by aT is
uniform with respect to the meshsize h. This fact plays a key role in the proof of the
uniform a priori bound on the exact solution in Lemma 2.19 and, in conjunction with
(S3), in the derivation of an optimal estimate for the consistency error in Lemma
2.18. For further insight into this point, we refer the reader to the proof of the Third
Strang Lemma A.7 and to Remark A.8.

The requirements in Assumption 2.4 suggest that sT can be obtained penalising in
a least square sense quantities that vanish for interpolates of polynomial functions in
Pk+1(T). Paradigmatic examples of such quantities are obtained through the operators
δkT : Uk

T → Pk(T) and, for all F ∈ FT , δkTF : Uk
T → Pk(F) such that, for all vT ∈ Uk

T ,

δkT vT B π0,k
T (pk+1

T vT − vT ), δkTFvT B π0,k
F (pk+1

T vT − vF ) ∀F ∈ FT . (2.19)

Recalling the definition (2.8) of the local interpolator, it is a simple matter to check
that

(δkT vT , (δkTFvT )F ∈FT ) = IkTpk+1
T vT − vT . (2.20)
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Proposition 2.6 (Polynomial consistency of the difference operators). It holds,
for all T ∈ Th and all w ∈ Pk+1(T),

δkT IkTw = 0 and δkTF IkTw = 0 ∀F ∈ FT . (2.21)

Proof. Let us check that δkT vanishes when its argument is of the form IkTw with
w ∈ Pk+1(T). By definition of δkT and IkTw = (π0,k

T w, (π0,k
F w)F ∈FT ), we have that

δkT IkTw = π
0,k
T (pk+1

T IkTw − π0,k
T w).

Using the relation (2.14) to replace pk+1
T IkT by π1,k+1

T and the fact that π0,k
T w ∈ Pk(T)

together with the linearity and polynomial invariance (1.56) for π0,k
T to remove the

latter projector from the second term in parentheses, we get

δkT IkTw = π
0,k
T (π1,k+1

T w − w).

Using again the polynomial invariance (1.56), this time for π1,k+1
T , we conclude that

δkT IkTw = π
0,k
T (w − w) = 0.

Similar arguments can be used to prove the second identity in (2.21). The details are
left as an exercise to the reader. ut
Relevant examples of stabilisation bilinear forms obtained by penalising, in a least
square sense, the differences defined in (2.19) are discussed in what follows.

Example 2.7 (Original HHO stabilisation). The original HHO stabilisation of [153]
is obtained setting

sT (uT , vT ) B
∑
F ∈FT

h−1
F ((δkTF − δkT )uT , (δkTF − δkT )vT )F . (2.22)

In this case, only quantities on faces are penalised, and the factor h−1
F ensures di-

mensional homogeneity with the consistency term in (2.15). The proof that this
stabilisation bilinear form satisfies Assumption 2.4 is provided in Proposition 2.13
below. Another important example of a stabilisation bilinear form used in the HHO
literature can be found in [8, Eq. (3.24)]. This expression results from the hybridis-
ation of the Mixed High-Order method of [147]; see Section 5.4 for further details.

Example 2.8 (A stabilisation inspired by Virtual Elements). An expression for the
stabilisation term inspired by the Virtual Elements literature [43] is obtained setting

sT (uT , vT ) B h−2
T (δkTuT , δ

k
T vT )T +

∑
F ∈FT

h−1
F (δkTFuT , δ

k
TFvT )F . (2.23)

Unlike in (2.22), both volumetric and boundary contributions are present. The neg-
ative powers of the element and face diameters in each term are again selected so as
to ensure dimensional homogeneity with the consistency term.
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Remark 2.9 (Original stabilisation in Hybridisable Discontinuous Galerkin meth-
ods). The following stabilisation bilinear form is used in the original Hybridisable
Discontinuous Galerkin method of [100, 122]:

sT (uT , vT ) =
∑
F ∈FT

αh−1
F (uF − uT , vF − vT )F ,

where α > 0 denotes a user-dependent penalty parameter. While this choice obvi-
ously satisfies the properties (S1)-(S2), it fails to satisfy (S3) (it is only consistent
for polynomials of degree up to k). As a result, up to one order of convergence is
lost with respect to the estimates of Theorems 2.28 and 2.32 below. For a discussion
including fixes that restore optimal orders of convergence, see Section 5.1.6 and also
[117].

Remark 2.10 (Modification in dimension d = 1). In the case of spatial dimension
d = 1, each “face” F is a point, Pk(F) is identified with R, the integral over F boils
down to taking the value of the function at F, and the scaling factors h−1

F in the
semi-norm |·|1,∂T and the stabilisation terms sT above have to be replaced by h−1

T .

Following up on the previous remarks, the next lemma shows that consistent stabili-
sation bilinear forms are inevitably constructed from the difference operators (2.19).

Lemma 2.11 (Dependency of sT ). Let T ∈ Th and let sT : Uk
T × Uk

T → R be
a symmetric bilinear form. Then, sT satisfies the polynomial consistency (S3) in
Assumption 2.4 if and only if it depends on its arguments only via the difference
operators (2.19).

Proof. If sT only depends on its arguments through the difference operators (2.19),
then (S3) follows from the polynomial consistency (2.21) of these difference opera-
tors.

Conversely, assume that sT satisfies (S3) and take uT , vT ∈ Uk
T . Using the bilin-

earity and symmetry of sT , and applying (S3) first with (w, vT ) = (pk+1
T uT , vT ), then

with (w, vT ) = (pk+1
T vT ,uT − IkTpk+1

T uT ), we get

sT (uT , vT ) = sT (uT − IkTpk+1
T uT , vT − IkTpk+1

T vT ).

The conclusion follows from (2.20) which shows that both (uT − IkTpk+1
T uT ) and

(vT − IkTpk+1
T vT ) depend only on the difference operators (2.19) applied, respectively,

to uT and vT . ut

Remark 2.12 (On the choice of the difference operators). An inspection of the proof
above shows that we could have used, instead of pk+1

T , any polynomial reconstruction
Rk+1
T : Uk

T → Pk+1(T) consistent for polynomials of degree (k + 1). It would have
given a dependency of sT in terms of the differences δkR,T and δkR,TF , F ∈ FT ,
defined such that, for all vT ∈ Uk

T ,
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(δkR,T vT , (δkR,TFvT )F ∈FT ) B IkT Rk+1
T vT − vT . (2.24)

However, designing a stabilisation term sT from the above dependencies for an
arbitrary choice of Rk+1

T makes it difficult to ensure that (S2) holds. As shown in
Proposition 2.13, the difference operators (2.19) seem to be the natural choice to
build a stabilisation bilinear form that satisfies the stability and boundedness property
(S2).

We now prove that the original HHO stabilisation form satisfies Assumption 2.4.

Proposition 2.13 (Original HHO stabilisation). The original HHO stabilisation
bilinear form sT defined by (2.22) satisfies Assumption 2.4.

Proof. The bilinear form sT is clearly symmetric and positive semidefinite, so that
property (S1) holds. Property (S3), on the other hand, is a consequence of Lemma
2.11. It only remains to prove property (S2). Throughout the rest of the proof, we let
vT be a generic element of Uk

T . For the sake of brevity, we also set

v̌T B pk+1
T vT

and the notation . is understood with hidden constant independent of h, T , and vT .
We first estimate the volumetric components in ‖vT ‖21,T and aT (vT , vT ), and then
establish (2.16).

(i) Volumetric components. We prove here that

‖∇vT ‖T . ‖∇v̌T ‖T + |vT |1,∂T (2.25)

and
‖∇v̌T ‖T . ‖vT ‖1,T . (2.26)

Letting w = vT in (2.12) and using Cauchy–Schwarz and generalised Hölder
inequalities with exponents (2,2,∞) along with ‖nTF ‖L∞(F)d = 1, we have that

‖∇vT ‖2T = (∇v̌T ,∇vT )T −
∑
F ∈FT
(vF − vT ,∇vT ·nTF )F .

≤ ‖∇v̌T ‖T ‖∇vT ‖T +
∑
F ∈FT

‖vF − vT ‖F ‖∇vT ‖F ‖nTF ‖L∞(F)d

≤ ‖∇v̌T ‖T ‖∇vT ‖T

+

( ∑
F ∈FT

h−1
F ‖vF − vT ‖2F

) 1
2
( ∑
F ∈FT

hF ‖∇vT ‖2F
) 1

2

, (2.27)

where, in the third line, we have multiplied the boundary term by h
− 1

2
F h

1
2
F = 1 and

used a discrete Cauchy–Schwarz inequality on the sum over the faces to write
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F ∈FT

‖vF − vT ‖F ‖∇vT ‖F =
∑
F ∈FT

h
− 1

2
F ‖vF − vT ‖F h

1
2
F ‖∇vT ‖F

≤
( ∑
F ∈FT

h−1
F ‖vF − vT ‖2F

) 1
2
( ∑
F ∈FT

hF ‖∇vT ‖2F
) 1

2

.

We continue from (2.27) using the discrete trace inequality (1.55) with p = 2 on the
components of ∇vT , the bound hF ≤ hT , and card(FT ) . 1 (see (1.5)) to write

‖∇vT ‖2T . ‖∇v̌T ‖T ‖∇vT ‖T + |vT |1,∂T ‖∇vT ‖T .

Simplifying by ‖∇vT ‖T leads to (2.25).
We now estimate ‖∇v̌T ‖T . Make w = v̌T in (2.12) and, following similar ar-

guments as above, use a Cauchy–Schwarz inequality for the volumetric terms and
generalisedHölder inequalitieswith exponents (2,2,∞) alongwith ‖nTF ‖L∞(F)d = 1
for the boundary terms to infer

‖∇v̌T ‖2T ≤ ‖∇vT ‖T ‖∇v̌T ‖T + |vT |1,∂T
( ∑
F ∈FT

hF ‖∇v̌T ‖2F
) 1

2

. ‖vT ‖1,T ‖∇v̌T ‖T ,

where we have invoked the discrete trace inequality (1.55) with p = 2 on the compo-
nents of ∇v̌T together with the bound hF ≤ hT and (1.5) to conclude. Simplifying
by ‖∇v̌T ‖T , we arrive at (2.26).
(ii) Proof of (S2). Let

z
T
B IkT v̌T − vT = (δkT vT , (δkTFvT )F ∈FT ), (2.28)

where the second equality follows from (2.20). Using the definition (2.15) of aT
together with the choice (2.22) of sT and the expression (2.28) of z

T
in terms of

difference operators, we have

aT (vT , vT ) = ‖∇v̌T ‖2T + |zT |21,∂T . (2.29)

Use (2.28) to write vT = IkT v̌T − z
T
, invoke the boundedness (2.9) of IkT with v = v̌T

to get
|IkT v̌T |1,∂T . |v̌T |H1(T ) . ‖∇v̌T ‖T , (2.30)

and use finally (2.29) to obtain, by triangle inequality,

|vT |21,∂T = |IkT v̌T − z
T
|21,∂T ≤ 2|IkT v̌T |21,∂T + 2|z

T
|21,∂T

. ‖∇v̌T ‖2T + |zT |21,∂T = aT (vT , vT ).

Combining this estimate and (2.25) yields

‖vT ‖21,T = ‖∇vT ‖2T + |vT |21,∂T . ‖∇v̌T ‖2T + |vT |21,∂T . aT (vT , vT ),
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which proves the first estimate in (2.16). To establish the second, we start from (2.29)
and substitute z

T
= IkT v̌T − vT to write

aT (vT , vT ) ≤ ‖∇v̌T ‖2T + 2|IkT v̌T |21,∂T + 2|vT |21,∂T
. ‖∇v̌T ‖2T + |vT |21,∂T
. ‖vT ‖21,T ,

where the first line follows from a triangle inequality, the second line is a consequence
of (2.30), and the conclusion is obtained invoking (2.26). The proof of (S2) is
complete. ut
To close this section, we study the consistency properties of sT when its arguments
are interpolates of smooth functions.

Proposition 2.14 (Consistency of sT ). Let T ∈ Th and let sT denote a stabili-
sation bilinear form satisfying Assumption 2.4. Let r ∈ {0, . . . , k}. Then, for all
v ∈ Hr+2(T),

sT (IkT v, IkT v)
1
2 . hr+1

T |v |Hr+2(T ), (2.31)

where the hidden constant is independent of h, T and v.

Proof. Using (S3) with w = π0,k+1
T v ∈ Pk+1(T) and (S2), we infer that

sT (IkT v, IkT v)
1
2 = sT (IkT (v − π0,k+1

T v), IkT (v − π0,k+1
T v)) 1

2

≤ η 1
2 ‖IkT (v − π0,k+1

T v)‖1,T
. |v − π0,k+1

T v |H1(T )
. hr+1

T |v |Hr+2(T ),

where the third line follows from the boundedness (2.9) of IkT with (v − π0,k+1
T v)

instead of v, and the conclusion is obtained applying the approximation property
(1.74) of the orthogonal projector with X = T , l = k + 1, p = 2, s = r + 2, and
m = 1. ut

2.2 Discrete problem

In this section we formulate the discrete problem based on the local contributions
introduced in the previous section.

2.2.1 Global space of discrete unknowns

We define the following global space with single-valued interface unknowns:
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Uk
h B

{
vh = ((vT )T ∈Th , (vF )F ∈Fh ) :

vT ∈ Pk(T) ∀T ∈ Th and vF ∈ Pk(F) ∀F ∈ Fh
}
. (2.32)

The restriction of a generic element vh ∈ Uk
h
to T ∈ Th is denoted by vT =

(vT , (vF )F ∈FT ) ∈ Uk
T . We also define the broken polynomial function vh ∈ Pk(Th)

such that
(vh) |T B vT ∀T ∈ Th . (2.33)

The discrete unknowns corresponding to a smooth function v ∈ W1,1(Ω) are obtained
via the global interpolator Ik

h
: W1,1(Ω) → Uk

h
such that

Ikhv B ((π0,k
T v)T ∈Th , (π0,k

F v)F ∈Fh ). (2.34)

We define on Uk
h
the global seminorm ‖·‖1,h such that, for all vh ∈ Uk

h
,

‖vh ‖1,h B
( ∑
T ∈Th

‖vT ‖21,T
) 1

2

, (2.35)

with local seminorm ‖·‖1,T defined by (2.7). To account for the homogeneous Dirich-
let boundary condition (2.1b) in a strong manner, we introduce the subspace

Uk
h,0 B

{
vh ∈ Uk

h : vF = 0 ∀F ∈ F b
h

}
, (2.36)

where we recall that F b
h
gathers all the faces that lie on ∂Ω (see Definition 1.4). It

is a simple matter to check that Ik
h
maps functions in H1

0 (Ω) on vectors of discrete
unknowns in Uk

h,0.

2.2.2 A discrete Poincaré inequality

In the following lemma, we establish a discrete version of the Poincaré inequality
that will be used to prove that ‖·‖1,h is a norm on Uk

h,0 (see Corollary 2.16), as well
as to establish the uniform a priori bound (2.49) on the discrete solution.

Lemma 2.15 (Discrete Poincaré inequality). There exists CP > 0 depending only
on Ω, d, and % such that, for all vh ∈ Uk

h,0,

‖vh ‖ ≤ CP‖vh ‖1,h . (2.37)

Proof. Let vh ∈ Uk
h,0. Since the divergence operator ∇· : H1(Ω)d → L2(Ω) is onto

(see Lemma 8.3 in Chapter 8 for a proof), there exists τvh ∈ H1(Ω)d such that

∇·τvh = vh and ‖τvh ‖H1(Ω)d . ‖vh ‖. (2.38)
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Here and in the rest of the proof, the hidden constants in . depend only on Ω, d and
%. Using the first relation in (2.38) and integrating by parts element by element, we
obtain

‖vh ‖2 = (vh,∇·τvh ) = −
∑
T ∈Th

(
(∇vT ,τvh )T +

∑
F ∈FT
(vF − vT ,τvh ·nTF )F

)
,

where we have used Corollary 1.19 with p = 2, τ = τvh ∈ H1(Ω)d ⊂ H(div;Ω) ∩
H1(Th)d , and (ϕF )F ∈Fh = (vF )F ∈Fh to insert vF into the boundary term. Using
Cauchy–Schwarz inequalities for the first term and generalised Hölder inequalities
with exponents (2,2,∞) along with ‖nTF ‖L∞(F)d = 1 for the second, we can go on
writing

‖vh ‖2 ≤
∑
T ∈Th

(
‖∇vT ‖T ‖τvh ‖T +

∑
F ∈FT

h
− 1

2
F ‖vF − vT ‖F h

1
2
F ‖τvh ‖F

)

≤ ‖vh ‖1,h
[ ∑
T ∈Th

(
‖τvh ‖2T + hT ‖τvh ‖2∂T

)] 1
2

. ‖vh ‖1,h ‖τvh ‖H1(Ω)d ,

where we have recalled the bound hF ≤ hT (for F ∈ FT ) together with the definition
(2.35) of the global H1-like seminorm after using discrete Cauchy–Schwarz inequal-
ities on the sums to pass to the second line, and used the trace inequality (1.51)
with p = 2 along with the fact that, for all T ∈ Th , hT ≤ hΩ (with hΩ denoting the
diameter of Ω) to conclude. Using the second condition in (2.38) to further bound
the second factor in the right-hand side, we arrive at

‖vh ‖2 . ‖vh ‖1,h ‖vh ‖,

which yields the conclusion after simplifying by ‖vh ‖. ut
Corollary 2.16 (Norm ‖·‖1,h). The map ‖·‖1,h defines a norm on Uk

h,0.

Proof. The seminorm property is evident. It therefore suffices to prove that, for all
vh ∈ Uk

h,0, ‖vh ‖1,h = 0 implies vh = 0. Let vh ∈ Uk
h,0 be such that ‖vh ‖1,h = 0. By

the Poincaré inequality (2.37), we have ‖vh ‖ = 0, hence vT = 0 for all T ∈ Th . From
the definition (2.7) of the norm ‖·‖1,T , we also have that ‖vF − vT ‖F = 0, hence
vF = vT = 0 on F, for all T ∈ Th and all F ∈ FT . Since any mesh face belongs to a
set of faces FT for at least one mesh element T ∈ Th , this concludes the proof. ut
Remark 2.17 (Discrete Poincaré inequalities on broken spaces).The discrete Poinca-
ré inequality (2.37) on HHO spaces can also be proved starting from the correspond-
ing result on broken polynomial spaces. This strategy is adopted in [142, Proposition
5.4], based on the results of [148, Theorem 6.1] and [151, Theorem 5.3]. In the lat-
ter references, Sobolev embeddings on broken polynomial spaces are proved using
arguments inspired by the recent Finite Volumes literature; see, in particular, [188,
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Section 5], [174, Appendix B], and also Sections 6.5 and 6.6 in Chapter 6. In the
nonconforming Finite Elements literature, Poincaré inequalities on broken spaces
are proved, e.g., in [21, 75], where stronger assumptions on the mesh are needed.

2.2.3 Global bilinear form

We define the global bilinear forms ah : Uk
h
×Uk

h
→ R and sh : Uk

h
×Uk

h
→ R by

element by element assembly: For all uh, vh ∈ Uk
h
,

ah(uh, vh) B
∑
T ∈Th

aT (uT , vT ), sh(uh, vh) B
∑
T ∈Th

sT (uT , vT ). (2.39)

For future use, we also define the stabilisation seminorm |·|s,h such that, for all
vh ∈ Uk

h
,

|vh |s,h B sh(vh, vh)
1
2 . (2.40)

Lemma 2.18 (Properties of ah). The bilinear form ah enjoys the following proper-
ties:

(i) Stability and boundedness. For all vh ∈ Uk
h,0, it holds with η as in (2.16) that

η−1‖vh ‖21,h ≤ ‖vh ‖2a,h ≤ η‖vh ‖21,h with ‖vh ‖a,h B ah(vh, vh)
1
2 . (2.41)

(ii) Consistency. It holds for all r ∈ {0, . . . , k} and all w ∈ H1
0 (Ω) ∩ Hr+2(Th) such

that ∆w ∈ L2(Ω),

sup
vh ∈Uk

h ,0 , ‖vh ‖a,h=1
|Eh(w; vh)| . hr+1 |w |Hr+2(Th ), (2.42)

where the hidden constant is independent of w and h, and the linear form
Eh(w; ·) : Uk

h,0 → R representing the consistency error is such that, for all
vh ∈ Uk

h,0,
Eh(w; vh) B −(∆w, vh) − ah(Ikhw, vh). (2.43)

Proof. (i) Stability and boundedness. Summing inequalities (2.16) over T ∈ Th ,
(2.41) follows.

(ii) Consistency. Let vh ∈ Uk
h,0 be such that ‖vh ‖a,h = 1. Throughout the proof, the

hidden constant in A . B is independent of both w and h. For the sake of brevity,
we also let, for all T ∈ Th ,

w̌T B pk+1
T IkTw = π

1,k+1
T w,

where the equality is a consequence of the commutation property (2.14). Integrating
by parts element by element and using Corollary 1.19 with p = 2, τ = ∇w and
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(ϕF )F ∈Fh = (vF )F ∈Fh to insert vF into the boundary term after noticing that, by the
assumed regularity, ∇w ∈ H(div;Ω) ∩ H1(Th)d , we infer

−(∆w, vh) =
∑
T ∈Th

(
(∇w,∇vT )T −

∑
F ∈FT
(∇w·nTF , vT )F

)
=

∑
T ∈Th

(
(∇w,∇vT )T +

∑
F ∈FT
(∇w·nTF , vF − vT )F

)
.

(2.44)

On the other hand, using the definitions (2.39) of ah and sh , and (2.15) of aT , and
expanding pk+1

T vT according to (2.12) with w = w̌T , it is inferred that

ah(Ikhw, vh)
=

∑
T ∈Th
(∇w̌T ,∇pk+1

T vT )T + sh(Ikhw, vh)

=
∑
T ∈Th

(
(∇w̌T ,∇vT )T +

∑
F ∈FT
(∇w̌T ·nTF , vF − vT )F

)
+ sh(Ikhw, vh).

(2.45)

Subtracting (2.45) from (2.44), taking absolute values, and using the definition
(1.60a) of π1,k+1

T to cancel the first term in parentheses, we get

|Eh(w; vh)|

=

����� ∑
T ∈Th

(
((((

(((((∇(w − w̌T ),∇vT )T +
∑
F ∈FT
(∇(w − w̌T )·nTF , vF − vT )F

)
− sh(Ikhw, vh)

�����
≤

∑
T ∈Th

∑
F ∈FT

h
1
2
F ‖∇(w − w̌T )‖F h

− 1
2

F ‖vF − vT ‖F + |sh(Ikhw, vh)|, (2.46)

where we have used a generalised Hölder inequality with exponents (2,∞,2) together
with ‖nTF ‖L∞(F)d = 1 to conclude. The Cauchy–Schwarz inequality on the positive
semidefinite bilinear form sh (see (S1)) gives, on the other hand,

|sh(Ikhw, vh)| ≤ sh(Ikhw, Ikhw)
1
2 sh(vh, vh)

1
2 .

Hence, since hF ≤ hT whenever F ∈ FT , applying Cauchy–Schwarz inequalities on
the sums and recalling the definition (2.7) of |·|1,∂T , we get

|Eh(w; vh)| ≤
( ∑
T ∈Th

hT ‖∇(w − w̌T )‖2∂T
) 1

2
( ∑
T ∈Th

|vT |21,∂T
) 1

2

+ sh(Ikhw, Ikhw)
1
2 sh(vh, vh)

1
2 .

Using the trace approximation properties (1.79) of the elliptic projectorwith l = k+1,
p = 2, s = r + 2, and m = 1 to estimate ‖∇(w − w̌T )‖∂T = ‖∇(w − π1,k+1

T w)‖∂T and
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(2.31) to estimate sh(Ikhw, Ikhw) =
∑

T ∈Th sT (IkTw, IkTw), we infer

|Eh(w; vh)| . hr+1 |w |Hr+2(Th )


( ∑
T ∈Th

|vT |21,∂T
) 1

2

+ |vh |s,h
 . (2.47)

Recalling the definition (2.39) of ah , the coercivity property (2.41), and that
‖vh ‖a,h = 1, the second factor in the right-hand side of (2.47) is bounded by a
constant independent of h, and (2.42) follows. ut

2.2.4 Discrete problem and well-posedness

The HHO scheme for the approximation of problem (2.2) reads: Find uh ∈ Uk
h,0

such that
ah(uh, vh) = ( f , vh) ∀vh ∈ Uk

h,0. (2.48)

Lemma 2.19 (Well-posedness of problem (2.48)). Problem (2.48) is well-posed,
and we have the following a priori bound for the unique discrete solution uh ∈ Uk

h,0:

‖uh ‖a,h ≤ η
1
2 CP‖ f ‖, (2.49)

where CP denotes the constant of the discrete Poincaré inequality (2.37) and η is as
in (2.16).

The proof hinges on the Lax–Milgram Lemma [226], which we recall hereafter.

Lemma 2.20 (Lax–Milgram). Let U be a real Hilbert space, let a : U × U → R
denote a bounded bilinear form, and let f ∈ U?, with U? denoting the dual space
of U. Further assume that the bilinear form a is U-coercive, i.e., there exists a real
number C > 0 such that, for all v ∈ U,

C‖v‖2U ≤ a(v, v),

where ‖·‖U denotes the norm induced by the inner product in U. Then, the problem:
Find u ∈ U such that

a(u, v) = 〈f, v〉U?,U ∀v ∈ U,
is well-posed, i.e., it admits a unique solution for which the following a priori bound
holds:

‖u‖U ≤ C−1‖f‖U? .

Proof (Lemma 2.19). We check the assumptions of the Lax–Milgram Lemma with
U = Uk

h,0, a = ah , and 〈f, vh〉U?,U = ( f , vh). Clearly, Uk
h,0 equipped with the inner

product norm ‖·‖a,h is a Hilbert space. The bilinear form ah is also clearly U-coercive
with coercivity constant equal to 1. To conclude the proof, it suffices to observe that,
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owing to the discrete Poincaré inequality (2.37) and to the global norm equivalence
(2.41), it holds that

|( f , vh)| ≤ ‖ f ‖ ‖vh ‖ ≤ CP‖ f ‖ ‖vh ‖1,h ≤ η
1
2 CP‖ f ‖ ‖vh ‖a,h,

which implies, in particular, that the dual norm of the linear form f : vh 7→ ( f , vh)
is bounded above by η 1

2 CP‖ f ‖. ut

2.2.5 Flux formulation

In this section we reformulate the HHO scheme (2.48) in terms of numerical fluxes,
and show that the latter satisfy local balances and are continuous across interfaces.
These features are relevant from both the engineering and mathematical points of
view, and can be exploited, for example, to design schemes for coupled systems
with advection terms [14], or to derive a posteriori error estimators by equilibration
techniques (see, e.g, [184]).

We start by showing that local balances with continuous fluxes hold inside each
element for the continuous solution. We next identify conditions under which similar
relations hold for an abstract HHO scheme. Finally, we show that the HHO scheme
(2.48) for the Poisson problem meets these conditions.

2.2.5.1 Local balances and continuity of the flux for the continuous problem

Let u ∈ H1
0 (Ω) solve (2.2) and further assume, for the sake of simplicity, that

u ∈ H2(Th). Let a mesh element T ∈ Th be fixed. Using the fact that the equation
(2.1a) holds almost everywhere in Ω, multiplying it by a function vT ∈ Pk(T) and
using the assumed regularity to integrate by parts, we infer the following local
balance:

(∇u,∇vT )T −
∑
F ∈FT
(∇u·nTF , vT )F = ( f , vT )T . (2.50a)

The first term in the left-hand side of this relation accounts for the redistribution
inside the element T , the second for the exchanges through its boundary ∂T , while
the term in the right-hand side represents the generation (or depletion) through the
volumetric source term. Taking vT ≡ 1, we have the classical local balance

−
∑
F ∈FT

∫
F

∇u·nTF =

∫
T

f ,

which is an underlying principle of Finite Volume Methods [169]. Crucially, since
∇u ∈ H(div;Ω) ∩ H1(Th)d , by virtue of Lemma 1.17 the normal traces of the flux
are continuous, that is, for all F ∈ F i

h
such that F ⊂ ∂T1 ∩ ∂T2 with distinct mesh

elements T1,T2 ∈ Th , it holds
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(∇u) |T1 ·nT1F + (∇u) |T2 ·nT2F = 0. (2.50b)

This relation shows that the flux exitingT1 through F entersT2 and vice-versa. Notice
that, in the spirit of Remark 1.18, the relations (2.50) can be formulated with weaker
regularity on the exact solution, but we do not further develop this point here as it is
not relevant to our discussion.

2.2.5.2 Flux formulation for an abstract HHO scheme

The following lemma identifies conditions under which an abstract HHO scheme
admits a flux formulation which mimics the relations (2.50). It will serve as a
starting point to derive the flux formulation corresponding to the scheme (2.48) for
the Poisson problem.
Lemma 2.21 (Flux formulation for an abstract HHO scheme). Let ah : Uk

h,0 ×
Uk

h,0 → R denote a function such that, for all uh, vh ∈ Uk
h,0,

ah(uh, vh) =
∑
T ∈Th

(
aV,T (uT , vT ) −

∑
F ∈FT
(ΦTF (uT ), vF − vT )F

)
, (2.51)

where
(i) For all T ∈ Th , the volumetric contribution aV,T : Uk

T × Pk(T) → R is linear in
its second argument;

(ii) For all T ∈ Th and all F ∈ FT , ΦTF : Uk
T → Pk(F) represents the numerical

normal trace of the flux.
Let f ∈ L2(Ω). Then, uh ∈ Uk

h,0 is such that

ah(uh, vh) = ( f , vh) ∀vh ∈ Uk
h,0 (2.52)

if and only if the following properties hold:
(i) Local balance. For all T ∈ Th and all vT ∈ Pk(T), it holds

aV,T (uT , vT ) +
∑
F ∈FT
(ΦTF (uT ), vT )F = ( f , vT ). (2.53a)

(ii) Continuity of the numerical normal traces of the flux. For any interface F ∈ F i
h

such that F ⊂ ∂T1 ∩ ∂T2 with distinct mesh elements T1,T2 ∈ Th , it holds

ΦT1F (uT1
) + ΦT2F (uT2

) = 0. (2.53b)

Problem (2.53) is called the flux formulation of problem (2.52).
Remark 2.22 (Forcing term). Crucial to obtain the flux continuity relation (2.53b) is
the fact that face-based unknowns do not appear in the discretisation of the right-hand
side.
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Remark 2.23 (Balance of fluxes). If we moreover assume that aV,T (wT ,1) = 0 for all
T ∈ Th and all wT ∈ Uk

T , then making vT = 1 in (2.53a) shows that the following
low-order balance of numerical normal traces of the fluxes, essential component of
Finite Volume Methods, holds:∑

F ∈FT

∫
F

ΦTF (uT ) =
∫
T

f ∀T ∈ Th .

Proof (Lemma 2.21). Since both contributions in the right-hand side of (2.51) are
linear in their second arguments, so is the case for ah . Hence, it is sufficient to test
(2.52) for vh in a basis of Uk

h,0. Such a basis can be obtained by selecting, for each
T ∈ Th , vectors such that vT spans Pk(T) whilst vT ′ = 0 for T ′ ∈ Th\{T} and vF = 0
for all F ∈ Fh , and then, for each interface F ∈ F i

h
, vectors such that vF spans Pk(F)

whilst vF′ = 0 for all F ′ ∈ Fh\{F} and vT = 0 for all T ∈ Th . The first type of basis
function simplifies (2.52) into (2.53a). Using the second type of basis function in
(2.52) gives (2.53b) since both ΦT1F (uT1

) and ΦT2F (uT2
) belong to Pk(F). ut

2.2.5.3 Flux formulation for the HHO approximation of the Poisson problem

Lemma 2.21 indicates that, to recast the HHO scheme (2.48) for the Poisson problem
in flux formulation, it suffices to show that the bilinear form ah defined by (2.39)
admits the reformulation (2.51). Plugging the definition (2.15) of aT into (2.39) and
using, for all T ∈ Th , the property (2.12) of pk+1

T vT with w = pk+1
T uT , we can write

ah(uh, vh)

=
∑
T ∈Th

(
(∇pk+1

T uT ,∇vT )T +
∑
F ∈FT
(∇pk+1

T uT ·nTF , vF − vT )F + sT (uT , vT )
)
.

(2.54)

Clearly, the first term inside the summation over T ∈ Th can be incorporated into
aV,T in (2.51), while the second reveals that the consistent contribution to ΦTF (uT )
is −∇pk+1

T uT ·nTF .
We next prove that the stabilisation term can also be incorporated into ΦTF (uT )

in two steps: first, we show that the stabilisation can be interpreted as acting on
boundary differences; second, based on this reformulation, we define the boundary
residual operator which constitutes the contribution of the stabilisation bilinear form
to ΦTF (uT ). Let a mesh element T ∈ Th be fixed. We define the space

Dk
∂T B

{
α∂T = (αTF )F ∈FT : αTF ∈ Pk(F) ∀F ∈ FT

}
(2.55)

and the boundary difference operator ∆k
∂T : Uk

T → Dk
∂T

such that, for all vT ∈ Uk
T ,

∆
k
∂T vT B (vF − vT )F ∈FT . (2.56)
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A useful remark is that, for all vT = (vT , (vF )F ∈FT ) ∈ Uk
T , it holds

vT − IkT vT = (vT − π0,k
T vT , (vF − π0,k

F vT )F ∈FT ) = (0,∆k
∂T vT ), (2.57)

where the conclusion follows using the polynomial invariance property (1.56) of
π0,k
T and π0,k

F to infer, for all T ∈ Th , π0,k
T vT = vT (since vT ∈ Pk(T)) and, for all

F ∈ FT , π0,k
F vT = (vT ) |F (since (vT ) |F ∈ Pk(F)).

Proposition 2.24 (Reformulation of the stabilisation bilinear form). Let T ∈ Th ,
and let sT : Uk

T × Uk
T → R be a symmetric bilinear form that satisfies (S3) in

Assumption 2.4. Then, it holds, for all uT , vT ∈ Uk
T , that

sT (uT , vT ) = sT
(
uT , (0,∆k

∂T vT )
)
= sT

((0,∆k
∂TuT ), (0,∆k

∂T vT )
)
. (2.58)

Proof. Let vT ∈ Uk
T . The polynomial consistency (2.21) of the difference operators

applied to w = vT ∈ Pk(T), together with (2.57), shows that δkT vT = δkT (vT − IkT vT ) =
δkT (0,∆k

∂T vT ) and, for all F ∈ FT , δkTFvT = δ
k
TF (vT − IkT vT ) = δkTF (0,∆k

∂T vT ). Since
sT only depends on its arguments through the difference operators (see Lemma 2.11),
these two relations establish (2.58). ut
Let now the boundary residual operator Rk

∂T
: Uk

T → Dk
∂T

be such that, for all
vT ∈ Uk

T , the vector of polynomials

Rk
∂T vT B (Rk

TFvT )F ∈FT
satisfies, for all α∂T = (αTF )F ∈FT ∈ Dk

∂T
,

−
∑
F ∈FT
(Rk

TFvT , αTF )F = sT ((0,∆k
∂T vT ), (0, α∂T )). (2.59)

By the Riesz representation theorem in Dk
∂T

endowedwith the L2(∂T)-inner product,
problem (2.59) is well-posed; computing Rk

TFvT only requires to invert the boundary
mass matrix, which has a block-diagonal structure with each block corresponding to
a face in FT .

Lemma 2.25 (Flux formulation). Let Mh denote a polytopal mesh in the
sense of Definition 1.4. Let uh ∈ Uk

h,0 and, for all T ∈ Th , let sT satisfy
Assumption 2.4. Define, for all F ∈ FT , the numerical normal trace of the flux

ΦTF (uT ) B −∇pk+1
T uT ·nTF + Rk

TFuT

with Rk
TF given by (2.59).

Then, uh is the unique solution of problem (2.48) if and only if the following
two properties hold:
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(i) Local balance. For all T ∈ Th and all vT ∈ Pk(T), it holds

(∇pk+1
T uT ,∇vT )T +

∑
F ∈FT
(ΦTF (uT ), vT )F = ( f , vT )T . (2.60a)

(ii) Continuity of the numerical normal traces of the flux. For any interface
F ∈ F i

h
such that F ⊂ ∂T1 ∩ ∂T2 with distinct mesh elements T1,T2 ∈ Th ,

it holds
ΦT1F (uT1

) + ΦT2F (uT2
) = 0. (2.60b)

Proof. Let vh ∈ Uk
h,0. Using the reformulation (2.58) of sT together with the defini-

tion (2.59) of Rk
∂T

, we can write

sT (uT , vT ) = −
∑
F ∈FT
(Rk

TFuT , vF − vT )F ∀T ∈ Th . (2.61)

Recalling (2.54), we infer that the bilinear form ah defined by (2.39) admits the
reformulation (2.51) with, for all T ∈ Th , aV,T (uT , vT ) = (∇pk+1

T uT ,∇vT )T for
all (uT , vT ) ∈ Uk

T × Pk(T) and, for all uT ∈ Uk
T and all F ∈ FT , ΦTF (uT ) =

−∇pk+1
T uT ·nTF + Rk

TFuT . The conclusion is an immediate consequence of Lemma
2.21. ut
Remark 2.26 (Interpretation of the discrete problem). Lemma 2.25 provides further
insight into the structure of the discrete problem (2.48), which consists of the lo-
cal balances (2.60a) (corresponding to the algebraic subproblem (B.13a)) and the
global transmission condition (2.60b) enforcing the continuity of numerical fluxes
(corresponding to the algebraic subproblem (B.13b)).

2.3 Error analysis

Having proved that the discrete problem (2.48) is well-posed, it remains to determine
the convergence of the discrete solution towards the exact solution, which is precisely
the goal of this section. The main results here are established using the generic
analysis framework presented in Section A.1 of Appendix A, and the reader should
familiarise themselves with this framework before continuing further.

2.3.1 Energy error estimate

We start by deriving a convergence result in a discrete energy norm, using the
interpolate of the solution to the continuous problem.
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Theorem 2.27 (Discrete energy error estimate). Let (Mh)h∈H denote a reg-
ular mesh sequence in the sense of Definition 1.9. Let a polynomial degree
k ≥ 0 be fixed. Let u ∈ H1

0 (Ω) denote the unique solution to (2.2), for which we
assume the additional regularity u ∈ Hr+2(Th) for some r ∈ {0, . . . , k}. For
all h ∈ H , let uh ∈ Uk

h,0 denote the unique solution to (2.48) with stabilisation
bilinear forms sT , T ∈ Th , in (2.15) satisfying Assumption 2.4. Then,

‖uh − Ikhu‖a,h . hr+1 |u|Hr+2(Th ), (2.62)

where ‖·‖a,h is defined in (2.41) and the hidden constant is independent of h
and u.

Proof. We invoke the Third Strang Lemma A.7 with U = H1
0 (Ω), a(u, v) = (∇u,∇v),

l(v) = ( f , v), Uh = Uk
h,0 endowed with the norm ‖·‖a,h , ah = ah , lh(vh) = ( f , vh),

and Ihu = Ik
h
u. We notice that ah is obviously coercive for ‖·‖a,h with constant 1

and, since −∆u = f , the consistency error (A.5) is exactly (2.43) with w = u. Hence,
(2.62) follows plugging (2.42) into (A.6). ut

From this convergence result in a discrete norm, we now deduce an estimate
for the error measured as the difference between the exact solution and the global
reconstruction obtained from the discrete solution through the operator pk+1

h
: Uk

h
→

Pk+1(Th) such that, for all vh ∈ Uk
h
,

(pk+1
h vh) |T B pk+1

T vT ∀T ∈ Th . (2.63)

Theorem 2.28 (Energy error estimate for the reconstructed approximate
solution). Under the assumptions and notations of Theorem 2.27, it holds that

‖∇h(pk+1
h uh − u)‖ + |uh |s,h . hr+1 |u|Hr+2(Th ), (2.64)

where the hidden constant is independent of h and u, and the |·|s,h seminorm
is defined by (2.40).

Proof. For the sake of brevity, let ûh B Ik
h
u. Inserting ±∇hpk+1

h
ûh into the first term,

±ûh into the second, and using the triangle inequality, it is readily inferred that

‖∇h(pk+1
h uh − u)‖ + |uh |s,h
≤ ‖∇hpk+1

h (uh − ûh)‖ + |uh − ûh |s,h︸                                      ︷︷                                      ︸
T1

+ ‖∇h(pk+1
h ûh − u)‖ + |ûh |s,h .︸                              ︷︷                              ︸

T2

(2.65)
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By definition (2.15) of aT , (2.39) of ah , and (2.41) of ‖·‖a,h , we deduce from (2.62)
that

T1 . ‖uh − ûh ‖a,h . hr+1 |u|Hr+2(Th ).

Clearly, (pk+1
h

ûh) |T = π1,k+1
T u for all T ∈ Th by virtue of (2.14). Then, the approx-

imation properties (1.78) of the elliptic projector with l = k + 1, p = 2, s = r + 2,
and m = 1 together with the consistency (2.31) of sT yield

T2 . hr+1 |u|Hr+2(Th ).

Plugging the above bounds into (2.65) concludes the proof of (2.64). ut

Remark 2.29 (Estimates in fractional Sobolev spaces). Remark 1.49 and the proofs
above easily show that (2.62) and (2.64) also hold for fractional r ∈ [0, k].

Remark 2.30 (p- and hp-error analysis). In this manuscript, we do not address the p-
or hp-versions of the HHO method, where convergence is attained by increasing the
polynomial degree rather than reducing the meshsize (p-version) or by combining
these two strategies (hp-version). The key points are, in this case: (i) an accurate
tracking of the dependence on the polynomial degree of the constants appearing
in discrete inverse and trace inequalities and (ii) hp-approximation results for local
polynomial spaces. These issues are treated in [92, Section 4] based on classical
results for simplicial meshes. Similar results, but with a proof based on a direct
extension of the classical hp-approximation results of [29] to regular mesh sequences
in arbitrary space dimension, can be found in [10, Lemma 2.3]; see also [48] for
the two-dimensional case. On this subject, the interested reader can also consult the
recent monograph [94], which focuses on hp-Discontinuous Galerkin methods on
meshes with a (possibly) unbounded number of faces.

The hp-analysis for HHO methods applied to a pure diffusion problem can be
found in [10], where the option of letting the polynomial degree vary locally is
also contemplated. Specialised to the present setting, Theorem 3.3 therein asserts
that, assuming the regularity u ∈ Hk+2(Th) for the solution to (2.2) and denoting by
uh ∈ Uk

h,0 the solution to the HHO scheme (2.48), it holds

‖uh − Ikhu‖a,h . hk+1

(k + 1)k |u|Hk+2(Th )

with hidden constant independent of h, k, and u.

2.3.2 Convergence of the jumps

Functions in H1(Th) are in H1
0 (Ω) if their jumps vanish a.e. on the interfaces and if

their trace is zero a.e. on ∂Ω. Thus, a measure of the nonconformity “up to degree
k” in H1

0 (Ω) is provided by the jump seminorm |·|J,h such that, for all v ∈ H1(Th),
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|v |2J,h B
∑
F ∈Fh

h−1
F ‖π0,k

F [v]F ‖2F (2.66)

with jump operator [·]F defined by (1.22) if F ∈ F i
h
, and by [v]F B vF if F ∈ F b

h
.

A natural question is whether the jump seminorm of pk+1
h

uh converges to zero. The
answer is provided by the following lemma.
Lemma 2.31 (Convergence of the jumps).Under the assumptions and notations of
Theorem 2.27, and further supposing, for the sake of simplicity, that, for all T ∈ Th ,
the local stabilisation bilinear form sT is given by (2.23), it holds, with hidden
constant independent of h and u, that

|pk+1
h uh |J,h . hr+1 |u|Hr+2(Th ). (2.67)

Proof. For F ∈ F i
h
with bordering elements T1 and T2, write

[pk+1
h uh]F = pk+1

T1
uT1
− pk+1

T2
uT2
= (pk+1

T1
uT1
− uF ) + (uF − pk+1

T2
uT2
).

For F ∈ F b
h
with bordering element T , write [pk+1

h
uh]F = pk+1

T uT −uF , owing to the
fact that uF = 0. Using the triangle inequality and gathering the sum by elements as
per (1.25), it is then inferred that∑

F ∈Fh
h−1
F ‖π0,k

F [pk+1
h uh]F ‖2F ≤ 2

∑
F ∈Fh

∑
T ∈TF

h−1
F ‖π0,k

F (pk+1
T uT − uF )‖2F

≤ 2
∑
T ∈Th

∑
F ∈FT

h−1
F ‖π0,k

F (pk+1
T uT − uF )‖2F

= 2
∑
T ∈Th

∑
F ∈FT

h−1
F ‖δkTFuT ‖2F

≤ 2|uh |2s,h .

Using (2.64) to bound the right-hand side yields (2.67). ut

2.3.3 L2-error estimate

We next study the convergence of the error in the L2-norm. Optimal error estimates
in this context require further regularity for the continuous problem. More precisely,
we assume that, for all g ∈ L2(Ω), the unique solution of the dual problem: Find
zg ∈ H1

0 (Ω) such that

a(v, zg) = (g, v) ∀v ∈ H1
0 (Ω) (2.68)

satisfies the a priori estimate

‖zg‖H2(Ω) ≤ C‖g‖, (2.69)
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with real number C depending only on Ω. This property, called elliptic regularity,
holds when the domain Ω is convex; see, e.g., [205]. Notice that, for the Poisson
equation, the dual problem coincides with the primal problem (2.2) owing to the
symmetry of a.

Theorem 2.32 (L2-error estimate). Let (Mh)h∈H denote a regular mesh se-
quence in the sense of Definition 1.9. Let a polynomial degree k ≥ 0 be fixed.
Let u ∈ H1

0 (Ω) denote the unique solution of (2.2), for which we assume the
additional regularity u ∈ Hr+2(Th) for some r ∈ {0, . . . , k}. For all h ∈ H ,
let uh ∈ Uk

h,0 denote the unique solution to (2.48) with stabilisation bilin-
ear forms sT , T ∈ Th , in (2.15) satisfying Assumption 2.4. Further assuming
elliptic regularity and that f ∈ H1(Th) if k = 0, it holds

‖pk+1
h uh − u‖ .

{
h2‖ f ‖H1(Th ) if k = 0,
hr+2 |u|Hr+2(Th ) if k ≥ 1,

(2.70)

with hidden constant independent of both h and u.

The proof of Theorem 2.32 hinges on the following lemma, which shows that the
element-based unknowns of the HHO solution are very close to the L2-orthogonal
projection of u on the broken polynomial space Pk(Th). Since this corresponds, when
r = k, to an error estimate of higher degree than the approximation properties of the
discrete space, we speak of superconvergence.

Lemma 2.33 (Superconvergence of element unknowns). Under the assumptions
and notations of Theorem 2.32, it holds that

‖uh − π0,k
h

u‖ .
{

h2‖ f ‖H1(Th ) if k = 0,
hr+2 |u|Hr+2(Th ) if k ≥ 1,

(2.71)

where the hidden constant is independent of both h and u, and the global L2-
orthogonal projection π0,k

h
u is defined according to (1.59), i.e., (π0,k

h
u) |T = π0,k

T u |T
for all T ∈ Th .
Proof (Theorem 2.32). Let, for the sake of brevity, ûh B Ik

h
u and ǔh B pk+1

h
ûh so

that, by the commutation property (2.14), (ǔh) |T = π1,k+1
T u for all T ∈ Th . Inserting

0 = pk+1
h

ûh − ǔh inside the norm and using the triangle inequality, we have that

‖pk+1
h uh − u‖ ≤ ‖u − ǔh ‖ + ‖pk+1

h (ûh − uh)‖ C T1 + T2. (2.72)

Using inside each element T ∈ Th the approximation properties (1.78) of the elliptic
projector with l = k + 1, p = 2, s = r + 2, and m = 0 readily gives for the first term:

T1 . hr+2 |u|Hr+2(Th ). (2.73)
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For the second term, on the other hand, we observe that

T
2
2 =

∑
T ∈Th

‖pk+1
T (ûT − uT )‖2T

.
∑
T ∈Th

(
h2
T ‖∇pk+1

T (ûT − uT )‖2T + ‖π0,0
T (ûT − uT )‖2T

)
≤ h2‖ûh − uh ‖2a,h + ‖ûh − uh ‖2, (2.74)

where the second line follows writing

pk+1
T (ûT − uT ) =

[
pk+1
T (ûT − uT ) − π0,0

T (ûT − uT )
]
+ π0,0

T (ûT − uT )

and using the triangle inequality followed by the local Poincaré–Wirtinger inequality
(1.76) on pk+1

T (ûT − uT ) − π0,0
T (ûT − uT ), while the conclusion in (2.74) is obtained

invoking the definition (2.41) of the ‖·‖a,h-norm together with the L2-boundedness
of π0,0

T . Using (2.62) and (2.71) to bound respectively the first and second terms
in (2.74), and plugging the resulting inequality together with (2.73) into (2.72), the
estimate (2.70) follows. ut

To complete the proof of the L2-error estimate, it only remains to prove Lemma
2.33, which we do next.

Proof (Lemma 2.33). The result follows from the Aubin–Nitsche Lemma A.10
in Appendix A, with the same setting as in the proof of Theorem 2.27, that is:
U = H1

0 (Ω), a(u, v) = (∇u,∇v), l(v) = ( f , v), Uh = Uk
h,0, ‖·‖Uh = ‖·‖a,h , ah = ah ,

lh(vh) = ( f , vh) and Ihu = Ik
h
u. Additionally, we take L = L2(Ω) and rh : Uk

h,0 →
L2(Ω) defined by rhvh = vh . In what follows, the hidden constants in the inequalities
A . B do not depend on h, f , u, or g in the dual problem (2.68).

With this setting, (A.10) is identical to (2.68) and, by choice of rh , since the
bilinear form a is symmetric, the dual consistency errorEd

h
(zg; ·) is equal to the primal

consistency error Eh(zg; ·) defined by (2.43). By definition of rh and Ik
h
, denoting

by ‖·‖a,h,? the dual norm of ‖·‖a,h , the Aubin–Nitsche Lemma A.10 therefore shows
that

‖uh − π0,k
h

u‖ ≤ ‖uh − Ikhu‖a,h sup
g∈L2(Ω), ‖g ‖ ≤1

‖Eh(zg; ·)‖a,h,?︸                                                    ︷︷                                                    ︸
T1

+ sup
g∈L2(Ω), ‖g ‖ ≤1

|Eh(u; Ikhzg)|︸                             ︷︷                             ︸
T2

.
(2.75)

(i) Estimate of T1. Since zg ∈ H1
0 (Ω) ∩H2(Ω), using the definition of the dual norm

‖·‖a,h,? followed by the estimates (2.42) with r = 0 and (2.69) yields
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‖Eh(zg; ·)‖a,h,? = sup
vh ∈Uk

h ,0 , ‖vh ‖a,h=1
|Eh(zg; vh)| . h|zg |H2(Ω) . h‖g‖.

Combining this result with (2.62), the first term in the right-hand side of (2.75) is
estimated as

T1 . hr+2 |u|Hr+2(Th ). (2.76)

(ii) Estimate of T2. To estimate the second term in the right-hand side of (2.75), we
treat the cases k ≥ 1 and k = 0 separately.

(ii.A) The case k ≥ 1. Applying (2.47) to w = u and vh = Ik
h

zg yields

|Eh(u; Ikhzg)| . hr+1 |u|Hr+2(Th )


( ∑
T ∈Th

|IkT zg |21,∂T
) 1

2

+ |Ikhzg |s,h
 . (2.77)

Using, for all T ∈ Th , the consistency property (2.31) of the local stabilisation
bilinear form with r = 0, we see that

|Ikhzg |s,h . h|zg |H2(Ω).

On the other hand, recalling the definition (2.7) of |·|1,∂T , we can write for anyT ∈ Th

|IkT zg |21,∂T =
∑
F ∈FT

h−1
F ‖π0,k

F zg − π0,k
T zg‖2F

=
∑
F ∈FT

h−1
F ‖π0,k

F (zg − π0,k
T zg)‖2F

≤
∑
F ∈FT

h−1
F ‖zg − π0,k

T zg‖2F . h2
T |zg |2H2(T ),

(2.78)

where we have used the definition of IkT zg in the first equality, followed by the
linearity and polynomial invariance (1.56) of π0,k

F in the second equality, its L2-
boundedness in the third line, and concluded by the trace approximation property
(1.75) with l = k, p = 2, m = 0 and s = 2 (we have s ≤ l + 1 since, here, k ≥ 1),
along with the uniform equivalence of face and element diameters (1.6). Plugging
the above bounds into (2.77) and recalling the elliptic regularity estimate (2.69), we
infer that |Eh(u; Ik

h
zg)| . hr+2 |u|Hr+2(Th )‖g‖, hence

T2 . hr+2 |u|Hr+2(Th ).

Plugging this estimate together with (2.76) into (2.75) concludes the proof of (2.71)
in the case k ≥ 1.

(ii.B) The case k = 0. Substituting f = −∆u in the expression (2.43) of the con-
sistency error Eh(u; I0

h
zg), using the definitions (2.39) and (2.15) of the bilinear

forms ah and aT to expand the quantity ah(Ikhu, Ik
h

zg), and invoking the property
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p1
T I0

T = π
1,1
T (see (2.14)), we have that

Eh(u; I0
hzg) =

∑
T ∈Th
( f , π0,0

T zg)T −
∑
T ∈Th
(∇π1,1

T u,∇π1,1
T zg)T

− sh(I0
hu, I0

hzg).
(2.79)

The orthogonality property of π0,0
T and the fact that ( f , zg) = (∇u,∇zg) (see (2.2))

justify the following algebra:∑
T ∈Th
( f , π0,0

T zg)T =
∑
T ∈Th
(π0,0

T f , zg)T

=
∑
T ∈Th
(π0,0

T f − f , zg)T + ( f , zg)

=
∑
T ∈Th
(π0,0

T f − f , zg − π0,0
T zg)T + (∇u,∇zg).

(2.80)

The Cauchy–Schwarz inequality and the approximation property (1.74) applied to f
and zg with p = 2, l = k = 0, and s = 1 yield��� ∑

T ∈Th
(π0,0

T f − f , zg − π0,0
T zg)T

��� ≤ ∑
T ∈Th

‖π0,0
T f − f ‖T ‖zg − π0,0

T zg‖T

.
∑
T ∈Th

h| f |H1(T ) h|zg |H1(T )

. h2 | f |H1(Th )‖g‖,

where the conclusion follows by the Cauchy–Schwarz inequality on the sum and the
standard stability estimate ‖zg‖H1(Ω) . ‖g‖. Using the Cauchy–Schwarz inequality
on the positive semidefinite form sh , the consistency estimate (2.31) with k = r = 0
gives

|sh(I0
hu, I0

hzg)| ≤ |I0
hu|s,h |I0

hzg |s,h . h|u|H2(Ω) h|zg |H2(Ω). (2.81)

Hence, coming back to (2.79) and invoking the elliptic regularity estimate (2.69) for
both zg and u, we find

|Eh(u; I0
hzg)| .

����� ∑
T ∈Th
(∇u,∇zg)T − (∇π1,1

T u,∇π1,1
T zg)T

����� + h2‖ f ‖H1(Th )‖g‖.

For all T ∈ Th , introducing ±(∇π1,1
T u,∇zg)T and using the definition (1.60a) of π1,1

T

with (v,w) = (zg, π1,1
T u) and (v,w) = (u, π1,1

T zg), we write
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|(∇u,∇zg)T − (∇π1,1
T u,∇π1,1

T zg)T |
= |(∇(u − π1,1

T u),∇zg)T +((((((
(((

((
(∇π1,1

T u,∇(zg − π1,1
T zg))T |

= |(∇(u − π1,1
T u),∇(zg − π1,1

T zg))T |
. hT |u|H2(T ) hT |zg |H2(T ),

(2.82)

where we have used the Cauchy–Schwarz inequality and the approximation property
(1.78) of π1,1

T with l = 1, p = 2, s = 2, and m = 1 to conclude. Hence, using again
the elliptic regularity estimate (2.69) for u and zg,

|Eh(u; I0
hzg)| . h2‖ f ‖H1(Th )‖g‖. (2.83)

The proof of (2.71) for k = 0 is completed by plugging this estimate and (2.76) into
(2.75). ut

2.4 Other boundary conditions

We hint in this section at the treatment of more general boundary conditions. For
the sake of simplicity, we consider mixed boundary conditions under the assumption
that they do not degenerate into the pure Neumann case (the adaptation to the pure
Neumann case is addressed in detail in Chapter 6 formore general, possibly nonlinear
diffusion problems). Let ΓD denote a relatively open subset of ∂Ω with non-zero
(d − 1)-dimensional Hausdorff measure, and set ΓN B ∂Ω \ ΓD. Let gD B (uD) |ΓD

with uD ∈ H1(Ω), gN ∈ L2(ΓN), and consider the problem: Find u : Ω → R such
that

−∆u = f in Ω,
u = gD on ΓD,

∇u·nΩ = gN on ΓN,

(2.84)

where nΩ denotes the outer unit normal to Ω on ∂Ω. Denote by H1
D(Ω) the space of

functions in H1(Ω) which vanish (in the sense of traces) on ΓD. Classically, a weak
solution to Problem (2.84) can be obtained as u = u0 +uD where u0 ∈ H1

D(Ω) is such
that

(∇u0,∇v) = ( f , v) − (∇uD,∇v) + (gN, v)ΓN ∀v ∈ H1
D(Ω). (2.85)

In order towrite theHHOdiscretisation of problem (2.85),we consider a polytopal
meshMh in the sense of Definition 1.4 for which wemake the following assumption.

Assumption 2.34 (Boundary datum-compliant mesh) We assume that the inte-
rior of every boundary face F ∈ F b

h
is contained either in ΓD (the set of all such F

is denoted by F D
h
) or in ΓN (the set of all such F is denoted by F N

h
).

We next introduce the space
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Uk
h,D B

{
vh ∈ Uk

h : uF = 0 ∀F ∈ F D
h

}
,

and we let uh,D B ((uT ,D)T ∈Th , (uF ,D)F ∈Fh ) ∈ Uk
h
be such that

uT ,D = 0 ∀T ∈ Th, uF ,D = π
0,k
F gD ∀F ∈ F D

h , uF ,D = 0 ∀F ∈ F 6D
h
, (2.86)

where we have introduced the set of non-Dirichlet faces

F 6D
h
B Fh \ F D

h = F i
h ∪ F N

h . (2.87)

Then, the HHO solution uh ∈ Uk
h
is obtained as uh = uh,0 + uh,D with uh,0 ∈ Uk

h,D
such that

ah(uh,0, vh) = ( f , vh) − ah(uh,D, vh) +
∑
F ∈FN

h

(gN, vF )F ∀vh ∈ Uk
h,D. (2.88)

2.5 Numerical examples

We illustrate the numerical performance of the HHO method on a set of model
problems.

2.5.1 Two-dimensional test case

The first test case, taken from [153], aims at illustrating the demonstrated orders of
convergence in two space dimensions. We solve the Dirichlet problem in the unit
square Ω = (0,1)2 with

u(x1, x2) = sin(πx1) sin(πx2), (2.89)

and corresponding right-hand side f = 2π2 sin(πx1) sin(πx2), on families of tri-
angular and polygonal meshes, an instance of each being described in Figs. 1.1a
and 1.1c, respectively. Fig. 2.3 displays convergence results for both mesh families
and polynomial degrees up to 4. By virtue of (2.62) and (2.71) (both with r = k),
we can measure the energy- and L2-errors through the quantities ‖Ik

h
u − uh ‖a,h

and ‖π0,k
h

u − uh ‖, respectively. In all cases, the numerical results show asymptotic
convergence rates that match those predicted by the theory.
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Fig. 2.3: Error vs. h for the test case of Section 2.5.1. The reference slopes refer to
the expected order of convergence for each polynomial degree k ∈ {0, . . . ,4}.

2.5.2 Three-dimensional test case

The second test case, taken from [161], demonstrates the orders of convergence in
three space dimensions. We solve the Dirichlet problem in the unit cube Ω = (0,1)3
with

u(x1, x2, x3) = sin(πx1) sin(πx2) sin(πx3),
and corresponding right-hand side f (x1, x2, x3) = 3π2 sin(πx1) sin(πx2) sin(πx3),
on a matching simplicial mesh family and for polynomial degrees k up to 3. The
numerical results displayed in Fig. 2.4 show asymptotic convergence rates that match
those predicted by (2.64) and (2.70), both with r = k. In Fig. 2.5 we display the error
versus the total computational time ttot (including the pre-processing, solution, and
post-processing), in seconds. It can be seen that the energy- and L2-errors scale as

t
(k+1)
d

tot and t
(k+2)
d

tot (with d = 3), respectively.
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Fig. 2.4: Error vs. h for the test case of Section 2.5.2. The reference slopes refer to
the expected order of convergence for each polynomial degree k ∈ {0, . . . ,3}.
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Fig. 2.5: Error vs. total computational time (in seconds) for the test case of Section
2.5.2. The reference slopes refer to the optimal scaling for each polynomial degree
k ∈ {0, . . . ,3}.





Chapter 3
Variable diffusion and
diffusion–advection–reaction

In this chapter we extend the HHOmethod to the scalar diffusion–advection–reaction
problem: Find u : Ω→ R such that

∇·(−K∇u + βu) + µu = f in Ω,
u = 0 on ∂Ω,

(3.1)

where K : Ω→ Rd×dsym (with Rd×dsym denoting the space of symmetric d × d matrices)
is the spatially varying and possibly anisotropic diffusion coefficient, β : Ω → Rd
is the velocity, and µ : Ω→ R is the reaction coefficient.

We first consider in Section 3.1 the pure diffusion case, that is, we take β = 0 and
µ = 0. A key point is to design amethod robust with respect to the variations ofK .We
start by introducing and studying the local oblique elliptic projector, which modifies
the elliptic projector of Definition 1.39 by including a dependence on the diffusion
coefficient. For this projector, we prove approximation properties in both weighted
and standard Sobolev seminorms. We next introduce the key ingredient of the local
construction, namely a diffusion-dependent potential reconstruction inspired by the
oblique elliptic projector, and formulate the local contribution, the global bilinear
form, and the discrete problem. Finally, we prove energy error estimates that are
fully robust with respect to the heterogeneity of the diffusion coefficient, and have
only a moderate dependence on its local anisotropy ratio.

In Section 3.2, we then consider the full diffusion–advection–reaction model. The
main novel ingredient introduced in this section is the robust HHO discretisation of
first-order terms. Problem (3.1) is characterised by the presence of spatially varying
coefficients, which can give rise to different regimes in different regions of the
domain. In practice, one is typically interested in numerical methods that handle in
a robust way locally dominant advection, corresponding to large values of a local
Péclet number (a measure of the relative magnitude of the advective and diffusive
processes in the model; see (3.82) for a precise definition in the present context). As
pointed out in [152], this requires that the discrete counterpart of the bilinear form
corresponding to the terms ∇·(βu)+ µu satisfies a stability condition that guarantees
well-posedness even in the absence of diffusion. This stability property is achieved

77
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here combining a reconstruction of the advective derivative, obtained in the HHO
spirit, with an upwind stabilisation that penalises the differences between face- and
element-based discrete unknowns. The material in Section 3.2 is inspired by [144],
with some noticeable differences. In particular, an important addition in the present
setting are improved error estimates in the L2-norm.

3.1 Variable diffusion

In this section, we consider pure diffusion problems with spatially varying co-
efficients. Denote by Rd×dsym the space of symmetric d × d real matrices, and let
K : Ω → Rd×dsym be a diffusion coefficient which we assume uniformly elliptic, i.e.,
such that it holds, for every ξ ∈ Rd and a.e. x ∈ Ω,

K |ξ |2 ≤ K (x)ξ ·ξ ≤ K |ξ |2 (3.2)

for twogiven real numbers 0 < K ≤ K .Wemake the following additional assumption
concerning the spatial dependence of K .

Assumption 3.1 (Piecewise constant diffusion coefficient) The diffusion coefficient
K is piecewise constant on a finite collection PΩ B {Ωi}i∈I of disjoint polytopes
such that Ω =

⋃
i∈I Ωi , i.e.,

K |Ωi
∈ P0(Ωi;Rd×dsym ) ∀i ∈ I .

The case of diffusion coefficients that are not piecewise constant is covered in Section
4.2.

For a given volumetric source term f ∈ L2(Ω), we consider the problem that
consists in seeking u : Ω→ R such that

−∇·(K∇u) = f in Ω, (3.3a)
u = 0 on ∂Ω. (3.3b)

Recalling the notation introduced in Remark 1.14 for L2-products, the weak formu-
lation of problem (3.3) reads: Find u ∈ H1

0 (Ω) such that

aK (u, v) = ( f , v) ∀v ∈ H1
0 (Ω), (3.4)

with bilinear form aK : H1(Ω) × H1(Ω) → R defined by

aK (u, v) B (K∇u,∇v).

The key idea to extend the HHO method discussed in Chapter 2 to the variable
diffusion problem (3.4) consists in modifying the local potential reconstruction
so as to incorporate a dependence on the diffusion tensor. This diffusion-dependent
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potential reconstruction is designed so that its compositionwith the local interpolator
coincides with a modified elliptic projector that we call the oblique elliptic projector.
A local contribution including a high-order stabilisation term is then designed based
on this reconstruction, following similar principles as in Section 2.1.4.

The material is organised as described in what follows. In Section 3.1.1 we
introduce the notion of mesh sequence compliant with the diffusion coefficient,
meaning that jumps of K do not occur inside mesh elements. We note here the
advantage of using polyhedral meshes over more common (e.g. triangular) meshes,
as this usually enables the construction of compliant meshes using fewer elements.
In Section 3.1.2 we define the oblique elliptic projector and study its approximation
properties. An important point when dealing with variable diffusion problems is to
ensure robustness with respect to both the heterogeneity (i.e., the spatial variations)
and the anisotropy (i.e., the directional dependence) of the diffusion coefficient. In
the derivation of robust error estimates, the approximation properties of the oblique
elliptic projector in both diffusion-weighted and standard Sobolev norms play a key
role. Their study is the purpose of Theorem 3.3 and Corollary 3.6. In Section 3.1.3,
we describe the local construction underlying the HHO method and introduce novel
abstract assumptions on the stabilisation term. Finally, in Section 3.1.4 we formulate
the discrete problem, study the stability, boundedness, and approximation properties
of the discrete bilinear form, and derive an error estimate in the energy norm. The
robustness of this error estimate is discussed in Remark 3.20.

3.1.1 Compliant mesh sequence

In what follows, we consider a regular mesh sequence (Mh)h∈H in the sense of
Definition 1.9, without necessarily recalling this fact at each occurrence. The role of
the following assumption (and, in particular, of its consequence (3.5)) in the design
and analysis of the HHO method is discussed in Remarks 3.5 and 3.8.

Assumption 3.2 (Compliant mesh sequence) For all h ∈ H , we assume thatMh

is compliant with the partition PΩ introduced in Assumption 3.1, in the sense that,
for all T ∈ Th , there exists a unique index i ∈ I such that T ⊂ Ωi .

Assumption 3.2 is typically satisfied, e.g., in the modelling of petroleum reservoirs,
where the mesh reflects the structure of the subsoil resulting from the petrophysical
analysis. On a compliant mesh, jumps of the diffusion coefficient can occur at
interfaces but not inside elements. Accounting for Assumption 3.1 this implies, in
particular, that

K ∈ P0(Th;Rd×dsym ). (3.5)

For any mesh element T ∈ Th , we let KT B K |T denote the constant value of the
diffusion coefficient inside T , and introduce the local anisotropy ratio

αT B
KT

KT

, (3.6)
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where KT and KT denote, respectively, the largest and smallest eigenvalues of KT .
For any mesh element T ∈ Th and any face F ∈ FT , we also define the following
positive real number:

KTF B KT nTF ·nTF .

Finally, for any T ∈ Th , we denote by K
1
2
T ∈ Rd×dsym the unique symmetric positive

definite matrix such that
KT = K

1
2
TK

1
2
T ,

and let K
1
2 be the piecewise constant matrix-valued field whose restriction to any

mesh element T ∈ Th coincides with K
1
2
T .

3.1.2 The oblique elliptic projector

The starting point to devise an HHO discretisation of problem (3.4) is a modified
version of the elliptic projector, introduced in Definition 1.39, that accounts for the
presence of the diffusion coefficient. Its definition and the study of its approximation
properties make the topic of this section.

Let a mesh element T ∈ Th and an integer l ≥ 0 be fixed. We define the oblique
elliptic projector π1,l

K ,T : W1,1(T) → Pl(T) such that, for all v ∈ W1,1(T),

(KT∇(π1,l
K ,T v − v),∇w)T = 0 ∀w ∈ Pl(T). (3.7a)

By the Riesz representation theorem in ∇Pl(T) for the KT -weighted L2-inner prod-
uct, this relation defines a unique element ∇π1,l

K ,T v, and thus a polynomial π1,l
K ,T v up

to an additive constant. This constant is fixed by imposing

(π1,l
K ,T v − v,1)T = 0. (3.7b)

Using similar arguments as to pass from (1.60) to (1.61), the conditions (3.7) can be
alternatively formulated as follows:

(KT∇(π1,l
K ,T v − v),∇w)T + (π1,l

K ,T v − v, π0,0
T w)T = 0 ∀w ∈ Pl(T). (3.8)

We have the following characterisation:

π1,l
K ,T v = argmin

w∈Pl (T ), (w−v,1)T=0
‖K

1
2
T∇(w − v)‖2T , (3.9)

as can be easily checked by observing that (3.7a) is the Euler equation for the mini-
misation problem (3.9). Comparing (3.7) with (1.60), we see that π1,l

K ,T coincides
with the standard elliptic projector π1,l

T when KT = Id , where Id denotes the identity
matrix of Rd×d . To check that π1,l

K ,T satisfies the polynomial invariance requirement
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(1.56) (and hence, by Proposition 1.35, that it meets the conditions of Definition
1.34) it suffices to observe that, if v ∈ Pl(T), then making w = π1,l

K ,T v − v in (3.7a)
implies ∇(π1,l

K ,T v − v) = 0 and thus that (π1,l
K ,T v − v) is constant on T . Using (3.7b),

we deduce that π1,l
K ,T v − v = 0.

We next study the approximation properties of the oblique elliptic projector in
diffusion-weighted seminorms. Such seminorms are required in the analysis to obtain
error estimates with a sharp dependence on the local anisotropy ratio αT ; see Remark
3.20 below. We focus on the Hilbertian case since, as will be made clear in Chapter
6, a different construction is required to treat nonlinear diffusion problems in a
non-Hilbertian setting.

Theorem 3.3 (Approximation properties of the oblique elliptic projector
in diffusion-weighted seminorms). Let (Mh)h∈H = (Th,Fh)h∈H be a regular
mesh sequence in the sense of Definition 1.9. Let Assumptions 3.1 and 3.2 hold
true. For a given polynomial degree l ≥ 0, let an integer s ∈ {1, . . . , l + 1} be
given. Then, for all T ∈ Th , all v ∈ Hs(T), and all m ∈ {0, . . . , s − 1}, it holds

|K
1
2
T∇(v − π1,l

K ,T v)|Hm(T )d . K
1
2
T hs−m−1

T |v |H s (T ) (3.10)

with hidden constant independent of h, T , v, m and K , but possibly depending
on d, %, l and s. If, additionally, m ≤ s − 2 (which enforces s ≥ 2), then, for
all F ∈ FT ,

h
1
2
T |K

1
2
T∇(v − π1,l

K ,T v)|Hm(F)d . K
1
2
T hs−m−1

T |v |H s (T ), (3.11)

where the hidden constant has the same dependencies as in (3.10).

Remark 3.4 (Approximation estimates in diffusion-weighted seminorms).The crucial
point in estimates (3.10) and (3.11) is that the right-hand side does not depend on
the local anisotropy ratio αT .

Proof. We adapt the arguments of the proofs of Lemma 1.43 and Theorem 1.48.
Consider the following representation of v:

v = Qsv + Rsv, (3.12)

whereQsv ∈ Ps−1(T) ⊂ Pl(T) is the averagedTaylor polynomial,while the remainder
Rsv satisfies, for all r ∈ {0, . . . , s} (cf. [77, Lemma 4.3.8] for star-shaped elements,
and Theorem 1.50 together with Lemma 1.42 for general elements),

|Rsv |Hr (T ) . hs−r
T |v |H s (T ). (3.13)

By definition of the oblique elliptic projector, it holds, for any φ ∈ H1(T),
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‖K
1
2
T∇π

1,l
K ,T φ‖T ≤ ‖K

1
2
T∇φ‖T , (3.14)

as can be inferred selecting w = π1,l
K ,T φ as a test function in (3.7a) and using the

Cauchy–Schwarz inequality. Taking the projection of (3.12), and using the polyno-
mial invariance (1.56) for π1,l

K ,T along with l ≥ s − 1 to write π1,l
K ,TQsv = Qsv, it is

inferred that
π1,l
K ,T v = Qsv + π1,l

K ,T (Rsv).

Subtracting this equation from (3.12), we obtain v − π1,l
K ,T v = Rsv − π1,l

K ,T (Rsv).
Applying the operator K1/2

T ∇ to this expression, taking the seminorm, and using the
triangle inequality, we arrive at

|K
1
2
T∇(v − π1,l

K ,T v)|Hm(T )d ≤ |K
1
2
T∇Rsv |Hm(T )d︸                ︷︷                ︸

T1

+ |K
1
2
T∇π

1,l
K ,T (Rsv)|Hm(T )d︸                         ︷︷                         ︸

T2

. (3.15)

For the first term, it is readily inferred that T1 . K
1
2
T |Rsv |Hm+1(T ) which, combined

with (3.13) for r = m + 1, gives

T1 . K
1
2
T hs−m−1 |v |H s (T ). (3.16)

For the second term, on the other hand, we can proceed as follows:

T2 . h−mT ‖K
1
2
T∇(π1,l

K ,T Rsv)‖T Eq. (1.50) with (p,q,r) = (2,2,0)

. h−mT ‖K
1
2
T∇Rsv‖T Eq. (3.14) with φ = Rsv

. K
1
2
T h−mT |Rsv |H1(T )

. K
1
2
T hs−m−1

T |v |H s (T ). Eq. (3.13) with r = 1

(3.17)

Plugging the bounds (3.16) and (3.17) into (3.15), (3.10) follows. To prove (3.11), it
suffices to combine (3.10) with the continuous trace inequality (1.51) as in Theorem
1.45. ut
Remark 3.5 (Role of Assumptions 3.1 and 3.2 in the proof of Theorem 3.3). As
already pointed out in Section 3.1.1, Assumption 3.1 and 3.2 combined imply that
the diffusion coefficient is constant inside each mesh element. This fact is used in the
first line of the estimate (3.17) of T2 to apply the inverse Sobolev embeddings (1.50)
to the polynomial function K

1
2
T∇(π1,l

K ,T Rsv) ∈ Pl−1(T)d , as well as in the applications
of the continuous trace inequality (1.51) to obtain (3.11).

In the analysis, we will also need the following result concerning the approximation
properties of the oblique elliptic projector in standard Sobolev seminorms. Unlike the
estimates of Theorem 3.3, the multiplicative constant in the right-hand side depends,
in this case, on the square root of the local anisotropy ratio.
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Corollary 3.6 (Approximation properties of the oblique elliptic projector in
standard Sobolev seminorms). Let (Mh)h∈H = (Th,Fh)h∈H be a regular mesh
sequence in the sense of Definition 1.9. Let Assumptions 3.1 and 3.2 hold true. For
a given polynomial degree l ≥ 0, let an integer s ∈ {1, . . . , l + 1} be given. Then, for
all T ∈ Th , all v ∈ Hs(T), and all m ∈ {0, . . . , s},

|v − π1,l
K ,T v |Hm(T ) . α

1
2
T hs−m

T |v |H s (T ), (3.18)

with αT defined by (3.6) and hidden constant independent of h, T , v, m and K , but
possibly depending on d, %, l and s. If, additionally, s ≥ 1 and m ∈ {0, . . . , s − 1},
then, for all F ∈ FT ,

h
1
2
T |v − π1,l

K ,T v |Hm(F) . α
1
2
T hs−m

T |v |H s (T ), (3.19)

with hidden constant having the same dependency as in (3.18).

Proof. We first remark that (3.19) is an immediate consequence of (3.18) combined
with the continuous trace inequality (1.51), as in Theorem 1.45. To prove (3.18), we
distinguish two cases.

(i) The case m = 0. Recalling that H0(T) = L2(T), and using (3.7b) together with
the local Poincaré–Wirtinger inequality (1.76), we infer that

‖v − π1,l
K ,T v‖T . hT ‖∇(v − π1,l

K ,T v)‖T ≤
hT

K
1
2
T

‖K
1
2
T∇(v − π1,l

K ,T v)‖T . α
1
2
T hs

T |v |H s (T ),

where we have used (3.10) to conclude.

(ii) The case m ≥ 1.We have that

|v − π1,l
K ,T v |Hm(T ) .

1

K
1
2
T

|K
1
2
T∇(v − π1,l

K ,T v)|Hm−1(T )d . α
1
2
T hs−m

T |v |H s (T ),

where we have used the definition (1.16) of the Sobolev seminorms (with s = m
and p = 2) in the first inequality and concluded invoking (3.10) with m replaced by
(m − 1). ut

3.1.3 Local construction

In this section we describe the local construction underlying the HHO method for
problem (3.4).
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3.1.3.1 Diffusion-dependent local potential reconstruction

For the variable diffusion problem (3.3), the relevant integration by parts formula is
the following: For all v ∈ W1,1(T) and all w ∈ C∞(T),

(KT∇v,∇w)T = −(v,∇·(KT∇w))T +
∑
F ∈FT
(v,KT∇w·nTF )F . (3.20)

Let a polynomial degree k ≥ 0 be fixed. Specialising (3.20) tow ∈ Pk+1(T), and using
the fact that KT is constant inside T owing to (3.5) to infer ∇·(KT∇w) ∈ Pk−1(T) ⊂
Pk(T) and (KT∇w) |F ·nTF ∈ Pk(F) for all F ∈ FT , we obtain the following relation,
which will inspire the definition of the local potential reconstruction:

(KT∇π1,k+1
K ,T v,∇w)T = −(π0,k

T v,∇·(KT∇w))T +
∑
F ∈FT
(π0,k

F v,KT∇w·nTF )F , (3.21)

where we have used the definitions (3.7a) to insert the elliptic projector π1,k+1
K ,T into

the left-hand side and (1.57) to insert the L2-orthogonal projectors π0,k
T and π0,k

F into
the right-hand side. Notice that, as for the Poisson problem, we could have replaced
π0,k
T by π0,k−1

T , but this would have required a separate treatment for the case k = 0;
see Section 5.1 for variants of HHO with enriched or depleted element unknowns.

Let Uk
T denote the local space of discrete unknowns defined by (2.6), which we

recall hereafter for the sake of convenience:

Uk
T B

{
vT = (vT , (vF )F ∈FT ) : vT ∈ Pk(T) and vF ∈ Pk(F) ∀F ∈ FT

}
.

By principles similar to those illustrated in Section 2.1.3, inspired by (3.21), we
define the diffusion-dependent local potential reconstruction operator pk+1

K ,T : Uk
T →

Pk+1(T) such that, for all vT ∈ Uk
T and all w ∈ Pk+1(T),

(KT∇pk+1
K ,T vT ,∇w)T = −(vT ,∇·(KT∇w))T +

∑
F ∈FT
(vF ,KT∇w·nTF )F (3.22a)

and
(pk+1

K ,T vT − vT ,1)T = 0. (3.22b)

For future use, we note the following equivalent reformulation of (3.22a), obtained
integrating by parts the first term in the right-hand side:

(KT∇pk+1
K ,T vT ,∇w)T = (∇vT ,KT∇w)T +

∑
F ∈FT
(vF − vT ,KT∇w·nTF )F . (3.23)

Remark 3.7 (Equivalent definition of pk+1
K ,T ).As in Remark 2.3, fixing λT , 0 we note

that the conditions (3.22) can be equivalently reformulated as: For all w ∈ Pk+1(T),
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(KT∇pk+1
K ,T vT ,∇w)T + λT (pk+1

T vT , π
0,0
T w)T

= (∇vT ,KT∇w)T +
∑
F ∈FT
(vF − vT ,KT∇w·nTF )F + λT (vT , π0,0

T w)T .

Comparing (3.22) with (2.11), we see that pk+1
K ,T = pk+1

T when KT = Id . Additionally,
recalling the definition (2.8) of the local interpolator IkT , the following crucial relation
follows accounting for (3.21) : For all v ∈ W1,1(T),

(pk+1
K ,T ◦ IkT )v = π1,k+1

K ,T v, (3.24)

whichmeans that the composition of the diffusion-dependent reconstruction operator
with the interpolator gives the oblique elliptic projector on Pk+1(T).
Remark 3.8 (Non-piecewise constant diffusion coefficients). The definition (3.7) of
the oblique elliptic projector extends in a straightforward manner to non-constant
(but still uniformly elliptic) KT . In this case, however, we can no longer introduce
the L2-projectors π0,k

T and π0,k
F into the right-hand side of (3.21). The reason is that

the functions ∇·(KT∇w) and (KT∇w) |F ·nTF are no longer in Pk−1(T) and Pk(F),
respectively (in fact, they are possibly not even polynomials). A consequence of
this fact is that (3.24) will no longer hold in general. For this reason, in the case of
non-piecewise constant diffusion, we consider a different approach not based on the
oblique elliptic projector; see Section 4.2 on this topic.

3.1.3.2 Local contribution

We define on Uk
T the diffusion-dependent local seminorm such that, for all vT ∈ Uk

T ,

‖vT ‖1,K ,T B
(
‖K

1
2
T∇vT ‖2T +

∑
F ∈FT

KTF

hF
‖vF − vT ‖2F

) 1
2

, (3.25)

and we let aK ,T : Uk
T ×Uk

T → R be the bilinear form such that, for all uT , vT ∈ Uk
T ,

aK ,T (uT , vT ) B (KT∇pk+1
K ,TuT ,∇pk+1

K ,T vT )T + sK ,T (uT , vT ). (3.26)

Here, sK ,T : Uk
T ×Uk

T → R is a stabilisation bilinear form that satisfies the design
conditions summarised in the following assumption.

Assumption 3.9 (Local stabilisation bilinear form sK ,T ) The local stabilisation
bilinear form sK ,T : Uk

T ×Uk
T → R satisfies the following properties:

(SK1) Symmetry and positivity. sK ,T is symmetric and positive semidefinite;
(SK2) Stability and boundedness. There is a real number η > 0 independent of h,

T , and K such that, for all vT ∈ Uk
T ,

(αTη)−1‖vT ‖21,K ,T ≤ aK ,T (vT , vT ) ≤ αTη‖vT ‖21,K ,T ; (3.27)
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(SK3) Polynomial consistency. For all w ∈ Pk+1(T) and all vT ∈ Uk
T , it holds

sK ,T (IkTw, vT ) = 0. (3.28)

The following lemma collects a few significant properties enjoyed by stabilisation
bilinear forms that satisfy Assumption 3.9.

Lemma 3.10 (Properties of sK ,T ). Let T ∈ Th and let sK ,T denote a stabilisation
bilinear form satisfying Assumption 3.9. Then, the following properties hold:

(i) Dependence through difference operators. sK ,T depends on its arguments
only through the diffusion-dependent difference operators δkK ,T : Uk

T → Pk(T) and
δkK ,TF

: Uk
T → Pk(F), F ∈ FT , such that, for all vT ∈ Uk

T ,

δkK ,T vT B π0,k
T (pk+1

K ,T vT − vT ),
δkK ,TFvT B π0,k

F (pk+1
K ,T vT − vF ) ∀F ∈ FT .

(3.29)

(ii) Boundary difference reformulation. For all uT , vT ∈ Uk
T , it holds that

sK ,T (uT , vT ) = sK ,T ((0,∆k
∂TuT ), (0,∆k

∂T vT )), (3.30)

where ∆k
∂T is the boundary difference operator defined by (2.56).

(iii) Consistency for smooth functions. For all T ∈ Th , all r ∈ {0, . . . , k}, and all
v ∈ Hr+2(T), it holds that

sK ,T (IkT v, IkT v)
1
2 . K

1
2
Tα

1
2
T hr+1

T |v |Hr+2(T ) (3.31)

with hidden constant independent of h, T , v, r and K .

Remark 3.11 (Diffusion-dependent difference operators and interpolator).The diffu-
sion-dependent difference operators (3.29) satisfy the following relation:

(δkK ,T vT , (δkK ,TFvT )F ∈FT ) = IkTpk+1
K ,T vT − vT . (3.32)

Proof. (i) Dependence through difference operators. This property follows from
(SK3) reasoning as in Lemma 2.11 with pk+1

K ,T instead of pk+1
T . See also Remark 2.12.

(ii) Boundary difference reformulation. The commutation property (3.24) and the
polynomial invariance of π1,k+1

K ,T easily show, as in the proof of Proposition 2.6, that
the diffusion-dependent difference operators (3.29) satisfy the polynomial consis-
tency (2.21), that is to say: For all w ∈ Pk+1(T),

δkK ,T IkTw = 0, δkK ,TF IkTw = 0 ∀F ∈ FT . (3.33)

Using this and Item (i), the proof of (3.30) is done as that of Proposition 2.24,
with the diffusion-dependent difference operators instead of (δkT , (δkTF )F ∈FT ).



3.1 Variable diffusion 87

(iii) Consistency for smooth functions.We set, for the sake of brevity, v̌T B π0,k+1
T v,

and we start by observing that

sK ,T (IkT v, IkT v)
1
2 = sK ,T (IkT (v − v̌T ), IkT (v − v̌T ))

1
2 Eq. (3.28)

= sK ,T ((0,∆k
∂T IkT (v − v̌T )), (0,∆k

∂T IkT (v − v̌T )))
1
2 . Eq. (3.30)

The property (SK2) then yields

sK ,T (IkT v, IkT v)
1
2 ≤ α

1
2
T η

1
2 ‖(0,∆k

∂T IkT (v − v̌T ))‖1,K ,T . (3.34)

Recalling the definitions (3.25) of ‖·‖1,K ,T and (2.56) of ∆k
∂T , we have that

‖(0,∆k
∂T IkT (v − v̌T ))‖21,K ,T =

∑
F ∈FT

KTF

hF
‖π0,k

F (v − v̌T ) − π0,k
T (v − v̌T )‖2F

≤ KT

∑
F ∈FT

h−1
F ‖π0,k

F (v − v̌T ) − π0,k
T (v − v̌T )‖2F

= KT |IkT (v − v̌T )|21,∂T , (3.35)

where we have used KTF ≤ KT in the second line, and the definitions (2.7) and (2.8)
of the local seminorm |·|1,∂T and of the local interpolator IkT to conclude. We then
invoke the boundedness (2.9) of IkT together with the approximation property (1.74)
of v̌T = π0,k+1

T v with s = r + 2, m = 1 and p = 2 to deduce

‖(0,∆k
∂T IkT (v − v̌T ))‖1,K ,T . K

1
2
T |v − v̌T |H1(T ) . K

1
2
T hr+1

T |v |Hr+2(T ),

which, combined with (3.34), yields (3.31). ut

Remark 3.12 (On the choice of the difference operators). As observed in Remark
2.12 for the Poisson problem, we could have used, in the first point of Lemma 3.10,
difference operators defined as in (2.24) starting from any polynomial reconstruction
Rk+1
T : Uk

T → Pk+1(T) consistent for polynomials of degree (k + 1). The specific
choice (3.29) is, however, the natural one to prove (SK2); see Proposition 3.13.

An important example of a stabilisation bilinear form that matches the require-
ments in Assumption 3.9 is given in the following proposition. This stabilisation is
a generalisation of the original HHO stabilisation sT defined by (2.22),

Proposition 3.13 (Diffusion-dependent HHO stabilisation). The bilinear form de-
fined, for all uT , vT ∈ Uk

T , by

sK ,T (uT , vT ) B
∑
F ∈FT

KTF

hF
((δkK ,TF − δkK ,T )uT , (δkK ,TF − δkK ,T )vT )F (3.36)

satisfies properties (SK1)–(SK3).
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Proof. Property (SK1) can be checked by simple inspection. Property (SK3) is a
consequence of the fact that the difference operators defined by (3.29) satisfy the
polynomial consistency (3.33). It only remains to prove (SK2). In the following, the
multiplicative constants in . do not depend on h, T , v or K , and we set, for the sake
of brevity,

v̌T B pk+1
K ,T vT .

(i) Coercivity. Let wT B IkT v̌T = (δkK ,T vT , (δkK ,TF
vT )F ∈FT ) + vT (see (3.32)). The

triangle inequality gives

‖vF − vT ‖F . ‖(δkK ,TF − δkK ,T )vT ‖F + ‖wF − wT ‖F .

Raising to the square, multiplying by KTF/hF , summing over F ∈ FT , and using
KTF ≤ KT and the definition of wT leads to∑

F ∈FT

KTF

hF
‖vF − vT ‖2F . sK ,T (vT , vT ) + KT |wT |21,∂T

. sK ,T (vT , vT ) + KT |IkT v̌T |21,∂T

. sK ,T (vT , vT ) + KT ‖∇v̌T ‖2T , (3.37)

where we have used the boundedness (2.9) of IkT with v = v̌T to conclude. We then

notice that KT ‖∇v̌T ‖2T ≤ ‖K
1
2
T∇v̌T ‖2T to infer∑

F ∈FT

KTF

hF
‖vF − vT ‖2F . sK ,T (vT , vT ) + αT ‖K

1
2
T∇v̌T ‖2T

≤ αT
(
sK ,T (vT , vT ) + ‖K

1
2
T∇v̌T ‖2T

)
= αT aK ,T (vT , vT ), (3.38)

where we have used the fact that αT ≥ 1 to pass to the second line. We now estimate
the volumetric term in ‖vT ‖1,K ,T . To this purpose, write (3.23) with w = vT and use
Cauchy–Schwarz inequalities to see that

‖K
1
2
T∇vT ‖2T
= (KT∇v̌T ,∇vT )T −

∑
F ∈FT
(vF − vT ,KT∇vT ·nTF )F

≤ ‖K
1
2
T∇v̌T ‖T ‖K

1
2
T∇vT ‖T +

∑
F ∈FT

‖|K
1
2
T nTF |(vF − vT )‖F ‖K

1
2
T∇vT ‖F , (3.39)

wherewehave used the symmetry ofK
1
2
T towrite (KT∇v̌T ,∇vT )T = (K

1
2
T∇v̌T ,K

1
2
T∇vT )T

and
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(vF − vT ,KT∇vT ·nTF )F = (vF − vT ,K
1
2
T∇vT ·K

1
2
T nTF )F

= ((vF − vT )K
1
2
T nTF ,K

1
2
T∇vT )F . (3.40)

Invoking the discrete trace inequality (1.55) on K
1
2
T∇vT ∈ Pk−1(T)d and the bounds

hF ≤ hT , whenever F ∈ FT , and card(FT ) . 1 (see (1.5)), we deduce

‖K
1
2
T∇vT ‖2T . ‖K

1
2
T∇v̌T ‖T ‖K

1
2
T∇vT ‖T

+

( ∑
F ∈FT

h−1
F ‖|K

1
2
T nTF |(vF − vT )‖2F

) 1
2

‖K
1
2
T∇vT ‖T .

Extracting the constant scalar |K
1
2
T nTF | from the norm, noticing that

|K
1
2
T nTF |2 = K

1
2
T nTF ·K

1
2
T nTF = KT nTF ·nTF = KTF (3.41)

and simplifying by ‖K
1
2
T∇vT ‖T yields

‖K
1
2
T∇vT ‖T . ‖K

1
2
T∇v̌T ‖T +

( ∑
F ∈FT

KTF

hF
‖vF − vT ‖2F

) 1
2

.

Raising to the square and estimating the second term using (3.38), we infer that
‖K

1
2
T∇vT ‖2T . αT aK ,T (vT , vT ). Adding together this estimate and (3.38) yields the

first inequality in (3.27).

(ii) Boundedness. We now prove the second inequality in (3.27). Use w = v̌T in
(3.23), Cauchy–Schwarz inequalities, the discrete trace inequality (1.55) and the
symmetry of K

1
2
T as above to write

‖K
1
2
T∇v̌T ‖2T . ‖K

1
2
T∇vT ‖T ‖K

1
2
T∇v̌T ‖T +

( ∑
F ∈FT

KTF

hF
‖vF − vT ‖2F

) 1
2

‖K
1
2
T∇v̌T ‖T .

Simplifying by ‖K
1
2
T∇v̌T ‖T and raising to the square yields

‖K
1
2
T∇v̌T ‖2T . ‖vT ‖21,K ,T . (3.42)

To estimate the stabilisation term in aK ,T , set wT = IkT v̌T and recall (3.32) to write

‖(δkK ,TF − δkK ,T )vT ‖F . ‖wF − wT ‖F + ‖vF − vT ‖F .

Raise to the square, multiply by KTF/hF , use KTF ≤ KT , sum over F ∈ FT and use
the boundedness (2.9) of IkT with v = v̌T to get
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sK ,T (vT , vT ) ≤ KT |wT |21,∂T +
∑
F ∈FT

KTF

hF
‖vF − vT ‖2F

. KT ‖∇v̌T ‖2T +
∑
F ∈FT

KTF

hF
‖vF − vT ‖2F .

Since ‖K
1
2
T∇v̌T ‖2T ≥ KT ‖∇v̌T ‖2T , this shows that

sK ,T (vT , vT ) . αT ‖K
1
2
T∇v̌T ‖2T +

∑
F ∈FT

KTF

hF
‖vF − vT ‖2F . αT ‖vT ‖21,K ,T ,

the conclusion following from (3.42) and αT ≥ 1. Adding together this estimate and
(3.42) yields the second inequality in (3.27). ut
Remark 3.14 (Comparison with Poisson). The proof of Proposition 3.13 highlights
two important differences with respect to the Poisson problem treated in Chapter 2;
see Proposition 2.13.

First, a slightly different treatment of the boundary terms is required to have a
sharp dependence on the local anisotropy ratio, which involves the rewriting (3.40) in
order to use Cauchy–Schwarz instead of generalised Hölder inequalities to estimate
the boundary terms in (3.39) (compare with (2.27) in Proposition 2.13).

Second, the use of the diffusion-dependent difference operators (3.29) in sK ,T
over the diffusion-independent ones defined by (2.19) is justified by the fact that
they result in the correct volumetric term involving the gradient of pk+1

K ,T vT instead
of pk+1

T vT in (3.37).

3.1.4 Discrete problem and convergence

In this section, we formulate the global problem and prove energy norm error esti-
mates.

3.1.4.1 Global bilinear form

Recall the definition (2.32) of the global HHO spaceUk
h
with single-valued interface

unknowns:

Uk
h B

{
vh = ((vT )T ∈Th , (vF )F ∈Fh ) :

vT ∈ Pk(T) ∀T ∈ Th and vF ∈ Pk(F) ∀F ∈ Fh
}
,

and its subspace accounting for homogeneous Dirichlet boundary conditions

Uk
h,0 B

{
vh ∈ Uk

h : vF = 0 ∀F ∈ F b
h

}
. (3.43)
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Let aK ,h : Uk
h
× Uk

h
→ R denote the global bilinear form obtained by element by

element assembly setting, for uh, vh ∈ Uk
h
,

aK ,h(uh, vh) B
∑
T ∈Th

aK ,T (uT , vT ). (3.44)

Stability and boundedness are expressed with respect to the K -weighted seminorm
on Uk

h
such that, for all vh ∈ Uk

h
,

‖vh ‖1,K ,h B
( ∑
T ∈Th

‖vT ‖21,K ,T
) 1

2

(3.45)

with ‖·‖1,K ,T defined by (3.25). The fact that ‖·‖1,K ,h defines a norm onUk
h,0 follows

from Corollary 2.16 after observing that ‖vh ‖1,h ≤ K−
1
2 ‖vh ‖1,K ,h for all vh ∈ Uk

h,0.

Lemma 3.15 (Properties of aK ,h). The bilinear form aK ,h enjoys the following
properties:

(i) Stability and boundedness. For all vh ∈ Uk
h,0 it holds

(αη)−1‖vh ‖21,K ,h ≤ ‖vh ‖2a,K ,h ≤ αη‖vh ‖21,K ,h
with ‖vh ‖a,K ,h B aK ,h(vh, vh)

1
2 ,

(3.46)

where η is as in (3.27) and
α B max

T ∈Th
αT (3.47)

denotes the global anisotropy ratio.
(ii) Consistency. It holds for all r ∈ {0, . . . , k} and all w ∈ H1

0 (Ω) ∩ Hr+2(Th) such
that ∇·(K∇w) ∈ L2(Ω),

sup
vh ∈Uk

h ,0 , ‖vh ‖a,K ,h=1
|EK ,h(w; vh)| .

( ∑
T ∈Th

KTαT h2(r+1)
T |w |2

Hr+2(T )

) 1
2

, (3.48)

where the hidden constant is independent of w, h and K , and the linear form
EK ,h(w; ·) : Uk

h,0 → R representing the consistency error is such that, for all
vh ∈ Uk

h,0,

EK ,h(w; vh) B −(∇·(K∇w), vh) − aK ,h(Ikhw, vh). (3.49)

Proof. The proof uses similar arguments as that of Lemma 2.18.

(i) Stability and boundedness. Summing the inequalities (3.27) over T ∈ Th , and
observing that αT ≤ α for all T ∈ Th , (3.46) follows.
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(ii)Consistency.Let vh ∈ Uk
h,0 be such that ‖vh ‖a,K ,h = 1. For the sake of brevity, we

set w̌T B pk+1
K ,T IkTw = π

1,k+1
K ,T w (cf. (3.24)) for allT ∈ Th . Integrating by parts element

by element and using Corollary 1.19 with τ = K∇w and (ϕF )F ∈Fh = (vF )F ∈Fh to
insert vF into the boundary term after noticing that, by the assumed regularity on w

and K , K∇w ∈ H(div;Ω) ∩ H1(Th)d , we infer that

− (∇·(K∇w), vh) =
∑
T ∈Th

(
(KT∇w,∇vT )T +

∑
F ∈FT
(KT∇w |T ·nTF , vF − vT )F

)
.

(3.50)
On the other hand, plugging the definition (3.26) of aK ,T into (3.44) and expanding,
for all T ∈ Th , pk+1

K ,T vT according to (3.23) with w = w̌T , it is inferred that

aK ,h(Ikhw, vh) =
∑
T ∈Th

(
(KT∇w̌T ,∇vT )T +

∑
F ∈FT
(KT∇w̌T ·nTF , vF − vT )F

)
+

∑
T ∈Th

sK ,T (IkTw, vT ). (3.51)

Subtracting (3.51) from (3.50), taking absolute values, and using the definition (3.7a)
of w̌T = π

1,k+1
K ,T w to cancel the first terms inside the summation leads to

|EK ,h(w; vh)|

=

����� ∑
T ∈Th

∑
F ∈FT
(KT∇(w |T − w̌T )·nTF , vF − vT )F −

∑
T ∈Th

sK ,T (IkTw, vT )
�����

.
∑
T ∈Th

( ∑
F ∈FT

hF ‖K
1
2
T∇(w |T − w̌T )‖2F

) 1
2
( ∑
F ∈FT

KTF

hF
‖vF − vT ‖2F

) 1
2

+
∑
T ∈Th

sK ,T (IkTw, IkTw)
1
2 sK ,T (vT , vT )

1
2 ,

where the inequality follows using the same algebraic manipulations as in (3.40)
and (3.41), and Cauchy–Schwarz inequalities (including on the positive semidefinite
forms sK ,T ). Using the trace approximation properties (3.11) of the oblique elliptic
projector with l = k +1, s = r +2, and m = 0 together with the consistency property
(3.31) of sK ,T , we continue with

|EK ,h(w; vh)| .
∑
T ∈Th

K
1
2
T hr+1

T |w |Hr+2(T )

( ∑
F ∈FT

KTF

hF
‖vF − vT ‖2F

) 1
2

+
∑
T ∈Th

K
1
2
Tα

1
2
T hr+1

T |w |Hr+2(T )sK ,T (vT , vT )
1
2 .

(3.52)

We then use again Cauchy–Schwarz inequalities to infer
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|EK ,h(w; vh)| .
( ∑
T ∈Th

αT KT h2(r+1)
T |w |2

Hr+2(T )

) 1
2

×

( ∑
T ∈Th

α−1
T

∑
F ∈FT

KTF

hF
‖vF − vT ‖2F

) 1
2

+

( ∑
T ∈Th

sK ,T (vT , vT )
) 1

2  .
The proof is completed by noticing that the local seminorm equivalence (3.27)
together with the fact that ‖vh ‖a,K ,h = 1 imply∑

T ∈Th
α−1
T

∑
F ∈FT

KTF

hF
‖vF − vT ‖2F .

∑
T ∈Th

aK ,T (vT , vT ) = 1

and ∑
T ∈Th

sK ,T (vT , vT ) ≤
∑
T ∈Th

aK ,T (vT , vT ) = 1. ut

3.1.4.2 Discrete problem

The HHO discretisation of problem (3.4) reads: Find uh ∈ Uk
h,0 such that

aK ,h(uh, vh) = ( f , vh) ∀vh ∈ Uk
h,0, (3.53)

where we remind the reader that, according to (2.33), the broken polynomial function
vh ∈ Pk(Th) is obtained from vh setting (vh) |T B vT for all T ∈ Th . The proof of the
following lemma is a straightforward variation of that of Lemma 2.19 and is left as
an exercise to the reader.

Lemma 3.16 (Well-posedness of problem (3.53)). Problem (3.53) is well-posed,
and we have the following a priori bound for the unique discrete solution uh ∈ Uk

h,0:

‖uh ‖1,K ,h ≤
αηCP

K
1
2
‖ f ‖,

where CP denotes the constant of the discrete Poincaré inequality (2.37) and K is as
in (3.2).

3.1.4.3 Flux formulation

The following lemma contains a reformulation of the discrete problem (3.53) in
terms of numerical fluxes. Its proof is a straightforward adaptation of that of Lemma
2.25, and is left as an exercise to the reader. The main difference with respect to the
Poisson problem considered in Chapter 2 is that, for the variable diffusion problem
(3.3), the flux whose normal component is continuous across interfaces is −K∇u.
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We recall that the boundary difference space Dk
∂T

and operator ∆k
∂T are defined

by (see (2.55) and (2.56)):

Dk
∂T B

{
α∂T = (αTF )F ∈FT : αTF ∈ Pk(F) ∀F ∈ FT

}
and

∆
k
∂T vT = (∆k

TFvT )F ∈FT B (vF − vT )F ∈FT .

Lemma 3.17 (Flux formulation). Let Mh denote a polytopal mesh in the
sense of Definition 1.4, and let Assumptions 3.1 and 3.2 hold true. For all
T ∈ Th , let sK ,T be a bilinear form satisfying Assumption 3.9, and define the
boundary residual operator Rk

K ,∂T : Uk
T → Dk

∂T
such that, for all vT ∈ Uk

T ,

Rk
K ,∂T vT B (Rk

K ,TFvT )F ∈FT

and, for all α∂T = (αTF )F ∈FT ∈ Dk
∂T

,

−
∑
F ∈FT
(Rk

K ,TFvT , αTF )F = sK ,T ((0,∆k
∂T vT ), (0, α∂T )).

Let uh ∈ Uk
h,0 and, for all T ∈ Th and all F ∈ FT , define the numerical normal

trace of the flux

ΦK ,TF (uT ) B −KT∇pk+1
K ,TuT ·nTF + Rk

K ,TFuT . (3.54)

Then, uh is the unique solution of problem (3.53) if and only if the following
two properties hold:

(i) Local balance. For all T ∈ Th and all vT ∈ Pk(T), it holds

(KT∇pk+1
K ,TuT ,∇vT )T +

∑
F ∈FT
(ΦK ,TF (uT ), vT )F = ( f , vT )T .

(ii) Continuity of the numerical normal traces of the fluxes. For any interface
F ∈ F i

h
such that F ⊂ ∂T1 ∩ ∂T2 with distinct mesh elements T1,T2 ∈ Th ,

it holds
ΦK ,T1F (uT1

) + ΦK ,T2F (uT2
) = 0.

3.1.4.4 Energy error estimate

In this section we study the convergence of the discrete solution of the HHO problem
(3.53) towards the solution of problem (3.4). As in Section 2.3.1, we first state
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a convergence result for the energy norm of the error measured as the difference
between the solution to the HHO scheme and the interpolate of the exact solution.
This discrete energy error estimate is the starting point to prove an estimate for
the error measured as the difference between the exact solution and the global
reconstruction obtained through the operator pk+1

K ,h
: Uk

h
→ Pk+1(Th) such that, for

all vh ∈ Uk
h
,

(pk+1
K ,hvh) |T B pk+1

K ,T vT ∀T ∈ Th . (3.55)

Theorem 3.18 (Discrete energy error estimate). Let (Mh)h∈H denote a reg-
ular mesh sequence in the sense of Definition 1.9. Let Assumptions 3.1 and
3.2 hold true. Let a polynomial degree k ≥ 0 be fixed. Denote by u ∈ H1

0 (Ω)
the unique solution to (3.4), for which we assume the additional regularity
u ∈ Hr+2(Th) for some r ∈ {0, . . . , k}. For all h ∈ H , let uh ∈ Uk

h,0 denote
the unique solution to (3.53) with stabilisation bilinear forms sK ,T , T ∈ Th , in
(3.26) satisfying Assumptions 3.9. Then, it holds that

‖uh − Ikhu‖a,K ,h .
( ∑
T ∈Th

KTαT h2(r+1)
T |u|2

Hr+2(T )

) 1
2

, (3.56)

where the norm ‖·‖a,K ,h is defined in (3.46) and the hidden constant is inde-
pendent of h, u and K .

Proof. Identical to the proof of Theorem 2.27, using the Third Strang Lemma A.7
and the consistency estimate (3.48) (noting that aK ,h is obviously coercive with
constant γ = 1 for the norm ‖·‖a,K ,h on Uk

h,0). ut

Theorem 3.19 (Energy error estimate for the reconstructed approximate
solution). Under the assumptions of Theorem 3.18, it holds that

‖K 1
2∇h(pk+1

K ,huh − u)‖ + |uh |s,K ,h .
( ∑
T ∈Th

KTαT h2(r+1)
T |u|2

Hr+2(T )

) 1
2

, (3.57)

where the hidden constant is independent of h, u and K and, for all vh ∈ Uk
h,0,

we have set

|vh |s,K ,h B
( ∑
T ∈Th

sK ,T (vT , vT )
) 1

2

.



96 3 Variable diffusion and diffusion–advection–reaction

Remark 3.20 (Robustness of the estimates). The estimates (3.56) and (3.57) are
(i) fully robust with respect to the heterogeneity of the diffusion coefficient in that
they do not depend on the jumps of K across mesh elements; (ii) partially robust
with respect to the anisotropy of the diffusion coefficient, meaning that the multi-
plicative constants in the right-hand sides do not depend on the global anisotropy
ratio α defined by (3.47), but only on the square roots of the local anisotropy ratios
αT , T ∈ Th .

Proof (Theorem 3.19). Let, for the sake of brevity, ûh B Ik
h
u and ǔh B pk+1

K ,h
ûh .

Clearly, (ǔh) |T = π1,k+1
K ,T u for all T ∈ Th by virtue of (3.24). Using the triangle and

Cauchy–Schwarz inequalities, it is readily inferred that

‖K 1
2∇h(pk+1

K ,huh − u)‖ + |uh |s,K ,h

≤ ‖uh − ûh ‖a,K ,h +
(
‖K 1

2∇h(ǔh − u)‖2 + |ûh |2s,K ,h
) 1

2
. (3.58)

Using the approximation properties (3.10) of ǔT with l = k+1, s = r +2, and m = 0,
the consistency estimate (3.31) of sK ,T , and the fact that αT ≥ 1 for all T ∈ Th , we
have(

‖K 1
2∇h(ǔh − u)‖2 + |ûh |2s,K ,h

) 1
2
.

( ∑
T ∈Th

KTαT h2(r+1)
T |u|2

Hr+2(T )

) 1
2

. (3.59)

Using (3.56) and (3.59) to bound the right-hand side of (3.58), (3.57) follows. ut

Remark 3.21 (Error estimate in L2-norm). For the Poisson problem, improved esti-
mates for the L2-norm of the error have been established in Theorem 2.32. These
estimates require the elliptic regularity of the adjoint problem which, in that case, is
the same as the original problem. In case of a varying diffusion coefficient, the adjoint
problem is also the original problem (3.3). The elliptic regularity for this model is
only known if Ω is convex and K is Lipschitz continuous. Combined with Assump-
tion 3.1, this enforces K constant over the entire domain, which means that (3.3)
essentially reduces to the Poisson problem (up to a linear transformation of the co-
ordinates). The L2-error estimate is then a straightforward consequence of Theorem
2.32. In Section 4.2, we tackle the issue of a diffusion equation with non-piecewise
constant diffusion coefficient K , and we establish improved L2-error estimates for
the HHO approximation of this equation (these estimates are not direct consequences
of Theorem 2.32 since, when allowed to vary inside the mesh elements, K can be
Lipschitz-continuous without being constant).

3.2 Diffusion–advection–reaction

We consider in this section the full diffusion–advection–reaction model
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∇·(−K∇u + βu) + µu = f in Ω,
u = 0 on ∂Ω,

(3.60)

where the volumetric source term f belongs to L2(Ω), the diffusion tensor K satisfies
the same assumptions as in Section 3.1 (that is, uniform coercivity and Assumption
3.1), and the velocity field β : Ω → Rd and reaction coefficient µ : Ω → R satisfy
the regularity requirements formulated hereafter.

Assumption 3.22 (Velocity and reaction coefficient) The advection field is such
that β ∈ Lip(Ω)d (or, in other words, β ∈ W1,∞(Ω)d), the reaction coefficient
satisfies µ ∈ L∞(Ω), and there is a real number µ0 > 0 such that 1

2∇·β + µ ≥ µ0
a.e. in Ω.

Having assumed K uniformly elliptic, the following weak formulation is well-
posed: Find u ∈ H1

0 (Ω) such that

aK ,β,µ(u, v) = ( f , v) ∀v ∈ H1
0 (Ω), (3.61)

where the bilinear form aK ,β,µ : H1(Ω) × H1(Ω) → R is such that

aK ,β,µ(u, v) B aK (u, v) + aβ,µ(u, v),

and the diffusive and advective–reactive contributions are respectively defined by

aK (u, v) B (K∇u,∇v),
aβ,µ(u, v) B 1

2 (β·∇u, v) − 1
2 (u, β·∇v) +

( [ 1
2∇·β + µ

]
u, v

)
.

(3.62)

Remark 3.23 (Continuous advection–reaction bilinear form). The usage of the bi-
linear form aβ,µ(u, v) in the weak formulation (3.61) is justified by the following
algebra, based on a splitting of the advection term, the expansion of ∇·(βu) and an
integration by parts:

(∇·(βu), v) = 1
2 (∇·(βu), v) + 1

2 (∇·(βu), v)
= 1

2 (β·∇u, v) + 1
2 ((∇·β)u, v) − 1

2 (βu,∇v).

The discretisation of aK was discussed in Section 3.1. We therefore focus, in the
next section, on the discretisation of the advective–reactive bilinear form aβ,µ.

3.2.1 Discretisation of advective terms with upwind stabilisation

We introduce the ingredients for the discretisation of first-order terms: a local ad-
vective derivative reconstruction and an upwind stabilisation term penalizing the
differences between face- and element-based discrete unknowns. In the following,
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we consider meshes that are compliant with the discontinuities of K , that is, that
satisfy Assumption 3.2.

3.2.1.1 Reconstructed advective derivative

Let a mesh element T ∈ Th be fixed. Our objective is to reconstruct, from a local
vector of unknowns vT ∈ Uk

T , an advective derivative Gk
β,T vT that approximates

β·∇v, when vT = IkT v for a function v ∈ W1,1(T). For such a function, and w

smooth, integrating by parts shows that

(β·∇v,w)T = −(v,∇·(βw))T +
∑
F ∈FT
((β·nTF )v,w)F .

Approximating v by π0,k
T v inside T and by π0,k

F v on F ∈ FT , we see that

(β·∇v,w)T ≈ −(π0,k
T v,∇·(βw))T +

∑
F ∈FT
((β·nTF )π0,k

F v,w)F . (3.63)

Specialising this formula to w ∈ Pk(T) leads to the following definition of the local
discrete advective derivative reconstruction Gk

β,T : Uk
T → Pk(T): For all vT ∈ Uk

T ,

(Gk
β,T vT ,w)T = −(vT ,∇·(βw))T +

∑
F ∈FT
((β·nTF )vF ,w)F ∀w ∈ Pk(T). (3.64)

The existence of a unique Gk
β,T vT satisfying the equation above follows from the

Riesz representation theorem in Pk(T) endowed with the L2(T)-inner product. Note
that, using an integration by parts on the first term in the right-hand side of (3.64),
we also have, for all w ∈ Pk(T),

(Gk
β,T vT ,w)T = (β·∇vT ,w)T +

∑
F ∈FT
((β·nTF )(vF − vT ),w)F . (3.65)

In Section 2.1.1, we passed from (2.4) to (2.5a) by specifying the test function w

to be a polynomial function, and replacing v with its projections on local polynomial
spaces using their orthogonality properties. This was possible because, if w is a
polynomial function inside T , ∆w and, for all F ∈ FT , (∇w) |F ·nTF are also poly-
nomial. As a consequence, the potential reconstruction satisfies the commutation
property (2.14). Here, the terms ∇·(βw) and (β·nTF )w are not necessarily polyno-
mial functions, even if w is polynomial. Hence, introducing the projections of v on
local polynomial spaces overT and F ∈ FT leads to the approximate equation (3.63):
unless β is constant over T , this is not an exact relation, and no exact commutation
property can be stated in general for (Gk

β,T ◦ IkT ). That being said, we can nonetheless
establish approximation properties for this operator. To state them, we introduce the
reference velocity on T , defined by
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β̂T B ‖β‖L∞(T )d . (3.66)

Lemma 3.24 (Approximation properties for (Gk
β,T ◦ IkT )). If r ∈ {0, . . . , k} and

v ∈ Hr+1(T), then

‖Gk
β,T IkT v − π0,k

T (β·∇v)‖T . β̂T hrT |v |Hr+1(T ). (3.67)

As a consequence, if β ∈ Wr ,∞(T)d , then

‖Gk
β,T IkT v − β·∇v‖T . hrT

(
β̂T |v |Hr+1(T ) + |β·∇v |Hr (T )

)
. (3.68)

In the above estimates, the hidden constants are independent of h, T , v, r and β (but
may depend on d, % and k).

Proof. For any w ∈ Pk(T), subtracting (β·∇v,w)T from (3.65) with vT = IkT v =
(π0,k

T v, (π0,k
F v)F ∈FT ), we have

(Gk
β,T IkT v − β·∇v,w)T = (β·∇(π0,k

T v − v),w)T
+

∑
F ∈FT
((β·nTF )(π0,k

F v − π0,k
T v),w)F .

We can insert the orthogonal projector π0,k
T into the left-hand side using its definition

(1.57) with X = T and l = k to obtain

(Gk
β,T IkT v − π0,k

T (β·∇v),w)T
≤ β̂T ‖∇(π0,k

T v − v)‖T ‖w‖T +
∑
F ∈FT

β̂T ‖π0,k
F v − π0,k

T v‖F ‖w‖F

. β̂T ‖∇(π0,k
T v − v)‖T ‖w‖T + β̂T

∑
F ∈FT

‖v − π0,k
T v‖F h

− 1
2

T ‖w‖T

. β̂T hrT |v |Hr+1(T )‖w‖T , (3.69)

where the first line follows from a generalised Hölder inequality with exponents
(∞,2,2) along with the definition (3.66) of β̂T , the second line from the linearity,
idempotency, and L2(F)-boundedness of π0,k

F (which yield ‖π0,k
F v − π0,k

T v‖F =
‖π0,k

F (v − π0,k
T v)‖F ≤ ‖v − π0,k

T v‖F ) and the discrete trace inequality (1.55), while
the conclusion is obtained by invoking the approximation properties (1.74) and
(1.75) of π0,k

T with p = 2, s = r + 1, and m = 1 and m = 0 for the volumetric
and boundary terms, respectively. The proof of (3.67) is completed by taking w =

Gk
β,T vT − π0,k

T (β·∇v) ∈ Pk(T) in (3.69) and by simplifying by ‖w‖T .
Estimate (3.68) follows inserting ±π0,k

T (β·∇v) inside the norm in the left-hand
side, using a triangle inequality to write

‖Gk
β,T IkT v − β·∇v‖ ≤ ‖Gk

β,T IkT v − π0,k
T (β·∇v)‖ + ‖β·∇v − π0,k

T (β·∇v)‖,
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and using (3.67) to estimate the first term and the approximation properties (1.74)
of the L2-orthogonal projector with l = k, p = 2, s = r and m = 0 to estimate the
second (notice that β·∇v ∈ Hr (T) whenever β ∈ Wr ,∞(T)d and v ∈ Hr+1(T)). ut

The following global discrete integration by parts formula will also be useful.

Lemma 3.25 (Integration by parts for the reconstructed advective derivative).
For all uh, vh ∈ Uk

h,0, it holds∑
T ∈Th
(Gk

β,TuT , vT )T = −
∑
T ∈Th
(uT ,Gk

β,T vT )T −
∑
T ∈Th
((∇·β)uT , vT )T

−
∑
T ∈Th

∑
F ∈FT
((β·nTF )(uF − uT ), (vF − vT ))F .

(3.70)

Proof. Let us first work on an element T ∈ Th . Use the definition (3.64) of Gk
β,TuT

with w = vT , develop ∇·(βvT ), and invoke (3.65) with w = uT to see that

(Gk
β,TuT , vT )T = − (uT ,∇·(βvT ))T +

∑
F ∈FT
((β·nTF )uF , vT )F

= − (uT , (∇·β)vT )T − (uT , β·∇vT )T +
∑
F ∈FT
((β·nTF )uF , vT )F

= − (uT , (∇·β)vT )T − (Gk
β,T vT ,uT )T

+
∑
F ∈FT
((β·nTF )(vF − vT ),uT )F +

∑
F ∈FT
((β·nTF )uF , vT )F .

Subtracting and adding uF in the first boundary sum in the right-hand side, and
noticing that∑
F ∈FT
((β·nTF )(vF − vT ),uF )F +

∑
F ∈FT
((β·nTF )uF , vT )F =

∑
F ∈FT
((β·nTF )vF ,uF )F ,

we infer, after summation over T ∈ Th , that∑
T ∈Th
(Gk

β,TuT , vT )T

= −
∑
T ∈Th
(uT , (∇·β)vT )T −

∑
T ∈Th
(Gk

β,T vT ,uT )T

+
∑
T ∈Th

∑
F ∈FT
((β·nTF )(vF − vT ), (uT − uF ))F +

∑
T ∈Th

∑
F ∈FT
((β·nTF )uF , vF )F .

Recalling Assumption 3.22, Corollary 1.19 with p = ∞, τ = β and (ϕF )F ∈Fh =
(uFvF )F ∈Fh gives ∑

T ∈Th

∑
F ∈FT
((β·nTF )uF , vF )F = 0 (3.71)

and the proof is complete. ut
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3.2.1.2 Local advective–reactive bilinear form

Let amesh elementT ∈ Th be fixed. Inspired by the definition (3.62) of the continuous
advective–reactive bilinear form aβ,µ, we define its local discrete counterpart aβ,µ,T :
Uk

T ×Uk
T → R based on the reconstructed advective derivative Gk

β,T as follows: for
all uT , vT ∈ Uk

T ,

aβ,µ,T (uT , vT ) B
1
2
(Gk

β,TuT , vT )T −
1
2
(uT ,Gk

β,T vT )T

+
( [ 1

2∇·β + µ
]

uT , vT
)
T
+

1
2

sβ,T (uT , vT ),
(3.72)

where the bilinear form sβ,T : Uk
T ×Uk

T → R is such that

sβ,T (uT , vT ) B
∑
F ∈FT
(|β·nTF |(uF − uT ), vF − vT )F . (3.73)

This form can be interpreted as an upwind stabilisation term; see Remark 3.31.

Remark 3.26 (Element-face upwind stabilisation).Upwinding is realised in (3.73) by
penalizing the difference between face- and element-based discrete unknowns. This
is a relevant difference with respect to classical (element-based) Finite Volumes and
Discontinuous Galerkin methods, where jumps of element-based discrete unknowns
are considered instead (see, e.g., [151, Chapter 2] and [83] for an interpretation
of upwind stabilisation as a jump penalisation). With the choice (3.73) for the
stabilisation term, the stencil remains the same as for a pure diffusion problem, and
static condensation of element-based discrete unknowns is possible, in the spirit
of Section B.3.2. In the context of the low-order Hybrid Mimetic Mixed methods,
face-element upwind terms have been considered in [49], and shown on numerical
examples to be more accurate, in the advection-dominated regime, than element-
based upwinding.

To express the stability properties of aβ,µ,T , we define the local seminorm such that,
for all vT ∈ Uk

T ,

‖vT ‖2β,µ,T B
1
2

∑
F ∈FT

‖|β·nTF |
1
2 (vF − vT )‖2F + µ0‖vT ‖2T . (3.74)

Notice that the map ‖·‖β,µ,T is actually a norm onUk
T provided that, for each F ∈ FT ,

β·nTF is non-zero on a set of positive (d − 1)-measure in F. Letting uT = vT in
(3.72) and recalling that 1

2∇·β + µ ≥ µ0 > 0 (see Assumption 3.22) yields the
following coercivity property:

‖vT ‖2β,µ,T ≤ aβ,µ,T (vT , vT ) ∀vT ∈ Uk
T . (3.75)
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3.2.1.3 Global advective–reactive bilinear form

The global advective–reactive bilinear form aβ,µ,h(uh, vh) : Uk
h
×Uk

h
→ R is obtained

by assembling the elementary contributions in the usual way: For all uh, vh ∈ Uk
h
,

aβ,µ,h(uh, vh) B
∑
T ∈Th

aβ,µ,T (uT , vT ). (3.76)

Expanding the definition (3.72) of aβ,µ,T in the previous expression leads to the
formula

aβ,µ,h(uh, vh) =
1
2

∑
T ∈Th
(Gk

β,TuT , vT )T −
1
2

∑
T ∈Th
(uT ,Gk

β,T vT )T

+
∑
T ∈Th

( [ 1
2∇·β + µ

]
uT , vT

)
T
+

1
2

∑
T ∈Th

sβ,T (uT , vT ).
(3.77)

Using the discrete integration by parts formula (3.70) to substitute the first (resp.
second) term in this relation, we obtain the following two equivalent reformulations
of aβ,µ,h on Uk

h,0 ×Uk
h,0: For any uh, vh ∈ Uk

h,0

aβ,µ,h(uh, vh) = −
∑
T ∈Th
(uT ,Gk

β,T vT )T +
∑
T ∈Th

s−β,T (uT , vT )

+
∑
T ∈Th
(µuT , vT )T ,

(3.78)

and
aβ,µ,h(uh, vh) =

∑
T ∈Th
(Gk

β,TuT , vT )T +
∑
T ∈Th

s+β,T (uT , vT )

+
∑
T ∈Th
([∇·β + µ] uT , vT )T ,

(3.79)

where, denoting by x± B 1
2 (|x | ± x) = max(±x,0) the positive and negative parts of

a real number x, we have introduced the local bilinear forms s±β,T : Uk
T ×Uk

T → R
such that

s±β,T (uT , vT ) B
∑
F ∈FT
((β·nTF )±(uF − uT ), vF − vT )F . (3.80)

The formulation (3.77) decomposes the global advective–reactive bilinear form into
a skew-symmetric part (first line) and a symmetric semidefinite positive part (second
line), and is adapted to studying its stability properties (as already seen in (3.75) for
the local bilinear form). The formulation (3.78), on the other hand, clearly separates
the advective component (first line) and the reactive component (second line), and
is appropriate for the consistency analysis. Before proceeding, a few remarks are in
order.
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Remark 3.27 (Comparison with [144]). The formulation (3.78) corresponds to [144,
Eq. (16)], when the upwind stabilisation discussed in Section 4.2 therein is used,
and the boundary conditions are enforced strongly. This formulation also has a
more familiar look for the reader accustomed to upwind stabilisation terms; see also
Remark 3.31 on this subject.

Remark 3.28 (Other approaches for the discretisation of convective terms). Ap-
proaches different from the one proposed here can be found in the literature on hybrid
and polytopal element methods. In [118], the authors devise and numerically inves-
tigate a Hybridisable Discontinuous Galerkin method for the diffusion-dominated
regime based on amixed formulation where an approximation for the total advective-
diffusive flux is sought. A convergence analysis for a variable degree Hybridisable
Discontinuous Galerkin method on semimatching nonconforming simplicial meshes
is carried out in [109], where the impact of mesh nonconformity on the superclose-
ness of the potential is also investigated. The formulation differs from [118] in that
the flux variable approximates the diffusive component only. In the context of Virtual
Element Methods, diffusion-advection problems are considered in [47], where the
discretisation of the advective terms hinges on a projection of the gradient of virtual
functions on full polynomial spaces. Mixed Virtual Element Methods, on the other
hand, are considered in [46]. In both cases, the analysis is mainly tailored to the
diffusion-dominated regime.

Define the global advective–reactive seminorm such that, for all vh ∈ Uk
h
,

‖vh ‖β,µ,h B
( ∑
T ∈Th

‖vT ‖2β,µ,T
) 1

2

.

In a similar way as Lemmas 2.18 and 3.15 for the diffusion bilinear forms, we now
prove stability and consistency properties for aβ,µ,h . The consistency estimates are
established in a norm that gathers this advective–reactive norm and the K -weighted
diffusive norm defined in (3.46):

‖vh ‖[,h B
(
‖vh ‖2a,K ,h + ‖vh ‖2β,µ,h

) 1
2
. (3.81)

Note that ‖·‖[,h is indeed a norm on Uk
h,0, not just a semi-norm, since ‖·‖a,K ,h

is a norm on this space. In order to state consistency estimates that are robust
across the various possible regimes (diffusion-dominated, advection-dominated, or
in between), we introduce, for each mesh element T ∈ Th , the local Péclet number
such that

PeT B max
F ∈FT

hF ‖β·nTF ‖L∞(F)
KTF

. (3.82)

For themesh elements where diffusion dominates we have PeT ≤ hT , for those where
advection dominates we have PeT ≥ 1, while intermediate regimes correspond to
PeT ∈ (hT ,1).

In the statement of the following lemma, we also make use of the quantity
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τ̂T B
1

max(‖µ‖L∞(T ),Lβ,T )
, (3.83)

where Lβ,T is the Lipschitz constant of β |T . If the steady model (3.60) is regarded
as a time-stepping for a transient diffusive–advective–reactive equation, then τ̂T has
the dimension of a time and can be interpreted as a reference time.

Lemma 3.29 (Properties of aβ,µ,h). The bilinear form aβ,µ,h enjoys the following
properties:

(i) Stability. For all vh ∈ Uk
h
it holds

‖vh ‖2β,µ,h ≤ aβ,µ,h(vh, vh). (3.84)

(ii) Consistency. It holds for all r ∈ {0, . . . , k} and all w ∈ H1
0 (Ω) ∩ Hr+2(Th),

sup
vh ∈Uk

h ,0 , ‖vh ‖[,h=1
|Eβ,µ,h(w; vh)|

.

{ ∑
T ∈Th

τ̂−2
T µ−1

0 h2(r+1)
T |w |2

Hr+1(T ) + β̂T

[
min(1,PeT )

1
2 h

r+ 1
2

T

]2
|w |2

Hr+1(T )

} 1
2

,

(3.85)
where the hidden constant is independent of h, w, r , β and µ, and the linear
form Eβ,µ,h(w; ·) : Uk

h,0 → R representing the consistency error is such that,
for all vh ∈ Uk

h,0,

Eβ,µ,h(w; vh) B (∇·(βw) + µw, vh) − aβ,µ,h(Ikhw, vh).

Proof. (i) Stability. The stability property (3.84) is obtained summing up (3.75) over
T ∈ Th .
(ii) Consistency. To prove the consistency estimate, we split the consistency er-
ror in its reactive and advective components, using the representation (3.78) of
aβ,µ,h(Ikhw, vh):

Eβ,µ,h(w; vh) = Eµ,h(w; vh) + Eβ,h(w; vh)

with, setting ŵh B Ik
h
w,

Eµ,h(w; vh) B (µw, vh) −
∑
T ∈Th
(µŵT , vT )T ,

Eβ,h(w; vh) B (∇·(βw), vh) +
∑
T ∈Th
(ŵT ,Gk

β,T vT )T −
∑
T ∈Th

s−β,T (ŵT , vT ).
(3.86)

Let us first deal with the reactive consistency error. For any vh ∈ Uk
h,0, by

definition (2.33) of vh , we have (µw, vh) =
∑

T ∈Th (µw, vT )T and thus
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|Eµ,h(w; vh)| =
����� ∑
T ∈Th
(µ(w − π0,k

T w), vT )T
�����

.
∑
T ∈Th

‖µ‖L∞(T )hr+1
T |w |Hr+1(T )µ

− 1
2

0 ‖vT ‖β,µ,T ,

where the estimate follows from a generalised Hölder inequality with exponents
(∞,2,2), the approximation properties (1.74) of the L2-orthogonal projector (with
l = k, p = 2, m = 0, and s = r + 1), and the definition (3.74) of ‖·‖β,µ,T . Since
‖µ‖L∞(T ) ≤ τ̂−1

T (cf. (3.83)), a Cauchy–Schwarz inequality on the sum over T ∈ Th
yields

|Eµ,h(w; vh)| .
( ∑
T ∈Th

τ̂−2
T µ−1

0 h2(r+1)
T |w |2

Hr+1(T )

) 1
2

‖vh ‖β,µ,h . (3.87)

Let us now turn to Eβ,h(w; vh). The definition (3.64) of Gk
β,T vT (with w = ŵT )

and element-wise integrations by parts yield

(∇·(βw), vh) +
∑
T ∈Th
(ŵT ,Gk

β,T vT )T

=
∑
T ∈Th

(
(∇·(βw), vT )T − (∇·(βŵT ), vT )T +

∑
F ∈FT
(ŵT , (β·nTF )vF )F

)
=

∑
T ∈Th
(ŵT − w, β·∇vT )T

+
∑
T ∈Th

∑
F ∈FT

[
((β·nTF )(w − ŵT ), vT )F + (ŵT , (β·nTF )vF )F

]
. (3.88)

Corollary 1.19 with τ = β and (ϕF )F ∈Fh = (vFw)F ∈Fh gives∑
T ∈Th

∑
F ∈FT
(w, (β·nTF )vF )F = 0.

Subtracting this quantity from (3.88) and combining it with the last addend in this
equation leads to

(∇·(βw), vh) +
∑
T ∈Th
(ŵT ,Gk

β,T vT )T

=
∑
T ∈Th
(ŵT − w, β·∇vT )T +

∑
T ∈Th

∑
F ∈FT
((β·nTF )(w − ŵT ), vT − vF )F .

Hence, recalling the definition (3.80) of s−β,T ,
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Eβ,h(w; vh) =
∑
T ∈Th
(ŵT − w, β·∇vT )T

}
T1(vh)

+
∑
T ∈Th

∑
F ∈FT
((β·nTF )(w − ŵT ), vT − vF )F

−
∑
T ∈Th

∑
F ∈FT
((β·nTF )−(ŵF − ŵT ), vF − vT )F .


T2(vh).

(3.89)

To estimate T1(vh), observe that (π0,0
T β)·∇vT ∈ Pk−1(T) ⊂ Pk(T) and recall the

orthogonality property (1.57) of π0,k
T to write, since ŵT = π

0,k
T w,

T1(vh) =
∑
T ∈Th
(π0,k

T w − w, (β − π0,0
T β)·∇vT )T .

Hence, using a generalised Hölder inequality with exponents (2,∞,2), we get

|T1(vh)| .
∑
T ∈Th

‖w − π0,k
T w‖T ‖β − π0,0

T β‖L∞(T )d ‖∇vT ‖T

.
∑
T ∈Th

hr+1
T |w |Hr+1(T )τ̂

−1
T hT ‖∇vT ‖T , (3.90)

where the second inequality is obtained using the fact that β is Lipschitz con-
tinuous (see Assumption 3.22) together with the definition (3.83) of τ̂T to infer
‖β − π0,0

T β‖L∞(T )d . Lβ,T hT . τ̂−1
T hT , along with the approximation properties

(1.74) of the L2-orthogonal projector with l = k, p = 2, s = r + 1, and m = 0.
The inverse inequality (1.46) yields hT ‖∇vT ‖T . ‖vT ‖T so, by a Cauchy–Schwarz
inequality on the sum over T ∈ Th and the definition (3.74) of ‖·‖β,µ,T ,

|T1(vh)| .
( ∑
T ∈Th

τ̂−2
T µ−1

0 h2(r+1)
T |w |2

Hr+1(T )

) 1
2
( ∑
T ∈Th

µ0‖vT ‖2T
) 1

2

.

( ∑
T ∈Th

τ̂−2
T µ−1

0 h2(r+1)
T |w |2

Hr+1(T )

) 1
2

‖vh ‖β,µ,h . (3.91)

Let us now turn to T2(vh). We first observe that, for all T ∈ Th and all F ∈ FT ,
the following holds:

‖ŵF − ŵT ‖F = ‖π0,k
F (w − ŵT )‖F ≤ ‖w − ŵT ‖F . h

r+ 1
2

T |w |Hr+1(T ), (3.92)

where we have used the fact that π0,k
F is linear and idempotent, and invoked the

boundedness property (1.72) (with X = F and P = Pk(F)) of π0,k
F and the trace

approximation property (1.75) of π0,k
T with l = k, p = 2, s = r + 1 and m = 0. This

estimate shows that
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|T2(vh)| .
∑
T ∈Th

∑
F ∈FT

h
r+ 1

2
T |w |Hr+1(T )‖|β·nTF |(vF − vT )‖F (3.93)

.
∑

T ∈Th ,PeT ≤1
(· · ·) +

∑
T ∈Th ,PeT >1

(· · ·) C T2,d(vh) + T2,a(vh). (3.94)

The quantity ‖|β·nTF |(vF − vT )‖F in these terms is estimated using two differ-
ent norms: the diffusive norm for T2,d(vh), the advective–reactive (semi)norm for
T2,a(vh).

Let us start with T2,d(vh). The definitions (3.82) and (3.66) of PeT and β̂T show
that, if PeT ≤ 1 (so that PeT = min(1,PeT )), a.e. on F ∈ FT it holds

|β·nTF | = |β·nTF |
1
2 |β·nTF |

1
2 ≤ β̂

1
2
T

(
PeT

KTF

hF

) 1
2

= (β̂T min(1,PeT ))
1
2

(
KTF

hF

) 1
2

.

Hence,

T2,d(vh)

.
∑
T ∈Th

∑
F ∈FT
(β̂T min(1,PeT ))

1
2 h

r+ 1
2

T |w |Hr+1(T )

(
KTF

hF

) 1
2

‖vF − vT ‖F (3.95)

.

( ∑
T ∈Th

β̂T min(1,PeT )h2(r+ 1
2 )

T |w |2
Hr+1(T )

) 1
2
( ∑
T ∈Th

∑
F ∈FT

KTF

hF
‖vF − vT ‖2F

) 1
2

≤
( ∑
T ∈Th

β̂T min(1,PeT )h2(r+ 1
2 )

T |w |2
Hr+1(T )

) 1
2

‖vh ‖1,K ,h,

where the second bound follows from a Cauchy–Schwarz inequality on the sums
over T ∈ Th and F ∈ FT along with card(FT ) . 1 (see (1.5)), and the conclusion is
a consequence of the definitions (3.45) of ‖·‖1,K ,h and (3.25) of ‖·‖1,K ,T .

To estimate T2,a(vh) we simply observe that, whenever PeT > 1 (so that 1 =
min(1,PeT )), a.e. on F ∈ FT it holds

|β·nTF | ≤ β̂
1
2
T |β·nTF |

1
2 = (β̂T min(1,PeT ))

1
2 |β·nTF |

1
2

and thus, by the Cauchy–Schwarz inequality and the definition (3.74) of ‖·‖β,µ,T ,

T2,a(vh)
.

∑
T ∈Th

∑
F ∈FT
(β̂T min(1,PeT ))

1
2 h

r+ 1
2

T |w |Hr+1(T )‖|β·nTF |
1
2 (vF − vT )‖F (3.96)

.

( ∑
T ∈Th

β̂T min(1,PeT )h2(r+ 1
2 )

T |w |2
Hr+1(T )

) 1
2

‖vh ‖β,µ,h .
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Gathering the above estimates on T2,d(vh) and T2,a(vh) into (3.94), and plugging the
resulting estimate on T2(vh) together with (3.91) into (3.89), we obtain, recalling
the definition (3.81) of ‖·‖[,h and using a

1
2 + b

1
2 ≤ 2(a + b) 1

2 ,

|Eβ,h(w; vh)|

.

( ∑
T ∈Th

τ̂−2
T µ−1

0 h2(r+1)
T |w |2

Hr+1(T ) + β̂T min(1,PeT )h2(r+ 1
2 )

T |w |2
Hr+1(T )

) 1
2

‖vh ‖[,h .

The proof of (3.85) is completed by summing up this estimate and (3.87), and by
taking the supremum over vh ∈ Uk

h,0 such that ‖vh ‖[,h = 1. ut

3.2.2 Discrete problem and initial convergence result

We formulate in this section the discrete problem, discuss local conservation, and
prove an initial convergence result.

3.2.2.1 Discrete problem

We define the global bilinear form aK ,β,µ,h : Uk
h
×Uk

h
→ R combining the diffusive

and advective–reactive contributions:

aK ,β,µ,h(uh, vh) B aK ,h(uh, vh) + aβ,µ,h(uh, vh), (3.97)

where aK ,h is defined by (3.44) with local contributions given by (3.26), while aβ,µ,h
is defined by (3.76)with local contributions given by (3.72). TheHHOapproximation
of problem (3.61) then reads: Find uh ∈ Uk

h,0 such that, for all vh ∈ Uk
h,0,

aK ,β,µ,h(uh, vh) = ( f , vh), (3.98)

where we remind the reader that the broken polynomial function vh ∈ Pk(Th) is
obtained from vh setting (vh) |T B vT for all T ∈ Th .

The well-posedness of this problem, together with estimates on the solution in
‖·‖[,h norm, follows easily from the stability property (3.84). We leave the details as
an exercise to the reader.

3.2.2.2 Flux formulation

The following lemma shows that the solution to the HHO scheme (3.98) satisfies
local balances inside each elements, with numerical fluxes that have continuous
normal trace across interfaces.
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Lemma 3.30 (Flux formulation). Let the assumptions and notations of
Lemma 3.17 hold, and further suppose that Assumption 3.22 is verified. Let
uh ∈ Uk

h,0. For all T ∈ Th and all F ∈ FT , let the normal trace of the diffusive
flux ΦK ,TF (uT ) be defined by (3.54), and additionally define the normal trace
of the advective flux as follows:

Φβ,TF (uT ) B π0,k
F

((β·nTF )+uT − (β·nTF )−uF

)
. (3.99)

Then, uh is the unique solution of problem (3.98) if and only if the following
two properties hold:

(i) Local balance. For all T ∈ Th and all vT ∈ Pk(T),

(KT∇pk+1
K ,TuT ,∇vT )T − (uT , β·∇vT )T + (µuT , vT )T
+

∑
F ∈FT
(ΦK ,TF (uT ) + Φβ,TF (uT ), vT )F = ( f , vT )T . (3.100)

(ii) Continuity of the numerical normal traces of the fluxes. For any interface
F ∈ F i

h
such that F ⊂ ∂T1 ∩ ∂T2 with distinct mesh elements T1,T2 ∈ Th ,

it holds(
ΦK ,T1F (uT1

) + Φβ,T1F (uT1
)
)
+

(
ΦK ,T2F (uT2

) + Φβ,T2F (uT2
)
)
= 0.
(3.101)

Remark 3.31 (Upwind stabilisation). The expression (3.99) of the advective flux
reveals that the stabilisation term introduces upwinding in the scheme. As a matter
of fact, (3.99) is equivalent to

Φβ,TF (uT ) = π0,k
F

(
(β·nTF )u↑TF

)
with u↑TF B

{
uT if β·nTF ≥ 0,
uF otherwise.

Here, u↑TF represents the upwind value of the advected quantity u: if the flow exits T
(that is, recalling that nTF points out of T , β·nTF ≥ 0), u↑TF is equal to the trace of
uT on F; if, on the other hand, the flow enters T (that is, β·nTF < 0), u↑TF is equal
to the face value uF .

Proof. We use Lemma 2.21 by showing that the bilinear form aK ,β,µ,h defined by
(3.97) admits the reformulation (2.51).

Working as in the proof of Lemma 2.25, we can write for the diffusive bilinear
form defined by (3.44):
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aK ,h(uh, vh) =
∑
T ∈Th
(KT∇pk+1

K ,TuT ,∇vT )T

−
∑
T ∈Th

∑
F ∈FT
(ΦK ,TF (uT ), vF − vT )F .

(3.102)

Let us now reformulate the advection–reaction bilinear form. The starting point
is (3.79), which we recall here for the sake of readability:

aβ,µ,h(uh, vh) =
∑
T ∈Th
(Gk

β,TuT , vT )T +
∑
T ∈Th

s+β,T (uT , vT ) +
∑
T ∈Th
([∇·β + µ] uT , vT )T

C T1 + T2 + T3.

For the sum of the first and third term, expanding, for all T ∈ Th , Gk
β,T according to

its definition (3.64) with vT = uT and w = vT , and applying the chain rule to write
∇·(βvT ) = (∇·β)vT + β·∇vT , we obtain

T1 + T3 =
∑
T ∈Th
[−(uT , β·∇vT )T + (µuT , vT )T ] −

∑
T ∈Th

∑
F ∈FT
((β·nTF )uF , vF − vT )F .

To insert vF into the boundary integral, we have used (3.71). On the other hand,
expanding (β·nTF )+ in s+β,T (see (3.80)), we can write for the second term:

T2 =
∑
T ∈Th

∑
F ∈FT

(
β·nTF + |β·nTF |

2
(uF − uT ), vF − vT

)
F

.

In conclusion, recalling the definition (3.99) of the normal trace of the advective
flux and, since (vF − vT ) |F ∈ Pk(F), using (1.57) to insert π0,k

F in front of the first
argument of boundary integrals, we get

aβ,µ,h(uh, vh) =
∑
T ∈Th
[−(uT , β·∇vT )T + (µuT , vT )T ]

−
∑
T ∈Th

∑
F ∈FT
(Φβ,TF (uT ), vF − vT )F .

(3.103)

Combining (3.102) and (3.103), we see that the reformulation (2.51) holds for
aK ,β,µ,h with, for all T ∈ Th ,

aV,T (uT , vT ) = (KT∇pk+1
K ,TuT ,∇vT )T − (uT , β·∇vT )T + (µuT , vT )T

∀(uT , vT ) ∈ Uk
T × Pk(T)

and, for all uT ∈ Uk
T and all F ∈ FT , ΦTF (uT ) = ΦK ,TF (uT ) + Φβ,TF (uT ). ut
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3.2.2.3 Initial convergence result

We next investigate the convergence of the method in the ‖·‖[,h-norm.

Theorem 3.32 (Discrete energy error estimate). Let (Mh)h∈H denote a reg-
ular mesh sequence in the sense of Definition 1.9. Let Assumptions 3.1, 3.2 and
3.22 hold true. Let a polynomial degree k ≥ 0 be fixed. Denote by u ∈ H1

0 (Ω)
the unique solution to (3.61), for which we assume the additional regularity
u ∈ Hr+2(Th) for some r ∈ {0, . . . , k}. For all h ∈ H , let uh ∈ Uk

h,0 denote the
unique solution to (3.98) with local stabilisation bilinear forms sK ,T , T ∈ Th ,
in (3.26) satisfying Assumptions 3.9. Then, it holds that

‖uh − Ikhu‖[,h .
{ ∑
T ∈Th

(
KTαT |u|2Hr+2(T ) + τ̂

−2
T µ−1

0 |u|2Hr+1(T )
)

h2(r+1)
T

+
∑
T ∈Th

β̂T

[
min(1,PeT )

1
2 h

r+ 1
2

T

]2
|u|2

Hr+1(T )

} 1
2

C EK ,β,µ,h(u),

(3.104)
where the hidden constant is independent of h, u, K , β and µ, and ‖·‖[,h is
defined by (3.81).

Remark 3.33 (Robustness of the estimate (3.104)). As in the pure diffusion case (see
Remark 3.20), the estimate (3.104) is fully robust with respect to the heterogeneity
of K and partially robust with respect to its anisotropy. Additionally, it is fully
robust with respect to the local Péclet number: (i) diffusion-dominated elements
(for which PeT ≤ hT ) contribute with a term in O(hr+1

T ) (as for a pure diffusion
problem); (ii) convection-dominated elements (for which PeT ≥ 1) contribute with
a term in O(hr+

1
2

T ) (as for pure advection problem, see [144] where it is recovered
as a special case); (iii) elements in an intermediate regime (that is, PeT ∈ (hT ,1))
contribute with the intermediate rate O(Pe

1
2
T h

r+ 1
2

T ), which transitions continuously
from the advection-dominated rate of convergence to the diffusion-dominated rate
of convergence. We note that, in most analyses of numerical methods for advection–
diffusion equations, the intermediate rates are usually not made explicit, and only
the extreme regimes are fully studied.

Proof. We invoke the Third Strang Lemma A.7 with U = H1
0 (Ω), a = aK ,β,µ, l(v) =

( f , v), Uh = Uk
h,0 endowed with the norm ‖·‖[,h , ah = aK ,β,µ,h , lh(vh) = ( f , vh),

and Ihu = Ik
h
u. Owing to (3.84), the global bilinear form aK ,β,µ,h is coercive with

respect to the norm ‖·‖[,h , with coercivity constant equal to 1. An inspection shows
that the consistency error E

h
(u; ·) is the sum of EK ,h(u; ·) and Eβ,µ,h(u; ·). Since

‖·‖a,K ,h ≤ ‖·‖[,h by definition (see (3.81)), the estimates (3.48) and (3.85) give a
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bound on the dual norm of E
h
(u; ·) with respect to ‖·‖[,h . Plugged into (A.6), this

bound establishes (3.104). ut
As a consequence of the fully discrete estimate (3.104), we can state an error

estimate between the exact solution and the reconstructed approximate solution
obtained through the operator pk+1

K ,h
defined by (3.55). The following result is the

pendant of Theorem 3.19 for diffusion–advection–reaction equations.

Theorem 3.34 (Energy error estimate for the reconstructed approximate
solution). Under the assumptions and notations in Theorem 3.32, it holds that(
‖K 1

2∇h(pk+1
K ,huh − u)‖ + |uh |s,K ,h + µ

1
2
0 ‖uh − u‖

)
. EK ,β,µ,h(u) +

( ∑
T ∈Th

µ0h2(r+1)
T |u|2

Hr+1(T )

) 1
2

, (3.105)

where the hidden constant is independent of h, u, K , β and µ, and EK ,β,µ,h(u)
is defined by (3.104).

Proof. Since ‖·‖a,K ,h ≤ ‖·‖[,h (see (3.81)), (3.104) gives an estimate on the error
‖uh − Ik

h
u‖a,K ,h; reasoning exactly as in the proof of Theorem 3.19 then yields

the estimate on ‖K 1
2∇h(pk+1

K ,h
uh − u)‖ + |uh |s,K ,h . On the other hand, recalling the

definition (3.74) of ‖·‖β,µ,T and using again (3.104), we infer that

µ
1
2
0 ‖uh − π0,k

h
u‖ . EK ,β,µ,h(u).

The estimate on µ
1
2
0 ‖uh − u‖ follows from this bound, the triangle inequality, and the

approximation properties (1.74) of the L2-orthogonal projector with p = 2, l = k,
s = r + 1 and m = 0, which imply

µ0‖π0,k
h

u − u‖2 =
∑
T ∈Th

µ0‖π0,k
T u − u‖2T .

∑
T ∈Th

µ0h2(r+1)
T |u|2

Hr+1(T ). ut

3.2.3 Robust convergence including the advective derivative

Although the estimates (3.104) and (3.105) enjoy some robustness properties (see
Remark 3.33), a non-desirable phenomenon occurs in the limit K → 0: all approxi-
mation properties on derivatives of u are lost, and only an approximation property
on u itself remains (through the term µ

1
2
0 ‖uh − u‖). However, even for very small
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diffusion tensor K , the model (3.60) still contains some stable information on a
derivative of u, namely, the advective derivative ∇·(βu) (or, equivalently, β·∇u).
This information is not made readily available in the estimate (3.105).

The purpose of this section is to present a more robust estimate, in a discrete norm
that involves some stable information on the reconstructed advective derivative. To
this end, we will need the following additional assumption:

Assumption 3.35 (Small Damköhler number) It holds

hT µ0 ≤ β̂T ∀T ∈ Th .

Since µ0 > 0 by Assumption 3.22, this means in particular that there is no element
in which the velocity is identically zero.

Remark 3.36 (Assumption 3.35). Given a mesh element T ∈ Th , the quantity
DaT B hT µ0

β̂T
can be interpreted as a local Damköhler number, measuring the relative

importance of reactive and advective phenomena. Under Assumption 3.35, we have
DaT ≤ 1 for all T ∈ Th , which means that we are not concerned with dominant
reaction.

The improved discrete estimate is established in the following norm, which is
stronger than ‖·‖[,h and accounts for the discrete advective derivative:

‖vh ‖],h B
(
‖vh ‖2[,h + α−1

∑
T ∈Th

hTα
− 1

2
T β̂−1

T ‖Gk
β,T vT ‖2T

) 1
2

, (3.106)

where αT is the local anisotropy ratio defined by (3.6), while α is the global counter-
part defined by (3.47). The global bilinear form of the HHO scheme (3.98) satisfies
an inf–sup condition with respect to this improved norm.

Lemma 3.37 (Inf-sup stability of aK ,β,µ,h). Under Assumption 3.35, for all wh ∈
Uk

h,0 it holds that

χ‖wh ‖],h . sup
vh ∈Uk

h ,0\{0h }

aK ,β,µ,h(wh, vh)
‖vh ‖],h

with χ B min
T ∈Th
(1, τ̂T µ0), (3.107)

where the hidden constant is independent of h, wh , K , β, µ and µ0, but possibly
depends on d, %, and k.

Proof. Denote by S],h the supremum in the right-hand side of (3.107). We first
notice that

χ‖wh ‖[,h ≤ ‖wh ‖[,h ≤ S],h, (3.108)

which follows from the coercivity of aK ,β,µ,h with respect to ‖·‖[,h (see the proof
of Theorem 3.32). The main difficulty of the proof is therefore to bound the term
α−1 ∑

T ∈Th hTα
− 1

2
T β̂−1

T ‖Gk
β,TwT ‖2T . In order to do so, remark the following: if, for
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all T ∈ Th , we take vT = hTα
− 1

2
T β̂−1

T Gk
β,TwT , then this term naturally appears in

the expression (3.79) of aβ,µ,h(wh, vh). This idea, which consists in using the scaled
advective derivative as a test function, can be found, e.g., in [215] in the context of
Discontinuous Galerkin methods, and was extended to HHO methods in [144]. We
therefore define, for a given wh ∈ Uk

h,0, the element vh ∈ Uk
h,0 such that

vT = hTα
− 1

2
T β̂−1

T Gk
β,TwT ∀T ∈ Th, vF ≡ 0 ∀F ∈ Fh . (3.109)

Step 1.We prove that
‖vh ‖],h . α‖wh ‖],h . (3.110)

(i) Diffusive contribution.We first establish an estimate on ‖Gk
β,TwT ‖T for a generic

mesh element T ∈ Th . Using the characterisation (3.65) of the reconstructed advec-
tive derivative we infer that, for all φ ∈ Pk(T) with ‖φ‖T ≤ 1,

(Gk
β,TwT , φ)T = (β·∇wT , φ)T +

∑
F ∈FT
((β·nTF )(wF − wT ), φ)F

≤ β̂T
(
‖∇wT ‖T ‖φ‖T +

∑
F ∈FT

h
− 1

2
F ‖wF − wT ‖F h

1
2
F ‖φ‖F

)

. β̂T

(
‖∇wT ‖2T +

∑
F ∈FT

h−1
F ‖wF − wT ‖2F

) 1
2

. β̂T K
− 1

2
T ‖wT ‖1,K ,T .

where we have used generalised Hölder inequalities with exponents (∞,2,2) together
with the definition (3.66) of β̂T to pass to the second line, the discrete trace inequality
(1.55) (with v = φ and p = 2) together with ‖φ‖T ≤ 1, hF ≤ hT , and a discrete
Cauchy–Schwarz inequality to pass to the third line, and we have concluded recalling
the definitions of KT and of ‖·‖1,K ,T (see (3.25)). Since Gk

β,TwT ∈ Pk(T), taking the
supremum over all φ ∈ Pk(T) such that ‖φ‖T ≤ 1 gives an estimate on ‖Gk

β,TwT ‖T ,
from which we deduce, multiplying by K

1
2
T and using the definition (3.6) of αT ,

K
1
2
T ‖Gk

β,TwT ‖T . β̂Tα
1
2
T ‖wT ‖1,K ,T , (3.111)

where the hidden multiplicative constant is additionally independent of T .
Let us now turn to estimating the diffusive contributions in ‖vh ‖],h . By the

definitions (3.25) of ‖·‖1,K ,T and (3.109) of vT ,
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‖vT ‖21,K ,T = h2
Tα
−1
T β̂−2

T ‖K
1
2
T∇Gk

β,TwT ‖2T + h2
Tα
−1
T β̂−2

T

∑
F ∈FT

KTF

hF
‖Gk

β,TwT ‖2F

. α−1
T β̂−2

T KT ‖Gk
β,TwT ‖2T

. ‖wT ‖21,K ,T , (3.112)

where the second line follows from the discrete inverse inequality (1.46) and the
discrete trace inequality (1.55), both applied with p = 2 to v = Gk

β,TwT , from (1.6)
to write hT /hF ≤ %−2/2 . 1, and from the uniform bound (1.5) on the number of
faces of T , while the conclusion is a consequence of (3.111). Summing over T ∈ Th ,
using the norm equivalence (3.46) and the estimate (3.112), and recalling that, by
(3.81) and (3.106), ‖·‖a,K ,h ≤ ‖·‖[,h ≤ ‖·‖],h , we find

‖vh ‖2a,K ,h . α‖vh ‖21,K ,h . α‖wh ‖21,K ,h ≤ α2‖wh ‖2a,K ,h ≤ α2‖wh ‖2],h . (3.113)

(ii) Advective-reactive contribution. Let a mesh element T ∈ Th be fixed. By defi-
nition (3.74) of ‖·‖β,µ,T and (3.66) of β̂T , the discrete trace inequality (1.55) with
p = 2 and the uniform bound (1.5) on the number of faces of T yield

‖vT ‖2β,µ,T . β̂T h−1
T ‖vT ‖2T + µ0‖vT ‖2T

= hTα−1
T β̂−1

T ‖Gk
β,TwT ‖2T + µ0h2

Tα
−1
T β̂−2

T ‖Gk
β,TwT ‖2T

≤ 2hTα−1
T β̂−1

T ‖Gk
β,TwT ‖2T ,

the conclusion being a consequence of Assumption 3.35. Since αT ≥ 1, we have
α−1
T ≤ α

− 1
2

T and, after summing over T ∈ Th , the previous estimate therefore leads to

‖vh ‖2β,µ,h .
∑
T ∈Th

hTα
− 1

2
T β̂−1

T ‖Gk
β,TwT ‖2T ≤ α‖wh ‖2],h . (3.114)

The definition (3.65) of Gk
β,T shows that

‖Gk
β,T vT ‖T = sup

φ∈Pk (T ), ‖φ ‖T ≤1
(Gk

β,T vT , φ)T

= sup
φ∈Pk (T ), ‖φ ‖T ≤1

(
(β·∇vT , φ)T −

∑
F ∈FT
((β·nTF )vT , φ)F

)
. h−1

T β̂T ‖vT ‖T = α−
1
2

T ‖Gk
β,TwT ‖T ≤ ‖Gk

β,TwT ‖T ,

where, to pass to the third line, we have used generalised Hölder inequalities with
exponents (∞,2,2), the discrete inverse and trace inequalities (1.46) and (1.55), both
with p = 2, the bound ‖φ‖T ≤ 1, the definition (3.109) of vT , and αT ≥ 1. Squaring
this estimate, multiplying by α−1hTα

− 1
2

T β̂−1
T , and summing over T ∈ Th , we obtain
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α−1
∑
T ∈Th

hTα
− 1

2
T β̂−1

T ‖Gk
β,T vT ‖2T . α−1

∑
T ∈Th

hTα
− 1

2
T β̂−1

T ‖Gk
β,TwT ‖2T ≤ ‖wh ‖2],h .

Combine this bound with (3.113) and (3.114). Since 1 ≤ α ≤ α2, this completes the
proof of (3.110).

Step 2.We establish (3.107). Using the test function vh , defined by (3.109), in (3.79)
with uh = wh , and recalling the definition (3.97) of aK ,β,µ,h , it is inferred that∑

T ∈Th
hTα

− 1
2

T β̂−1
T ‖Gk

β,TwT ‖2T

= aβ,µ,h(wh, vh) −
∑
T ∈Th
([∇·β + µ]wT , vT )T −

∑
T ∈Th

s+β,T (wT , vT )

= aK ,β,µ,h(wh, vh) − aK ,h(wh, vh) −
∑
T ∈Th
([∇·β + µ]wT , vT )T

−
∑
T ∈Th

s+β,T (wT , vT ).

(3.115)

Denote by T1, . . . ,T4 the addends in the right-hand side of (3.115). By definition of
S],h and (3.110), we have

T1 ≤ S],h ‖vh ‖],h . αS],h ‖wh ‖],h . (3.116)

The definition (3.46) of ‖·‖a,K ,h together with the Cauchy–Schwarz inequality fol-
lowed by the definition (3.81) of ‖·‖[,h and (3.110) yield

T2 ≤ ‖wh ‖a,K ,h ‖vh ‖a,K ,h . ‖wh ‖[,hα‖wh ‖],h . (3.117)

Since |(∇·β + µ) |T | ≤ dLβ,T + ‖µ‖L∞(T ) ≤ (d + 1)τ̂−1
T ≤ (d + 1)µ0 χ

−1 (recall the
definitions (3.83) of τ̂T and (3.107) of χ), by definition (3.74) of ‖·‖β,µ,T and the
Cauchy–Schwarz inequality, the estimate on T3 is

T3 . χ−1‖wh ‖β,µ,h ‖vh ‖β,µ,h . χ−1‖wh ‖[,hα‖wh ‖],h . (3.118)

For T4, writing

|((β·nTF )+(wF − wT ), vF − vT )F | ≤ (|β·nTF | |wF − wT |, |vF − vT |)F
= (|β·nTF |

1
2 |wF − wT |, |β·nTF |

1
2 |vF − vT |)F

and using the Cauchy–Schwarz inequality, the definition (3.74) of ‖·‖β,µ,T , and
(3.110), we have
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T4 ≤
( ∑
T ∈Th

∑
F ∈FT

‖|β·nTF |
1
2 (wF − wT )‖2F

) 1
2
( ∑
T ∈Th

∑
F ∈FT

‖|β·nTF |
1
2 (vF − vT )‖2F

) 1
2

. ‖wh ‖β,µ,h ‖vh ‖β,µ,h . ‖wh ‖[,hα‖wh ‖],h . (3.119)

Hence, plugging (3.116)–(3.119) into (3.115), we obtain

χα−1
∑
T ∈Th

hTα
− 1

2
T β̂−1

T ‖Gk
β,TwT ‖2T . S],h χ‖wh ‖],h + (1 + χ)‖wh ‖[,h ‖wh ‖],h

. S],h ‖wh ‖],h, (3.120)

where the conclusion follows recalling (3.108) and observing that, by definition,
χ ≤ 1. Adding

χ‖wh ‖2[,h ≤ χ‖wh ‖[,h ‖wh ‖],h
to (3.120) and using again (3.108), we infer χ‖wh ‖2],h . S],h ‖wh ‖],h and the proof
of (3.107) is completed simplifying by ‖wh ‖],h . ut
Since ‖·‖],h is stronger than ‖·‖[,h (and thus than ‖·‖a,K ,h), the consistency esti-
mates (3.48) and (3.85) still hold when calculated using ‖·‖],h . Hence, owing to
Lemma 3.37, the Third Strang Lemma A.7 directly yields the following discrete
error estimate.

Theorem 3.38 (Energy error estimate). Under the assumptions and nota-
tions in Theorem 3.32 together with Assumption 3.35, we have, with χ defined
in (3.107),

‖uh − Ikhu‖],h . χ−1EK ,β,µ,h(u), (3.121)

where the hidden constant is independent of h, u, K , β, µ, and µ0, and
EK ,β,µ,h(u) is defined by (3.104).

Remark 3.39 (Extension to locally vanishing diffusion). In [144], an analysis similar
to the previous one but using slightly different norms is extended to the singular
limit corresponding to locally vanishing diffusion. Considering this singular limit
entails some additional difficulties, including the fact that the solution may exhibit
jumps across the interface between diffusive and non-diffusive regions; see, e.g., the
discussion in [195] for the one-dimensional case and [152] for the multi-dimensional
case. In this situation, estimates similar to the ones in Theorem 3.38 are obtained,
with the convention that, in EK ,β,µ,h(u), PeT = ∞ for any element T ∈ Th such that
KTF = 0 for some F ∈ FT . In the context of Discontinuous Galerkin methods, a
convergence analysis for locally vanishing diffusion with advection is carried out in
[152]; see also [27, 213].

As a consequence of the estimate in Theorem 3.38, we can establish the following
approximation property of Gk

β,TuT which, contrary to (3.105), is fully robust with
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respect to the Péclet number (it persists in the limit K → 0, provided that the
anisotropy ratios remain bounded above).

Theorem 3.40 (Error estimate for the advective derivative). Under the as-
sumptions of Theorem 3.38 we have, with χ defined in (3.107),(

α−1
∑
T ∈Th

hTα
− 1

2
T β̂−1

T ‖Gk
β,TuT − π0,k

T (β·∇u)‖2T
) 1

2

. χ−1EK ,β,µ,h(u) +
(
α−1

∑
T ∈Th

α
− 1

2
T β̂T h2r+1

T |u|2
Hr+1(T )

) 1
2

, (3.122)

where the hidden constant is independent of h, u, K , β, µ and µ0. If, addition-
ally, we suppose that β ∈ Wr ,∞(Th)d , then(

α−1
∑
T ∈Th

hTα
− 1

2
T β̂−1

T ‖Gk
β,TuT − β·∇u‖2T

) 1
2

. χ−1EK ,β,µ,h(u)

+

(
α−1

∑
T ∈Th

α
− 1

2
T β̂−1

T h2r+1
T

(
β̂T |u|Hr+1(T ) + |β·∇u|Hr (T )

)2
) 1

2

. (3.123)

Remark 3.41 (Robustness and dominating term). For the sake of simplicity, let us
consider the case of a quasi-uniform mesh (that is, h . hT for all T ∈ Th), and of
a uniformly bounded anisotropy ratio α. The estimate (3.105) provides an O(hr+ 1

2 )
(or even O(hr+1) in diffusion-dominated regime) approximation of the complete
gradient ∇u of the solution. This estimate is, however, not robust in the limit K → 0
since the term involving ∇u in the left-hand side then vanishes.

On the contrary, the estimate (3.123) yields an approximation of order O(hr ) of
the advective derivative β·∇u, which is a reduced order and only deals with part of
the gradient of the solution, but this estimate is fully robust in the limit K → 0.
Proof. Squaring the approximation property (3.67) with v = u, multiplying by
α−1hTα

− 1
2

T β̂−1
T and summing over T ∈ Th shows that(

α−1
∑
T ∈Th

hTα
− 1

2
T β̂−1

T ‖Gk
β,T IkTu − π0,k

T (β·∇u)‖2T
) 1

2

.

(
α−1

∑
T ∈Th

α
− 1

2
T β̂T h2r+1

T |u|2
Hr+1(T )

) 1
2

. (3.124)
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On the other hand, the definition (3.106) of ‖·‖],h and the estimate (3.121) yield(
α−1

∑
T ∈Th

hTα
− 1

2
T β̂−1

T ‖Gk
β,TuT − Gk

β,T IkTu‖2T
) 1

2

. χ−1EK ,β,µ,h(u). (3.125)

The bound (3.122) follows from (3.124), (3.125) and the triangle inequality. The
estimate (3.123) is obtained similarly, replacing (3.124) with(

α−1
∑
T ∈Th

hTα
− 1

2
T β̂−1

T ‖Gk
β,T IkTu − β·∇u‖2T

) 1
2

.

(
α−1

∑
T ∈Th

α
− 1

2
T β̂−1

T h2r+1
T

(
β̂T |u|Hr+1(T ) + |β·∇u|Hr (T )

)2
) 1

2

,

which follows from (3.68) with v = u. ut

3.2.4 L2-error estimate

We conclude our series of estimates by considering the L2-norm of the error. An
estimate for this quantity is already available in (3.104) via the following terms
composing ‖uh−Ik

h
u‖[,h: µ

1
2
0 ‖uh−π0,k

h
u‖ and, through a discrete Poincaré inequality,

‖uh − Ik
h
u‖a,K ,h . Our goal here is to see whether these estimates can be improved.

As for the Poisson problem, this requires to assume full elliptic regularity of the dual
problem. Here, given g ∈ L2(Ω), the dual problem of (3.60) is

∇·(−K∇zg) − β·∇zg + µzg = g in Ω,
zg = 0 on ∂Ω.

(3.126)

As usual, the solution is understood in the weak sense, that is, we consider the
problem obtained by switching the test and trial functions in the bilinear form in the
left-hand side of (3.61): Find zg ∈ H1

0 (Ω) such that

aK ,β,µ(v, zg) = (g, v) ∀v ∈ H1
0 (Ω). (3.127)

Full elliptic regularity on this problem entails that

∃Cell > 0 such that ‖zg‖H2(Ω) ≤ Cell‖g‖ ∀g ∈ L2(Ω). (3.128)

As mentioned in Remark 3.21, full elliptic regularity with a varying diffusion tensor
requiresΩ convex together with the Lipschitz-continuity of that tensor, whichmeans,
in view of Assumption 3.1, that it should be constant over Ω. Under this assumption
and Assumption 3.22, zg is the solution of ∇·(−K∇zg) = g + β·∇zg − µzg ∈ L2(Ω)
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with homogeneous Dirichlet boundary conditions, and full elliptic regularity easily
follows from the same regularity for the pure elliptic model. Note, however, that Cell
additionally depends in this case on ‖β‖L∞(Ω)d and ‖µ‖L∞(Ω).

Using v = zg in (3.127), noticing that

(−β·∇zg, zg) + (µzg, zg) =
∫
Ω

(
µ +

1
2
∇·β

)
z2
g ≥ 0,

and invoking the following Poincaré inequality from [250]:

‖zg‖ ≤ hΩ
π
|z |H1(Ω), (3.129)

we infer the following H1-stability result:

|zg |H1(Ω) ≤
hΩ
πK
‖g‖. (3.130)

Combining this estimate with the Poincaré inequality (3.129), we have the L2-
estimate

‖zg‖ ≤
h2
Ω

π2K
‖g‖. (3.131)

Theorem 3.42 (L2-error estimate). Under the assumptions and notations in
Theorem 3.32, assume furthermore (3.128), that µ ∈ W1,∞(Th), and that

k ≥ 1 or
(
k = 0 and ∇·(K∇u) ∈ H1(Th)

)
.

Then, it holds, with hidden constant independent of h, u, K , β and µ,

‖uh − π0,k
h

u‖ . E (1)
h

EK ,β,µ,h(u) + E (2)
h
, (3.132)

where EK ,β,µ,h(u) is defined in (3.104),

E (1)
h
B Cell max

T ∈Th

(
K

1
2
Tα

1
2
T hT

)
+

hΩ
πK

max
T ∈Th

(
β̂

1
2
T

[
min(1,PeT )hT

] 1
2
)

+
hΩµ

− 1
2

0
πK

max
T ∈Th

(
max

[‖µ + ∇·β‖L∞(T ),Lβ,T ]
hT

)
and:

(i) If k ≥ 1,
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E (2)
h
B Cell

( ∑
T ∈Th

K
2
Tα

2
T h2(r+2)

T |u|2
Hr+2(T )

) 1
2

+ Cell

( ∑
T ∈Th

β̂2
T h2(r+2)

T |u|2
Hr+1(T )

) 1
2

+
h2
Ω

π2K

( ∑
T ∈Th

‖∇µ‖2
L∞(T )d h2(r+2)

T |u|2
Hr+1(T )

) 1
2

+
hΩ
πK

( ∑
T ∈Th

τ̂−2
T h2(r+2)

T |u|2
Hr+1(T )

) 1
2

.

(i) If k = 0,

E (2)
h
B

hΩ
πK

( ∑
T ∈Th

h4
T |∇·(K∇u)|2

H1(T )

) 1
2

+ Cell

( ∑
T ∈Th

K
2
Tα

2
T h4

T |u|2H2(T )

) 1
2

+
hΩ
πK

( ∑
T ∈Th

β̂2
T h2

T |u|2H1(T )

) 1
2

+
h2
Ω

π2K

( ∑
T ∈Th

‖∇µ‖2
L∞(T )d h4

T |u|2H1(T )

) 1
2

.

Remark 3.43 (Rates of convergence). Considering only global rates of convergence,
we have EK ,β,µ,h(u) = O(hr+1) if the diffusion dominates globally (that is, PeT =
O(hT ) in every T ∈ Th), and EK ,β,µ,h(u) = O(hr+ 1

2 ) if advection is dominant (in
which case min(1,PeT ) = 1 for all T ∈ Th). These are the rates of convergence in
energy norm provided by Theorem 3.32 (see also Remark 3.33).

Regarding the quantities introduced in Theorem 3.42:

• if k ≥ 1 or β = 0: in any regime we have E (2)
h
= O(hr+2). For dominating

diffusion, E (1)
h
= O(h) and (3.132) then provides an O(hr+2) rate of convergence

in L2-norm. If, on the contrary, advection dominates then E (1)
h
= O(h 1

2 ) and the
rate of convergence given by (3.132) is O(hr+1).

• if k = 0 and β , 0: E (2)
h
= O(h) and E (1)

h
= O(h 1

2 ) (at worst). The rate of
convergence given by (3.132) is thus O(h) = O(hr+1) (since r = 0 whenever
k = 0).

This demonstrates that Theorem 3.42 indeed yields an improved order of conver-
gence in L2-norm, compared to the energy estimate in Theorem 3.32. For k ≥ 1, the
improvement is one full power of h if diffusion dominates, and one-half power of h
in advection-dominated regimes. For k = 0, the improvement is one full power of h
in absence of advection, and one half-power of h if advection is dominant.

Proof (Theorem 3.42). We apply the Aubin–Nitsche Lemma A.10 with Uh = Uk
h,0

endowed with the norm ‖·‖[,h defined by (3.81), L = L2(Ω) and rh : Uk
h,0 → L2(Ω)



122 3 Variable diffusion and diffusion–advection–reaction

defined by rhvh = vh for all vh ∈ Uk
h,0. Owing to (3.104), the estimate (3.132)

holds if we can, for all g ∈ L2(Ω) with ‖g‖ ≤ 1, bound the dual consistency error
‖Ed

h
(zg; ·)‖[,h,? (with ‖·‖[,h,? denoting the norm dual to ‖·‖[,h) by E (1)

h
and the

primal-dual consistency error E
h
(u; Ihzg) by E (2)

h
.

(i) Dual consistency error. The definition (3.77) of aβ,µ,h together with the property
Gk
−β,T = −Gk

β,T (see (3.64)) shows that aK ,β,µ,h(vh, Ikhz) = aK ,β̃,µ̃,h(Ikhz, vh) where
β̃ = −β and µ̃ = µ+∇·β. Hence, the dual consistency error Ed

h
(zg; ·) as in Definition

A.9 is nothing else but the consistency error for the primal problem (3.60) with (β, µ)
replaced by (β̃, µ̃). The relation 1

2∇·β̃+ µ̃ = 1
2∇·β+µ ≥ µ0 shows that (β̃, µ̃) satisfies

Assumption 3.22. Estimates (3.48) and (3.85) thus give a bound on ‖Ed
h
(zg; ·)‖[,h,?.

When replacing (β, µ) by (β̃, µ̃), the reference velocity and Péclet numbers are still β̂T
andPeT , while the inverse of the reference time becomesmax

[‖µ+∇·β‖L∞(T ),Lβ,T ]
.

Hence, since zg ∈ H2(Ω), (3.48) and (3.85) with r = 0 yield

‖Ed
h(zg; ·)‖[,h,?

.

{ ∑
T ∈Th

(
KTαT |zg |2H2(T ) +max

[‖µ + ∇·β‖L∞(T ),Lβ,T ]2
µ−1

0 |zg |2H1(T )
)

h2
T

+
∑
T ∈Th

β̂T |zg |2H1(T )

[
min(1,PeT )

1
2 h

1
2
T

]2
} 1

2

.

{
|zg |2H2(Ω) max

T ∈Th

(
KTαT h2

T

)
+ µ−1

0 |zg |2H1(Ω) max
T ∈Th

(
max

[‖µ + ∇·β‖L∞(T ),Lβ,T )]hT
)2

+ |zg |2H1(Ω) max
T ∈Th

(
β̂T

[
min(1,PeT )hT

] ) } 1
2

.

Invoking (3.128) and (3.130) and recalling that ‖g‖ ≤ 1 leads to

‖Ed
h(zg; ·)‖[,h,? . E (1)

h
,

which is the required estimate on the dual consistency error.
(ii.A) Primal-dual consistency error, case k ≥ 1. Recalling the definitions (3.49)
and (3.86) of EK ,h(u; ·), Eµ,h(u; ·) and Eβ,h(u; ·), we decompose the primal-dual
consistency error into

Eh(u; Ikhzg) = EK ,h(u; Ikhzg) + Eµ,h(u; Ikhzg) + Eβ,h(u; Ikhzg). (3.133)

Let ẑ
h
= Ik

h
zg. To estimate the diffusive contribution, we use as a starting point

(3.52) with w = u and vh = ẑ
h
. The consistency property (3.31) with r = 0 shows

that
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sK ,T (ẑT , ẑT )
1
2 . K

1
2
Tα

1
2
T hT |zg |H2(T ).

Invoking (2.78) (which requires k ≥ 1), we also see that∑
F ∈FT

KTF

hF
‖ ẑF − ẑT ‖2F ≤ KT

∑
F ∈FT

h−1
F ‖ ẑF − ẑT ‖2F . |zg |2H2(T )h

2
T KT .

Plug these estimates into (3.52) with w = u and vh = ẑ
h
. Using 1 ≤ αT , a Cauchy–

Schwarz inequality, (3.128), and ‖g‖ ≤ 1, we infer

|EK ,h(u; ẑ
h
)| .

∑
T ∈Th

KT hr+2
T |u|Hr+2(T ) |zg |H2(T )

+
∑
T ∈Th

KTαT hr+2
T |u|Hr+2(T ) |zg |H2(T )

. Cell

( ∑
T ∈Th

K
2
Tα

2
T h2(r+2)

T |u|2
Hr+2(T )

) 1
2

. (3.134)

We now estimate the reactive contribution to the primal-dual consistency error.
Since (π0,0

T µ)ẑT ∈ Pk(T), the orthogonality property of the projector π0,k
T yields

(u − π0,k
T u, (π0,0

T µ)ẑT )T = 0 and thus

Eµ,h(u; ẑ
h
) =

∑
T ∈Th
(µu, ẑT )T − (µπ0,k

T u, ẑT )T

=
∑
T ∈Th
(u − π0,k

T u, µẑT − (π0,0
T µ)ẑT )T .

Hence, using generalised Hölder inequalities with exponents (2,∞,2), we obtain

|Eµ,h(u; ẑ
h
)| ≤

∑
T ∈Th

‖u − π0,k
T u‖T ‖µ − π0,0

T µ‖L∞(T )‖π0,k
T zg‖T

.

( ∑
T ∈Th

‖∇µ‖2
L∞(T )d h2(r+2)

T |u|2
Hr+1(T )

) 1
2 h2

Ω

π2K
, (3.135)

where we have used the approximation property (1.74) of the L2-orthogonal pro-
jectors on T with (l, p, s,m, v) = (k,2,r + 1,0,u) and (l, p, s,m, v) = (0,∞,1,0, µ),
followed by the L2-stability ‖π0,k

T zg‖T ≤ ‖zg‖T , a discrete Cauchy–Schwarz in-
equality on the sum over T ∈ Th , the a priori estimate (3.131), and ‖g‖ ≤ 1. Note
that we did not use k ≥ 1 to establish the estimate (3.135), which is therefore also
valid for k = 0.

Finally, we estimate the advective contribution Eβ,h(u; ẑ
h
) by estimating each

termT1(ẑh) andT2(ẑh) in (3.89) with w = u and vh = ẑ
h
. The boundedness property

(1.77) of π0,k
T with p = 2 and s = 1 shows that ‖∇ẑT ‖T = ‖∇π0,k

T zg‖T . ‖∇zg‖T .
Estimate (3.90) therefore gives
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|T1(ẑh)| ≤
∑
T ∈Th

τ̂−1
T hr+1

T |u|Hr+1(T )hT ‖∇zg‖T

≤
( ∑
T ∈Th

τ̂−2
T h2(r+2)

T |u|2
Hr+1(T )

) 1
2

|zg |H1(Ω).

To estimate |T2(ẑh)| we use (3.93) and

‖ ẑF − ẑT ‖F = ‖π0,k
F (z − π0,k

T z)‖F ≤ ‖z − π0,k
T z‖F . h

3
2
T |zg |H2(T ), (3.136)

which follows from (1.75) with m = 0, p = 2, l = k, s = 2 (this s is valid since k ≥ 1
here), to write

|T2(ẑh)| .
∑
T ∈Th

β̂T hr+2
T |u|Hr+1(T ) |zg |H2(T )

.

( ∑
T ∈Th

β̂2
T h2(r+2)

T |u|2
Hr+1(T )

) 1
2

|zg |H2(Ω).

These estimates on T1(ẑh) and T2(ẑh) lead to

|Eβ,h(u; ẑ
h
)| .( ∑
T ∈Th

τ̂−2
T h2(r+2)

T |u|2
Hr+1(T )

) 1
2 hΩ
πK
+

( ∑
T ∈Th

β̂2
T h2(r+2)

T |u|2
Hr+1(T )

) 1
2

Cell,

where we have used the elliptic regularity (3.128) and the a priori H1-estimate
(3.130) together with ‖g‖ ≤ 1. Plugging the above estimate together with (3.134)
and (3.135) into (3.133), we infer

|Eh(u; Ikhzg)| . E (2)
h
.

(ii.B) Primal-dual consistency error, case k = 0. As made explicit in the above
arguments, the primal-dual consistency error coming from the reaction term can still
be estimated by (3.135) if k = 0. We therefore only have to analyse the consistency
error coming from the advective and diffusive contributions.

Let us first consider Eβ,h(u; ẑ
h
) = T1(ẑh)+T2(ẑh), where T1(ẑh) and T2(ẑh) are

defined in (3.89) with w = u. Since k = 0, ẑT = π
0,0
T z ∈ P0(T) and thus T1(ẑh) = 0.

For T2(ẑh) we notice that, owing to (1.75) with (p, l,m, s) = (2,0,0,1), the estimate
(3.136) is transformed into

‖ ẑF − ẑT ‖F ≤ ‖z − π0,0
T z‖F . h

1
2
T |zg |H1(T ).



3.2 Diffusion–advection–reaction 125

Hence, recalling that r = 0 here (since k = 0), the estimate (3.93), Cauchy–Schwarz
inequalities and the stability estimate (3.130) lead to

|Eβ,h(u; ẑ
h
)| = |T2(ẑh)| .

( ∑
T ∈Th

β̂2
T h2

T |u|2H1(T )

) 1
2

|zg |H1(Ω)

.

( ∑
T ∈Th

β̂2
T h2

T |u|2H1(T )

) 1
2 hΩ
πK
‖g‖. (3.137)

For EK ,h(u; Ik
h

zg), we use the same ideas as in (ii.B) in the proof of Lemma 2.33.
The definitions (3.49) of EK ,h(u; I0

h
zg) and (3.26) of aK ,T , together with the property

p1
K ,T I0

T = π
1,1
K ,T (see (3.24)), give

EK ,h(u; I0
hzg) =

∑
T ∈Th
(−∇·(K∇u), π0,0

T zg)T −
∑
T ∈Th
(KT∇π1,1

K ,Tu,∇π1,1
K ,T zg)T

−
∑
T ∈Th

sK ,T (I0
Tu, I0

T zg).

Let fK = −∇·(K∇u) ∈ H1(Th). Then ( fK , zg) = (K∇u,∇zg) and thus∑
T ∈Th
(−∇·(K∇u), π0,0

T zg)T =
∑
T ∈Th
(π0,0

T fK , zg)T

=
∑
T ∈Th
(π0,0

T fK − fK , zg)T + (K∇u,∇zg)

=
∑
T ∈Th
(π0,0

T fK − fK , zg − π0,0
T zg)T + (K∇u,∇zg).

Hence,
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|EK ,h(u; Ikhzg)| ≤
∑
T ∈Th

‖π0,0
T fK − fK ‖T ‖zg − π0,0

T zg‖T

+

����� ∑
T ∈Th
(KT∇u,∇zg)T − (KT∇π1,1

K ,Tu,∇π1,1
K ,T zg)T

�����︸                                                         ︷︷                                                         ︸
TK

+
∑
T ∈Th

sK ,T (I0
Tu, I0

Tu) 1
2 sK ,T (I0

T zg, I0
T zg)

1
2

.

( ∑
T ∈Th

h4
T | fK |2H1(T )

) 1
2

|zg |H1(Ω) + TK

+

( ∑
T ∈Th

K
2
Tα

2
T h4

T |u|2H2(T )

) 1
2

|zg |H2(Ω), (3.138)

where the conclusion follows from the approximation properties (1.74) of π0,0
T , the

consistency property (3.31) of sK ,T , and Cauchy–Schwarz inequalities. To estimate
TK , we write

(KT∇u,∇zg)T − (KT∇π1,1
K ,Tu,∇π1,1

K ,T zg)T
= (KT (∇u − ∇π1,1

K ,Tu),∇zg)T + (∇π1,1
K ,Tu,KT (∇zg − ∇π1,1

K ,T zg))T︸                                     ︷︷                                     ︸
=0 by (3.7a) with v = zg and w = π1,1

K ,T u

= (KT (∇u − ∇π1,1
K ,Tu), (∇zg − ∇π1,1

K ,T zg))T + (KT (∇u − ∇π1,1
K ,Tu),∇π1,1

K ,T zg)T︸                                    ︷︷                                    ︸
=0 by (3.7a) with v = u and w = π1,1

K ,T zg

.

Hence, Cauchy–Schwarz inequalities and the approximation property (3.10) of π1,1
K ,T

yield

TK ≤
∑
T ∈Th

‖K
1
2
T (∇u − ∇π1,1

K ,Tu)‖T ‖K
1
2
T (∇zg − ∇π1,1

K ,T zg)‖T

.

( ∑
T ∈Th

K
2
T h4

T |u|2H2(T )

) 1
2

|zg |H2(Ω).

Plugged into (3.138) and using (3.130) and (3.128) together with ‖g‖ ≤ 1, this
shows, since αT ≥ 1, that
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|EK ,h(u; Ikhzg)|

.
hΩ
πK

( ∑
T ∈Th

h4
T |∇·(K∇u)|2

H1(T )

) 1
2

+ Cell

( ∑
T ∈Th

K
2
Tα

2
T h4

T |u|2H2(T )

) 1
2

.

This estimate, combined with (3.135) and (3.137), shows that the primal-dual con-
sistency error is bounded above by E (2)

h
, as defined in the theorem in the case k = 0.

This concludes the proof. ut

3.3 Numerical examples

We provide in this section numerical examples to illustrate the performance of the
HHO method for the diffusion–advection–reaction model (3.1).

3.3.1 Two-dimensional test case

In the first test case, we solve in the unit square Ω = (0,1)2 the Dirichlet problem
(3.60) corresponding to the solution

u(x) = sin(πx1) sin(πx2)

with β(x) = ( 12 − x2, x1− 1
2 ), µ = 1, and a uniform diffusion coefficient K = νId with

real number ν taking values in {1e-03,1,1e+03}, corresponding to the advection-
dominated, intermediate and diffusion-dominated regimes. The domain is discretised
by means of a refined sequence of unstructured triangular meshes. The first four
refinements are depicted in Fig. 3.1a. We monitor the energy- and L2-norms of the
error, whose value is normalised with respect to the corresponding norm of Ik

h
u.

Each error measure is accompanied by the Estimated Order of Convergence (EOC)
which, denoting by ei an error on the ith mesh refinement, is computed as

EOC =
log ei − log ei+1
log hi − log hi+1

.

The convergence results collected in Tables 3.1–3.3 show that the energy norm
converges as hk+1 when ν = 1 or ν = 1e+03 while, as predicted, a loss of about a
half order of convergence is observed when ν = 1e-03. The L2-norm of the error, on
the other hand, converges as hk+2 when ν = 1 or ν = 1e+03 while, when ν = 1e-03,
the observed convergence is in h for k = 0 and between hk+1 and hk+ 3

2 for k ≥ 1. The
apparent loss of convergence in Table 3.1 on the last mesh for k = 0 in L2-norm could
correspond to an adjustment of the error, after the superconvergence that occurred
for the previous meshes; the overall rate remains close to h2. On the contrary, the
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(a) First four refinements of the mesh sequence used in the test of Section 3.3.1.

(b) Cuts of the first four refinements of the mesh sequence used in the test of Section 3.3.2.

Fig. 3.1: Meshes for the numerical tests of Section 3.3.
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reduced rate on the last mesh for k = 3 is due to rounding errors that start to become
perceptible at these magnitudes.

These results corroborate overall the findings of Theorems 3.32 and 3.42 (see
also Remark 3.43), with a notable exception for k = 0 when ν = 1 or ν = 1e+03;
in these cases, Tables 3.1 and 3.3 seem to suggest that the rate of convergence in
L2-norm is actually not impacted by the presence of advection when said advection
is not dominant.

Table 3.1: Convergence results for the two-dimensional test case of Section 3.3.1,
ν = 1.

Ndof ,h ‖uh − ûh ‖[,h EOC ‖uh − π0,k
h

u ‖ EOC
k = 0

83 3.51e-01 – 1.29e-01 –
319 1.78e-01 0.98 3.08e-02 2.06
1247 8.73e-02 1.03 6.76e-03 2.19
4765 4.48e-02 0.96 1.33e-03 2.35
19280 2.23e-02 1.01 1.98e-04 2.74
75181 1.13e-02 0.98 1.18e-04 0.75

k = 1

166 5.75e-02 – 1.56e-02 –
638 1.48e-02 1.96 2.13e-03 2.87
2494 3.76e-03 1.97 2.57e-04 3.05
9530 9.76e-04 1.95 3.47e-05 2.89
38560 2.43e-04 2.01 4.32e-06 3.01
150362 6.20e-05 1.97 5.61e-07 2.94

k = 2

249 6.62e-03 – 1.72e-03 –
957 8.65e-04 2.94 1.05e-04 4.03
3741 1.09e-04 2.99 6.78e-06 3.95
14295 1.39e-05 2.97 4.33e-07 3.97
57840 1.74e-06 3.00 2.72e-08 4.00
225543 2.28e-07 2.94 1.80e-09 3.92

k = 3

332 6.41e-04 – 1.51e-04 –
1276 3.72e-05 4.11 4.28e-06 5.14
4988 2.37e-06 3.97 1.34e-07 4.99
19060 1.62e-07 3.87 4.68e-09 4.84
77120 9.77e-09 4.05 1.42e-10 5.04
300724 6.38e-10 3.94 1.66e-11 3.10
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Table 3.2: Convergence results for the two-dimensional test case of Section 3.3.1,
ν = 1e-03.

Ndof ,h ‖uh − ûh ‖[,h EOC ‖uh − π0,k
h

u ‖ EOC
k = 0

83 2.95e-01 – 1.61e-01 –
319 2.11e-01 0.48 8.45e-02 0.93
1247 1.48e-01 0.51 4.65e-02 0.86
4765 1.04e-01 0.51 2.44e-02 0.93
19280 6.84e-02 0.61 1.16e-02 1.07
75181 4.22e-02 0.70 5.48e-03 1.09

k = 1

166 6.33e-02 – 2.56e-02 –
638 2.36e-02 1.42 6.86e-03 1.90
2494 8.34e-03 1.50 1.62e-03 2.08
9530 2.87e-03 1.54 3.52e-04 2.20
38560 9.34e-04 1.62 7.07e-05 2.32
150362 2.99e-04 1.64 1.35e-05 2.39

k = 2

249 7.24e-03 – 2.54e-03 –
957 1.24e-03 2.55 3.15e-04 3.01
3741 2.18e-04 2.51 3.49e-05 3.17
14295 4.00e-05 2.45 4.18e-06 3.06
57840 6.30e-06 2.67 3.90e-07 3.42
225543 1.00e-06 2.65 3.68e-08 3.41

k = 3

332 5.59e-04 – 1.81e-04 –
1276 5.19e-05 3.43 1.17e-05 3.95
4988 5.14e-06 3.34 7.62e-07 3.94
19060 4.32e-07 3.57 3.96e-08 4.27
77120 3.41e-08 3.66 1.91e-09 4.37
300724 2.83e-09 3.59 9.95e-11 4.27

3.3.2 Three-dimensional test case

In the second test case, we solve in the unit cube Ω = (0,1)3 the Dirichlet problem
(3.60) corresponding to the solution

u(x) = sin(πx1) sin(πx2) sin(πx3)

with β(x) = (x2 − x3, x3 − x1, x1 − x2), µ = 1, and a uniform diffusion coefficient
K = νId with real number ν taking values in {1e-03,1,1e+03}. The domain is
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Table 3.3: Convergence results for the two-dimensional test case of Section 3.3.1,
ν = 1e+03.

Ndof ,h ‖uh − ûh ‖[,h EOC ‖uh − π0,k
h

u ‖ EOC
k = 0

83 3.66e-01 – 1.45e-01 –
319 1.84e-01 0.99 3.56e-02 2.03
1247 8.97e-02 1.04 8.54e-03 2.06
4765 4.59e-02 0.97 2.18e-03 1.97
19280 2.29e-02 1.01 5.38e-04 2.02
75181 1.16e-02 0.98 1.38e-04 1.97

k = 1

166 5.99e-02 – 1.62e-02 –
638 1.52e-02 1.97 2.16e-03 2.91
2494 3.87e-03 1.98 2.59e-04 3.06
9530 1.00e-03 1.95 3.48e-05 2.90
38560 2.49e-04 2.01 4.33e-06 3.01
150362 6.35e-05 1.97 5.61e-07 2.95

k = 2

249 6.89e-03 – 1.78e-03 –
957 8.96e-04 2.94 1.07e-04 4.06
3741 1.12e-04 3.00 6.82e-06 3.97
14295 1.43e-05 2.97 4.35e-07 3.97
57840 1.79e-06 3.00 2.72e-08 4.00
225543 2.33e-07 2.94 1.80e-09 3.92

k = 3

332 6.67e-04 – 1.55e-04 –
1276 3.81e-05 4.13 4.31e-06 5.17
4988 2.44e-06 3.97 1.36e-07 4.99
19060 1.66e-07 3.88 4.68e-09 4.86
77120 1.00e-08 4.05 1.42e-10 5.05
300724 6.54e-10 3.94 2.40e-11 2.56

discretised by means of a refined sequence of unstructured simplicial meshes; see
Fig. 3.1b. Similar considerations as for the two-dimensional test case hold for the
corresponding results collected in Tables 3.4–3.6.
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Table 3.4: Convergence results for the three-dimensional test case of Section 3.3.2,
ν = 1.

Ndof ,h ‖uh − ûh ‖[,h EOC ‖uh − π0,k
h

u ‖ EOC
k = 0

432 3.89e-01 – 1.40e-01 –
3264 1.93e-01 1.01 2.97e-02 2.23
25344 9.70e-02 0.99 6.24e-03 2.25
199680 4.87e-02 0.99 9.67e-04 2.69
1585152 2.44e-02 1.00 2.28e-04 2.08

k = 1

1296 1.11e-01 – 3.12e-02 –
9792 2.95e-02 1.91 4.07e-03 2.94
76032 7.53e-03 1.97 5.17e-04 2.97
599040 1.89e-03 1.99 6.54e-05 2.98
4755456 4.75e-04 2.00 8.22e-06 2.99

k = 2

2592 2.13e-02 – 5.31e-03 –
19584 2.78e-03 2.94 3.61e-04 3.88
152064 3.55e-04 2.97 2.31e-05 3.96
1198080 4.50e-05 2.98 1.47e-06 3.97
9510912 5.65e-06 2.99 9.28e-08 3.99
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Table 3.5: Convergence results for the three-dimensional test case of Section 3.3.2,
ν = 1e-03.

Ndof ,h ‖uh − ûh ‖[,h EOC ‖uh − π0,k
h

u ‖ EOC
k = 0

432 4.15e-01 – 2.55e-01 –
3264 3.47e-01 0.26 1.77e-01 0.53
25344 2.48e-01 0.49 9.41e-02 0.91
199680 1.69e-01 0.55 4.70e-02 1.00
1585152 1.10e-01 0.62 2.32e-02 1.02

k = 1

1296 1.57e-01 – 6.81e-02 –
9792 5.94e-02 1.40 1.70e-02 2.00
76032 2.11e-02 1.49 4.05e-03 2.07
599040 7.23e-03 1.54 8.74e-04 2.21
4755456 2.39e-03 1.60 1.72e-04 2.34

k = 2

2592 2.75e-02 – 9.45e-03 –
19584 5.47e-03 2.33 1.38e-03 2.77
152064 9.56e-04 2.52 1.56e-04 3.14
1198080 1.63e-04 2.55 1.64e-05 3.26
9510912 2.68e-05 2.60 1.58e-06 3.37
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Table 3.6: Convergence results for the three-dimensional test case of Section 3.3.2,
ν = 1e+03.

Ndof ,h ‖uh − ûh ‖[,h EOC ‖uh − π0,k
h

u ‖ EOC
k = 0

432 3.89e-01 – 1.40e-01 –
3264 1.93e-01 1.01 2.97e-02 2.23
25344 9.70e-02 0.99 6.24e-03 2.25
199680 4.87e-02 0.99 9.67e-04 2.69
1585152 2.44e-02 1.00 2.28e-04 2.08

k = 1

1296 1.11e-01 – 3.12e-02 –
9792 2.95e-02 1.91 4.07e-03 2.94
76032 7.53e-03 1.97 5.17e-04 2.97
599040 1.89e-03 1.99 6.54e-05 2.98
4755456 4.75e-04 2.00 8.22e-06 2.99

k = 2

2592 2.22e-02 – 5.53e-03 –
19584 2.85e-03 2.96 3.68e-04 3.91
152064 3.62e-04 2.98 2.33e-05 3.98
1198080 4.58e-05 2.98 1.48e-06 3.98
9510912 5.75e-06 2.99 9.29e-08 3.99



Chapter 4
Complements on pure diffusion

This chapter covers two unrelated topics on HHO methods for linear diffusion prob-
lems: an a posteriori error analysis for the Poisson problem and the extension of the
HHO method to the case of a diffusion tensor that varies inside each element. These
topics build up on Chapters 1 and 2, and can be used in a short introductory course
to present more advanced notions on HHO.

In Section 4.1 we derive a posteriori error estimates for the HHO discretisation
(2.48) of the Poisson problem. We prove a reliable (and, in the case of simplicial
meshes, also guaranteed and fully computable) upper bound of the error in terms of
residual-based estimators.We next show that the estimate is both locally and globally
efficient, meaning that the estimators are in turn controlled by the discretisation error.
We finally investigate the numerical performance of an adaptive algorithm where
local mesh refinement is driven by the estimators derived in the previous sections.

Section 4.2 considers the case of a diffusion model where, contrary to the situa-
tion covered in Section 3.1, the diffusion coefficient is allowed to vary inside each
cell. Designing an HHO scheme for such a model requires a different approach
from the one taken in Section 3.1, using a new gradient reconstruction operator.
After introducing the HHO scheme based on this reconstruction, we prove optimal
error estimates, in both the energy- and L2-norms. Numerical validation is provided
solving a test case with a locally variable and highly anisotropic diffusion tensor.

4.1 A posteriori error analysis

A priori error estimates such as (2.62) are useful to assess the rate of convergence
of the method, but the bound they provide is not computable as it involves the
(unknown) exact solution u. It is often useful to establish computable estimates of
the error between the approximate and exact solution, which is precisely the goal of
a posteriori error analysis. A particularly important application of a posteriori error
estimates is mesh adaptation, as briefly discussed hereafter. For smooth enough
exact solutions, increasing the polynomial degree yields a corresponding increase

135



136 4 Complements on pure diffusion

in the convergence rate; see, e.g., the a priori error estimates proved in Section 2.3
and the numerical tests in Section 2.5. However, when the regularity of the exact
solution is insufficient, the order of convergence is limited by the latter instead of the
polynomial degree (see for example the tests in Section 4.1.3 below). To improve
this situation (and, possibly, restore optimal orders of convergence in terms of error
vs. the number of degrees of freedom; see, e.g., [97]), one can resort to local mesh
adaptation. This is typically carried out by using local a posteriori error estimators
to mark the elements where the error is larger, and by refining the computational
mesh based on this information.

In this section, we present energy-norm a posteriori error estimates for the HHO
discretisation (2.48) of the Poisson problem (2.2) recalled hereafter: Find u ∈ H1

0 (Ω)
such that

a(u, v) B (∇u,∇v) = ( f , v) ∀v ∈ H1
0 (Ω), (4.1)

where f ∈ L2(Ω) denotes a given source term.We follow the residual-based approach
of [161]; see also [162, Section 3.4]. Our goal here is to show how this classical
approach (see [218]) can be applied to HHO schemes.

The rest of this section is organised as follows: in Section 4.1.1 we prove a reliable
(and, in the case of simplicial meshes, guaranteed and fully computable) upper bound
on the discretisation error; in Section 4.1.2 we prove local and global efficiency by
showing that the error estimator is (locally or globally) bounded by the discretisation
error; finally, in Section 4.1.3 we numerically demonstrate the performance of an
automatic mesh adaptation algorithm driven by our a posteriori error estimators.

4.1.1 Energy error upper bound

Denote by u the unique solution of the Poisson problem (4.1), and by uh ∈ Uk
h,0

its HHO approximation obtained solving (2.48). Recalling the definition (2.63) of
the global reconstruction operator pk+1

h
, the goal of this section is to prove an upper

bound of the discretisation error of the form

‖∇h(pk+1
h uh − u)‖ . ε, (4.2)

where the hidden constant is independent of the meshsize and of the problem data,
while the quantity ε is computable in terms of the discrete solution and of the
problem data only. An a posteriori error estimator that satisfies property (4.2) is said
to be reliable. At least for simplicial meshes, we will aim at a stronger property than
reliability, namely we want to obtain an estimate of the form

‖∇h(pk+1
h uh − u)‖ ≤ ε,

where the difference with respect to (4.2) is that no undetermined constant appears
in the right-hand side, so that the bound is guaranteed and fully computable. To
this purpose, we recall the following local Poincaré–Wirtinger (see Remark 1.46)
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and Friedrichs inequalities (consequence of (1.75)), valid for all T ∈ Th and all
ϕ ∈ H1(T):

‖ϕ − π0,0
T ϕ‖T ≤ CP,T hT ‖∇ϕ‖T , (4.3)

‖ϕ − π0,0
T ϕ‖∂T ≤ C

1
2

F,T h
1
2
T ‖∇ϕ‖T . (4.4)

It was proved in [42, 250] that the real number CP,T in (4.3) can be taken equal
to π−1 if T is convex. The real number CF,T in (4.4), on the other hand, can be
defined by CF,T B CP,T (hT |∂T |d−1/|T |d)(2/d + CP,T ) if T is a simplex (see [151,
Section 5.6.2.2]).

We extend the continuous bilinear form a to H1(Th) × H1(Th) by replacing the
standard gradient operator ∇ with its broken counterpart ∇h defined by (1.21). For
any integer l ≥ 1 and any broken polynomial function vh ∈ Pl(Th), we then define
the residual R(vh) ∈ H−1(Ω) such that, for all ϕ ∈ H1

0 (Ω),

〈R(vh), ϕ〉−1,1 B a(u − vh, ϕ) = ( f , ϕ) − a(vh, ϕ), (4.5)

where 〈· , ·〉−1,1 denotes the duality pairing between H−1(Ω) and H1
0 (Ω). Our starting

point to derive a guaranteed and fully computable upper bound on the discretisation
error is contained in the following lemma, inspired by [218, Lemma 4.4]; see also
[151, Lemma 5.44] and [161, Lemma 7].

Lemma 4.1 (Abstract estimate). Let u ∈ H1
0 (Ω) solve (4.1). Then, for any integer

l ≥ 1 and any broken polynomial function vh ∈ Pl(Th), it holds that

‖∇h(u − vh)‖2 ≤ inf
ϕ∈H1

0 (Ω)
‖∇h(ϕ− vh)‖2 +

(
sup

ϕ∈H1
0 (Ω), ‖∇ϕ ‖=1

〈R(vh), ϕ〉−1,1

)2

. (4.6)

Remark 4.2 (Nonconformity and residual terms). In (4.6), the difference between the
exact solution u of the Poisson problem and a generic broken polynomial function
vh is estimated by two terms: the first one measures the nonconformity of vh (i.e.,
the difference between vh and the closest element of H1

0 (Ω)); the second measures
how far vh is from being a solution to the Poisson problem in terms of the dual norm
of the residual (4.5).

Proof. Let ψ ∈ H1
0 (Ω) be such that

a(ψ, ϕ) = a(vh, ϕ) ∀ϕ ∈ H1
0 (Ω). (4.7)

We observe that ψ is well-defined since the bilinear form a and the linear form
H1

0 (Ω) 3 ϕ 7→ a(vh, ϕ) ∈ R satisfy the assumptions of the Lax–Milgram Lemma
2.20. We have the following characterisation of ψ:

‖∇h(vh − ψ)‖2 = inf
ϕ∈H1

0 (Ω)
‖∇h(vh − ϕ)‖2, (4.8)
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which can be inferred observing that (4.7) is the Euler equation for the minimisation
problem (4.8); see, e.g., [12, Chapter 10]. Additionally, by definition (4.1) of the
bilinear form a(·, ·), it holds that

‖∇(u − ψ)‖ = a(u − ψ,u − ψ)
‖∇(u − ψ)‖ ≤ sup

ϕ∈H1
0 (Ω), ‖∇ϕ ‖=1

a(u − ψ, ϕ)

= sup
ϕ∈H1

0 (Ω), ‖∇ϕ ‖=1
〈R(vh), ϕ〉−1,1,

(4.9)

where the conclusion follows using the linearity of a in its first argument together
with the definitions (4.7) of ψ and (4.5) of R(vh). Finally, since (vh − ψ) is by
definition a-orthogonal to the functions in H1

0 (Ω), using the Pythagorean theorem
we have that

‖∇h(u − vh)‖2 = ‖∇h(vh − ψ)‖2 + ‖∇(u − ψ)‖2.

To conclude, it suffices to use (4.8) and (4.9) to bound the terms in the right-hand
side. ut

We are now ready to prove the upper bound on the discretisation error.

Theorem 4.3 (A posteriori error upper bound). LetMh denote a polytopal
mesh in the sense of Definition 1.4, and let an integer k ≥ 0 be fixed. Let
u ∈ H1

0 (Ω) and uh ∈ Uk
h,0 denote the unique solutions to problems (2.2)

and (2.48), respectively, with local stabilisation bilinear forms sT , T ∈ Th ,
satisfying Assumption 2.4. Then, it holds that

‖∇h(pk+1
h uh − u)‖ ≤ ε B

[ ∑
T ∈Th

(
ε2

nc,T + (εres,T + εsta,T )2
)] 1

2

, (4.10)

with local nonconformity, residual, and stabilisation estimators such that, for
all T ∈ Th ,

εnc,T B ‖∇(pk+1
T uT − u∗h)‖T , (4.11a)

εres,T B CP,T hT ‖( f + ∆pk+1
T uT ) − π0,0

T ( f + ∆pk+1
T uT )‖T , (4.11b)

εsta,T B C
1
2

F,T h
1
2
T

( ∑
F ∈FT

‖Rk
TFuT ‖2F

) 1
2

, (4.11c)

where u∗
h
is an arbitrary function in H1

0 (Ω) and, for all F ∈ FT , the boundary
residual operator Rk

TF is defined by (2.59).
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Remark 4.4 (Nonconformity estimator). To compute the nonconformity estimator
εnc,T , we can obtain an H1

0 (Ω)-conforming function u∗
h
from the HHO solution uh

by applying the node-averaging operator, described hereafter, to the global potential
reconstruction pk+1

h
uh (see (2.63)). The node-averaging operator has been considered

in the context of a posteriori error estimates for nonconforming Finite Element
Methods in, among others, [5, 216].

Let an integer l ≥ 1 be fixed. When Mh = (Th,Fh) is a matching simplicial
mesh in the sense of Definition 1.7, the node-averaging operator Ilav,h : Pl(Th) →
Pl(Th) ∩ H1

0 (Ω) is defined by setting, for each Lagrange interpolation node N (see,
e.g., [183, Section 1.2.3] or [77, Section 3.2]),

(Ilav,hvh)(N ) B


1
card(TN )

∑
T ∈TN

(vh) |T (N ) if N ∈ Ω,

0 if N ∈ ∂Ω,

where the set TN ⊂ Th collects the simplices to which N belongs. We then set

u∗h B Ik+1
av,h pk+1

h uh . (4.12)

The generalisation to polytopal meshes can be realised applying the node averaging
operator to pk+1

h
uh on a matching simplicial submesh of Th (whose existence is

guaranteed for regular mesh sequences, see Definition 1.9).
For future use, we note the following result proved in [216] formatching simplicial

meshes: For all vh ∈ Pl(Th) and all T ∈ Th , denoting by FN,T the set of mesh faces
that have at least one vertex in common with T (see (4.22) below),

‖vh − Ilav,hvh ‖2T .
∑

F ∈FN ,T
hF ‖[vh]F ‖2F , (4.13)

with hidden constant independent of h and T , but possibly depending on d, %, and l,
and jump operator defined by (1.22) and extended to boundary faces F ∈ F b

h
setting

[vh]F B vh . Following [151, Section 5.5.2], (4.13) still holds on regular polyhedral
meshes when the node-averaging interpolator is defined on the matching simplicial
submesh of Definition 1.9; see Section 7.3.2.

Proof (Theorem 4.3). Set, for the sake of brevity,

R B R(pk+1
h uh).

It follows from Lemma 4.1 that it holds for all u∗
h
∈ H1

0 (Ω),

‖∇h(pk+1
h uh − u)‖2 ≤ ‖∇h(pk+1

h uh − u∗h)‖2 +
(

sup
ϕ∈H1

0 (Ω), ‖∇ϕ ‖=1
〈R, ϕ〉−1,1

)2

, (4.14)

where we have used the fact that u∗
h
is arbitrary in H1

0 (Ω) to estimate the infimum in
the right-hand side of (4.6). We denote by T1 and T2 the addends in the right-hand
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side of (4.14) and proceed to bound them.

(i) Bound of T1. Recalling the definition (4.11a) of the nonconformity estimator, it
is readily inferred that

T1 =
∑
T ∈Th

ε2
nc,T . (4.15)

(ii) Bound of T2. We estimate the argument of the supremum in T2 for a generic
function ϕ ∈ H1

0 (Ω) such that ‖∇ϕ‖ = 1. Using an element by element integration
by parts for the second term in the right-hand side of (4.5) with vh = pk+1

h
uh , we

obtain

〈R, ϕ〉−1,1 =
∑
T ∈Th

(
( f + ∆pk+1

T uT , ϕ)T −
∑
F ∈FT
(∇pk+1

T uT · nTF , ϕ)F
)
. (4.16)

Let now ϕ
h
∈ Uk

h,0 be such that ϕT = π0,0
T ϕ for all T ∈ Th and ϕF = π0,k

F ϕ |F for
all F ∈ Fh (note the usage of two different polynomial degrees in the elements and
on the faces). We have that∑
T ∈Th
(π0,0

T ( f + ∆pk+1
T uT ), ϕ)T =

∑
T ∈Th
( f + ∆pk+1

T uT , π
0,0
T ϕ)T

=
∑
T ∈Th
( f + ∆pk+1

T uT , ϕT )T

=
∑
T ∈Th

(
aT (uT , ϕT ) +

∑
F ∈FT
(∇pk+1

T uT · nTF , ϕT )F
)
,

where we have used the definition (1.57) of π0,0
T in the first equality and the discrete

problem (2.48) with vh = ϕ
h
together with an element by element integration by

parts and the fact that ∇ϕT = 0 for all T ∈ Th to conclude. Expanding aT according
to its definition (2.15) and using the definition (2.11a) of pk+1

T with vT = ϕ
T
and

w = pk+1
T uT for the consistency term, we obtain∑

T ∈Th
(π0,0

T ( f + ∆pk+1
T uT ), ϕ)T

=
∑
T ∈Th

(
sT (uT , ϕT ) +

∑
F ∈FT
(∇pk+1

T uT · nTF , ϕ)F
)
, (4.17)

where we have used the fact that (∇pk+1
T uT ) |F ·nTF ∈ Pk(F) together with the

definition (1.57) of π0,k
F to write ϕ instead of ϕF = π0,k

F ϕ |F in the boundary term.
Sum (4.17) and (4.16), and rearrange the terms, to arrive at
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〈R, ϕ〉−1,1 =
∑
T ∈Th

(
( f + ∆pk+1

T uT − π0,0
T ( f + ∆pk+1

T uT ), ϕ − ϕT )T + sT (uT , ϕT )
)

C
∑
T ∈Th

(
T2,1(T) + T2,2(T)

)
, (4.18)

where the definition (1.57) of π0,0
T was used to insert ϕT = π0,0

T ϕ into the first term.
Let us estimate the addends inside the summation. Using the Cauchy–Schwarz and
local Poincaré (4.3) inequalities, and recalling the definition (4.11b) of the residual
estimator, we readily infer that, for all T ∈ Th ,

|T2,1(T)| ≤ εres,T ‖∇ϕ‖T . (4.19)

On the other hand, recalling the reformulation (2.61) of the local stabilisation bilinear
form sT we have, for all T ∈ Th ,

|T2,2(T)| =
���� ∑
F ∈FT
(Rk

TFuT , ϕ − ϕT )F
���� ≤ εsta,T ‖∇ϕ‖T , (4.20)

where we have used the fact that Rk
TFuT ∈ Pk(F) together with the definition (1.57)

of π0,k
F to write ϕ instead of ϕF = π0,k

F ϕ |F inside the boundary term, and the Cauchy–
Schwarz and local Friedrichs (4.4) inequalities followed by definition (4.11c) of the
stability estimator to conclude. Using (4.19) and (4.20) to estimate the right-hand
side of (4.18) followed by a Cauchy–Schwarz inequality on the sum over T ∈ Th and
‖∇ϕ‖ = 1, and plugging the resulting bound inside the supremum in T2, we arrive
at

T2 ≤
∑
T ∈Th
(εres,T + εsta,T )2. (4.21)

(iii) Conclusion. Plug (4.15) and (4.21) into (4.14). ut

4.1.2 Energy error lower bounds

In practice, we want to make sure that the error estimators are able to correctly
localise the error (for use, e.g., in adaptive mesh refinement) and that they do not
overestimate it. The goal of this section is precisely to show that the error estimators
defined in Theorem 4.3 are efficient, i.e., that they are controlled by the error. We
start by proving local efficiency, meaning that the error estimators on a given mesh
element T ∈ Th are bounded by the approximation error on a patch of elements
surrounding T . This shows that the a posteriori estimate is suitable to drive local
mesh refinement. We next show global efficiency, expressed by an inequality of the
form

ε . ‖∇h(pk+1
h uh − u)‖ + |uh |s,h
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with seminorm |·|s,h defined by (2.40) and hidden constant independent of both the
meshsize and the problem data. This inequality guarantees that the estimated error
does not depart from the actual discretisation error.

Let a mesh element T ∈ Th be fixed, and define the following sets of elements
and faces sharing at least one node with T :

TN,T B
{
T ′ ∈ Th : T

′ ∩ T , ∅
}
, FN,T B

{
F ∈ Fh : F ∩ ∂T , ∅

}
. (4.22)

The following proposition contains useful geometric bounds for these sets.

Proposition 4.5 (Geometric bounds for TN,T and FN,T ). Let (Mh)h∈H denote
a regular sequence of polytopal meshes in the sense of Definition 1.9. Then, the
following bounds hold with hidden constants depending only on d and %:

(i) Number of elements and faces sharing a node with T . For all h ∈ H and all
T ∈ Th ,

max
(
card(TN,T ),card(FN,T )

)
. 1. (4.23)

(ii) Diameter of the faces sharing a node with T . For all h ∈ H and all T ∈ Th ,

hF . hT ∀F ∈ FN,T . (4.24)

Proof. (i) Number of elements and faces sharing a node with T . Let us first assume
that, for all h ∈ H , Mh = (Th,Fh) is a matching simplicial mesh in the sense of
Definition 1.7. Then, the shape regularity condition (1.3) implies that, for all h ∈ H
and all T ∈ Th , the smallest solid angle of T is bounded from below by a real number
depending only on the mesh regularity parameter %. As a consequence, for each
vertex a of T , the cardinality of the set of mesh elements to which a belongs is
bounded from above uniformly in h, i.e., card{T ′ ∈ Th : a ∈ T ′} . 1. Since each
mesh element in TN,T shares at least one vertex with T , and T has a finite number
(equal to d + 1) of vertices, this means that card(TN,T ) . 1. On the other hand, since
card(FN,T ) ≤ (d + 1) card(TN,T ), this also implies card(FN,T ) . 1.

Let us now turn to the casewhenMh belongs to a regular polytopalmesh sequence
and, for every h ∈ H , denote byMh the corresponding matching simplicial submesh
in the sense of Definition 1.8. Let h ∈ H and T ∈ Th be fixed. Then, for all τ ∈ TT

(with TT denoting the set of simplices contained in T), owing to the uniform bounds
for matching simplicial meshes there holds

card(TN,τ) . 1 with TN,τ B
{
τ′ ∈ Th : τ′ ∩ τ , ∅}. (4.25)

The uniform bound on card(TN,T ) then follows observing that

card(TN,T ) ≤
∑
τ∈TT

card(TN,τ) ≤ card(TT ) max
τ∈TT

card(TN,τ) . 1,

where, to conclude, we have bounded the first factor using (1.9) and the second one
using (4.25). A similar reasoning, whose details are left to the reader, yields the
uniform bound on card(FN,T ).
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(ii) Diameter of the faces sharing a node with T . Let h ∈ H , T ∈ Th , and F ∈ FN,T
be fixed. Then, either F ∈ FT and (4.24) is trivial, or there exist two finite sequences
(Fi)0≤i≤n ⊂ (FN,T )n+1 and (Ti)1≤i≤n ⊂ (TN,T )n+1 with no repeated elements such
that T0 = T , F0 ∈ FT , Fn = F and, for all 0 ≤ i ≤ n − 1, Fi ∈ FTi ∩ FTi+1 . Recalling
(1.6), we have, for all 0 ≤ i ≤ n − 1,

hFi+1 ≤ hTi+1 ≤
1

2%2 hFi .

Iterating this inequality, we infer that

hF ≤
(

1
2%2

)n
hF0 ≤

(
1

2%2

)n
hT ,

where the last inequality follows from F0 ∈ FT . Since n ≤ card(TN,T ) . 1 owing to
the bounds proved in Point (i), (4.24) follows. ut

We also note the following technical result.

Proposition 4.6 (Estimate of boundary oscillations).For allT ∈ Th , all ϕ ∈ H1(T)
and all F ∈ FT , it holds that

h
− 1

2
F ‖ϕ − π0,k

F ϕ‖F . ‖∇ϕ‖T , (4.26)

with hidden constant independent of h, T , ϕ and F, but possibly depending on d, %,
and k.

Proof. We write

‖ϕ − π0,k
F ϕ‖F ≤ ‖ϕ − π0,k

T ϕ‖F + ‖π0,k
T ϕ − π0,k

F ϕ‖F . h
1
2
F ‖∇ϕ‖T , (4.27)

where we have inserted ±π0,k
T ϕ and used the triangle inequality to obtain the first

bound, and we have concluded invoking the trace approximation property (1.75) of
π0,k
T (with p = 2, m = 0 and s = 1), the property hT . hF (see (1.6)), and the

boundedness (2.9) of the interpolator IkT , after noticing that ‖π0,k
T ϕ − π0,k

F ϕ‖F ≤
h

1
2
F ‖IkTϕ‖1,T . ut

The following theorem, whose proof is inspired by classical bubble function
techniques (see, e.g., [274]), states the optimality of the a posteriori indicators.

Theorem 4.7 (A posteriori local error lower bound).We let the assumptions
of Theorem 4.3 hold and further assume, for the sake of simplicity, that

(i) For all T ∈ Th , the stabilisation bilinear form sT is given by (2.23);
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(ii) The H1
0 -conforming reconstruction u∗

h
is obtained as described in Re-

mark 4.4, using the node-averaging operator on the matching simplicial
submeshMh = (Th,Fh) ofMh = (Th,Fh) of Definition 1.9;

(iii) We have, for the forcing term, f ∈ Pk+1(Th).
Then, it holds, for all T ∈ Th ,

εnc,T .
(
‖∇h(pk+1

h uh − u)‖N,T + |uh |s,N,T
)
, (4.28a)

εres,T . ‖∇(pk+1
T uT − u)‖T , (4.28b)

εsta,T . |uT |s,T , (4.28c)

with hidden constants possibly depending on d, %, and on k, but independent
of h, T , and u. For all T ∈ Th , ‖·‖N,T denotes the L2-norm on the union of
the elements in TN,T and we have set, with stabilisation seminorm |·|s,T ′ , for
T ′ ∈ TN,T , such that, for all vT ′ ∈ Uk

T ′ , |vT ′ |2s,T ′ B sT ′(vT ′, vT ′),

|uh |s,N,T B
©«

∑
T ′∈TN ,T

|uT ′ |2s,T ′
ª®¬

1
2

.

Proof. Let a mesh element T ∈ Th be fixed.

(i) Bound (4.28a) on the nonconformity estimator. Using the inverse Sobolev em-
bedding (1.50) with X = T , p = 2, m = 1, and r = 0 together with the estimates
(4.13) and (4.24), we infer from (4.11a) that

ε2
nc,T . h−2

T ‖pk+1
T uT − u∗h ‖2T .

∑
F ∈FN ,T

h−1
F ‖[pk+1

h uh]F ‖2F . (4.29)

Using the fact that [u]F = 0 for all F ∈ Fh (use Lemma 1.21 for F ∈ F i
h
and recall that

[u]F = u |F = 0 for all F ∈ F b
h
since u ∈ H1

0 (Ω)) to write [pk+1
h

uh]F = [pk+1
h

uh−u]F ,
inserting π0,k

F [pk+1
h

uh]F − π0,k
F [pk+1

h
uh − u]F = 0 inside the norm, and using the

triangle inequality, we have for all F ∈ FN,T ,

‖[pk+1
h uh]F ‖F ≤ ‖[pk+1

h uh − u]F − π0,k
F [pk+1

h uh − u]F ‖F + ‖π0,k
F [pk+1

h uh]F ‖F
≤

∑
T ′∈TF

‖(pk+1
T ′ uT ′ − u) − π0,k

F (pk+1
T ′ uT ′ − u)‖F + ‖π0,k

F [pk+1
h uh]F ‖F ,

where we have expanded the jump according to its definition (1.22) and used a
triangle inequality to pass to the second line. Plugging the above bound into (4.29),
and using multiple times (4.26) with ϕ = (pk+1

T ′ uT ′ − u) for T ′ ∈ TN,T , we arrive at



4.1 A posteriori error analysis 145

ε2
nc,T . ‖∇h(pk+1

h uh − u)‖2N,T +
∑

F ∈FN ,T
h−1
F ‖π0,k

F [pk+1
h uh]F ‖2F .

To conclude, we proceed as in the proof of Lemma 2.31 to prove that the last term
is bounded by |uh |2s,N,T up to a constant independent of h.

(ii) Bound (4.28b) on the residual estimator. For the sake of brevity, we let rT B
f |T + ∆pk+1

T uT and recall that TT B {τ ∈ Th : τ ⊂ T} denotes the set of simplices
contained in T . For all τ ∈ TT , let bτ ∈ H1

0 (τ) be the element bubble function equal
to the product of barycentric coordinates of τ and rescaled so as to take the value 1 at
the centre of mass of τ. Letting ψτ B bτrT for all τ ∈ TT , the following properties
hold [274]:

ψτ = 0 on ∂τ, (4.30a)
‖rT ‖2τ . (rT ,ψτ)τ, (4.30b)
‖ψτ ‖τ ≤ ‖rT ‖τ . (4.30c)

We have that
‖rT ‖2T =

∑
τ∈TT

‖rT ‖2τ .
∑
τ∈TT

(rT ,ψτ)τ

=
∑
τ∈TT

(∇(u − pk+1
T uT ),∇ψτ)τ

≤ ‖∇(u − pk+1
T uT )‖T

( ∑
τ∈TT

h−2
τ ‖ψτ ‖2τ

) 1
2

. h−1
T ‖∇(u − pk+1

T uT )‖T ‖rT ‖T ,

(4.31)

where we have used property (4.30b) in the first line, the fact that f = −∆u a.e. in
Ω together with an integration by parts and property (4.30a) to pass to the second
line, the Cauchy–Schwarz inequality together with the inverse Sobolev embedding
(1.50) with X = τ, p = 2, m = 1, and r = 0 to pass to the third line, and (4.30c)
together with the fact that h−1

τ ≤ (%hT )−1 for all τ ∈ TT (see Definition 1.9) to
conclude. Recalling the definition (4.11b) of the residual estimator, observing that
‖rT −π0,0

T rT ‖T ≤ 2‖rT ‖T as a result of the triangle inequality followed by the L2(T)-
boundedness of π0,0

T expressed by (1.72) with X = T , P = P0(T) and m = 1, and
using (4.31), the bound (4.28b) follows.

(iii) Bound (4.28c) on the stabilisation estimator. Using the definition (2.59) of
the boundary residual operator Rk

∂T
with vT = uT and α∂T = −hT Rk

∂T
uT =

(−hT Rk
TFuT )F ∈FT togetherwith the property (2.58)with vT = (0, (−hT Rk

TFuT )F ∈FT ),
the stabilisation estimator (4.11c) can be bounded as follows:

ε2
sta,T = CF,T sT (uT , (0,−hT Rk

∂TuT )) . |uT |s,T |(0,−hT Rk
∂TuT )|s,T . (4.32)

On the other hand, from the seminorm equivalence (2.16), the fact that h−1
F . h−1

T
(cf. (1.6)), and the definition (4.11c) of εsta,T , it is inferred that
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|(0,−hT Rk
∂TuT )|s,T ≤ η

1
2

( ∑
F ∈FT

h−1
F ‖hT Rk

TFuT ‖2F
) 1

2

. εsta,T .

Using this estimate to bound the right-hand side of (4.32) and simplifying, (4.28c)
follows. ut

An immediate consequence of the local lower bounds is that the following global
lower bound holds.

Corollary 4.8 (Global lower bound). Under the assumptions of Theorem 4.7, it
holds that[ ∑

T ∈Th

(
ε2

nc,T + (εres,T + εsta,T )2
)] 1

2

.
(
‖∇h(pk+1

h uh − u)‖ + |uh |s,h
)
,

with hidden constant independent of h and f , but possibly depending on d, % and k.

4.1.3 Numerical examples: A posteriori-driven mesh adaptivity

In this section we illustrate the performance of the adaptive procedure described
in Algorithm 1 and based on the error estimators of Theorem 4.3. This adaptive
algorithm follows the usual “solve–estimate–mark–refine” process.

Algorithm 1 Pseudocode of the automatic mesh adaptation procedure.
1: Set a tolerance tol > 0 and a maximum number of iterations Nmax
2: Generate an initial coarse mesh T(0)

h
, set n← 0, and let T(n)

h
← T(0)

h
3: repeat
4: Solve the HHO problem (2.48) on T(n)

h

5: for T ∈ T(n)
h

do

6: Compute and store the local estimator εT B
[
ε2

nc,T + (εres,T + εsta,T )2
] 1

2

7: end for
8: for T ∈ T(n)

h
do

9: if T is among the 5% elements with the largest local estimator then
10: Set a target diameter of hT /2
11: else
12: Set a target diameter of hT
13: end if
14: end for
15: Set n← n + 1 and generate a novel mesh T(n)

h
by using the target element diameters

16: until ε < tol or n > Nmax

We consider in what follows a numerical test case taken from [161] and based on
the exact solution of [193] on the etched three-dimensional domain Ω = (−1,1)3 \
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[0,1]3:
u(x) = 4

√
x2

1 + x2
2 + x2

3,

with right-hand side

f = −3
4

(
x2

1 + x2
2 + x2

3

)− 3
4
.

In this case, the gradient of the solution has a singularity at the origin which prevents
the method from attaining optimal convergence rates even for k = 0 (since the
regularity requirements detailed in Theorems 2.28 and 2.32 are not matched). The
stabilisation bilinear form used in the computations results from the hybridisation of
the Mixed High-Order method of [147], see (5.94) in Section 5.4.

4.1.3.1 Adaptively refined matching tetrahedral meshes

We first consider matching tetrahedral meshes obtained using the open source soft-
ware Netgen [258]. At each refinement iteration, a new mesh is generated by speci-
fying the target local meshsize at the barycentres of the elements.

k = 0 un; k = 0 ad; k = 1 un; k = 1 ad; k = 2 un; k = 2 ad
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(a) Energy-error vs. Ndof
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(b) L2-error vs. Ndof

Fig. 4.1: Error vs. Ndof for the test case of Section 4.1.3.1. The triangles represent
reference slopes corresponding to the optimal convergence rates. “un”= uniformly
refined meshes, “ad”= adaptively refined meshes.

In Fig. 4.1 we plot the numerical error versus the number of degrees of freedom
(DOFs) Ndof (cf. (B.13c)) on uniformly and adaptively refined mesh sequences for
polynomial degrees up to 2. Notice that, when considering adaptivemesh refinement,
we evaluate convergence in terms of error versus the number ofDOFs since the global
meshsize h may not vary from one refinement level to another. The convergence
curves for uniformly refined mesh sequences show that the order of convergence
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is clearly limited by the solution regularity. When using adaptively refined mesh

sequences, on the other hand, we recover the optimal orders of convergence N
(k+1)
d

dof

and N
(k+2)
d

dof (with d = 3) for the energy- and L2-norms of the error, respectively.
This shows that the adaptive Algorithm 1 is capable of restoring optimal orders of
convergence.

100 101 102 103
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Fig. 4.2: Energy error vs. computational wall time.

In Fig. 4.2 we display the energy error vs. the total computational wall time in
seconds, including the pre-processing (mesh generation and creation of the connec-
tivity), the assembly of the sparse matrix (including static condensation, see Section
B.3.2), the solution of the linear system, and the post-processing (reconstruction of
the element unknowns and error computation). These computations were run on a
laptop equipped with an Intel Core i7-3720QM processor clocked at 2.60GHz and
16Gb of RAM. The global linear systems are solved with the algebraic multigrid
solver AGMG [248], and the iterations are stopped once the relative residual reaches
10−8. While the displayed times obviously depend on both the implementation and
the machine used to run the tests, the plot gives a clear indication that the combined
use of high polynomial orders and a posteriori-driven mesh adaptation leads to a
better use of the computational resources.

4.1.3.2 Adaptive mesh coarsening

We next consider adaptively coarsened meshes in the spirit of [17, 36]. The idea
here consists in starting from a fine mesh (chosen, e.g., to accurately represent the
geometric features of the domain or to capture the finest scales in the solution) and
in solving the problem on a coarsened mesh obtained by selectively merging the fine
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elements into polyhedral conglomerates; see Fig. 4.3. If the coarsening procedure is
well-designed, one can achieve a precision comparable to that of a computation on
the fine mesh, but for a smaller number of DOFs.

(a) Left. Initial coarse mesh with agglomerated elements containing about 1,024 tetrahedral ele-
ments each. Right. Final adaptive mesh.

(b) Left. Interpolated potential u∗
h
(cf. Remark 4.4) on the first mesh of Fig. 4.3a. Right. Potential

u∗
h
on the second mesh of Fig. 4.3a.

Fig. 4.3: Numerical results with adaptive mesh coarsening for k = 0 taken from
[161].

In our case, we start from a tetrahedral mesh consisting of 51,534 nodes and
2.72 · 105 tetrahedra, and we create an initial agglomerated mesh with a modified
version of MGridGen1 [239] by setting a typical agglomeration target of 1,024
tetrahedra per coarse element. An adaptive mesh sequence is then generated by

1 The authors are grateful to Lorenzo Botti and Alessandro Colombo (Università di Bergamo) for
providing this modified version of MGridGen.
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locally reducing the meshsize using the same procedure as for the standard meshes
considered in the previous section. Fig. 4.3a shows on the left the initial polyhedral
mesh and on the right the one obtained at the final refinement step. Fig. 4.3b displays
the fields u∗

h
defined as in Remark 4.4 (obtained by an averaging interpolation on the

matching simplicial submesh) corresponding to the two meshes of Fig. 4.3a.

105 106

10−1.5

10−1

10−0.5

k = 0 un
k = 0 ad
k = 1 un
k = 1 ad

(a) Energy-error vs. Ndof

105 106
10−4

10−3

10−2

k = 0 un
k = 0 ad
k = 1 un
k = 1 ad

(b) L2-error vs. Ndof

Fig. 4.4: Error vs. Ndof for the test case of Section 4.1.3.2 on adaptively coarsened
meshes (“ad”), and comparison with uniformly coarsened meshes (“un”).

In order to assess the performance of the adaptive coarsening procedure, we
compare the results with a sequence of meshes obtained by uniform coarsening of
the same initial mesh (i.e, the size of the agglomerated elements is not adapted in
accordance with the distribution of the error). Fig. 4.4 shows the energy- and L2-
errors as functions of the number of DOFs on both the adaptively and uniformly
agglomerated mesh sequences. In Fig. 4.4a, one can see that a similar precision in
the energy-norm as the one achievable on the fine mesh is obtained for less than half
the number of DOFs. The gain is even larger when considering the L2-norm. For
both norms, the error stagnates when the accuracy made possible by the initial mesh
is approached. To further reduce the error, one would need to adaptively refine the
initial mesh.

4.2 Locally variable diffusion

We consider here the same model as (3.3), which we recall for the sake of legibility:

−∇·(K∇u) = f in Ω, (4.33a)
u = 0 on ∂Ω. (4.33b)

The source term f belongs to L2(Ω), and the diffusion tensor K : Ω → Rd×dsym is
measurable, uniformly bounded and elliptic, that is, there are two strictly positive
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real numbers K and K such that

K ≤ K (x)ξ ·ξ ≤ K . (4.34)

Contrary to Section 3.1, however, we do not assume that K is piecewise constant
on a partition of Ω. We recall that the weak formulation of problem (4.33) is: Find
u ∈ H1

0 (Ω) such that

aK (u, v) = ( f , v) ∀v ∈ H1
0 (Ω), (4.35)

with bilinear form aK : H1(Ω) × H1(Ω) → R defined by

aK (u, v) B (K∇u,∇v).

4.2.1 Discrete gradient

As seen in previous chapters, HHO schemes are built from local bilinear forms
made of two components: a consistent contribution, and a stabilisation term. Con-
sidering the case of the Poisson equation, for example, the consistent component
(∇pk+1

T vT ,∇pk+1
T vT )T in (2.15) is constructed using the gradient of the local recon-

struction pk+1
T . The definition (2.11a) of ∇pk+1

T vT through gradients of functions in
Pk+1(T) is essential, in the analysis of the consistency error, to cancel out volumetric
terms by recasting ah(Ikhw, vh) under the form (2.45). This recasting is made possible
precisely because, in the consistent component of aT (IkTw, vT ), ∇pk+1

T vT appears in
a scalar product with ∇pk+1

T IkTw, which lies in ∇Pk+1(T).
In Section 3.1 we considered diffusion equations with a diffusion coefficient that

could be anisotropic in each cell. Similar considerations as above led us to define an
oblique reconstruction operator pk+1

K ,T through (3.22), to ensure a complete elimina-
tion of the volumetric terms between (3.50) and (3.51) in the consistency analysis.
The definition (3.22) is inspired by the formula (3.21), to ensure the commutativity
property (3.24) and thus the optimal approximation properties of the HHO scheme.
The formula (3.21) is however only exact if K is constant in the cellT – otherwise, the
L2-orthogonal projectors on Pk(T) and Pk(F) cannot be introduced in the right-hand
side of (3.20).

Hence, if K is allowed to vary inside each cell, the approach in Section 3.1
has to be revised. The main ingredient for the HHO discretisation in this case is a
reconstructed gradient in the space Pk(T)d , instead of its subspace ∇Pk+1(T).

Let a mesh element T ∈ Th be fixed. As usual, we start with an inspiring remark,
in a similar way as at the beginning of Sections 2.1.1 and 3.1.3.1. This time, however,
instead of showing that the elliptic or oblique elliptic projector of a function v can
be computed using its L2-projections on Pk(T) and Pk(F), for F ∈ FT , we show
that the L2(T)d-projection of ∇v can be computed using these projections of v. If
v ∈ W1,1(T) and τ ∈ C∞(T)d , an integration by parts gives
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(∇v,τ)T = −(v,∇·τ)T +
∑
F ∈FT
(v,τ·nTF )F .

Specialising this relation to τ ∈ Pk(T)d , we can introduce the orthogonal projectors
using their definitions (1.57) and the fact that∇·τ ∈ Pk−1(T) ⊂ Pk(T) and τ |F ·nTF ∈
Pk(F) for all F ∈ FT :

(π0,k
T ∇v,τ)T = −(π0,k

T v,∇·τ)T +
∑
F ∈FT
(π0,k

F v,τ·nTF )F . (4.36)

As announced, this gives a formula for the L2-orthogonal projection of∇v on Pk(T)d
using the orthogonal projections of v on Pk(T) and of v |F on Pk(F) for all F ∈ FT .
Following similar principles as in Section 2.1.1, and recalling that the unknowns
in Uk

T precisely play the role of such projections, this leads to defining the local
gradient reconstruction Gk

T : Uk
T → Pk(T)d such that, for all vT ∈ Uk

T ,

(Gk
T vT ,τ)T = −(vT ,∇·τ)T +

∑
F ∈FT
(vF ,τ·nTF )F ∀τ ∈ Pk(T)d . (4.37)

For future use, we notice that an integration by parts in the first term in the right-hand
side gives the following alternative definition of Gk

T vT :

(Gk
T vT ,τ)T = (∇vT ,τ)T +

∑
F ∈FT
(vF − vT ,τ·nTF )F ∀τ ∈ Pk(T)d . (4.38)

Remark 4.9 (Relation between Gk
T and pk+1

T ). Taking τ = ∇w with w ∈ Pk+1(T)
in (4.37) and comparing with (2.11a), it is readily inferred that

(Gk
T vT − ∇pk+1

T vT ,∇w)T = 0 ∀w ∈ Pk+1(T). (4.39)

In other words, ∇pk+1
T vT is the L2-orthogonal projection of Gk

T vT on ∇Pk+1(T) ⊂
Pk(T)d . In the case k = 0, since ∇P1(T) = P0(T)d , (4.39) implies that G0

T vT =

∇p1
T vT .

Equations (4.36) and (4.37) show that Gk
T and IkT enjoy the following commutation

property (which differs from the one obtained taking the gradient of (2.14)):

Gk
T IkT v = π

0,k
T (∇v) ∀v ∈ W1,1(T). (4.40)

Fig. 4.5 illustrates this commutation property.
The analysis of the HHO scheme for (4.33) will require us to consider the L2(T)d-

inner product ofGk
T vT against functions τ that are not necessarily inPk(T)d (typically

because τ = K |Tγ with γ ∈ Pk(T)d and K |T is not assumed constant). The formula
in the following lemma will be essential to manage these terms.

Lemma 4.10. For all vT ∈ Uk
T and all τ ∈ L1(T)d it holds
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W1,1(T) L1(T)d

Uk
T Pk(T)d

I kT

∇

π0,k
T

Gk
T

Fig. 4.5: Illustration of the commutation property (4.40) of Gk
T .

(Gk
T vT ,τ)T = (∇vT ,τ)T +

∑
F ∈Th
(vF − vT , (π0,k

T τ)·nTF )F . (4.41)

Proof. Apply (4.38) to π0,k
T τ ∈ Pk(T)d and notice that, since Gk

T vT and ∇vT both
belong to Pk(T)d , (Gk

T vT ,π
0,k
T τ)T = (Gk

T vT ,τ)T and (∇vT ,π0,k
T τ)T = (∇vT ,τ)T .

ut

4.2.2 Local and global bilinear forms

We make the following assumption.

Assumption 4.11 (Piecewise continuity of K ) For each T ∈ Th , K |T can be ex-
tended into a continuous function over T , also denoted by K |T .

For T ∈ Th , we denote by KT and KT , respectively, the maximal and minimal
eigenvalues of K |T , and we define the local anisotropy-heterogeneity ratio as

αT =
KT

KT

. (4.42)

We also set, for all T ∈ Th and all F ∈ FT ,

KTF B ‖K |T nTF ·nTF ‖L∞(F) = ‖K
1
2
|T nTF ‖2L∞(F)d , (4.43)

where the second equality follows from K |T nTF ·nTF = K
1
2
|T nTF ·K

1
2
|T nTF =

|K
1
2
|T nTF |2.
The discretisation space Uk

h,0 defined in (2.36) is endowed with the following
norm, similar to the one used in Section 3.1: For all vh ∈ Uk

h,0,
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‖vh ‖1,K ,h B
( ∑
T ∈Th

‖vT ‖21,K ,T
) 1

2

,

‖vT ‖1,K ,T =
(
‖K

1
2
T∇vT ‖2T +

∑
F ∈FT

KTF

hF
‖vF − vT ‖2F

) 1
2

∀T ∈ Th .
(4.44)

The local bilinear form aK ,T : Uk
T ×Uk

T → R is obtained as the sum of a consistent
term, based on the discrete gradient Gk

T , and of a stabilisation term, similar to the
one used in Section 3.1: For all uT , vT ∈ Uk

T ,

aK ,T (uT , vT ) B (K |TGk
TuT ,G

k
T vT )T + sK ,T (uT , vT ), (4.45)

with stabilisation bilinear form defined as in (2.22), but with a scaling accounting
for the local diffusion strength and orientation:

sK ,T (uT , vT ) B
∑
F ∈FT

KTF

hF
((δkTF − δkT )uT , (δkTF − δkT )vT )F . (4.46)

We recall that the difference operators δkT and δkTF are given by (2.19). Other choices
of stabilisation terms could be made, following similar design conditions as in
Assumption 3.9.

As usual, the global bilinear form aK ,h : Uk
h,0 × Uk

h,0 → R is obtained by
assembling the local forms: For all uh, vh ∈ Uk

h,0,

aK ,h(uh, vh) B
∑
T ∈Th

aK ,T (uT , vT ). (4.47)

Associated to this bilinear form, we define the norm

|||vh |||a,K ,h B aK ,h(vh, vh)
1
2 ∀vh ∈ Uk

h,0. (4.48)

Note that, even though this norm is still defined from aK ,h , it is different from the
norm ‖·‖a,K ,h used in Section 3.1 even when K is piecewise constant, a difference we
highlight by using a triple-bar notation. There, the bilinear form aK ,h was constructed
using ∇pk+1

K ,T in the volumetric terms; here, aK ,h is built from Gk
T . The following

lemma is the equivalent, for the bilinear form aK ,h defined above, of Lemma 3.15.

Lemma 4.12 (Properties of aK ,h). Under Assumption 4.11, the bilinear form aK ,h
enjoys the following properties:
(i) Estimate of boundary terms in ‖·‖1,K ,T . It holds: For allT ∈ Th and all vT ∈ Uk

T ,∑
F ∈FT

KTF

hF
‖vF − vT ‖2F . αT aK ,T (vT , vT ), (4.49)

with hidden constant independent of h, T , vT and K .
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(ii) Consistency. It holds, for all r ∈ {0, . . . , k} and all w ∈ H1
0 (Ω)∩Hr+2(Th) such

that ∇·(K∇w) ∈ L2(Ω),

sup
vh ∈Uk

h ,0 , |||vh |||a,K ,h=1
|EK ,h(w; vh)| .

( ∑
T ∈Th

KT h2(r+1)
T |w |2

Hr+2(T )

) 1
2

+

( ∑
T ∈Th

αT
∑
F ∈FT

hF ‖(K
1
2∇w) |T − K

− 1
2
|T π

0,k
T (K∇w)‖2F

) 1
2

,

(4.50)

where the hidden constant is independent of w, h and K , and the consistency
error EK ,h(w; ·) : Uk

h,0 → R is such that, for all vh ∈ Uk
h,0,

EK ,h(w; vh) B −(∇·(K∇w), vh) − aK ,h(Ikhw, vh). (4.51)

Remark 4.13 (Estimate on ‖∇vT ‖2T by aK ,T (vT , vT )). In Propositions 2.13 and 3.13,
a full coercivity of the HHO bilinear form is established with respect to the corre-
sponding norms on Uk

h,0. In particular, not only the boundary terms are estimated
as in (4.49), but an estimate of the volumetric term is obtained. Such an estimate is
also possible here, but scales with α2

T instead of αT itself (compare with (4.49)): For
all T ∈ Th and all vT ∈ Uk

T ,

‖K
1
2
|T∇vT ‖2T . α2

T aK ,T (vT , vT ). (4.52)

Proof. (i) Estimate of boundary terms in ‖·‖1,K ,T . Setting v̂T B IkTpk+1
T vT , we have

v̂T − vT = (δkT vT , (δkTFvT )F ∈FT ) (see (2.20)), and thus

‖vF − vT ‖F . ‖δkTFvT − δkT vT ‖F + ‖v̂F − v̂T ‖F .

Square this inequality, multiply by KTF/hF , sum over F ∈ FT , and use KTF ≤ KT

to get ∑
F ∈FT

KTF

hF
‖vF − vT ‖2F . sK ,T (vT , vT ) + KT |v̂T |21,∂T

. sK ,T (vT , vT ) + KT ‖∇pk+1
T vT ‖2T , (4.53)

where the conclusion follows by the boundedness (2.9) of IkT with v = pk+1
T vT . As

seen in Remark 4.9, ∇pk+1
T vT is an L2(T)d-orthogonal projection of Gk

T vT . Hence,
‖∇pk+1

T vT ‖T ≤ ‖Gk
T vT ‖T and∑

F ∈FT

KTF

hF
‖vF − vT ‖2F . sK ,T (vT , vT ) + KT ‖Gk

T vT ‖2T

. sK ,T (vT , vT ) + αT ‖K
1
2 Gk

T vT ‖2T ,
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where we have used ‖K 1
2 Gk

T vT ‖2T ≥ KT ‖Gk
T vT ‖2T and the definition (4.42) of αT

in the second line. Recalling the definition (4.45) of aK ,T and that αT ≥ 1, this
completes the proof of (4.49).

(ii) Consistency. Let vh ∈ Uk
h,0 be such that |||vh |||a,K ,h = 1. Using element-wise

integrations by parts (justified because K∇w ∈ H(div;Ω), ∇w ∈ H1(Th)d and K |T
is continuous) and (4.41) with τ = (K∇w) |T , we write

−(∇·(K∇w), vh) =
∑
T ∈Th

(
(K∇w,∇vT )T +

∑
F ∈FT
((K∇w) |T ·nTF , vF − vT )F

)
=

∑
T ∈Th
(K∇w,Gk

T vT )T

+
∑
T ∈Th

∑
F ∈FT
([(K∇w) |T − π0,k

T (K∇w)
] ·nTF , vF − vT )F ,

(4.54)

where the introduction of vF in the first line is justified by Corollary 1.19 with
τ = K∇w ∈ H(div;Ω) and (ϕF )F ∈Fh = (vF )F ∈Fh (see also Remark 1.20 and notice
that the regularities of K |T and ∇w recalled above ensure that (K∇w) |T has an
L2-trace on the faces of T), while the second line is obtained invoking Lemma 4.10
with τ = K∇w. We then write, by definition of aK ,T and using Gk

T IkTw = π
0,k
T (∇w)

(see (4.40)),

aK ,h(Ikhw, vh) =
∑
T ∈Th
(Kπ0,k

T (∇w),Gk
T vT )T +

∑
T ∈Th

sK ,T (IkTw, vT ). (4.55)

Subtracting (4.55) from (4.54) we infer

EK ,h(w; vh) =
∑
T ∈Th
(K∇w − Kπ0,k

T (∇w),Gk
T vT )T︸                                       ︷︷                                       ︸

T1(vh )

+
∑
T ∈Th

∑
F ∈FT
([(K∇w) |T − π0,k

T (K∇w)
] ·nTF , vF − vT )F︸                                                                    ︷︷                                                                    ︸

T2(vh )

−
∑
T ∈Th

sK ,T (IkTw, vT ).︸                      ︷︷                      ︸
T3(vh )

(4.56)

We estimate T1(vh) starting with Cauchy–Schwarz inequalities, recalling the def-
inition of |||·|||a,K ,h together with the fact that |||vh |||a,K ,h = 1 to estimate the term
involving Gk

T vT , and applying the approximation property (1.74) of π0,k
T with l = k,

p = 2, s = r + 1, m = 0 and v = the components of ∇w:
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|T1(vh)| ≤
( ∑
T ∈Th

‖K 1
2 (∇w − π0,k

T (∇w))‖2T
) 1

2
( ∑
T ∈Th

‖K 1
2 Gk

T vT ‖2T
) 1

2

≤
( ∑
T ∈Th

KT ‖∇w − π0,k
T (∇w)‖2T

) 1
2

.

( ∑
T ∈Th

KT h2(r+1)
T |∇w |2

Hr+1(T )d

) 1
2

. (4.57)

For T2(vh), notice first that��� ( [(K∇w) |T − π0,k
T (K∇w)

] ·nTF , vF − vT
)
F

���
=

��� ( [(K 1
2∇w) |T − K

− 1
2
|T π

0,k
T (K∇w)

] ·K 1
2
|T nTF , vF − vT

)
F

���
≤ ‖(K 1

2∇w) |T − K
− 1

2
|T π

0,k
T (K∇w)‖FK

1
2
TF ‖vF − vT ‖F ,

where the first line is obtained by symmetry of K
1
2
|T , and the second line follows

from a generalised Hölder inequality with exponents (2,∞,2) together with the
definition (4.43) of KTF . By Cauchy–Schwarz inequalities on the sums, we then
obtain the bound

|T2(vh)| ≤
( ∑
T ∈Th

αT
∑
F ∈FT

hF ‖(K
1
2∇w) |T − K

− 1
2
|T π

0,k
T (K∇w)‖2F

) 1
2

×
( ∑
T ∈Th

α−1
T

∑
F ∈FT

KTF

hF
‖vF − vT ‖2F

) 1
2

(4.58)

≤
( ∑
T ∈Th

αT
∑
F ∈FT

hF ‖(K
1
2∇w) |T − K

− 1
2
|T π

0,k
T (K∇w)‖2F

) 1
2

, (4.59)

the conclusion being a consequence of (4.49) and |||vh |||a,K ,h = 1.
Letting sT be the stabilisation defined for the Poisson problem by (2.22), the

bound KTF ≤ KT , the definition (4.46) of sK ,T , and the consistency property (2.31)
of sT yield

sK ,T (IkTw, IkTw) ≤ KT sT (IkTw, IkTw) . KT h2(r+1)
T |w |2

Hr+2(T ). (4.60)

This enables the following bound of T3(vh), based on a Cauchy–Schwarz inequal-
ity on the symmetric positive semidefinite form sK ,T , and in which we also use∑

T ∈Th sK ,T (vT , vT ) ≤ |||vh |||2a,K ,h = 1:
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|T3(vh)| ≤
( ∑
T ∈Th

sK ,T (IkTw, IkTw)
) 1

2
( ∑
T ∈Th

sK ,T (vT , vT )
) 1

2

(4.61)

.

( ∑
T ∈Th

KT h2(r+1)
T |w |2

Hr+2(T )

) 1
2

. (4.62)

Plugging (4.57), (4.59), and (4.62) into (4.56) concludes the proof of (4.50). ut
Remark 4.14 (Approach to the consistency error estimate). The reconstructed gradi-
ent Gk

T vT does not account for the anisotropic diffusion tensor. As a consequence,
and contrary to what happens for the Poisson problem in the proof of Lemma 2.18 or
for piecewise-constant diffusion in the proof of Lemma 3.15, one cannot expect here
the volumetric term to cancel out when creating EK ,h(w; vh). As seen in Remark
4.13, estimating ‖K1/2

|T ∇vT ‖2T by aK ,T (vT , vT ) introduces a local constant that scales
like the square of the local anisotropy-heterogeneity ratio, and would lead to αT
being replaced by α2

T in (4.50), which is much worse than what has been obtained for
piecewise constant diffusion in (3.48). To avoid this issue, we had to adopt a slightly
different approach to estimate the dual norm of EK ,h(w; vh), by getting rid of all the
terms ∇vT , using (4.41) to replace them by Gk

T vT (see (4.54)).
For the same reason, we do not directly estimate the second addend, in the right-

hand side of (4.50), in terms of approximability properties and Sobolev semi-norms.
Such an estimate is obtained in Theorem 4.16 below (see (4.71)), but it is sometimes
sub-optimal in terms of dependency with respect to the anisotropy-heterogeneity
ratio. Preserving the last term in (4.50) provides the flexibility required to recover
better estimates in certain circumstances, as demonstrated in (4.72).

4.2.3 Discrete problem and flux formulation

The HHO scheme for (4.33) is obtained using the global bilinear form aK ,h in a
classical way: Find uh ∈ Uk

h,0 such that

aK ,h(uh, vh) = ( f , vh) ∀vh ∈ Uk
h,0. (4.63)

As for the Poisson problem, the case of piecewise constant diffusion, and the case of
diffusion–advection–reaction treated in Sections 2.2.5, 3.1.4.3 and 3.2, respectively,
this HHO scheme can be reformulated in terms of numerical fluxes that satisfy local
balance and continuity properties. We recall that the boundary difference space Dk

∂T

and operator ∆k
∂T are respectively defined by (2.55) and (2.56).

Lemma 4.15 (Flux formulation). Let Mh denote a polytopal mesh in the
sense of Definition 1.4, and let Assumption 4.11 hold true. For all T ∈ Th , let
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sK ,T be defined by (4.46), and define the boundary residual operator Rk
K ,∂T :

Uk
T → Dk

∂T
such that, for all vT ∈ Uk

T ,

Rk
K ,∂T vT B (Rk

K ,TFvT )F ∈FT

and, for all α∂T = (αTF )F ∈FT ∈ Dk
∂T

,

−
∑
F ∈FT
(Rk

K ,TFvT , αTF )F = sK ,T ((0,∆k
∂T vT ), (0, α∂T )). (4.64)

For uh ∈ Uk
h,0, T ∈ Th and F ∈ FT , define the numerical normal trace of the

flux
ΦK ,TF (uT ) B −π0,k

T (K |TGk
TuT )·nTF + Rk

K ,TFuT . (4.65)

Then uh is a solution of (4.63) if and only if the following two properties hold:

(i) Local balance. For all T ∈ Th and all vT ∈ Pk(T),

(KTGk
TuT ,∇vT )T +

∑
F ∈FT
(ΦK ,TF (uT ), vT )F = ( f , vT )T . (4.66)

(ii) Continuity of fluxes. For any interface F ∈ F i
h
such that F ⊂ ∂T1 ∩ ∂T2

with distinct mesh elements T1,T2 ∈ Th , the numerical normal traces of
the fluxes are continuous, i.e.,

ΦK ,T1F (uT1
) + ΦK ,T2F (uT2

) = 0. (4.67)

Proof. The proof is similar to that of Lemma 2.25, but we provide it nonetheless as
it requires a slight twist using (4.41).

Let uh, vh ∈ Uk
h,0. Since sK ,T depends only on its arguments through the difference

operators δkTF and δkT , Proposition 2.24 and the definition (4.64) show that

sK ,T (uT , vT ) = −
∑
F ∈FT
(Rk

K ,TFuT , vF − vT )F . (4.68)

Applying (4.41) with τ = K |TGk
TuT shows that

(K |TGk
TuT ,G

k
T vT )T = (K |TGk

TuT ,∇vT )T
+

∑
F ∈FT
(π0,k

T (K |TGk
TuT )·nTF , vF − vT )F . (4.69)

Plugging (4.68) and (4.69) into the definition (4.45) of the local bilinear form aK ,T ,
and the resulting relation into the definition (4.47) of the global bilinear form aK ,h , we
see that the latter admits the reformulation (2.51) with, for all T ∈ Th , aV,T (uT , vT ) =
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(K |TGk
TuT ,∇vT )T for all (uT , vT ) ∈ Uk

T ×Pk(T) and, for all uT ∈ Uk
T and all F ∈ FT ,

ΦTF (uT ) = ΦK ,TF (uT ). The conclusion is an immediate consequence of Lemma
2.21. ut

4.2.4 Energy error estimate

Using the Third Strang Lemma A.7, the following error estimates in energy norm
for the HHO scheme (4.63) are easy consequences of the consistency estimate on
aK ,h in Lemma 4.12.

Theorem 4.16 (Discrete energy error estimate). Let (Mh)h∈H denote a reg-
ular mesh sequence in the sense of Definition 1.9. Let Assumption 4.11 hold
true and let a polynomial degree k ≥ 0 be fixed. Denote by u ∈ H1

0 (Ω)
the unique solution to (4.35), for which we assume the additional regularity
u ∈ Hr+2(Th) for some r ∈ {0, . . . , k}. For all h ∈ H , let uh ∈ Uk

h,0 denote
the unique solution to (4.63) with aK ,h defined by (4.45)–(4.47). Then, it holds
that

|||uh − Ikhu|||a,K ,h .
( ∑
T ∈Th

KT h2(r+1)
T |u|2

Hr+2(T )

) 1
2

+

( ∑
T ∈Th

αT
∑
F ∈FT

hF ‖(K
1
2∇u) |T − K

− 1
2
|T π

0,k
T (K∇u)‖2F

) 1
2

,

(4.70)

where the norm |||·|||a,K ,h is defined by (4.48) and the hidden constant is
independent of h, u and K . As a consequence,

(i) If K is constant on each element T ∈ Th then

|||uh − Ikhu|||a,K ,h .
( ∑
T ∈Th

KTαT h2(r+1)
T |u|2

Hr+2(T )

) 1
2

. (4.71)

(ii) If K∇u ∈ Hr+1(Th)d then

|||uh − Ikhu|||a,K ,h .
( ∑
T ∈Th

KT h2(r+1)
T |u|2

Hr+2(T )d

) 1
2

+

( ∑
T ∈Th

K−1
T αT h2(r+1)

T |K∇u|2
Hr+1(T )d

) 1
2

.

(4.72)
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A few remarks are in order.
Remark 4.17 (Combining (4.71) and (4.72)). Both estimates (4.71) and (4.72) are
direct consequences of (4.70), based on particular treatments of the last term in
this estimate. The proof shows that the estimates can easily be combined in the
case where K is constant in some elements T ∈ Th,1, and K∇w ∈ Hr+1(T) for the
elements T ∈ Th,2 B Th\Th,1. In this case, the upper bound on |||uh − Ik

h
u|||a,K ,h

consists in the right-hand side of (4.71) with a sum limited to T ∈ Th,1 plus the
right-hand side of (4.72) with sums limited to T ∈ Th,2.
Remark 4.18 (Rates and dependency with respect to the anisotropy-heterogeneity
ratio).Both estimates (4.71) and (4.72) give a global estimate |||uh−Ik

h
u|||a,K ,h . hr+1

(with hidden constant depending on K and u). The difference lies in the dependency
with respect to the anisotropy-heterogeneity ratio. Applied to K that is constant in
each element, (4.72) yields

|||uh − Ikhu|||a,K ,h .
( ∑
T ∈Th

KTα
2
T h2(r+1)

T |u|2
Hr+2(T )d

) 1
2

,

with hidden constant not depending on h, u or K . This estimate is worse than (4.71),
in which only the power one of αT appears. This justifies keeping the last term in
(4.70) in this form, as it can lead, in certain cases, to better estimates than a bound
purely based on regularity assumptions, such as (4.72).
Remark 4.19 (Piecewise constant diffusion). For a piecewise constant diffusion co-
efficient, the estimate (4.71) is identical to the one obtained using the HHO method
in Section 3.1 (see (3.56)). This shows that the method developed here enjoys similar
error estimates as the one developed in that section, assuming at the onset that the
diffusion was piecewise constant on the mesh. However, the method in Section 3.1
can be computationally slightly less expensive for k ≥ 1, depending on the imple-
mentation, because the gradient ∇pk+1

K ,T vT used in the consistent contribution to the
local bilinear form only has to be constructed in the space ∇Pk+1(T), whereas Gk

T vT
defined by (4.37) is constructed in the larger space Pk(T)d .
Proof (Theorem 4.16). The estimate (4.70) follows combining the consistency error
estimate (4.50) and the Third Strang Lemma A.7, as in the proofs of Theorems 2.27
and 3.18.

Let us now consider the case where K |T is constant for each T ∈ Th . Then
π0,k
T (K∇u) = K |Tπ

0,k
T (∇u) and thus, for F ∈ FT ,

hF ‖(K
1
2∇u) |T − K

− 1
2
|T π

0,k
T (K∇u)‖2F = hF ‖K

1
2
|T [(∇u) |T − π0,k

T (∇u)]‖2F
≤ KT hF ‖(∇u) |T − π0,k

T (∇u)‖2F
. KT h2(r+1)

T |∇u|2
Hr+1(T )d ,
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the conclusion being a consequence of hF ≤ hT and of the trace approximation
property (1.75) of π0,k

T applied to l = k, s = r + 1, m = 0, p = 2 and v =

components of ∇u. Plugging this estimate into (4.70) yields (4.71) after recalling
that, by definition, αT ≥ 1 for all T ∈ Th .

We now assume that K can vary inside each element, but that (K∇u) |T ∈ Hr+1(T)
for all T ∈ Th . Write

(K 1
2∇u) |T − K

− 1
2
|T π

0,k
T (K∇u) = K

− 1
2
|T

[
(K∇u) |T − π0,k

T (K∇u)
]

and thus, by definition of KT and by the same approximation property of π0,k
T as

above but applied to v = components of K∇u, for all F ∈ FT ,

hF ‖(K
1
2∇u) |T − K

− 1
2
|T π

0,k
T (K∇u)‖2F ≤ K−1

T hF ‖(K∇u) |T − π0,k
T (K∇u)‖2F

≤ K−1
T h2(r+1)

T |K∇u|2
Hr+1(T )d . (4.73)

Plugged into (4.70), this proves (4.72). ut
In a similar way as in Theorem 3.19, this energy error estimate gives an estimate

on a reconstructed approximate solution.

Corollary 4.20 (Energy error estimate for an approximate reconstructed so-
lution). Under the assumptions of Point (ii) in Theorem 4.16, and recalling the
definition (2.63) of pk+1

h
, it holds that

K
1
2 ‖∇h(pk+1

h uh − u)‖ + |uh |s,K ,h

.

( ∑
T ∈Th

KT h2(r+1)
T |u|2

Hr+2(T )d

) 1
2

+

( ∑
T ∈Th

K−1
T αT h2(r+1)

T |K∇u|2
Hr+1(T )d

) 1
2

,

where the hidden constant is independent of h, u and K and, for all vh ∈ Uk
h,0, we

have set

|vh |s,K ,h B
( ∑
T ∈Th

sK ,T (vT , vT )
) 1

2

.

Proof. We define the global operator Gk
h : Uk

h
→ Pk(Th)d such that, for all vh ∈ Uk

h
,

(Gk
hvh) |T B Gk

T vT ∀T ∈ Th . (4.74)

Let ûh = Ik
h
u. Since, for all T ∈ Th , ∇pk+1

T (uT − ûT ) is the L2(T)d-projection of
Gk

T (uT − ûT ) on ∇Pk+1(T) (see Remark 4.9), we have

K
1
2 ‖∇hpk+1

h (uh − ûh)‖ ≤ K
1
2 ‖Gk

h(uh − ûh)‖ ≤ ‖K
1
2 Gk

h(uh − ûh)‖.

Hence,
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K
1
2 ‖∇hpk+1

h (uh − ûh)‖ + |uh − ûh |s,K ,h ≤ 2|||uh − ûh |||a,K ,h .

The conclusion follows from this estimate as in the proof of Theorem 2.28, by using
the triangle inequality, the property K ≤ KT for all T ∈ Th , the discrete energy
estimate (4.72), and the consistency estimate (4.60) on sK ,T . ut

4.2.5 L2-error estimate

As usual, the L2-error estimates are obtained under an elliptic regularity assumption
on the dual problem to (4.35) which, due to the symmetry of K , is (4.35) itself.
Specifically, we assume that there existsCell ≥ 0 such that, for any g ∈ L2(Ω), letting
zg be the solution to (4.35) with f = g, we have zg ∈ H2(Ω), K∇zg ∈ H1(Ω)d , and

‖zg‖H2(Ω) + ‖K∇zg‖H1(Ω)d ≤ Cell‖g‖. (4.75)

We recall that such an elliptic regularity assumption is known if Ω is convex and
K is Lipschitz-continuous. Contrary to the case of a piecewise-constant diffusion
coefficient (cf. Remark 3.21), under Assumption 4.11 we can have K Lipschitz-
continuous and not globally constant. However, the dependency on Cell is usually
global in terms of K , and no local estimates on the H2-norm of zg is known. For this
reason, we make no attempt at tracking precise dependency of the error estimates in
terms of the local behaviour of K .

Theorem 4.21 (L2-error estimate). Let (Mh)h∈H denote a regular mesh se-
quence in the sense of Definition 1.9. Let Assumption 4.11 hold true, assume
elliptic regularity, and let a polynomial degree k ≥ 0 be fixed. Denote by
u ∈ H1

0 (Ω) the unique solution to (4.35), for which we assume the additional
regularity u ∈ Hr+2(Th) and K∇u ∈ Hr+1(Th)d for some r ∈ {0, . . . , k}. If
k = 0, we further assume that f ∈ H1(Th) and that K ∈ W1,∞(Th)d×d . For all
h ∈ H , let uh ∈ Uk

h,0 denote the unique solution to (4.63) with aK ,h defined by
(4.45)–(4.47). Then it holds, with hidden constant independent of h, u, and f ,
but depending on K , % and k:

‖uh − π0,k
h

u‖ .


h2‖ f ‖H1(Th )
(
1 + |K |W 1,∞(Th )d×d

)
if k = 0,

hr+2
(
|u|Hr+2(Th ) + |K∇u|Hr+1(Th )d

)
if k ≥ 1.

(4.76)

Proof. The theorem hinges on the abstract Aubin–Nitsche Lemma A.10, with a
similar setting as in the proof of Lemma 2.33: U = H1

0 (Ω), a(u, v) = (K∇u,∇v),
l(v) = ( f , v), Uh = Uk

h,0, ‖·‖Uh = |||·|||a,K ,h , ah = aK ,h , lh(vh) = ( f , vh), Ihu = Ik
h
u,

L = L2(Ω), and rh : Uk
h,0 → L2(Ω) defined by rhvh = vh .
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Wefirst notice, as for the Poisson problem, that the dual consistency error Ed
h
(zg; ·)

is identical to the primal consistency error EK ,h(zg; ·). Hence, (4.50) with r = 0 and
the bound on the second term obtained for this r in Point (ii) of the proof of Theorem
4.16 show that ‖Ed

h
(zg; ·)‖U?

h
. h

(
|zg |H2(Ω) + |K∇zg |H1(Ω)d

)
. h‖g‖ (we have used

(4.75) to conclude). By (4.72),

‖uh − Ihu‖Uh . hr+1
(
|u|Hr+2(Th ) + |K∇u|Hr+1(Th )d

)
,

and, in the case k = 0 (which enforces r = 0), this right-hand side is bounded above
by h‖ f ‖ by (4.75). This shows that the term ‖uh − Ihu‖Uh supg∈L∗ ‖Ed

h
(zg; ·)‖Uh in

(A.11) is bounded above by the right-hand side in (4.76).
The proof is complete if we show a similar bound for the primal-dual consistency

error EK ,h(u; ẑ
h
), with ẑ

h
B Ik

h
zg for g ∈ L2(Ω) such that ‖g‖ ≤ 1. We study the

cases k ≥ 1 and k = 0 separately.

(i)Case k ≥ 1. As for the Poisson problem (proof of Lemma 2.33) and the diffusion–
advection–reaction model (proof of Theorem 3.42), we re-visit the estimates done
on the consistency error EK ,h(u; vh), by considering the special case vh = ẑ

h
. Here,

we have to examine the terms T1(ẑh), T2(ẑh) and T3(ẑh) in (4.56) with w = u.
Let us start with T1(ẑh). Recalling that Gk

T ẑ
T
= π0,k

T (∇zg) (see (4.40)) and
inserting ±∇zg, we write

T1(ẑh) =
∑
T ∈Th
(K∇u − Kπ0,k

T (∇u),π0,k
T (∇zg) − ∇zg)T

+
∑
T ∈Th
(∇u − π0,k

T (∇u),K∇zg)T

=
∑
T ∈Th
(K [∇u − π0,k

T (∇u)],π0,k
T (∇zg) − ∇zg)T

+
∑
T ∈Th
(∇u − π0,k

T (∇u),K∇zg − π0,0
T (K∇zg))T ,

the introduction of π0,0
T (K∇zg) ∈ P0(T)d being justified by the fact that∇u − π0,k

T (∇u)
is L2(T)d-orthogonal to Pk(T)d ⊃ P0(T)d . We then use generalised Hölder and
Cauchy–Schwarz inequalities, the approximation property (1.74) of the local L2-
projector with m = 0, p = 2 and (l, s, v) = (k,r + 1, (∇u)i), (l, s, v) = (k,1, (∇zg)i)
and (l, s, v) = (0,1, (K∇zg)i) for i ∈ {1, . . . , d}, and invoke (4.75) to obtain
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|T1(ẑh)| .
( ∑
T ∈Th

‖∇u − π0,k
T (∇u)‖2T

) 1
2
( ∑
T ∈Th

‖π0,k
T (∇zg) − ∇zg‖2T

) 1
2

+

( ∑
T ∈Th

‖∇u − π0,k
T (∇u)‖2T

) 1
2
( ∑
T ∈Th

‖K∇zg − π0,0
T (K∇zg)‖2T

) 1
2

. hr+1 |∇u|Hr+1(Th )d h|∇zg |H1(Ω)d + hr+1 |∇u|Hr+1(Th )d h|K∇zg |H1(Ω)d

. hr+2 |u|Hr+2(Th ). (4.77)

To estimate T2(ẑh), we start from (4.58) with w = u and vh = ẑ
h
. Since ẑF =

π0,k
F zg and ẑT = π

0,k
T zg, the estimates in (2.78) together with (4.75) show that( ∑

T ∈Th
α−1
T

∑
F ∈FT

KTF

hF
‖ ẑF − ẑT ‖2F

) 1
2

. h|zg |H2(Th ) . h.

On the other hand, by (4.73),( ∑
T ∈Th

αT
∑
F ∈FT

hF ‖(K
1
2∇u) |T − K

− 1
2
|T π

0,k
T (K∇u)‖2F

) 1
2

. hr+1 |K∇u|Hr+1(Th )d .

Plugging these two estimates into (4.58) yields

|T2(ẑh)| . hr+2 |K∇u|Hr+1(Th )d . (4.78)

For T3(ẑh), (4.61) with vh = ẑ
h
and (4.60) with (w,r) = (u,r) and (w,r) = (zg,0)

yield, after using (4.75),

|T3(ẑh)| . hr+1 |u|Hr+2(Th )h|zg |H2(Ω) . hr+2 |u|Hr+2(Th ). (4.79)

Notice that this estimate on T3(ẑh) is also valid for k = 0.
Plugging (4.77)–(4.79) into (4.56) shows that |EK ,h(u; ẑ

h
)| is bounded above by

the right-hand side of (4.76), which concludes the proof in this case k ≥ 1.

(ii) Case k = 0. We start from the definition of EK ,h(u; ẑ
h
) and work in a similar

way as in the proof of Lemma 2.33. Using (4.40),

EK ,h(u; ẑ
h
) =

∑
T ∈Th
( f , π0,0

T zg)T −
∑
T ∈Th
(Kπ0,0

T (∇u),π0,0
T (∇zg))T + T3(ẑh), (4.80)

where T3(ẑh) = −
∑

T ∈Th sK ,T (IkTu, ẑ
T
) is the same as in the case k ≥ 1 and can

be estimated by (4.79) with r = 0. The first term in the right-hand side of (4.80) is
manipulated as follows:
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T ∈Th
( f , π0,0

T zg)T =
∑
T ∈Th
(π0,0

T f , zg)T

=
∑
T ∈Th
(π0,0

T f − f , zg)T + ( f , zg)

=
∑
T ∈Th
(π0,0

T f − f , zg − π0,0
T zg)T + (K∇u,∇zg),

where the first line follows from the orthogonality property of π0,0
T , the second line

is obtained by inserting ± f , and we have used, in the third line, the equation (4.35)
together with the orthogonality property of π0,0

T . Plugging this into (4.80), using
Cauchy–Schwarz inequalities, the bound (4.79) for T3(ẑh) and the approximation
properties of π0,0

T , we deduce, recalling the estimate (4.75) (for both zg and u) and
the choice ‖g‖ ≤ 1,

|EK ,h(u; ẑ
h
)| . h| f |H1(Th )h|zg |H1(Th ) + |T4 | + h2 |u|H2(Th )
. h2‖ f ‖H1(Th ) + |T4 |, (4.81)

where
T4 B

∑
T ∈Th
(K∇u,∇zg)T − (Kπ0,0

T (∇u),π0,0
T (∇zg))T .

This term is then rearranged as

T4 =
∑
T ∈Th
(K (∇u − π0,0

T (∇u)),∇zg)T + (Kπ0,0
T (∇u),∇zg − π0,0

T (∇zg))T

=
∑
T ∈Th
(∇u − π0,0

T (∇u),K∇zg − π0,0
T (K∇zg))T

+
∑
T ∈Th
(Kπ0,0

T (∇u) − π0,0
T (Kπ0,0

T (∇u)),∇zg − π0,0
T (∇zg))T ,

where we have inserted ±(Kπ0,0
T (∇u),∇zg)T in the addends in the first line, and

used the symmetry of K together with the L2(T)d-orthogonality properties of π0,0
T to

conclude. Since π0,0
T (∇u) is constant, we have π0,0

T (Kπ0,0
T (∇u)) = (π0,0

T K )(π0,0
T (∇u))

(where π0,0
T K denotes the component-wise L2(T)-projection of K ), and Cauchy–

Schwarz and generalised Hölder inequalities lead to

|T4 | . h|∇u|H1(Th )d h|K∇zg |H1(Th )d + h|K |W 1,∞(Th )d×d ‖∇u‖h|∇zg |H1(Th )d .

Plugging this estimate into (4.81) and recalling (4.75) shows that |EK ,h(u; ẑ
h
)| is

bounded above by the right-hand side of (4.76), which concludes the proof. ut
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4.2.6 Numerical tests

This section presents numerical tests obtained with the scheme (4.63), on the domain
Ω = (0,1)2 and for the exact solution and diffusion tensors given by:

u(x1, x2) = sin(πx1) sin(πx2) , K (x1, x2) =
[
ε x̄2

1 + x̄2
2 (ε − 1)x̄1 x̄2

(ε − 1)x̄1 x̄2 x̄2
1 + ε x̄2

2

]
,

where ε = 10−5 and (x̄1, x̄2) B (x1, x2)+ (0.1,0.1). The tensor K (x1, x2) has eigendi-
rections (x̄1, x̄2) and (x̄1, x̄2)⊥, and an anisotropy ratio equal to ε−1 = 105. This
tensor, which is taken from [172], is a modification of the one proposed in [227].
Two families of meshes are considered for the numerical tests: a family of (mostly)
hexagonal meshes, and a family of highly distorted Kershaw meshes from [207]. A
representative of each of these families is shown in Fig. 4.6.

Fig. 4.6: Examples of meshes for the tests of Section 4.2.6: hexagonal mesh (left);
Kershaw mesh (right).

The numerical results for k ∈ {0, . . . ,3} are presented in Fig. 4.7. They are
in perfect agreement with the theoretical rates predicted by Theorems 4.16 and
4.21: the convergence in energy norm is in O(hk+1), while we observe an L2-norm
convergence in O(hk+2). Comparing Figs. 4.7a and 4.7c with the results for the HHO
method (2.48) on the Laplace equation (see Figs. 2.3b and 2.3d), we notice that the
HHO scheme (4.63) for locally variable diffusion tensor does not seem here to be
very sensitive to the high anisotropy ratio of K : the absolute errors in each norm are
of similar magnitude for these two schemes.

The results on the Kershaw meshes (Figs. 4.7b and 4.7d) show some impact
of the mesh distortion: an order of magnitude up to 3 is lost when compared to
the results on hexagonal meshes. Despite this loss, the rates of convergence are
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preserved, showing a certain robustness of the HHO method for locally variable
diffusion tensors, even with severe anisotropy and mesh distortion. We mention that
the tests on the Kershaw meshes have been run using orthonormalised local basis
functions; on this test case, the use of more naive monomial basis functions leads,
starting from k = 3, to round-off errors that deteriorate the convergence (see Section
B.1.1 in Appendix B for more on this topic).

k = 0 k = 1 k = 2 k = 3

10−1.8 10−1.6 10−1.4 10−1.2 10−1 10−0.8 10−0.6
10−9

10−7

10−5

10−3

10−1

1

1

1

2

1

3

1

4

(a) ‖I k
h
u − uh ‖a,h vs. h, hexagonal meshes

10−1.2 10−1 10−0.8 10−0.6

10−6

10−5

10−4

10−3

10−2

10−1

100

1

1

1

2

1

3

1

4

(b) ‖I k
h
u − uh ‖a,h vs. h, Kershaw meshes

10−1.8 10−1.6 10−1.4 10−1.2 10−1 10−0.8 10−0.6
10−11

10−9

10−7

10−5

10−3

10−1

1

2

1

3

1

4

1

5

(c) ‖π0,k
h

u − uh ‖ vs. h, hexagonal meshes

10−1.2 10−1 10−0.8 10−0.6

10−8

10−6

10−4

10−2

1

2

1

3

1

4

1

5

(d) ‖π0,k
h

u − uh ‖ vs. h, Kershaw meshes

Fig. 4.7: Error vs. h for the test cases of Section 4.2.6. The reference slopes refer to
the expected order of convergence for each polynomial degree k ∈ {0, . . . ,3}.



Chapter 5
Variations and comparison with other methods

In this chapter we explore variations of the Hybrid High-Order method and establish
links with other polytopal methods. Specifically, in Section 5.1 we consider the
possibility of enriching or depleting element unknowns. Section 5.2 establishes a
link with the nonconforming P1 Finite Element method on matching simplicial
meshes, which can be regarded as a variation of the lowest-order depleted HHO
method with a modified discretisation of the right-hand side. We next show, in
Section 5.3, that the lowest-order version of the standard HHO method on generic
polytopal meshes is intimately linked to Hybrid Mimetic Mixed methods. In Section
5.4 we discuss the Mixed High-Order method, which is developed using as a starting
point the mixed version of the Poisson problem, and show that the HHO method
corresponds to its hybridised version. Section 5.5 establishes a link between theHHO
and the Nonconforming Virtual Element method. For the sake of completeness, we
also discuss the Conforming Virtual Element method and prove key results for its
analysis using HHO-inspired norms, which extend to the non-Hilbertian setting.
Finally, we develop in 5.6 a Gradient Discretisation Method inspired by HHO. We
focus on the Poisson problem (2.1), except in Section 5.6 where we consider the
locally variable diffusion problem (4.33).

5.1 Enrichment and depletion of element unknowns

The core of the HHO methods are formulas (2.5), which express the local elliptic
projection of a function in terms of its L2-orthogonal polynomial projections on an
element and on its faces. These formulas drove, in particular, the choice of the local
space of unknowns (2.6), the vectors of which are made of a polynomial of degree
k in the element and polynomials of degree k on each face. However, following
Remark 2.1, the polynomial degree of the element unknowns could be reduced from
k to k −1 (at least for k ≥ 1). In this section, we explore variants of the HHOmethod
in which the polynomial degree of element unknowns possibly differs from that of
the face unknowns.

169
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Throughout the section, we denote by k ≥ 0 and ` ∈ {k − 1, k, k + 1} two integers
corresponding to the polynomial degrees of element- and face-based unknowns,
respectively. The case (k, `) = (0,−1) is allowed, and we recall that P−1(T) = {0}.
The limit ` ≥ k − 1 comes from the desire to preserve optimal approximation
properties (see discussion above) whereas, as we will see, the assumption ` ≤ k + 1
is required to prove the stability of the method (see the proof of Proposition 5.10).

5.1.1 Local space and interpolator

For ` ≥ 0, we define the local space of unknowns as

Uk ,`
T B

{
vT = (vT , (vF )F ∈FT ) : vT ∈ P`(T) and vF ∈ Pk(F) ∀F ∈ FT

}
. (5.1a)

In the case ` = −1, which can only occur if k = 0, this would lead to a space in which
all element unknowns are 0, since P−1(T) = {0}. We therefore modify the definition
for (k, `) = (0,−1) and set

U0,−1
T B

{
vT = (vT , (vF )F ∈FT ) : vF ∈ P0(F) ∀F ∈ FT ,

vT =
1
|T |d

∑
F ∈FT

ωTF |F |d−1vF

}
,

(5.1b)

where we have fixed weights (ωTF )F ∈FT such that

ωTF ≥ 0 ∀F ∈ FT , (5.2a)∑
F ∈FT

ωTF (q,1)F = (q,1)T ∀q ∈ P0(T). (5.2b)

Remark 5.1 (Assumption on the weights). The condition (5.2b) is equivalent to∑
F ∈FT

ωTF |F |d−1 = |T |d . (5.3)

By the geometric bounds (1.6)–(1.8), it holds |T |d . hT |F |d−1 for all F ∈ FT , with
hidden constant depending only on d and the mesh regularity parameter %. Relation
(5.3) together with the positivity of the weights therefore implies

|ωTF | . hT ∀F ∈ FT . (5.4)

The positivity condition (5.2a) is actually formally useful, in the following analysis,
only because it implies (5.4), and the latter estimate could therefore be used in lieu
of (5.2a). However, positive weights are often preferable for better stability of the
scheme.
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To obtain superconvergence in the L2-norm, as highlighted in [234], the condition
(5.2b) should be strengthen into∑

F ∈FT
ωTF (q,1)F = (q,1)T ∀q ∈ P1(T). (5.5)

As shown in [234, Appendix A], if the cell T is star-shaped with respect to its centre
of mass xT , a set of weights that satisfy (5.5) is given by ωTF = dist(xT ,HF )/d,
where HF is the hyperplane spanned by F.

Remark 5.2 (Barycentric elimination). In the wording of [174], the replacement in
U0,−1

T of the free unknown vT by a convex combination of the other unknowns
(vF )F ∈FT is called a barycentric elimination.

The space Uk ,`
T is endowed with the norm ‖·‖1,T still formally defined by (2.7).

The local interpolator associated with Uk ,`
T is Ik ,`T : W1,1(T) → Uk ,`

T such that, for
all v ∈ W1,1(T), if ` ≥ 0,

Ik ,`T v B (π0,`
T v, (π0,k

F v)F ∈FT ) (5.6a)

and, if ` = −1,

I0,−1
T v B (vT , (π0,0

F v)F ∈FT ) with vT =
1
|T |d

∑
F ∈FT

ωTF |F |d−1π
0,0
F v. (5.6b)

As in the case k = ` covered inChapter 2, the boundedness of the local interpolator
will be instrumental to the analysis of the HHO scheme for k , `.

Proposition 5.3 (Boundedness of the local interpolator Ik ,`T ). For all v ∈ H1(T),

‖Ik ,`T v‖1,T . |v |H1(T ), (5.7)

where the hidden constant depends only on d, %, k, and `.

Proof. Let Ik ,`T v = (vT , (vF )F ∈FT ). Recalling the definition (2.7) of ‖·‖1,T , we have

‖Ik ,`T v‖21,T . ‖∇v‖2T +
∑
F ∈FT

h−1
F ‖vF − vT ‖2F , (5.8)

where, if ` ≥ 0, we have used the boundedness property (1.77) of π0,`
T with s = 1

and p = 2 to remove this projector from the volumetric term ‖∇vT ‖T = ‖∇π0,`
T v‖T

while, if ` = −1, we have written ‖∇vT ‖T = 0 ≤ ‖∇v‖T . We now deal with the
boundary term in (5.8). Notice first that, by the idempotency of π0,k

F , its L2(F)-
boundedness expressed by (1.77) with X = F, s = 0, and p = 2, and the trace
approximation property (1.75) of π0,0

T (with m = 0, s = 1, and p = 2),

‖π0,k
F v − π0,0

T v‖F = ‖π0,k
F (v − π0,0

T v)‖F . ‖v − π0,0
T v‖F . h

1
2
T ‖∇v‖T . (5.9)
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Hence, introducing ±π0,0
T v and using the triangle inequality, we have

‖vF − vT ‖F ≤ ‖π0,k
F v − π0,0

T v‖F + ‖π0,0
T v − vT ‖F

. h
1
2
T ‖∇v‖T + h

− 1
2

T ‖π0,0
T v − vT ‖T , (5.10)

where we have used, to pass to the second line, the estimate (5.9) and the discrete
trace inequality (1.55) with p = 2 and π0,0

T v − vT instead of v.
We now consider the second term in the right-hand side of (5.10). Given the

different definitions of vT if ` ≥ 0 or if ` = −1, we have to treat each of these cases
separately. If ` ≥ 0, then vT = π0,`

T v and the idempotency, boundedness (1.77) (with
X = T , l = `, s = 0, and p = 2) and approximation property (1.74) (with l = 0,
m = 0, s = 1 and p = 2) of the orthogonal projector yield

‖π0,0
T v − vT ‖T = ‖π0,`

T (π0,0
T v − v)‖T . ‖π0,0

T v − v‖T . hT ‖∇v‖T . (5.11)

Consider now ` = −1. Recalling the definition of vT in (5.6b) and the property (5.3)
of the weights, we write

π0,0
T v − vT = 1

|T |d
∑
F ∈FT

ωTF |F |d−1(π0,0
T v − π0,0

F v). (5.12)

We have, by Cauchy–Schwarz inequality and (5.9),��|F |d−1(π0,0
T v − π0,0

F v)
�� = |(π0,0

T v − π0,0
F v,1)F |

≤ |F |
1
2
d−1‖π0,0

T v − π0,0
F v‖F

. |F |
1
2
d−1h

1
2
T ‖∇v‖T . |T |

1
2
d
‖∇v‖T ,

the conclusion following from the geometric bounds (1.6)–(1.8). Starting from (5.12)
and using the triangle inequality and the above estimate to bound the right-hand side,
we infer

‖π0,0
T v − vT ‖T = |T |

1
2
d
|π0,0

T v − vT | .
∑
F ∈FT

ωTF ‖∇v‖T . hT ‖∇v‖T , (5.13)

where we have used (5.4) and card(FT ) . 1 (see (1.5)) to conclude.
Combining (5.10) and (5.11) (if ` ≥ 0) or (5.13) (if ` = −1), we find that

‖vF − vT ‖F . h
1
2
T ‖∇v‖T . Raise to the square, multiply by h−1

F , use hT . hF (see
(1.6)), sum over F ∈ FT , and use card(FT ) . 1 again to deduce∑

F ∈FT
h−1
F ‖vF − vT ‖2F . ‖∇v‖2T .

Plugged into (5.8), this concludes the proof of (5.7). ut
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5.1.2 Modified elliptic projector

Because of the particular choices in (5.1b) and (5.6b) for the element unknown when
` = −1, the relevant projector for the analysis in the case (k, `) = (0,−1) is not the
elliptic projector given by Definition 1.39 but a modified version thereof, in which
the closure equation (1.60b) is replaced by an equation that fixes a weighted integral
on the boundary of the element.

Definition 5.4 (The modified elliptic projector). Let Mh be a polytopal mesh,
T ∈ Th , and l ≥ 0 be a polynomial degree. Take weights (ωTF )F ∈FT satisfying (5.2).
The modified elliptic projector π̃1,l

T : W1,1(T) → Pl(T) is defined as follows: For all
v ∈ W1,1(T), the polynomial π̃1,l

T v ∈ Pl(T) satisfies

(∇(π̃1,l
T v − v),∇w)T = 0 ∀w ∈ Pl(T) (5.14a)

and ∑
F ∈FT

ωTF (π̃1,l
T v − v,1)F = 0. (5.14b)

We note that π̃1,l
T is indeed a projector onto Pl(T): if v belongs to this space, then it

obviously satisfies the constitutive equations (5.14a)–(5.14b) that define π̃1,l
T v, and

thus π̃1,l
T v = v.

Remark 5.5 (Choice of the weights and closure equation). If all the weights are
identical, that is, according to (5.3), ωTF =

|T |d
|∂T |d−1

, then the closure equation
(5.14b) becomes

(π̃1,l
T v − v,1)∂T = 0.

In the case l = 1, if the weights satisfy the improved property (5.5), then using this
property with q = π̃1,1

T v shows that the closure equation (5.14b) consists in fixing
the average of π̃1,1

T v in the cell to

(π̃1,1
T v,1)T =

∑
F ∈FT

ωTF (v,1)F . (5.15)

Remark 5.6 (Case l = 1, computing the modified elliptic projector from L2-
projections on the faces). Let us consider the case l = 1. Taking w ∈ P1(T) and
integrating by parts, we have from (5.14a) and since ∆w = 0,

(∇π̃1,1
T v,∇w)T = (∇v,∇w)T =

∑
F ∈FT
(v,∇w·nTF )F =

∑
F ∈FT
(π0,0

F v,∇w·nTF )F , (5.16a)

where the introduction of the L2-projector on P0(F) is justified since ∇w·nTF is
constant on F. Likewise, (5.14b) can be recast as∑

F ∈FT
ωTF (π̃1,1

T v,1)F =
∑
F ∈FT

ωTF (π0,0
F v,1)F . (5.16b)
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Equations (5.16) show that π̃1,1
T v is computable from (π0,0

F v)F ∈FT .

The approximation properties of this modified elliptic projector are similar to
those of the standard elliptic projector (Theorem 1.48), as proved in the following
theorem.

Theorem 5.7 (Approximation properties of the modified elliptic projec-
tor). Let (Mh)h∈H = (Th,Fh)h∈H be a regular mesh sequence in the
sense of Definition 1.9. For a given polynomial degree l ≥ 0, let an inte-
ger s ∈ {1, . . . , l + 1} and a real number p ∈ [1,∞] be given. Then, for all
T ∈ Th , all v ∈ W s,p(T), and all m ∈ {0, . . . , s},

|v − π̃1,l
T v |Wm,p (T ) . hs−m

T |v |W s ,p (T ). (5.17)

Moreover, if m ≤ s − 1, then, for all F ∈ FT ,

h
1
p

T |v − π̃1,l
T v |Wm,p (F) . hs−m

T |v |W s ,p (T ). (5.18)

The hidden constants above depend only on d, %, l, s, p, and m.

Proof. The proof relies on the approximation results of Lemma 1.43. As in the proof
of Theorem 1.48, we have to consider two cases: m ≥ 1 and m = 0. In the former
case, the proof is identical to the proof made in Theorem 1.48 for π1,l

T , since π̃1,l
T

also satisfies (1.60a) (see (5.14a)), which was shown to imply (1.80), that is,

‖∇π̃1,l
T v‖Lp (T )d . ‖∇v‖Lp (T )d . (5.19)

Let us nowconsiderm = 0. According toLemma1.43, the approximation property
(5.17) holds if we prove that, for all v ∈ W1,1(T),

‖π̃1,l
T v‖Lp (T ) . ‖v‖Lp (T ) + hT |v |W 1,p (T ). (5.20)

To this purpose, we first notice that, by the approximation properties (1.74) of the
L2-projector with X = T , l = 0, m = 0 and s = 1,

‖π̃1,l
T v − π0,0

T (π̃1,l
T v)‖Lp (T ) . hT ‖∇π̃1,l

T v‖Lp (T )d . hT ‖∇v‖Lp (T )d , (5.21)

where the conclusion follows invoking (5.19).
We now estimate π0,0

T (π̃1,l
T v), starting with
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F ∈FT

ωTF (v,1)F −
∑
F ∈FT

ωTF

(
π0,0
T (π̃1,l

T v),1)F ���
=

����� ∑
F ∈FT

ωTF

(
π̃1,l
T v − π0,0

T (π̃1,l
T v),1)F �����

≤
∑
F ∈FT

ωTF |F |
1
p′
d−1‖π̃1,l

T v − π0,0
T (π̃1,l

T v)‖Lp (F)

.
∑
F ∈FT

ωTF |F |
1
p′
d−1h

1
p′
T ‖∇π̃1,l

T v‖Lp (T )d

. hT |T |
1
p′
d
‖∇π̃1,l

T v‖Lp (T )d , (5.22)

where we have used (5.14b) to write the equality, a Hölder inequality in the second
line, the trace approximation properties (1.75) of π0,0

T with s = 1 and m = 0 together
with the property 1 − 1

p =
1
p′ in the third line, and the estimates (5.4), card(FT ) . 1

and |F |d−1hT . |T |d (see Lemma 1.12) in the conclusion. We deduce that

|T |d
���π0,0

T (π̃1,l
T v)

��� = ����� ∑
F ∈FT

ωTF |F |d−1π
0,0
T (π̃1,l

T v)
�����

=

����� ∑
F ∈FT

ωTF

(
π0,0
T (π̃1,l

T v),1)F �����
. hT |T |

1
p′
d
‖∇π̃1,l

T v‖Lp (T )d +

����� ∑
F ∈FT

ωTF (v,1)F
����� (5.23)

. |T |
1
p′
d

(
‖v‖Lp (T ) + hT ‖∇v‖Lp (T )d

)
, (5.24)

where we have used the property (5.3) of the weights in the first line, the fact that
π0,0
T (π̃1,l

T v) is constant over F in the second line, and a triangle inequality (introducing
±∑

F ∈FT ωTF (v,1)F ) together with (5.22) to pass to the third line. The fourth line
is obtained invoking (5.19) to remove π̃1,l

T together with a Hölder inequality, the
continuous trace inequality (1.51), the property (5.4) of the weights, the relation
1 − 1

p =
1
p′ , and the estimate hT |F |d−1 . |T |d for all F ∈ FT (see (1.6)–(1.8)) to

write ����� ∑
F ∈FT

ωTF (v,1)F
����� ≤ ∑

F ∈FT
ωTF |F |

1
p′
d−1‖v‖Lp (F)

.

( ∑
F ∈FT

hT |F |
1
p′
d−1h

− 1
p

T

) (
‖v‖Lp (T ) + hT ‖∇v‖Lp (T )d

)
. |T |

1
p′
d

(
‖v‖Lp (T ) + hT ‖∇v‖Lp (T )d

)
.
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We infer from (5.24) and 1
p′ +

1
p = 1 that it holds

‖π0,0
T (π̃1,l

T v)‖Lp (T ) = |T |
1
p

d

���π0,0
T (π̃1,l

T v)
��� . ‖v‖Lp (T ) + hT ‖∇v‖Lp (T )d . (5.25)

Combining (5.21), (5.25), and a triangle inequality shows that (5.20) holds, which
concludes the proof of (5.17).

The estimate (5.18) follows from (5.17) and the continuous trace inequality (1.51),
as in the proof of Theorem 1.45. ut

5.1.3 Potential reconstruction

The potential reconstruction is formally defined as in Section 2.1.3 if ` ≥ 0, and with
a modified closure equation if (k, `) = (0,−1). Specifically, we define p̃k+1

T : Uk ,`
T →

Pk+1(T) such that, for all vT ∈ Uk ,`
T and w ∈ Pk+1(T),

(∇p̃k+1
T vT ,∇w)T = − (vT ,∆w)T +

∑
F ∈FT
(vF ,∇w·nTF )F (5.26a)

= (∇vT ,∇w)T +
∑
F ∈FT
(vF − vT ,∇w·nTF )F (5.26b)

(the second equality coming from an integration by parts) and

if ` ≥ 0, (p̃k+1
T vT − vT ,1)T = 0, (5.26c)

if (k, `) = (0,−1),
∑
F ∈FT

ωTF (p̃1
T vT − vF ,1)F = 0. (5.26d)

Remark 5.8 (Closure equation if ` = −1 and the weights satisfy (5.5)). Consider the
case (k, `) = (0,−1) and assume that the weights satisfy the property (5.5). Then,
taking vT ∈ U0,−1

T , applying (5.5) to q = p̃1
T vT and recalling the choice of vT in

(5.1b), we see that (5.26d) is equivalent to

(p̃1
T vT − vT ,1)T = 0.

In other words, we recover the closure equation (5.26c) based on averages in the cell.

If ` ≥ 0, by Remark 2.1, the relations (2.5) hold with π0,k
T replaced with π0,`

T . Hence,
recalling the definition (5.6a) of Ik ,`T and comparing (2.5) and (5.26a)–(5.26d), we
see that

if ` ≥ 0, p̃k+1
T Ik ,`T v = π1,k+1

T v ∀v ∈ W1,1(T). (5.27a)

On the other hand, if (k, `) = (0,−1), taking v ∈ W1,1(T), applying (5.26a) (in which
∆w = 0) and (5.26d) to vT = I0,−1

T v (with I0,−1
T defined by (5.6b)), and comparing

with (5.16), we find that
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if (k, `) = (0,−1), p̃1
T I0,−1

T v = π̃1,1
T v ∀v ∈ W1,1(T). (5.27b)

These commutation properties are illustrated in Fig. 5.1.

W1,1(T) Uk ,`
T

Pk+1(T)

I k ,`T

π1,k+1
T p̃k+1

T

(a) ` ≥ 0

W1,1(T) U0,−1
T

P1(T)

I0,−1
T

π̃1,1
T p̃1

T

(b) (k , `) = (0, −1)

Fig. 5.1: Illustration of the commutation properties (5.27) of p̃k+1
T .

The commutation properties (5.27) together with the approximation properties of
the standard or modified elliptic projector (expressed by Theorems 1.48 and 5.7,
respectively) ensure that (p̃k+1

T ◦ Ik ,`T ) has optimal approximation properties.

5.1.4 Local bilinear form

The local bilinear form aT : Uk ,`
T ×Uk ,`

T → R is defined in a similar way as in (2.15),
using the modified potential reconstruction:

aT (uT , vT ) B (∇p̃k+1
T uT ,∇p̃k+1

T vT )T + sT (uT , vT ). (5.28)

Here, the stabilisation term sT is assumed to satisfy Assumption 2.4 in which the
pair (Uk

T , I
k
T ) is replaced by (Uk ,`

T , Ik ,`T ), that is:
Assumption 5.9 (Local stabilisation bilinear form sT , k , `) The local stabilisa-
tion bilinear form sT : Uk ,`

T ×Uk ,`
T → R satisfies the following properties:

(S1) Symmetry and positivity. sT is symmetric and positive semidefinite;
(S2) Stability and boundedness. There is a real number η > 0 independent of h and

of T such that, for all vT ∈ Uk ,`
T ,

η−1‖vT ‖21,T ≤ aT (vT , vT ) ≤ η‖vT ‖21,T ; (5.29)

(S3) Polynomial consistency. For all w ∈ Pk+1(T) and all vT ∈ Uk ,`
T , it holds

sT (Ik ,`T w, vT ) = 0. (5.30)

Hereafter we describe a possible choice of stabilisation term, inspired by (2.22),
that satisfies this assumption.
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Proposition 5.10 (Example of local stabilisation bilinear form).Let δ̃kTF : Uk ,`
T →

Pk(F) and δ̃`T : Uk ,`
T → P`(T) be the difference operators such that, for all vT ∈ Uk ,`

T ,

δ̃kTFvT B π0,k
F (p̃k+1

T vT − vF ) δ̃`T B π0,`
T (p̃k+1

T vT − vT ). (5.31)

Then, the following bilinear form satisfies Assumption 5.9:

sT (uT , vT ) B
∑
F ∈FT

h−1
F ((δ̃kTF − δ̃`T )uT , (δ̃kTF − δ̃`T )vT )F . (5.32)

Proof. We follow the lines of the proof of Proposition 2.13. A simple inspection
proves (S1). To establish (S3) we first notice that, by the commutation property
(5.27) and idempotency of π1,k+1

T or π̃1,k+1
T , if w ∈ Pk+1(T) then p̃k+1

T Ik ,`T w = w.
Hence, δ̃kTF Ik ,`T w = π0,k

F (w − π0,k
F w) = 0 for all F ∈ FT and, if ` ≥ 0, δ̃`T Ik ,`T w =

π0,`
T (w − π0,`

T w) = 0. If ` = −1, then δ̃`T ≡ 0. This establishes the polynomial
consistency of the difference operators and, by construction of sT , proves (S3).

It remains to check (S2). The estimates (2.25) and (2.26) on the volumetric terms
in aT and ‖·‖1,T are established exactly as in the proof of Proposition 2.13 (note that
the assumption ` ≤ k + 1 is needed in order to plug w = vT ∈ P`(T) ⊂ Pk+1(T)
into the definition (5.26b) of the potential reconstruction). To estimate the boundary
terms, we set v̌T B p̃k+1

T vT and (compare with (2.28))

z
T
B Ik ,`T v̌T − vT .

If ` ≥ 0, the definition (5.6a) of Ik ,`T shows that

z
T
= (δ̃`T vT , (δ̃kTFvT )F ∈FT ). (5.33)

If ` = −1, we write

|T |dzT =
∑
F ∈FT

ωTF |F |d−1π
0,0
F (p̃1

T vT ) −
∑
F ∈FT

ωTF |F |d−1vF

=
∑
F ∈FT

ωTF (p̃1
T vT ,1)F −

∑
F ∈FT

ωTF (vF ,1)F

= 0,

where we have used in the first line the definitions of I0,−1
T and vT (see (5.6b) and

(5.1b)),we passed to the second line bywriting |F |d−1π
0,0
F (p̃1

T vT ) = (π0,0
F (p̃1

T vT ),1)F =
(p̃1

T vT ,1)F , and we concluded invoking the closure condition (5.26d) on p̃1
T vT . Not-

ing that δ̃−1
T ≡ 0, this shows that (5.33) also holds if ` = −1.

The conclusion of the proof of (S2) then follows exactly as in the proof of
Proposition 2.13, using (5.33) and the boundedness property (5.7) of Ik ,`T . ut

The consistency properties, on interpolates of smooth functions, for a stabilisation
bilinear form sT satisfying Assumption 5.9 are stated in the following proposition.
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Proposition 5.11 (Consistency of sT , k , `). Let T ∈ Th and let sT denote a
stabilisation bilinear form satisfying Assumption 5.9. Let r ∈ {0, . . . , k}. Then, for
all v ∈ Hr+2(T),

sT (Ik ,`T v, Ik ,`T v) 1
2 . hr+1

T |v |Hr+2(T ), (5.34)

where the hidden constant is independent of h, T , and v.

Proof. Identical to the proof of Proposition 2.14, replacing IkT with Ik ,`T and using
the boundedness (5.7) of the latter operator. ut

5.1.5 Discrete problem and energy error estimate

The construction of the global space, norm, and interpolator is done by patching the
corresponding local objects. We therefore define

Uk ,`
h
B

{
vh = ((vT )T ∈Th , (vF )F ∈Fh ) : vF ∈ Pk(F) ∀F ∈ Fh,

vT ∈ P`(T) if ` ≥ 0, vT =
1
|T |d

∑
F ∈FT

ωTF |F |d−1vF if ` = −1 ∀T ∈ Th
}
,

(5.35)
that we endow with the seminorm ‖·‖1,h still formally defined by (2.35), and Ik ,`

h
:

W1,1(Ω) → Uk ,`
h

such that, for v ∈ W1,1(Ω),

Ik ,`
h

v B ((vT )T ∈Th , (π0,k
F v)F ∈Fh ) with, for all T ∈ Th ,

vT B

{
π0,`
T v if ` ≥ 0,
1
|T |d

∑
F ∈FT ωTF |F |d−1π

0,k
F v if ` = −1.

(5.36)

The subspace of Uk ,`
h

with strongly enforced homogeneous Dirichlet boundary con-
ditions is

Uk ,`
h,0 B

{
vh ∈ Uk ,`

h
: vF = 0 ∀F ∈ F b

h

}
, (5.37)

and we notice that Ik ,`
h

maps functions in W1,1
0 (Ω) on vectors of discrete unknowns

in Uk ,`
h,0.

Finally, for vh ∈ Uk ,`
h

, we define vh ∈ L2(Ω) as in (2.33), that is:

(vh) |T = vT ∀T ∈ Th . (5.38)

Using these definitions, the HHO scheme for the Poisson problem (2.1) reads:
Find uh ∈ Uk ,`

h,0 such that

ah(uh, vh) = ( f , vh) ∀vh ∈ Uk ,`
h,0, (5.39a)
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where the global bilinear form ah : Uk ,`
h
× Uk ,`

h
→ R is classically obtained by

assembling local contributions:

ah(uh, vh) B
∑
T ∈Th

aT (uT , vT ) with, for all T ∈ Th , aT given by (5.28). (5.39b)

To differentiate it from the standard HHO scheme based on the same polynomial
degrees in the elements and on the faces, we will call this scheme the HHO(k, `)
scheme.

Owing to Assumption 5.9, the commutation property (5.27), the approximation
properties (1.78)–(1.79) of π1,k+1

T or (5.17)–(5.18) of π̃1,1
T , and the consistency prop-

erty (5.34) of sT , we can reproduce the proof of Lemma 2.18 to see that the bilinear
form ah defined by (5.39b) satisfies similar stability, boundedness, and consistency
properties as the bilinear form ah considered in Section 2.2.3, with obvious substi-
tutions of space and interpolator. In particular, the following consistency property
holds: For r ∈ {0, . . . , k} and w ∈ H1

0 (Ω) ∩ Hr+2(Th) such that ∆w ∈ L2(Ω),

sup
vh ∈Uk ,`

h ,0 , ‖vh ‖a,h=1
|Eh(w; vh)| . hr+1 |w |Hr+2(Th ), (5.40)

where the hidden constant does not depend on w or h, and we have set

‖vh ‖a,h B ah(vh, vh)
1
2 . (5.41)

As a consequence, using the Lax–Milgram Lemma 2.20 and following the same
arguments as in the proof of Theorem 2.27, we obtain the following well-posedness
and error estimate result for (5.39).

Theorem 5.12 (Well-posedness and discrete energy error estimate, k , `).
Let (Mh)h∈H denote a regular mesh sequence in the sense of Definition 1.9.
Let polynomial degrees k ≥ 0 and ` ∈ {k−1, k, k+1} be fixed and assume that,
for all h ∈ H , the stabilisation bilinear forms sT , T ∈ Th , satisfy Assumption
5.9. Then, for all h ∈ H , the discrete problem (5.39) has a unique solution uh .

Moreover, if the solution u ∈ H1
0 (Ω) to the weak formulation (2.2) of

the Poisson problem enjoys the additional regularity u ∈ Hr+2(Th) for some
r ∈ {0, . . . , k}, then

‖uh − Ik ,`
h

u‖a,h . hr+1 |u|Hr+2(Th ), (5.42)

where the hidden constant is independent of both h and u.

A few remarks are in order before proceeding.
Remark 5.13 (Choice of `). Different considerations can drive the choice of the
polynomial degree `. For simple diffusion problems such as the one considered in
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this section, the choice ` = k − 1 leads to a reduction in the number of element-
based unknowns, but requires a separate treatment for the case k = 0; moreover, in
this case, problem (5.39) no longer admits a flux reformulation (see Remark 5.14).
Additionally, the case (k, `) = (1,0) fails to deliver the usual superconvergence in
L2-norm; see Remark 5.17 below. The choice ` = k, on the other hand, permits a
unified implementation including the case k = 0 and leads to L2-superconvergence
for any k ≥ 0. The choice ` = k + 1 is sometimes necessary when more complex
problems are considered; see, e.g., [107, Remark 6] concerning the Cahn–Hilliard
equation.

It is worth emphasising that the number of element-based unknowns has in fact
a minor impact on the overall computational cost when static condensation is used
(see Section B.3.2 in Appendix B). As a matter of fact, the global matrix after static
condensation (see (B.13b)) only contains face-based unknowns, and therefore has the
same size irrespective of the value of `. Similarly, the size of the local matrix to invert
in order to compute the local reconstruction operator (see (B.7)) does not depend
on `. The computation of the local reconstruction operator typically represents the
larger cost in local computations.

Remark 5.14 (Flux formulation). In a similar way as in Lemma 2.11, it can be seen,
using (S3), that the bilinear stabilisation forms (sT )T ∈Th depend on their arguments
only through the difference operators (5.31). In the case ` ≥ 0, a reformulation of
problem (5.39) in terms of numerical fluxes similar to the one in Lemma 2.25 can
then be proved. The only difference is that the operator ∆k

∂T defined by (2.56) has to
be replaced with ∆k ,`

∂T
: Uk ,`

T → Dk
∂T

such that, for all vT ∈ Uk ,`
T ,

∆
k ,`
∂T

vT = (∆k ,`
TFvT )F ∈FT B

(
π0,k
F

(
vF − (vT ) |F

) )
F ∈FT

.

For (k, `) = (0,−1), no flux reformulation can be obtained. The bilinear form ah can
still be recast as (2.51), but the term vT inside cannot be chosen independently of
the boundary values (vF )F ∈FT (see the definition (5.1b) of U0,−1

T ), and the proof of
Lemma 2.21 therefore cannot be reproduced.

Remark 5.15 (Energy error estimate for the reconstruction). Using Theorems 5.12
and 1.48 (if ` ≥ 0) or 5.7 (if ` = −1), and following the proof of Theorem 2.28,
one can see that the HHO(k, `) scheme (5.39) satisfies the estimate (2.64) with pk+1

h

replaced by p̃k+1
h

defined by: For all vh ∈ Uk ,`
h

,

(p̃k+1
h vh) |T = p̃k+1

T vT T ∈ Th . (5.43)

5.1.6 Link with Hybridisable Discontinuous Galerkin methods

It was shown in [117] that the choice ` = k+1 is linked toHybridisableDiscontinuous
Galerkinmethods. As pointed out in Remark 2.9, the original version of Hybridisable
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Discontinuous Galerkin methods may display reduced convergence orders in some
circumstances. A possible improvement, proposed in [228, Remark 1.2.4] and anal-
ysed in [249], consists in using the local bilinear form ahdg

T : Uk ,k+1
T ×Uk ,k+1

T → R
such that

ahdg
T (uT , vT ) B (Gk

TuT ,G
k
T vT )T + shdg

T (uT , vT ),
where Gk

T : Uk ,k+1
T → Pk(T)d is formally defined as in (4.37) but with Uk

T replaced
by Uk ,k+1

T , while the stabilisation bilinear form shdg
T : Uk ,k+1

T ×Uk ,k+1
T → R is such

that, possibly up to a strictly positive coefficient,

shdg
T (uT , vT ) B

∑
F ∈FT

h−1
F (π0,k

F (uT − uF ), π0,k
F (vT − vF ))F . (5.44)

This stabilisation can be expressed in terms of the difference operators defined
by (5.31) by observing that, for all vT ∈ Uk ,k+1

T and all F ∈ FT , δ̃k+1
T vT =

π0,k+1
T (pk+1

T vT − vT ) = pk+1
T vT − vT , so that

π0,k
F (vT − vF ) = π0,k

F

(
pk+1
T vT − vF − (pk+1

T vT − vT )
)
= π0,k

F (δ̃kTFvT − δ̃k+1
T vT )

and

shdg
T (uT , vT ) B

∑
F ∈FT

h−1
F (π0,k

F (δ̃kTFuT − δ̃k+1
T uT ), π0,k

F (δ̃kTFvT − δ̃k+1
T vT ))F . (5.45)

Comparing with (5.32) written for ` = k + 1, the difference is the presence of the
projector π0,k

F in front of (δ̃kTF − δ̃k+1
T ).

Let us briefly show that this alternative stabilisation form satisfiesAssumption 5.9.
Given the polynomial consistency of the difference operators δ̃k+1

T and (δ̃kTF )F ∈FT ,
it is clear that shdg

T satisfies (S1) and (S3). To show the stability property (S2), we
first notice that, by the formula (5.45) and the L2-boundedness property (1.77) of
π0,k
F , we have shdg

T (vT , vT ) ≤ sT (vT , vT ) with sT defined by (5.32). Together with
Proposition 5.10, this proves the upper bound in (5.29). To establish the lower bound,
notice that ∑

F ∈FT
h−1
F ‖π0,k

F vT − vT ‖2F =
∑
F ∈FT

h−1
F ‖π0,k

F vT − π0,k+1
T vT ‖2F

= |Ik ,k+1
T vT |21,∂T . ‖∇vT ‖2T ,

where the last inequality follows from the boundedness property (5.7) of the inter-
polator Ik ,k+1

T applied to v = vT . A triangle inequality and the definition (5.44) of
shdg
T then show that
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|vT |21,∂T .
∑
F ∈FT

h−1
F ‖vF − π0,k

F vT ‖2F +
∑
F ∈FT

h−1
F ‖π0,k

F vT − vT ‖2F

.
∑
F ∈FT

h−1
F ‖π0,k

F (vF − vT )‖2F + ‖∇vT ‖2T

= shdg
T (vT , vT ) + ‖∇vT ‖2T ,

and the lower bound in (5.29) follows using similar arguments as in the proofs of
Propositions 5.10 and 2.13.

5.1.7 L2-error analysis

We present here improved error estimates in L2-norm, under the standard elliptic
regularity property (2.69) for the dual problem (which is actually nothing but the
Poisson problem).

Theorem 5.16 (L2-error estimate). Let (Mh)h∈H denote a regular mesh se-
quence in the sense of Definition 1.9. Let polynomial degrees k ≥ 0 and
` ∈ {k − 1, k, k + 1} be fixed. Let u ∈ H1

0 (Ω) denote the unique solution of
(2.2), for which we assume the additional regularity u ∈ Hr+2(Th) for some
r ∈ {0, . . . , k}. For all h ∈ H , let uh ∈ Uk ,`

h,0 denote the unique solution
to (5.39) with stabilisation bilinear forms sT , T ∈ Th , in (5.28) satisfying
Assumption 5.9. We further assume elliptic regularity and that

• if (k, `) = (0,0), f ∈ H1(Th),
• if (k, `) = (0,−1), f ∈ H1(Th) and, for all T ∈ Th , the weights (ωTF )F ∈FT
satisfy the improved quadrature rule (5.5).

Then, recalling the definition (5.43) of p̃k+1
h

,

‖p̃k+1
h uh − u‖ .

{
h2‖ f ‖H1(Th ) if k = 0 and ` ≤ 0,
hr+2 |u|Hr+2(Th ) if ` ≥ 1,

(5.46)

with hidden constant independent of both h and u.

Remark 5.17 (The case (k, `) = (1,0)). The case (k, `) = (1,0) is not covered by
(5.46). Actually, for this choice of polynomial degrees, numerical tests presented
in Section 5.1.8 show that, on some mesh families, the rate of convergence in L2-
norm is not better than the O(h2) rate obtained in energy norm (see (5.42) with
r = k = 1). A possible way to recover an improved L2-convergence would be
to change, in the scheme (5.39), the discretisation of the source term into ( f , p̃1

h
vh)

(where p̃1
h
has formally the same definition, but its domain is changed intoU1,0

h
). This,
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however, leads to a method that is more complex to implement, and for which the
flux formulation mentioned in Remark 5.14 is no longer valid, see Remark 2.22 (on
this problematic of loosing the flux formulation when a higher-order reconstruction
is used in the source term, see also [178, Section A.3.2] in the context of Hybrid
Mimetic Mixed methods – which contain the case (k, `) = (0,0) of HHO methods,
as shown in Section 5.3 below). If an L2-superconvergence is required, a better
choice for k = 1 is to simply take ` = 1; as explained in Remark 5.13, the added
computational cost corresponding to choosing ` = 1 instead of ` = 0 is minimal
owing to the possibility of statically condensing the system to locally eliminate the
element unknowns.

Proof. As in the case k = ` covered in Section 2.3.3, the estimate (5.46) is a
consequence of the following superconvergence result for element unknowns (see
Lemma 2.33): Letting ûh B Ik ,`

h
u and defining ûh via (5.38),

‖uh − ûh ‖ .
{

h2‖ f ‖H1(Th ) if k = 0 and ` ≤ 0,
hr+2 |u|Hr+2(Th ) if ` ≥ 1.

(5.47)

The proof of this estimate follows the lines of the proof of Lemma 2.33. We sketch
here the ideas, focusing on the arguments that require a specific adaptation in the
case ` , k.

An estimate analogous to (2.75) for ‖uh − ûh ‖ is obtained applying the Aubin–
Nitsche Lemma A.10 to U = H1

0 (Ω), a(u, v) = (∇u,∇v), l(v) = ( f , v), Uh = Uk ,`
h,0,‖·‖Uh = ‖·‖a,h defined by (5.41), ah = ah defined by (5.39b), lh(vh) = ( f , vh) and

Ihu = Ik ,`
h

u, L = L2(Ω) and rh : Uk ,`
h,0 → L2(Ω) defined by rhvh = vh . Specifically,

we have that

‖uh − ûh ‖ ≤ ‖uh − Ik ,`
h

u‖a,h sup
g∈L2(Ω), ‖g ‖ ≤1

‖Eh(zg; ·)‖a,h,?︸                                                      ︷︷                                                      ︸
T1

+ sup
g∈L2(Ω), ‖g ‖ ≤1

|Eh(u; Ik ,`
h

zg)|︸                               ︷︷                               ︸
T2

,
(5.48)

where the consistency error is still formally defined by (2.43). We now estimate the
terms T1 and T2 in the right-hand side of (5.48).

(i) Estimate of T1. This term is estimated exactly as in the proof of Lemma 2.33,
using the symmetry of the problem and applying the consistency property (5.40) to
r = 0 and w = zg.

(ii) Estimate of T2. We separate the cases k ≥ 1 and k = 0.
(ii.A) Case k ≥ 1 and ` ≥ 1. We still have (2.77), with Ik ,`

h
instead of Ik

h
, that is
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|Eh(u; Ik ,`
h

zg)| . hr+1 |u|Hr+2(Th )


( ∑
T ∈Th

|Ik ,`
h

zg |21,∂T
) 1

2

+ |Ik ,`
h

zg |s,h
 .

The term |Ik ,`
h

zg |s,h is estimated as in the proof of Lemma 2.33, using the consistency
property (5.34) of the stabilisation bilinear form with v = zg and r = 0. To estimate
the boundary terms |Ik ,`

h
zg |21,∂T , we insert ±π0,1

T zg and use the triangle inequality to
write

|Ik ,`T zg |21,∂T =
∑
F ∈FT

h−1
F ‖π0,k

F zg − π0,`
T zg‖2F

≤ 2
∑
F ∈FT

h−1
F ‖π0,k

F zg − π0,1
T zg‖2F + 2

∑
F ∈FT

h−1
F ‖π0,1

T zg − π0,`
T zg‖2F

= 2T∂T ,a + 2T∂T ,b . (5.49)

The term T∂T ,a is estimated using the same arguments as for (2.78): polynomial
invariance of π0,k

F (recall that k ≥ 1 here), L2(F)-boundedness of this projector, and
trace approximation property (1.75) with (l, p,m, s) = (1,2,0,2):

T∂T ,a =
∑
F ∈FT

h−1
F ‖π0,k

F (zg − π0,1
T zg)‖2F ≤

∑
F ∈FT

h−1
F ‖zg − π0,1

T zg‖2F . h2
T |zg |2H2(T ).

To estimate T∂T ,b , we write

T∂T ,b .
∑
F ∈FT

h−1
F h−1

T ‖π0,1
T zg − π0,`

T zg‖2T

. h−2
T ‖π0,`

T (π0,1
T zg − zg)‖2T

. h−2
T ‖π0,1

T zg − zg‖2T . h2
T |zg |2H2(T ),

where we have used the discrete trace inequality (1.55) with p = 2 in the first line,
followed by the estimate hT . hF (see (1.6)) and the bound (1.5) on card(FT )
together with the linearity and polynomial invariance of π0,`

T (recall that ` ≥ 1) to
pass to the second line, and the L2(T)-boundedness of this projector together with
the approximation property (1.74) of the L2-orthogonal projector with X = T and
(l, p,m, s) = (1,2,0,2) to conclude.

Plugging the above bounds into (5.49) shows that |Ik ,`T zg |21,∂T satisfies the estimate
(2.78) and thus, as in the proof of Lemma 2.33, that T2 . hr+2 |u|Hr+2(Th ).

(ii.B) Case k = 0. Letting z
h
= I0,`

h
zg, the relation (2.79) holds with I0

h
replaced

by I0,`
h

, π0,0
T zg replaced by zT and, if ` = −1, π1,1

T zg replaced with π̃1,1
T zg (due to

(5.27b)), that is:

Eh(u; I0,`
h

zg) =
∑
T ∈Th
( f , zT )T −

∑
T ∈Th
(∇π̂1,1

T u,∇π̂1,1
T zg)T − sh(I0,`

h
u, I0,`

h
zg), (5.50)
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where π̂1,1
T = π1,1

T if ` ≥ 0 and π̂1,1
T = π̃1,1

T if ` = −1. The case k = ` = 0 is covered
in Lemma 2.33, so it remains to consider the cases ` = 1 and ` = −1.
(ii.B.1) Case k = 0 and ` = 1. We have∑

T ∈Th
( f , zT )T =

∑
T ∈Th
( f , π0,1

T zg)T =
∑
T ∈Th
( f , π0,1

T zg − zg)T︸                     ︷︷                     ︸
T2,1

+( f , zg). (5.51)

By Cauchy–Schwarz inequalities and the approximation property (1.74) of the local
polynomial projector with l = 1, p = 2, m = 0 and s = 2, we have

|T2,1 | ≤
∑
T ∈Th

h2
T ‖ f ‖T |zg |H2(T ) . h2‖ f ‖‖g‖, (5.52)

the conclusion following from a Cauchy–Schwarz inequality on the sum together
with the elliptic regularity assumption (2.69). Plugging (5.51) and (5.52) into (5.50)
and using ( f , zg) = (∇u,∇zg) leads to

|Eh(u; I0,1
h

zg)| .
∑
T ∈Th

���(∇u,∇zg)T − (∇π1,1
T u,∇π1,1

T zg)T
��� + |sh(I0,1

h
u, I0,1

h
zg)|

+ h2‖ f ‖‖g‖.

The first two terms in this right-hand side can be manipulated as in Point (ii.B) of
the proof of Lemma 2.33 (see (2.81) and (2.82)), leading to

|Eh(u; I0,1
h

zg)| . h2 |u|H2(Th ) |zg |H2(Th ) + h2‖ f ‖‖g‖ . h2 |u|H2(Th )‖g‖,

which is the estimate required to conclude.
(ii.B.2) Case k = 0 and ` = −1. We write∑

T ∈Th
( f , zT )T =

∑
T ∈Th
( f , π0,0

T zg)T +
∑
T ∈Th
( f , zT − π0,0

T zg)T︸                     ︷︷                     ︸
T′2,1

.

The first addend in the right-hand side is then manipulated as in (2.80), which leads
to

|Eh(u; I0,−1
h

zg)| . h2‖ f ‖H1(Th )‖g‖ + |T′2,1 |. (5.53)

To estimate T′2,1, we use the assumption (5.5) on the weights. This assumption and
the definition (5.6b) of zT for z

h
= I0,−1

h
zg show that, if zg is polynomial of degree 1

in an elementT , then zT = π
0,0
T zg and the contribution ofT inT′2,1 is zero. Estimating

T′2,1 thus consists in approximating, in each element T ∈ Th , zg by an element of
P1(T).

Fix T ∈ Th and let iT : H1(T) → P0(T) be the interpolator defined by the first
component of I0,−1

T , that is: For w ∈ H1(T),
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iTw B
1
|T |d

∑
F ∈FT

ωTF |F |d−1π
0,0
F w.

We have

‖iT (zg − π0,1
T zg)‖T = |T |

1
2
d
|iT (zg − π0,1

T zg)|
≤ |T |−

1
2

d

∑
F ∈FT

ωTF |F |d−1 |π0,0
F (zg − π0,1

T zg)|

= |T |−
1
2

d

∑
F ∈FT

ωTF |F |
1
2
d−1‖π0,0

F (zg − π0,1
T zg)‖F ,

where we have used the fact that iT (zg − π0,1
T zg) is constant in the first line, and we

have applied the definitions of iT and ‖·‖F in the second and third line, respectively.
Invoking then the L2(F)-boundedness of π0,0

F and the trace approximation property
(1.75) of π0,1

T with p = 2, m = 0 and s = 2, we continue with

‖iT (zg − π0,1
T zg)‖T . |T |−

1
2

d

∑
F ∈FT

ωTF |F |
1
2
d−1h

3
2
T |zg |H2(T ) . h2

T |zg |H2(T ), (5.54)

the second inequality following from the estimate (5.4) on ωTF together with the
mesh regularity assumption that ensures card(FT ) . 1 and |F |d−1hT . |T |d (by
(1.5)–(1.8)).

Inserting iT (π0,1
T zg) − π0,0

T (π0,1
T zg) = 0 (by (5.5)), we can then write

|T′2,1 | ≤
∑
T ∈Th

‖ f ‖T ‖iT (zg − π0,1
T zg) − π0,0

T (zg − π0,1
T zg)‖T

≤
∑
T ∈Th

‖ f ‖T h2
T |zg |H2(T ),

the first line following from a Cauchy–Schwarz inequality, and the conclusion being
obtained invoking a triangle inequality, (5.54), and the L2(T)-boundedness of π0,0

T to-
gether with the approximation property (1.74) with X = T and (l, p,m, s) = (1,2,0,2)
to write

‖π0,0
T (zg − π0,1

T zg)‖T ≤ ‖zg − π0,1
T zg‖T . h2

T |zg |H2(T ).

Using a Cauchy–Schwarz inequality on the sum over T ∈ Th and the elliptic regu-
larity, we infer the bound

|T′2,1 | . h2‖ f ‖|zg |H2(Th ) . h2‖ f ‖‖g‖

which, plugged into (5.53), yields the estimate of Eh(u; I0,−1
h

zg) required to conclude
the proof. ut
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5.1.8 Numerical tests

We provide here numerical illustrations of the energy and L2-error estimates for the
HHO(k,`) scheme (5.39) contained in Theorems 5.12 and 5.16.

5.1.8.1 Two-dimensional test case

The computational domain is Ω = (0,1)2 and the exact solution is

u(x1, x2) = sin(πx1) sin(πx2).

The source term is therefore f (x1, x2) = 2π2 sin(πx1) sin(πx2). We run the simula-
tions for k ∈ {0,1,2} and ` ∈ {k − 1, k, k + 1} on two families of predominantly
hexagonal and locally refined Cartesian meshes; see Fig. 5.2 for representatives of
these families. Letting ûh = Ik ,`

h
u be the interpolate of the exact solution, we display

the errors measured in the energy norm ‖uh − ûh ‖1,h (which satisfies the estimate
(5.42) since it is uniformly equivalent to ‖·‖a,h owing to (2.41)), and in the L2-norm
‖uh − ûh ‖ (which satisfies (5.47)).

Fig. 5.2: Examples of meshes for the tests of Section 5.1.8.1: hexagonal mesh (left);
locally refined Cartesian mesh (right).

The results on the family of hexagonal meshes, presented in Fig. 5.3, confirm the
theoretical O(hk+1) convergence in energy norm, and the O(hk+2) superconvergence
in L2-norm, except in the case (k, `) = (1,0). As noticed in Remark 5.17, the choice
(k, `) = (1,0) is not covered by Theorem 5.16, and the results here show that the rate
of convergence in L2-norm in this case is not better than the O(h2) rate in energy
norm.
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Energy error, ` = k − 1 Energy error, ` = k Energy error, ` = k + 1
L2-error, ` = k − 1 L2-error, ` = k L2-error, ` = k + 1
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Fig. 5.3: Errors vs. h for the 2D test case in Section 5.1.8.1, hexagonal meshes.
Energy error refers to ‖uh − ûh ‖1,h , L2-error refers to ‖uh − ûh ‖, where ûh = Ik ,`

h
u.

Similar conclusions can be drawn from the tests on the locally refined Cartesian
meshes, see Fig. 5.4. We however notice, on these meshes, an unexpected supercon-
vergence in energy norm in the case (k, `) = (0,−1). This phenomenon is strongly
related to the particular mesh we consider here, and does not occur on less structured
meshes as seen in Fig. 5.3.

On both families of meshes, we also notice that increasing ` does not necessarily
lead to better errors – the effect of the choice of ` is minimal, and varies with the
mesh and polynomial degree k. In passing, when comparing the displayed error
measures, one should keep in mind that they have an intrinsic dependence on ` via
the use of the interpolator Ik ,`

h
.
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Energy error, ` = k − 1 Energy error, ` = k Energy error, ` = k + 1
L2-error, ` = k − 1 L2-error, ` = k L2-error, ` = k + 1
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(c) k = 2

Fig. 5.4: Errors vs. h for the 2D test case in Section 5.1.8.1, locally refined Cartesian
meshes. Energy error refers to ‖uh − ûh ‖1,h , L2-error refers to ‖uh − ûh ‖, where
ûh = Ik ,`

h
u.

5.1.8.2 Three-dimensional test case

The 3D computational domain is the unit cube Ω = (0,1)3, and the exact solution is

u(x1, x2, x3) = sin(πx1) sin(πx2) sin(πx3),

corresponding to the source term f (x1, x2, x3) = 3π2 sin(πx1) sin(πx2) sin(πx3). Two
families of meshes are considered: a family of matching simplicial meshes, and a
family of Voronoi meshes; one example for each family is presented in Fig. 5.5.

Figs. 5.6 and 5.7 present the convergence graphs for polynomial degrees k ∈
{0,1,2} and ` ∈ {k − 1, k, k + 1}. As in the 2D cases, we display the errors measured
in the energy norm ‖uh − ûh ‖1,h and in L2-norm ‖uh − ûh ‖, with ûh = Ik ,`

h
u.
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Fig. 5.5: Examples of meshes for the tests of Section 5.1.8: matching simplicial mesh
(left); Voronoi mesh (right).

The results corresponding to the simplicial meshes, collected in Fig. 5.6, clearly
show that the convergence in energy norm is in O(hk+1) for all three choices of `.
Likewise, except in the case (k, `) = (1,0), a superconvergence in O(hk+2) can be
observed in the L2-norm, independently of `.

The results on Voronoi meshes, collected in Fig. 5.7, show the same trend,
including the loss of superconvergence in the case (k, `) = (1,0). Some rates of
convergence are however sub-optimal. For example, for (k, `) = (1,1), the average
slope of the energy error is 1.66 (compared to an expected slope of 2); for (k, `) =
(2,2), the average rate of convergence of the L2 error is 3.53 (for an expected rate of
4), and the average rate of the energy error is 2.57 (for an expected 3). In all the tests,
though, the rates of convergence between the last two members of the mesh family
get closer to the theoretical rates. The reason for these losses of optimal convergence
is to be found in the regularity of the meshes. We present in Table 5.1 the values of
the following mesh regularity parameter:

%̃h = max
T ∈Th

[
hT
|T |1/33

, max
F ∈FT

(
hT
hF
,

hF
|F |1/22

)]
.

This factor measures similar mesh regularity properties as % in Definition 1.9, but is
more practical to compute. The table shows that the considered Voronoi mesh family
does not form a very regular mesh sequence. It is however interesting to notice that,
despite the dramatic loss of regularity with refinement for these meshes, the HHO
method still performs relatively well, with only a small reduction of the expected
rates of convergence.
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Mesh number Regularity parameter %̃h
1 107
2 377
3 1.7E+3
4 2.6E+5
5 1.8E+4

Table 5.1: Mesh regularity parameter for the 3D Voronoi family of meshes used in
Section 5.1.8.2.

Energy error, ` = k − 1 Energy error, ` = k Energy error, ` = k + 1
L2-error, ` = k − 1 L2-error, ` = k L2-error, ` = k + 1
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(c) k = 2

Fig. 5.6: Errors vs. h for the 3D test case in Section 5.1.8.2, simplicial meshes.
Energy error refers to ‖uh − ûh ‖1,h , L2-error refers to ‖uh − ûh ‖, where ûh = Ik ,`

h
u.
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Energy error, ` = k − 1 Energy error, ` = k Energy error, ` = k + 1
L2-error, ` = k − 1 L2-error, ` = k L2-error, ` = k + 1
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Fig. 5.7: Errors vs. h for the 3D test case in Section 5.1.8.2, Voronoi meshes. Energy
error refers to ‖uh − ûh ‖1,h , L2-error refers to ‖uh − ûh ‖, where ûh = Ik ,`

h
u.

5.2 Nonconforming P1 Finite Element

We show here that the HHO(0,−1)method of Section 5.1 is, on matching simplicial
meshes, strongly related to the nonconforming P1 Finite Element method.

5.2.1 Presentation of the nonconforming P1 Finite Element

LetMh be a matching simplicial mesh in the sense of Definition 1.7. The space of
nonconforming P1 Finite Element functions, with homogeneous Dirichlet boundary
conditions, is the space of piecewise linear functions on Th whose averages on the
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faces are continuous across the interfaces and vanish on the boundary faces. In other
words, recalling the definition (1.22) of the jumps across interfaces, and setting
[w]F B (w |T )F whenever F ∈ F b

h
with TF = {T}, this space is

Vnc
h,0 B

{
w ∈ P1(Th) : π0,0

F [w]F = 0 ∀F ∈ Fh
}
.

Remark 5.18 (Alternative continuity condition). For polynomials of degree 1, the
average over a face is equal to the value at the centre of mass of the face. The
continuity conditions on a nonconforming P1 Finite Element functionw can therefore
be equivalently stated as: w is continuous at the centre of mass of each interface, and
vanishes at the centre of mass of each boundary face.

The nonconforming P1 Finite Element scheme for the Poisson problem (2.1)
reads:

Find Uh ∈ Vnc
h,0 such that, for all wh ∈ Vnc

h,0,
∫
Ω

∇hUh ·∇hwh =

∫
Ω

f wh, (5.55)

where ∇h is the standard broken gradient (1.21).

5.2.2 Properties of the low-order potential reconstruction on
simplices

To establish a link between the nonconforming P1 Finite Element scheme and the
HHO(0,−1) scheme for the Poisson problem, we first identify properties of the
low-order potential reconstruction, specific to simplicial elements and meshes.

Lemma 5.19 (Potential reconstruction on a simplex). Let T be a simplex. For all
vT ∈ U0,−1

T , p̃1
T vT defined by (5.26) for (k, `) = (0,−1) is the unique element in P1(T)

that satisfies
π0,0
F (p̃1

T vT ) = vF ∀F ∈ FT . (5.56)

Proof. Let vT ∈ U0,−1
T and let us first establish the existence of qvT ∈ P1(T) that

satisfies (5.56). Let (x0, . . . , xd) be the centres of mass of the faces (F0, . . . ,Fd) of
the simplex T . These centres of mass do not lie on the same hyperplane so, setting
zi B xi − x0 for all i ∈ {1, . . . , d}, it holds

D B det(z1, . . . , zd) , 0.

We can then define

qvT (x) B vF0 +

d∑
i=1
(vFi − vF0 )

det(z1, . . . , zi−1, x − x0, zi+1, . . . , zd)
D

.
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The linearity of the determinant with respect to each of its columns show that qvT
is affine, that is, belongs to P1(T). Moreover, for any j ∈ {1, . . . , d}, if x = x j then
x − x0 = z j and all the determinants above except for j = i vanish, since two of their
columns are equal. The determinant corresponding to j = i is equal to D, which
shows that qvT (x j) = vF0 + vFj − vF0 = vFj . We also obviously have qvT (x0) = vF0 .
Hence, qvT ∈ P1(T) takes, for any F ∈ FT , the value vF at the centre of mass of F.
By Remark 5.18, we infer that π0,0

F qvT = vF for all F ∈ FT .
Let us now prove that p̃1

T vT has the same property. Applying the definition (5.26a)
we have, for any w ∈ P1(T), since ∆w = 0 and π0,0

F qvT = vF for all F ∈ FT ,

(∇p̃1
T vT ,∇w)T =

∑
F ∈FT
(vF ,∇w·nTF )F

=
∑
F ∈FT
(π0,0

F qvT ,∇w·nTF )F

=
∑
F ∈FT
(qvT ,∇w·nTF )F = (∇qvT ,∇w)T ,

where the removal of the L2(F)-projectors in the third line is justified since
∇w·nTF ∈ P0(F) for all F ∈ FT , and the conclusion follows integrating by parts.
Since this relation holds for all w ∈ P1(T), we infer that ∇p̃1

T vT = ∇qvT and thus
p̃1
T vT = qvT + C for some constant C. Hence, for all F ∈ FT ,

(p̃1
T vT ,1)F = (qvT + C,1)F = (π0,0

F qvT + C,1)F = (vF + C,1)F ,

the introduction of the projector being valid since 1 ∈ P0(F). Plugging this relation
into the closure equation (5.26d) and using the assumption (5.2b) on the weights
yields

0 =
∑
F ∈FT

ωTF (C,1)F = (C,1)T ,

which proves that C = 0. Hence, p̃1
T vT = qvT and p̃1

T vT satisfies (5.56).

It remains to show that there can only be one element of P1(T) that satisfies this
property. By linearity, it suffices to show that if r ∈ P1(T) satisfies π0,0

F r = 0 for all
F ∈ FT , then r = 0. Integrating by parts and introducing the projectors, we have, by
the same arguments as above,

(∇r,∇r)T =
∑
F ∈FT
(r,∇r ·nTF )F =

∑
F ∈FT
(π0,0

F r,∇r ·nTF )F = 0.

Hence, r is a constant polynomial and, picking an arbitrary face F ∈ FT , we have
r = π0,0

F r = 0, which concludes the proof. ut
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Let us recall that the patched potential reconstruction p̃1
h

: U0,−1
h
→ P1(Th) is

defined by: For all vh ∈ U0,−1
h

,

(p̃1
hvh) |T B p̃1

T vT ∀T ∈ Th . (5.57)

Lemma 5.20 (Isomorphism between U0,−1
h,0 and Vnc

h,0). The patched potential re-
construction p̃1

h
is an isomorphism between U0,−1

h,0 and Vnc
h,0.

Proof. If vh ∈ U0,−1
h,0 then, by (5.56), for all F ∈ F i

h
with TF = {T1,T2} numbered

according to the definition (1.22) of the jump across F, we have

π0,0
F [p̃1

hvh]F = π0,0
F p̃1

T1
vT1
− π0,0

F p̃1
T2
vT2
= vF − vF = 0.

Similarly, if F ∈ F b
h
with TF = {T},

π0,0
F [p̃1

hvh]F = π0,0
F p̃1

T vT = vF = 0

by the boundary condition embedded in U0,−1
h,0 . Hence, p̃1

h
vh ∈ Vnc

h,0.
Let us show that p̃1

h
is one-to-one. If vh ∈ U0,−1

h,0 is such that p̃1
h
vh = 0 then, for

all F ∈ Fh , picking an element T ∈ TF , we have p̃1
T vT = 0 and thus, by (5.56),

0 = π0,0
F p̃1

T vT = vF .

Hence, all face values of vh vanish. By definition (5.1b) of U0,−1
T , we deduce that

all elements values of vh also vanish, and thus that vh = 0. This proves that p̃1
h
is

one-to-one.
It remains to prove that p̃1

h
is onto. Let w ∈ Vnc

h,0. By the continuity condition
embedded into Vnc

h,0, the quantity vF = π
0,0
F w is single-valued for any face F ∈ Fh ,

and vanishes for boundary faces. These values (vF )F ∈Fh define a vector vh ∈ U0,−1
h,0 ,

the element values being reconstructed from the face values. For T ∈ Th , by (5.56),
p̃1
T vT and w |T are two polynomials in P1(T) whose average value on each F ∈ FT
is equal to vF . Lemma 5.19 thus shows that p̃1

T vT = w |T . Since this is true for all
T ∈ Th , this proves that p̃1

h
vh = w, and thus that p̃1

h
is onto. ut

5.2.3 Link with HHO(0,−1)

The following theorem establishes a link between the HHO(0,−1) scheme and the
nonconforming P1 Finite Element scheme for the Poisson problem. Specifically, it
shows that these two schemes are equivalent, up to a modification of the source term.
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Theorem 5.21 (Link between the HHO(0,−1) scheme and the noncon-
forming P1 Finite Element scheme). LetMh be a matching simplicial mesh
as in Definition 1.7, and let us consider the following modification of the
HHO(0,−1) scheme (5.39), in which only the source term is changed: Find
uh ∈ U0,−1

h,0 such that

ah(uh, vh) = ( f , p̃1
hvh) ∀vh ∈ U0,−1

h,0 , (5.58)

with ah satisfying (5.39b).
Then, uh ∈ U0,−1

h,0 is the solution of (5.58) if and only if p̃1
h
uh defined by

(5.57) is the solution of the nonconforming P1 Finite Element scheme (5.55).

Proof. We first show that, if T is a simplicial element and (k, `) = (0,−1), any
local symmetric stabilisation form sT satisfying (S3) in Assumption 5.9 vanishes.
Following the proof of Lemma 2.11 it is easily established that sT depends on its
arguments only through the difference operators (5.31). It therefore suffices to see
that these difference operators are identically zero on U0,−1

h,0 . Since P−1(T) = {0} we
immediately have δ̃−1

T ≡ 0. Taking F ∈ FT , the relation (5.56) gives δ̃0
TFvT = 0 for

all vT ∈ U0,−1
T . This concludes the proof that sT ≡ 0.

On a matching simplicial mesh, the HHO(0,−1) scheme (5.58) therefore does not
have any stabilisation term and is written: Find uh ∈ U0,−1

h,0 such that∑
T ∈Th
(∇p̃1

TuT ,∇p̃1
T vT )T = ( f , p̃1

hvh) ∀vh ∈ U0,−1
h,0 .

Exploit the surjectivity property of p̃1
h
and set wh = p̃1

h
vh to recast this equation into

(∇h p̃1
huh,∇hwh)T = ( f ,wh) ∀wh ∈ Vnc

h,0.

This exactly states that p̃1
h
uh ∈ Vnc

h,0 is the solution to (5.55). ut

5.3 Hybrid Mimetic Mixed method

The Hybrid Mimetic Mixed (HMM) method is a family of schemes, introduced
in [175], that encompasses Hybrid Finite Volumes [188], low-order mixed/hybrid
Mimetic Finite Differences [86], and Mixed Finite Volumes [172]. We prove in this
section that, in most instances, the HMM method is equivalent to the lowest order
HHO method (with k = 0). In what follows, if X ⊂ Rn, we identify P0(X) with R so
that, in particular,
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U0
h =

{
vh = ((vT )T ∈Th , (vF )F ∈Fh ) : vT ∈ R ∀T ∈ Th and vF ∈ R ∀F ∈ Fh

}
.

5.3.1 The HMM method

LetMh = (Th,Fh) be a polytopal mesh as in Definition 1.4, and let (xT )T ∈Th be a
family of points such that each T is star-shaped with respect to xT . Let T be a mesh
element, and recall the definition (2.55) of the boundary space Dk

∂T
with k = 0, that

is to say
D0
∂T B

{
α∂T = (αTF )F ∈FT : αTF ∈ R ∀F ∈ FT

}
.

We define the operators ∇hmm
T : U0

T → Rd and d∂T = (dTF )F ∈FT : U0
T → D0

∂T
by:

For all vT ∈ U0
T ,

∇hmm
T vT B

1
|T |d

∑
F ∈FT

|F |d−1vFnTF (5.59)

and
dTFvT = vF − vT − ∇hmm

T vT ·(xF − xT ), (5.60)

where xF is the centre of mass of F.
An HMM scheme for the Poisson problem is built as follows. For each T ∈ Th ,

we take a symmetric positive definite form shmm
T on D0

∂T
, and we look for uh ∈ U0

h
such that∑

T ∈Th
|T |d∇hmm

T uT ·∇hmm
T vT +

∑
T ∈Th

shmm
T (d∂TuT ,d∂T vT ) =

∑
T ∈Th

∫
T

f vT ,

∀vh ∈ U0
h .

(5.61)

In the design and analysis of the HMM method, it is assumed that each element
T is star-shaped with respect to all points in a ball centred at xT and of radius
& hT , with hidden constant independent of h and T . Combined with the mesh
regularity assumptions in Definition 1.9, the coercivity and boundedness imposed
on the bilinear form shmm

T are then equivalent to: For all vT ∈ U0
T ,

‖∇hmm
T vT ‖2T + shmm

T (d∂T vT ,d∂T vT ) ' ‖vT ‖21,T , (5.62)

where the hidden constants are independent of h, T and vT , and ‖·‖1,T is defined by
(2.7).

5.3.2 Equivalence between HMM and HHO with k = 0

To establish this equivalence, let us first prove a lemma that relates the local HMM
operators to the HHO potential reconstruction and difference operators.
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Lemma 5.22 (Link between local HMM and HHO operators). Let T ∈ Th and
recall the definition (2.19) (with k = 0) of the difference operators δ0

T and (δ0
TF )F ∈FT .

Assume that xT is the centre of mass xT of T . Then, for all vT ∈ U0
T , it holds:

(i) ∇hmm
T vT = ∇p1

T vT ,
(ii) p1

T vT (x) = vT + ∇hmm
T vT ·(x − xT ) for all x ∈ T ,

(iii) δ0
T vT = 0 and δ0

TFvT = −dTFvT , for all F ∈ FT .

Proof. (i) Let ξ be an arbitrary vector in Rd and apply the definition (2.11a) of
∇p1

T vT with vT ∈ U0
T and w(x) = ξ ·x, so that ∇w = ξ . This gives

(∇p1
T vT , ξ)T =

∑
F ∈FT
(vF , ξ ·nTF )F .

All the functions in the L2-inner products on T and F are actually constant, and the
equation above can thus be written

|T |d∇p1
T vT ·ξ =

∑
F ∈FT

|F |d−1vFξ ·nTF =

( ∑
F ∈FT

|F |d−1vFnTF

)
·ξ = |T |d∇hmm

T vT ·ξ,

the conclusion coming from the definition (5.59) of ∇hmm
T . Simplifying by |T |d and

recalling that ξ is arbitrary in Rd , this shows that ∇p1
T vT = ∇

hmm
T vT and the proof is

complete.

(ii) Since ∇p1
T vT = ∇

hmm
T vT and p1

T vT ∈ P1(T), there exists a constant C such that,
for all x ∈ T ,

p1
T vT (x) = C + ∇hmm

T vT ·x. (5.63)

The closure equation (2.11b) on p1
T yields π0,0

T p1
T vT = π

0,0
T vT = vT and thus

vT = π
0,0
T (C + ∇hmm

T vT ·x) = C + ∇hmm
T vT ·xT ,

where the conclusion follows using the fact that xT is the centre of mass of T (that
is, xT = π0,0

T x). Hence, C = vT − ∇hmm
T vT ·xT . Plugged into (5.63) this shows that

p1
T vT (x) = vT + ∇hmm

T vT ·(x − xT ).
(iii) As noticed above, the closure equation (2.11b) gives π0,0

T p1
T vT = π

0,0
T vT = vT ,

which readily shows that δ0
T vT = 0. We now turn to δ0

TFvT . Using the result of Point
(ii) in the lemma, we have

δ0
TFvT = π

0,0
F (p1

T vT − vF )
= π0,0

F (vT + ∇hmm
T vT ·(x − xT ) − vF )

= vT + ∇hmm
T vT ·(xF − xT ) − vF = −dTFvT ,

where the third line follows from xT = xT and from the definition xF = π
0,0
F x of

the centre of mass of F. ut
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We can now establish the equivalence theorem between the HMM schemes for
the Poisson problem, and the lowest order HHO schemes for this model.

Theorem 5.23 (Equivalence between HMMandHHOwith k = 0). LetMh

be a polytopal mesh as in Definition 1.4, and assume that the points (xT )T ∈Th
are the centres of mass of the mesh elements. Then, the HMM scheme (5.61)
and the HHO scheme (2.48) with k = 0 are equivalent, in the sense that:

(i) for any choice of HMM stabilisation forms (shmm
T )T ∈Th , there is a choice

of HHO stabilisation forms (sT )T ∈Th such that (5.61) and (2.48) are the
same equations, and

(ii) for any choice of HHO stabilisation forms (sT )T ∈Th , there is a choice of
HMM stabilisation forms (shmm

T )T ∈Th such that (5.61) and (2.48) are the
same equations.

Proof. An inspection of the HHO scheme (2.48) (where ah is given by (2.39) with
each aT defined by (2.15)) and of the HMM scheme (5.61) shows that the result of
the theorem holds if we can prove that, for all T ∈ Th and all uT , vT ∈ U0

T ,

(∇p1
TuT ,∇p1

T vT )T + sT (uT , vT )
= |T |d∇hmm

T uT ·∇hmm
T vT + shmm

T (d∂TuT ,d∂T vT ). (5.64)

By Point (i) in Lemma 5.22 the first terms on each side are identical, and we therefore
only have to prove that for any choice of HMM stabilisation form shmm

T (resp. any
choice of HHO stabilisation form sT ), there is an HHO stabilisation form sT (resp.
an HMM stabilisation form shmm

T ) such that

sT (uT , vT ) = shmm
T (d∂TuT ,d∂T vT ). (5.65)

(i) From HMM to HHO. Let shmm
T be an HMM stabilisation form, and define sT by

(5.65). Then, sT clearly satisfies (S1) in Assumption 2.4. The property (S2) comes
straight from (5.62) since (5.65) ensures (5.64). Finally, (S3) is a consequence of
dTF = −δ0

TF (see Point (iii) in Lemma 5.22) and of the polynomial consistency
(2.21) of this difference operator.

(ii) From HHO to HMM. Take now a stabilisation form sT that satisfies Assumption
2.4. By Lemma 2.11, it only depends on its arguments through the difference oper-
ators (2.19) which means, owing to Point (iii) in Lemma 5.22, that it only depends
on its arguments through d∂T = (dTF )F ∈FT . Thus, there exists a bilinear form shmm

T

on D0
∂T

such that (5.65) holds. The property (S2) in Assumption 2.4 and (5.64)
(consequence of (5.65)) then show that shmm

T satisfies (5.62). ut
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Remark 5.24 (Limits of the equivalence between HMM and HHO). Although the
algebraic description of the HMM method does not require each element T to be
star-shaped with respect to xT , its analysis (e.g. in [175] or [174, Chapter 13]) is
always performed under this assumption, which is not imposed for the convergence
analysis of HHO schemes (see Definition 1.9). The HHO method with k = 0 can
thus be considered as an extension of the HMMmethod to meshes made of possibly
non-star-shaped elements.

On the other hand, the design and analysis of HMM does not require each xT ,
for T ∈ Th , to be the centre of mass of T . As a consequence of this relative freedom
of choice for the element point, on certain meshes the HMM family contains the
Two-Point Flux Approximation (TPFA) finite volume scheme [174, Section 13.3],
a historical and popular scheme in fluid mechanics; this inclusion of TPFA into
HMM enabled the proof of a superconvergence result for the TPFA method [178].
Additionally, the convergence analysis of HMM can be carried out, exploiting the
low order of the method, on sequences of meshes that are not regular in the sense of
Definition 1.9 (in particular because they have faces that are very small compared
to their neighbouring elements); see [174, Chapter 13] and also Remark 1.11 on
degenerate faces.

5.4 The Mixed High-Order method

In this section, we discuss the Mixed High-Order (MHO) method for the Poisson
problem originally introduced in [147] and we show that, after hybridisation and
local elimination of the flux variables, it coincides with the HHO scheme (2.48).
This link between MHO and HHO methods was first highlighted in [8]; see also
[58], where an equivalence between mixed and primal formulations is established
for a large set of related classical and new generation discretisation methods.

5.4.1 The Poisson problem in mixed formulation

Mixed methods for the Poisson problem use as a starting point a formulation where
the flux and the potential appear as separate unknowns. Specifically, a classical
mixed formulation of the homogeneous Dirichlet problem (2.1) consists in seeking
σ : Ω→ Rd and u : Ω→ R such that

σ + ∇u = 0 in Ω, (5.66a)
∇·σ = f in Ω. (5.66b)

Problem (5.66) admits a straightforward physical interpretation: equation (5.66b)
represents an infinitesimal balance of fluxes, while equation (5.66a) is the linear
constitutive law linking the potential and the flux. Defining the spaces
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Σ B H(div;Ω), U B L2(Ω),

a classical weak formulation of problem (5.66) reads: Find (σ,u) ∈ Σ ×U such that

m(σ,τ) + b(τ,u) = 0 ∀τ ∈ Σ, (5.67a)
−b(σ, v) = ( f , v) ∀v ∈ U, (5.67b)

where the bilinear forms m : Σ × Σ → R and b : Σ ×U → R are such that, for all
σ,τ ∈ Σ and all q ∈ U,

m(σ,τ) B (σ,τ), b(τ,q) B −(∇·τ,q). (5.68)

5.4.2 Local spaces of discrete unknowns

↑

↑

↑
↑

↑

↑

k = 0

↑↑

↑↑

↑↑
↑↑ ↑↑

↑↑

k = 1

••

↑↑↑

↑↑↑

↑↑
↑

↑↑
↑

↑↑↑

↑↑↑

k = 2

•••• •

Fig. 5.8: Discrete unknowns in Σk
T for k ∈ {0,1,2}.

Let a mesh element T ∈ Th be fixed and, for any integer l ≥ 0 set, for the sake of
brevity,

Gl
T B ∇Pl+1(T) ⊂ Pl(T)d .

We define the local space of discrete flux unknowns (see Fig. 5.8):

Σk
T B

{
τT = (τT , (τTF )F ∈FT ) : τT ∈ Gk−1

T and τTF ∈ Pk(F) ∀F ∈ FT
}
.

The corresponding interpolator IkΣ,T : H1(T)d → Σk
T is such that, for any

τ ∈ H1(T)d ,
IkΣ,Tτ B (πk−1

G,Tτ, (π0,k
F (τ·nTF ))F ∈FT ), (5.69)

where πk−1
G,T

denotes the L2-orthogonal projector on Gk−1
T such that

(πk−1
G,Tτ − τ,υ)T = 0 ∀υ ∈ Gk−1

T . (5.70)

We equip Σk
T with the following L2(T)d-like norm: For any τT ∈ Σk

T ,
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‖τT ‖Σ,T B
(
‖τT ‖2T +

∑
F ∈FT

hF ‖τTF ‖2F
) 1

2

. (5.71)

5.4.3 Local divergence and flux reconstructions

The MHO method hinges on local reconstructions of the divergence and of the
flux. The divergence reconstruction is inspired by the following integration by parts
formula in the spirit of Section 2.1.1: For all τ ∈ H1(T)d and all v ∈ C∞(T),

(∇·τ, v)T = −(τ,∇v)T +
∑
F ∈FT
(τ·nTF , v)F .

Specialising this formula to v ∈ Pk(T) and using the definition (1.57) of the L2-
orthogonal projectors on Pk(T) and Pk(F) along with the definition (5.70) of the
L2-orthogonal projector on Gk−1

T to insert them into the products, we get

(π0,k
T (∇·τ), v)T = −(πk−1

G,Tτ,∇v)T +
∑
F ∈FT
(π0,k

F (τ·nTF ), v)F .

Inspired by this formula, we define the local divergence operator Dk
T : Σk

T → Pk(T)
such that, for any τT ∈ Σk

T ,

(Dk
TτT , v)T = −(τT ,∇v)T +

∑
F ∈FT
(τTF , v)F ∀v ∈ Pk(T). (5.72)

Existence and uniqueness ofDk
TτT immediately follow from the Riesz representation

theorem in Pk(T) for the L2(T)-inner product. By construction we have, for all
τ ∈ H1(T)d ,

Dk
T I

k
Σ,Tτ = π

0,k
T (∇·τ). (5.73)

This commutation property is illustrated in Fig. 5.9.

H1(T)d L2(T)

Σk
T Pk(T)

I kΣ,T

∇ ·

π0,k
T

Dk
T

Fig. 5.9: Illustration of the commutation property (5.73) of Dk
T .

We next introduce the flux reconstruction operator Fk
T : Σk

T → Gk
T such that, for

any τT ∈ Σk
T ,
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(Fk
TτT ,∇w)T = −(Dk

TτT ,w)T +
∑
F ∈FT
(τTF ,w)F ∀w ∈ Pk+1(T). (5.74)

Once again, existence and uniqueness of Fk
TτT are a consequence of the Riesz

representation theorem in Gk
T for the L2(T)d-inner product. The flux reconstruction

is designed to satisfy the following polynomial consistency property: For all v ∈
Pk+1(T),

Fk
T I

k
Σ,T∇v = ∇v, (5.75)

as can be checked writing (5.74) for τT = IkΣ,T∇v, observing that Dk
T I

k
Σ,T∇v =

π0,k
T (∆v) = ∆v owing to (5.73) along with ∆v ∈ Pk−1(T), that π0,k

F ((∇v) |T ·nTF ) =
(∇v) |T ·nTF ∈ Pk(F) for all F ∈ FT , and integrating by parts the right-hand side.

Remark 5.25 (Commutation property for Fk
T ). Contrary to Dk

T , the operator Fk
T does

not enjoy a general commutation property with the interpolator IkΣ,T and the L2-
orthogonal projection on Gk

T . Indeed, if v ∈ H1(T) is a general function then (5.74)
with τT = IkΣ,T∇v leads to

(Fk
T I

k
Σ,T∇v,∇w)T = −(π0,k

T (∆v),w)T +
∑
F ∈FT
(π0,k

F (∇v·nTF ),w)F . (5.76)

In this equation, however, w ∈ Pk+1(T) and the orthogonal projectors π0,k
T and π0,k

F
therefore cannot be removed, as would be required for the commutation property to
hold. Recalling Proposition 1.35, property (5.75) ensures, however, that (Fk

T ◦ IkΣ,T )
is a projector on Gk

T (albeit different from the L2-orthogonal projector).

5.4.4 Local bilinear forms

The discrete local versions of the continuous bilinear forms m and b defined by
(5.68) are the bilinear forms mT : Σk

T × Σk
T → R and bT : Σk

T × Pk(T) → R such
that, for any σT ,τT ∈ Σk

T and any v ∈ Pk(T),

mT (σT ,τT ) B (Fk
TσT ,F

k
TτT )T + sΣ,T (σT ,τT ),

bT (τT , v) B − (Dk
TτT , v)T .

(5.77)

The first term in mT is a consistent contribution mimicking the L2-product of
fluxes, while the second is a stabilisation contribution which satisfies the following
assumption, originally proposed in [58].

Assumption 5.26 (MHO stabilisation bilinear form) The local stabilisation bi-
linear form sΣ,T : Σk

T × Σk
T → R satisfies the following properties:

(SM1) Symmetry and positivity. sΣ,T is symmetric and positive semidefinite;
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(SM2) Stability and boundedness. It holds, for all τT ∈ Σk
T ,

mT (τT ,τT )
1
2 ' ‖τT ‖Σ,T , (5.78)

with hidden constant independent of h and T .
(SM3) Polynomial consistency. For all w ∈ Pk+1(T) and all τT ∈ Σk

T , it holds

sΣ,T (IkΣ,T∇w,τT ) = 0. (5.79)

The classical MHO stabilisation originally introduced in [147] is obtained setting,
for all σT ,τT ∈ Σk

T ,

sΣ,T (σT ,τT ) =
∑
F ∈FT

hF (Fk
TσT ·nTF − σTF ,Fk

TτT ·nTF − τTF )F .

(SM1) can be checked by inspection, while (SM3) is an immediate consequence of
the polynomial consistency (5.75) of the flux reconstruction operator. The proof of
(SM2) can be found in [147, Lemma 4].

5.4.5 Global spaces of discrete unknowns and discrete problem

The global space of discrete flux unknowns is defined as follows:

Σk
h B

{
τh = (τT )T ∈Th : τT ∈ Σk

T ∀T ∈ Th and
∑
T ∈TF

τTF = 0 ∀F ∈ F i
h

}
,

where we remind the reader that, for any F ∈ Fh , TF collects the mesh elements to
which F belongs; see (1.2). Notice that the condition on the interface unknowns in
Σk
T mimics at the discrete level the continuity of the normal trace of the flux; see the

discussion in Section 2.2.5 and, in particular, (2.50b). The potential is sought in the
space of broken polynomials of total degree k on Th:

Uk
h B P

k(Th).

Denote by mh : Σk
h × Σk

h → R and bh : Σk
h ×Uk

h
→ R the global bilinear forms

obtained by element by element assembly of the local contributions defined in (5.77),
that is, for all σh,τh ∈ Σk

h and all vh ∈ Uk
h
,

mh(σh,τh) B
∑
T ∈Th

mT (σT ,τT ), bh(τh, vh) B
∑
T ∈Th

bT (τT , vT ),

where, for all T ∈ Th , vT B (vh) |T . The global problem reads: Find (σh,uh) ∈
Σk
h ×Uk

h
such that
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mh(σh,τh) + bh(τh,uh) = 0 ∀τh ∈ Σk
h, (5.80a)

−bh(σh, vh) = ( f , vh) ∀vh ∈ Pk(Th). (5.80b)

5.4.6 Hybridisation and equivalent primal formulation

The MHO method (5.80) can be recast into a primal formulation that fits into the
framework of Chapter 2 for a specific choice of the local stabilisation bilinear form.
To prove it, we proceed in two steps: first, we perform the so-called hybridisation of
the method, which consists in enforcing the single-valuedness of interface unknowns
via Lagrangemultipliers; second,we eliminate the flux unknowns by locally inverting
the discrete constitutive law inside each element.

5.4.6.1 Hybridisation

Define the space of fully discontinuous discrete flux unknowns

Σ̌
k

h B
{
τh B (τT )T ∈Th : τT ∈ Σk

T ∀T ∈ Th
}
,

and recall the definition (2.32) of the space Uk
h
of discrete unknowns for the HHO

method, and (2.36) of its subspaceUk
h,0 with strongly enforced homogeneous Dirich-

let boundary conditions. We additionally define the bilinear form b̌h : Σ̌k

h ×Uk
h
→ R

such that, for all τh ∈ Σ̌
k

h and all vh ∈ Uk
h
,

b̌h(τh, vh) B
∑
T ∈Th

b̌T (τT , vT ),

where, for all T ∈ Th ,

b̌T (τT , vT ) B bT (τT , vT ) +
∑
F ∈FT
(τTF , vF )F (5.81)

= (τT ,∇vT )T +
∑
F ∈FT
(τTF , vF − vT )F , (5.82)

where we have expanded first bT then Dk
TτT according to their respective definitions

(5.77) and (5.72). The mixed hybrid reformulation of problem (5.80), obtained using
Lagrange multipliers to enforce the continuity of discrete boundary flux unknowns,
reads: Find (σh,uh) ∈ Σ̌

k

h ×Uk
h,0 such that

mT (σT ,τT ) + b̌T (τT ,uT ) = 0 ∀T ∈ Th ∀τT ∈ Σk
T , (5.83a)

−b̌h(σh, vh) = ( f , vh) ∀vh ∈ Uk
h,0. (5.83b)
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Equation (5.83a) locally enforces the discrete constitutive law inside each element.
Equation (5.83b), on the other hand, expresses local balances and a global transmis-
sion condition.

5.4.6.2 Potential-to-flux operator

The next step in order to derive from (5.83) an equivalent primal formulation anal-
ogous to (2.48) is to eliminate the flux unknowns by locally inverting (5.83a). Let
an element T ∈ Th be fixed. We define the potential-to-flux operator ςk

T
: Uk

T → Σk
T

such that, for all vT ∈ Uk
T ,

mT (ςkT vT ,τT ) = −b̌T (τT , vT ) ∀τT ∈ Σk
T . (5.84)

Lemma 5.27 (Properties of the potential-to-flux operator). Let a mesh element
T ∈ Th be fixed, and let sΣ,T denote a bilinear form satisfying Assumption 5.26.
Then, the corresponding potential-to-flux operator ςk

T
is well-defined and has the

following properties:

(i) Stability and boundedness. For all vT ∈ Uk
T , it holds

‖ςk
T
vT ‖Σ,T ' ‖vT ‖1,T , (5.85)

with norm ‖·‖Σ,T on Σk
T and seminorm ‖·‖1,T on Uk

T defined by (5.71) and
(2.7), respectively, and hidden constants independent of h, T , and vT .

(ii) Polynomial consistency. For all w ∈ Pk+1(T), it holds

ςk
T

IkTw = −IkΣ,T∇w. (5.86)

(iii) Link with the potential reconstruction operator. It holds, for all vT ∈ Uk
T ,

Fk
T ς

k

T
vT = −∇pk+1

T vT , (5.87)

where the local potential reconstruction operator pk+1
T is defined by (2.11) and

the local flux reconstruction operator by (5.74). This commutation property is
illustrated in Fig. 5.10.

Proof. Owing to assumptions (SM1) and (SM2), mT defines a scalar product on
Σk
T . Hence, the fact that ς

k
T
is well-defined is once more an application of the Riesz

representation theorem applied to Σk
T equipped with the scalar product defined by

mT .

(i) Stability and boundedness.We start by noticing the following boundedness prop-
erty for b̌T , obtained from (5.82) applying Cauchy–Schwarz inequalities first on the
L2-inner products then on the sums: For all τT ∈ Σk

T and all vT ∈ Uk
T ,
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Uk
T Σk

T

Pk+1(T) ∇Pk+1(T)

ςk
T

pk+1
T Fk

T

−∇

Fig. 5.10: Illustration of the commutation property (5.87).

��b̌T (τT , vT )�� ≤ ‖τT ‖T ‖∇vT ‖T + ∑
F ∈FT

h
1
2
F ‖τTF ‖F h

− 1
2

F ‖vF − vT ‖F

≤ ‖τT ‖Σ,T ‖vT ‖1,T .
(5.88)

Let now vT ∈ Uk
T . Using the local norm equivalence expressed by (5.78) followed

by the definition (5.84) of the potential-to-flux operator and the above boundedness
property for b̌T , we infer

‖ςk
T
vT ‖2Σ,T ' mT (ςkT vT ,ς

k

T
vT ) = −b̌T (ςkT vT , vT ) ≤ ‖ς

k

T
vT ‖Σ,T ‖vT ‖1,T ,

which yields, after simplification, ‖ςk
T
vT ‖Σ,T . ‖vT ‖1,T . To prove the converse

inequality, let τT = (τT , (τTF )F ∈FT ) be such that τT = ∇vT and τTF = h−1
F (vF − vT )

for all F ∈ FT , and observe that

‖vT ‖21,T = b̌T (τT , vT )
= −mT (ςkT vT ,τT )
. ‖ςk

T
vT ‖Σ,T ‖τ‖Σ,T = ‖ςkT vT ‖Σ,T ‖vT ‖1,T ,

where we have used the expression (5.82) of b̌T along with the definition of τT in
the first line, the definition (5.84) of ςk

T
in the second line, the Cauchy–Schwarz

inequality on mT together with the norm equivalence (5.78) in the third line, and
the definition of τT and of ‖·‖Σ,T (see (5.71)) to conclude. After simplification, we
obtain ‖vT ‖1,T . ‖ςkT vT ‖Σ,T , which concludes the proof of (5.85).

(ii) Polynomial consistency. Let w ∈ Pk+1(T). Using the definition (5.84) of ςk
T
with

vT = IkTw, and recalling the definitions (5.81) and (5.77) of b̌T and bT , we obtain,
for all τT ∈ Σk

T ,

mT (ςkT IkTw,τT ) = (π0,k
T w,Dk

TτT )T −
∑
F ∈FT
(π0,k

F w |F , τTF )F

= (w,Dk
TτT )T −

∑
F ∈FT
(w, τTF )F = −(∇w,Fk

TτT )T ,
(5.89)
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where we have used Dk
TτT ∈ Pk(T) and τTF ∈ Pk(F) for all F ∈ FT along with the

definition (1.57) of the projectors to cancel them in the second line, and the definition
(5.74) of the flux reconstruction operator to conclude. On the other hand, using the
definition (5.77) of mT followed by the polynomial consistency properties (5.75) of
Fk
T and (5.79) of sΣ,T , for all τT ∈ Σk

T we have that

mT (IkΣ,T∇w,τT ) = (Fk
T I

k
Σ,T∇w,F

k
TτT )T + sΣ,T (IkΣ,T∇w,τT )

= (∇w,Fk
TτT )T .

(5.90)

Summing (5.89) and (5.90), we infer that

mT (ςkT IkTw + IkΣ,T∇w,τT ) = 0 ∀τT ∈ Σk
T ,

which, since the bilinear form mT defines an inner product on Σk
T , implies (5.86).

(iii) Link with the potential reconstruction operator. Let vT ∈ Uk
T , w ∈ Pk+1(T), and

set τT B IkΣ,T∇w. Recalling the definition (5.77) of mT , and using the polynomial
consistency (5.75) of Fk

T together with (5.79), it is readily inferred that

mT (ςkT vT ,τT ) = (F
k
T ς

k

T
vT ,∇w)T . (5.91)

On the other hand, recalling the definition (5.81) of b̌T , we get

b̌T (τT , vT ) = −(vT ,Dk
TτT )T +

∑
F ∈FT
(vF , τTF )F

= −(vT , π0,k
T (∆w))T +

∑
F ∈FT
(vF , π0,k

F (∇w·nTF ))F

= −(vT ,∆w)T +
∑
F ∈FT
(vF ,∇w·nTF )F = (∇pk+1

T vT ,∇w)T ,

(5.92)

where we have used the commutation property (5.73) of the discrete divergence
operator along with the definition (5.69) of IkΣ,T in the second line, (1.57) to remove
the projectors in the third line, and the definition (2.11) of the local potential recon-
struction to conclude. Adding (5.91) to (5.92) and recalling the definition (5.84) of
the potential-to-flux operator, we arrive at

(Fk
T ς

k

T
vT + ∇pk+1

T vT ,∇w)T = 0 ∀w ∈ Pk+1(T),

and (5.87) follows after observing that ∇w spans Gk
T when w spans Pk+1(T). ut

5.4.6.3 Equivalence of the mixed, mixed hybrid and primal formulations

We next show that the MHO scheme (5.80) is equivalent to the following problem
in primal formulation: Find (σh,uh) ∈ Σ̌

k

h ×Uk
h,0 such that
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σT = ς
k

T
uT ∀T ∈ Th, (5.93a)

with uh ∈ Uk
h,0 solution of

ah(uh, vh) = ( f , vh) ∀vh ∈ Uk
h,0, (5.93b)

where the bilinear form ah : Uk
h
×Uk

h
→ R is such that

ah(uh, vh) B
∑
T ∈Th

aT (uT , vT ) with aT (uT , vT ) B mT (ςkTuT ,ς
k

T
vT ). (5.93c)

Theorem 5.28 (Equivalence of the mixed, mixed hybrid and primal for-
mulations for the Poisson problem). For all T ∈ Th , let sΣ,T denote a stabili-
sation bilinear form matching Assumption 5.26. Let (σh,uh) ∈ Σ̌

k

h ×Uk
h,0, and

let uh ∈ Pk(Th) be such that (uh) |T = uT for all T ∈ Th . Then, the following
statements are equivalent:

(i) σh ∈ Σk
h and (σh,uh) solves the mixed problem (5.80);

(ii) (σh,uh) solves the mixed hybrid problem (5.83);
(iii) (σh,uh) solves the primal hybrid problem (5.93).

Proof. The equivalence (i) ⇐⇒ (ii) classically follows from the theory of Lagrange
multipliers. To conclude, it suffices to prove that (ii) ⇐⇒ (iii). The equivalence
between equations (5.93a) and (5.83a) immediately follows recalling the definition
(5.84) of the potential-to-flux operator. As a consequence, it holds for all T ∈ Th and
all vT ∈ Uk

T ,

−b̌T (σT , vT ) = −b̌T (ςkTuT , vT ) = mT (ςkTuT ,ς
k

T
vT ) = aT (uT , vT ),

where we have used the definition (5.84) of the potential-to-flux operator together
with the symmetry of mT in the second equality, and the definition (5.93c) of aT
to conclude. Summing this relation over T ∈ Th implies that equation (5.93b) is
equivalent to (5.83b), thus concluding the proof. ut

5.4.7 Link with the HHO method

We are finally ready to show that the primal formulation (5.93) enters the framework
of Chapter 2.
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Theorem 5.29 (Link between the Mixed High-Order and Hybrid High-
Order methods). For all T ∈ Th , let sΣ,T denote a bilinear form satisfying
Assumption 5.26, and set, for any uT , vT ∈ Uk

T ,

sT (uT , vT ) B sΣ,T (ςkTuT ,ς
k

T
vT ), (5.94)

with potential-to-flux operator ςk
T
defined by (5.84). Then,

(i) Properties of sT . The stabilisation bilinear forms sT , T ∈ Th , satisfy
Assumption 2.4.

(ii) Link with the Hybrid High-Order method. uh ∈ Uk
h,0 solves the discrete

problem (2.48) with stabilisation bilinear forms as in (5.94) if and only
if (σh,uh) ∈ Σ̌

k

h ×Uk
h,0, with σh = (ςkTuT )T ∈Th , solves the mixed hybrid

problem (5.83).

Proof. (i) Properties of sT . Let an element T ∈ Th be fixed. The bilinear form sT
clearly inherits the symmetry and positive semi-definiteness properties of sΣ,T .

To prove the local seminorm equivalence (2.16) expressing the stability and
boundedness of sT , it suffices to observe that, for all vT ∈ Uk

T ,

aT (vT , vT ) = mT (ςkT vT ,ς
k

T
vT ) ' ‖ςkT vT ‖

2
Σ,T ' ‖vT ‖21,T ,

where we have successively used the definition (5.93c) of aT , (5.78), and the stability
and boundedness (5.85) of ςk

T
.

In order to prove the polynomial consistency property (2.17), we let w ∈ Pk+1(T)
and observe that, for all vT ∈ Uk

T , we have

sT (IkTw, vT ) = sΣ,T (ςkT IkTw,ς
k

T
vT ) = −sΣ,T (IkΣ,T∇w,ςkT vT ) = 0,

where we have used the definition (5.94) of sT and the polynomial consistencies
(5.86) and (5.79) of ςk

T
and sΣ,T , respectively.

(ii) Link with the Hybrid High-Order method. Compare the primal hybrid scheme
(5.93) (recalling the definition (5.77) of mT and the relation (5.87) between Fk

T ς
k
T

and pk+1
T ) with the HHO scheme (2.48), and use the equivalence stated in Theorem

5.28 of the primal hybrid scheme with the mixed hybrid problem (5.83). ut

5.5 Virtual Elements

In this section, we derive a Virtual Element reformulation of the HHO scheme (2.48)
and establish a link with the Nonconforming Virtual Element Method of [26].
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We also present the Conforming Virtual Element Method [43, 76], discuss dif-
ferences with the virtual formulation of the HHO scheme, and develop an analysis
in which we establish, in particular, the approximation properties of the relevant
projector operator in a non-Hilbertian setting.

In what follows, we denote by k ≥ 0 a fixed integer corresponding to the polyno-
mial degree of the HHO scheme.

5.5.1 Local virtual space

Let an element T ∈ Th be fixed, and define the following space:

U
k
T B

{
vT ∈ H1(T) : ∆vT ∈ Pk(T) and (∇vT ) |F ·nTF ∈ Pk(F) ∀F ∈ FT

}
.
(5.95)

It is a simplematter to check that Pk+1(T) ⊂ Uk
T . The functions inU

k
T are virtual in the

sense that, for general polynomial degrees and element shapes, it is not possible (or
computationally feasible) to find an explicit expression for use in a Finite Element
code. This difficulty is circumvented in the Virtual Element framework by using
computable projections to formulate the consistency terms, in conjunction with
local stabilisation terms similar to the ones discussed in Section 2.1.4 for the HHO
method.

Recall the definitions (2.6) of the local space of discrete HHO unknowns, that is,

Uk
T B

{
vT = (vT , (vF )F ∈FT ) : vT ∈ Pk(T) and vF ∈ Pk(F) ∀F ∈ FT

}
,

and (2.8) of the local interpolator IkT : W1,1(T) → Uk
T such that, for any v ∈ W1,1(T),

IkT v B (π0,k
T v, (π0,k

F v |F )F ∈FT ).

The following lemma establishes an important link between Uk
T and Uk

T .

Lemma 5.30 (Link between Uk
T and Uk

T ). The local interpolator IkT defines a bi-
jective mapping from Uk

T to Uk
T . As a result, the spaces Uk

T and Uk
T are isomorphic.

Proof. With a small abuse of notation, throughout the proof we still use the symbol
IkT for the linear mapping IkT : Uk

T → Uk
T obtained by restricting the domain of the

local interpolator from W1,1(T) to Uk
T ⊂ W1,1(T).

The first part of the proof consists in showing that IkT is injective so that, by the
rank-nullity theorem, we can infer dim(Uk

T ) = dim(Im(IkT )) ≤ dim(Uk
T ). Notice that

this implies, in particular, that Uk
T has finite dimension. In the second part of the

proof, we construct an injective linear mapping Lk
T : Uk

T → Uk
T . Applying again the

rank-nullity theorem, this time to Lk
T , yields dim(Uk

T ) = dim(Im(Lk
T )) ≤ dim(Uk

T ) so
that, in conclusion,

dim(Uk
T ) = dim(Uk

T ).
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Being injective linear mappings between vector spaces with the same finite dimen-
sion, both IkT and Lk

T are bijective. Thus, the spaces Uk
T and Uk

T are isomorphic.

(i) Injectivity of IkT . It suffices to prove that Ker(IkT ) = {0}. Let vT ∈ Uk
T be such that

IkT vT = 0, that is, π0,k
T vT = 0 and π0,k

F (vT ) |F = 0 for all F ∈ FT . Using an integration
by parts, we can write

‖∇vT ‖2T = −(vT ,∆vT )T +
∑
F ∈FT
(vT ,∇vT ·nTF )F

= −(π0,k
T vT ,∆vT )T +

∑
F ∈FT
(π0,k

F (vT ) |F ,∇vT ·nTF )F = 0,

where we have used the definitions (5.95) of the local virtual space and (1.57) of the
L2-orthogonal projector to insert π0,k

T into the first term and π0,k
F into the second. As

a result, vT is a constant function over T . Consequently, vT = π0,k
T vT = 0, so that vT

is the null function over T . This proves the injectivity of IkT : Uk
T → Uk

T .

(ii) Construction and injectivity of Lk
T . Define the linear mapping Lk

T : Uk
T → Uk

T

such that, for any vT = (vT , (vF )F ∈FT ) ∈ Uk
T , L

k
T vT solves the following Neumann

problem:

−∆Lk
T vT = vT − 1

|T |d

(∫
T

vT −
∑
F ∈FT

∫
F

vF

)
in T, (5.96a)

∇Lk
T vT ·nTF = vF on all F ∈ FT , (5.96b)∫

T

L
k
T vT =

∫
T

vT . (5.96c)

Problem (5.96) defines a unique element Lk
T vT of Uk

T : equations (5.96a) and (5.96b)
classically define Lk

T vT up to an additive constant since the usual compatibility
condition for Neumann problems

−
∫
T

∆L
k
T vT =

∑
F ∈FT

∫
F

∇Lk
T vT ·nTF

is verified. This constant is then fixed by the closure condition (5.96c).
To prove that Lk

T is injective, it suffices to check that Ker(Lk
T ) =

{
0
}
. Let vT ∈ Uk

T

be such that Lk
T vT = 0. Then, (5.96b) and (5.96c) imply, respectively, vF = 0 for all

F ∈ FT and
∫
T
vT = 0. Plugging these relations into (5.96a) yields vT = 0, so that

vT = 0 and the proof of the injectivity of Lk
T is concluded. ut
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5.5.2 Virtual reformulation of the local HHO bilinear form

Having proved that IkT : Uk
T → Uk

T is bijective, we denote by (IkT )−1 the correspond-
ing inverse mapping. For any vT ∈ Uk

T , writing the commutation property (2.14) for
v = vT B (IkT )−1vT , we infer that it holds

pk+1
T vT = π

1,k+1
T vT ,

which shows, in particular, that the elliptic projection of vT can be computed in
terms of the discrete unknowns collected in vT . We therefore have the following
reformulation for the consistency term in the local HHO bilinear form (2.15): For all
uT , vT ∈ Uk

T , letting uT B (IkT )−1uT and vT B (IkT )−1vT ,

(∇pk+1
T uT ,∇pk+1

T vT )T = (∇π1,k+1
T uT ,∇π1,k+1

T vT )T .

Let now sT denote a local stabilisation bilinear form that satisfies Assumption 2.4.
By Lemma 2.11, it therefore depends on its arguments only through the difference
operators defined by (2.19). We start by noticing that, for any vT ∈ Uk

T , letting as
before vT B (IkT )−1vT ,

δkT vT = π
0,k
T (π1,k+1

T vT − vT ), δkTFvT = π
0,k
F (π1,k+1

T vT − vT ) ∀F ∈ FT ,

where, proceeding as in the proof of Proposition 2.6, we have used the linearity and
polynomial invariance (1.56) of π0,k

T and π0,k
F to cancel them from the second terms

in parentheses. Thus, there is a bilinear form sT : Uk
T × Uk

T → R such that, for any
uT , vT ∈ Uk

T ,
sT (uT , vT ) = sT (π1,k+1

T uT − uT , π1,k+1
T vT − vT ),

where again uT B (IkT )−1uT and vT B (IkT )−1vT .
Define now the discrete virtual bilinear form aT : Uk

T × Uk
T → R such that, for

any uT ,vT ∈ Uk
T ,

aT (uT ,vT ) B (∇π1,k+1
T uT ,∇π1,k+1

T vT )T + sT (π1,k+1
T uT − uT , π1,k+1

T vT − vT ).

Accounting for the previous remarks, it holds by construction that, for any uT ,vT ∈
Uk
T ,

aT (uT ,vT ) = aT (IkTuT , IkT vT ).

5.5.3 Global virtual space and global bilinear form

Recalling the jump operator [·]F defined by (1.22), we can now define the global
virtual space
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U
k
h B

{
vh ∈ H1(Th) : (vh) |T ∈ Uk

T ∀T ∈ Th and π0,k
F ([vh]F ) = 0 ∀F ∈ F i

h

}
,

along with its subspace with strongly enforced homogeneous Dirichlet boundary
conditions:

U
k
h,0 B

{
vh ∈ Uk

h : π0,k
F (vh) |F = 0 ∀F ∈ F b

h

}
.

It can be checked that the domain of the global interpolator Ik
h
defined by (2.34) can

be extended to W1,1(Ω)+Uk
h
thanks to the continuity of the L2-projection of degree

k of the traces of functions inUk
h
across interfaces. Hence, for any v ∈ W1,1(Ω)+Uk

h
,

Ikhv B ((π0,k
T v |T )T ∈Th , (π0,k

F v |F )F ∈Fh ).

Moreover, it can easily be inferred from Lemma 5.30 that Ik
h
defines a bijection from

Uk
h
to the space of global unknowns defined by (2.32) and recalled here for the sake

of convenience:

Uk
h B

{
vh = ((vT )T ∈Th , (vF )F ∈Fh ) :

vT ∈ Pk(T) ∀T ∈ Th and vF ∈ Pk(F) ∀F ∈ Fh
}
.

Notice that, when vh belongs to Uk
h,0 (the subspace of Uk

h
with strongly enforced

homogeneous Dirichlet boundary conditions defined by (2.36)), the corresponding
virtual function vh = (Ikh)−1vh lies in Uk

h,0.
Define the global virtual bilinear form ah : Uk

h
× Uk

h
→ R such that

ah(uh,uh) B
∑
T ∈Th

aT
((uh) |T , (vh) |T )

.

Accounting for the previous remarks and recalling the definition (2.39) of the global
HHO bilinear form ah , it holds, for any uh,vh ∈ Uk

h
,

ah(uh,vh) = ah(Ikhuh, Ikhvh). (5.97)

5.5.4 Virtual reformulation of the HHO scheme

We consider the following Virtual Element scheme for the Poisson problem (2.1):
Find uh ∈ Uk

h,0 such that

ah(uh,vh) = ( f , π0,k
h
vh) ∀vh ∈ Uk

h,0, (5.98)

where we remind the reader that the global L2-orthogonal projector is such that, for
any v ∈ L1(Ω), (π0,k

h
v) |T B π0,k

T v |T for all T ∈ Th; see Definition 1.38. Notice that
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the linear form in the right-hand side is computable from Ik
h
vh , which contains the

L2-projections of degree k of vh inside each mesh element. The link between the
original fully discrete HHO formulation (2.48) and the virtual formulation (5.98) is
established in the following theorem.

Theorem 5.31 (Equivalence of the fully discrete and virtual formulations).
Let uh ∈ Uk

h,0 and uh ∈ Uk
h,0 denote the unique solutions to the HHO scheme

(2.48) and the Virtual Element scheme (5.98), respectively. Then, it holds that

uh = Ikhuh . (5.99)

Proof. Let vh ∈ Uk
h,0, and set vh B Ik

h
vh . Using the equivalence (5.97) of the HHO

and virtual bilinear forms togetherwith the definition (2.33) of the broken polynomial
field vh ∈ Pk(Th) (obtained patching element unknowns) to write vh = π0,k

h
vh , it is

inferred from (5.98) and (2.48) that

ah(Ikhuh, vh) = ah(uh,vh) = ( f , π0,k
h
vh) = ( f , vh) = ah(uh, vh).

Hence, using the linearity of ah in its first argument, and observing that vh spans
Uk

h,0 when vh spans Uk
h,0, we deduce that

ah(Ikhuh − uh, vh) = 0 ∀vh ∈ Uk
h,0,

which implies (5.99), by coercivity (2.41) of ah . ut

5.5.5 Link with Nonconforming Virtual Elements

We briefly discuss in this section the links between the virtual reformulation of the
HHO method and the Nonconforming Virtual Element method of [26]. Let a mesh
element T ∈ Th be fixed. The Nonconforming Virtual Element method is based on a
variation of the local virtual space (5.95) where element-based unknowns are taken
one degree less than face-based unknowns, that is,

U
k ,k−1
T B

{
vT ∈ H1(T) : ∆vT ∈ Pk−1(T) and (∇vT ) |F ·nTF ∈ Pk(F) ∀F ∈ FT

}
,

where we remind the reader that P−1(T) B {0}. Recall the definitions (5.1), (5.6)
and (5.26) of the space Uk ,k−1

T , interpolator Ik ,k−1
T and local potential reconstruction

p̃k+1
T for the HHO(k, `)-method of Section 5.1, with ` = k − 1. We note that if k ≥ 1
then ` ≥ 0 and, formally, p̃k+1

T = pk+1
T . In a similar way as in Lemma 5.30, it can be

seen that Ik ,k−1
T is an isomorphism between Uk ,k−1

T and Uk ,k−1
T .
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For a given virtual function vT ∈ Uk ,k−1
T , the commutation properties (5.27) show

that
π̂1,k+1
T vT = p̃k+1

T Ik ,k−1
T vT , (5.100)

where π̂1,k+1
T = π1,k+1

T if k ≥ 1, and π̂1,1
T = π̃1,1

T (see (5.14)). The elliptic projection
π̂1,k+1
T vT can thus be computed from the discrete unknowns collected in Ik ,k−1

T vT .
Thus, the local bilinear form for the Nonconforming Virtual Element method is
defined as: For all uT ,vT ∈ Uk ,k−1

T ,

a
vem
T (uT ,vT ) B (∇π̂1,k+1

T uT ,∇π̂1,k+1
T vT )T + svem

T (uT ,vT ).

Here, svem
T : Uk ,k−1

T ×Uk ,k−1
T → R is a stabilisation bilinear form inspired byMimetic

Finite Difference methods, which satisfies

s
vem
T (vT ,vT )

1
2 ' ‖∇vT ‖T ∀vT ∈ Uk ,k−1

T such that π̂1,k+1
T vT = 0,

where the hidden constant is independent of both h and T .
The global Nonconforming Virtual Element space is defined by

U
k ,k−1
h

B
{
vh ∈ H1(Th) :

(vh) |T ∈ Uk ,k−1
T ∀T ∈ Th and π0,k

F ([vh]F ) = 0 ∀F ∈ F i
h

}
,

and its subspace with strongly enforced homogeneous Dirichlet boundary conditions
by

U
k ,k−1
h,0 B

{
vh ∈ Uk ,k−1

h
: π0,k

F (vh) |F = 0 ∀F ∈ F b
h

}
.

Letting avem
h

: Uk ,k−1
h,0 × Uk ,k−1

h,0 → R denote the global bilinear form defined by
assembling the elementary contributions (avem

T )T ∈Th , the Nonconforming Virtual
Element scheme reads: Find uh ∈ Uk

h,0 such that, for all vh ∈ Uk
h,0, setting vh B

Ik ,k−1
h

vh ,
a

vem
h (uh,vh) =

∑
T ∈Th
( f , vT )T . (5.101)

Note that in the case k ≥ 1, the right-hand side reduces to ( f , π0,k−1
h

vh). In a similar
way as in Theorem 5.31, it can be proved that, for a proper choice of the HHO
stabilisation bilinear forms (sT )T ∈Th , this Virtual Element scheme is equivalent to
theHHO(k, k−1) scheme (5.39) through the isomorphism Ik ,k−1

h
: Uk ,k−1

h,0 → Uk ,k−1
h,0 .

Remark 5.32 (Degrees of freedom for the Nonconforming Virtual Element Method).
This isomorphism also shows that natural degrees of freedom for the Nonconforming
Virtual Elements Method are the L2-projections of the virtual functions on Pk(F),
for all F ∈ F i

h
, and, if k ≥ 1, the L2-projections of the virtual functions on Pk−1(T),
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for all T ∈ Th . These degrees of freedom enable the explicit calculation of all the
quantities required to implement the scheme (5.101).

5.5.6 The Conforming Virtual Element Method

We present here the Conforming Virtual Element Method [43], considering only,
for the sake of simplicity, the case d = 2 and the standard (non-enhanced) virtual
element space. Some comparisons are drawn with the virtual element formulation
of the HHO method that, as seen in Section 5.5.5, corresponds to a Nonconforming
Virtual Element. We also develop a non-standard analysis of the Conforming Virtual
Element Method: instead of endowing the local virtual element space with the H1-
norm of virtual functions (which is not computable), we equip it with a discrete norm
that mimics the discrete HHO norm and is fully computable from the degrees of
freedom (DOFs) of virtual functions. The main advantage of this approach is that it
readily applies to the non-Hilbertian setting, which enables the convergence analysis
for fully non-linear models such as the p-Laplace and Leray–Lions models (see
Chapter 6 for the analysis of these models in the HHO framework). Usual analyses
based on Sobolev norms of virtual functions, such as in [76], would require inverse
Lebesgue inequalities in local virtual spaces, which do not seem straightforward to
obtain on generic polytopal meshes.

For an alternative HHO-inspired approach to the formulation and analysis of
Virtual Element Methods, we refer to [229], which covers both the conforming and
nonconforming versions, in two and three space dimensions, albeit in an Hilbertian
setting.

5.5.6.1 Local space and interpolator

Let ` ≥ 1 be a polynomial degree, Ω be an open polygonal set of R2, and Mh =

(Th,Fh) be a polygonal mesh ofΩ from a regular sequence. An elementT ∈ Th being
given, we let

P`(∂T) = {
v ∈ C(∂T) : v |F ∈ P`(F) ∀F ∈ FT

}
be the space of continuous, piecewise polynomial functions on the boundary of T .
The local Conforming Virtual Elements space is then defined by

U
`
T B

{
vT ∈ H1(T) : ∆vT ∈ P`−2(T) , (vT ) |∂T ∈ P`(∂T)} . (5.102)

Remark 5.33 (Polynomial degrees). The degree ` in Conforming Virtual Elements
corresponds, in terms of convergence rates, to the degree k = ` − 1 in the context of
HHO methods.
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It is a simple matter to notice that P`(T) ⊂ U`T . To define the DOFs of virtual
functions, for each edge F we select (` − 1) distinct points (xF ,i)i=1,...,`−1 inside the
edge (no such point is selected if ` = 1); letting xF ,0 and xF ,` be the two endpoints
of F, any polynomial in P`(F) is uniquely determined by its values at (xF ,i)i=0,...,` .
We assume that these points are chosen to ensure that

‖w‖L∞(F) . max
i∈{0,...,` }

|w(xF ,i)| ∀w ∈ P`(F), (5.103)

where the hidden multiplicative constant does not depend on h, F, or w. This bound
is satisfied as soon as the points remain well-spaced on the edge, that is, the quantity

max
i∈{0,...,`−1}

|xF ,i+1 − xF ,i |
min

i∈{0,...,`−1}
|xF ,i+1 − xF ,i |

remains uniformly bounded above as h→ 0.

Proposition 5.34 (Local degrees of freedom of the Conforming Virtual Element
Method). The following degrees of freedom uniquely determine an element vT ∈ U`T :
(i) The values (vT (s))s∈VT of vT at the verticesVT of T ,
(ii) For each edge F ∈ FT , the values (vT (xF ,i))i=1,...,`−1 of vT at the points
(xF ,i)i=1,...,`−1,

(iii) The L2-projection π0,`−2
T vT of vT on P`−2(T).

Remark 5.35 (Lowest-order case). In the case ` = 1, given the definition of P`−2 =
P−1 = {0}, the last two sets of DOFs do not give any information on the virtual
function, and only the values at the vertices are relevant.

Remark 5.36 (Alternate degrees of freedom on the edges). An alternate choice to
(ii) of DOFs on the edge F is the L2-orthogonal projection π0,`−2

F vT of the virtual
function on P`−2(F). Then, (5.103) has to be replaced with the following estimate,
which holds with a hidden constant independent of h or F:

‖w‖L∞(F) . max
(
|w(xF ,0)|, |w(xF ,`)|, ‖π0,`−2

F w‖L∞(F)
)

∀w ∈ P`(F),

where we recall that xF ,0 and xF ,` are the endpoints of F. The analysis presented
hereafter can easily be adapted to this choice of DOFs.

Proof (Proposition 5.34). The mapping

vT ∈ U`T 7→ ((vT ) |∂T ,∆vT ) ∈ P`(∂T) × P`−2(T)

is an isomorphism, the inverse of which consisting in solving a Dirichlet–Laplace
boundary value problem with known boundary conditions and source term. Hence,
U`T has the same dimension as P`(∂T) × P`−2(T).

For a given edge F ∈ FT , since (vT ) |F ∈ P`(F), the DOFs (i) and (ii) entirely
determine (vT ) |F . Patching together these polynomial functions determines (vT ) |∂T ∈
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P`(∂T), the global continuity being ensured by the DOFs (i). The dimension of U`T
is therefore equal to the number of (scalar) DOFs in (i)–(iii), and proving that these
degrees entirely determine vT amounts to proving that, if all DOFs vanish, then
vT = 0.

If all DOFs vanish, the reasoning above shows that vT = 0 on ∂T , and thus,
integrating by parts, that∫

T

|∇vT |2 = −
∫
T

(∆vT )vT = −
∫
T

(∆vT )π0,`−2
T vT ,

the introduction of the L2-orthogonal projector being valid since ∆vT ∈ P`−2(T). By
assumption, π0,`−2

T vT also vanishes, which proves that∇vT = 0, and thus that vT = 0
on T since this function vanishes on ∂T . ut

Virtual functions are not explicitly known, only their DOFs can be explicitly
accessed. As a consequence, it makes sense to carry out an analysis using only
these DOFs. Notice that, as seen in the proof above, knowledge of these DOFs give
complete explicit knowledge of the virtual function on ∂T .

We next want to define a norm on U`T , based on the DOFs and mimicking the
discrete norm used in HHO; this requires the knowledge of part of the virtual
function inside the element (to penalise the difference between this information on
the function in the element and the function on the boundary). Such a knowledge is
readily accessible if ` ≥ 2, through the degree of freedom π0,`−2

T vT . For ` = 1, we
have to reconstruct a quantity representing the average of the function in the element,
in a similar way as done in the HHO space U0,−1

T defined by (5.1b). We therefore set,
for vT ∈ U`T ,

Π
`−2
T vT B


π0,`−2
T vT if ` ≥ 2,
1
|T |d

∑
F ∈FT

ωTF (vT ,1)F if ` = 1, (5.104)

where the weights (ωTF )F ∈FT are chosen to satisfy (5.2).
Even though we will only fully analyse Conforming Virtual Elements for the

Poisson problem, as previously mentioned, we aim at developing tools that can serve
for the analysis of more complex, non-linear models such as the p-Laplace equation .
We therefore endowU`T with a discrete (semi)norm that mimics theW1,p-seminorm,
as presented in Section 6.2.1 for HHO. For a given p ∈ (1,+∞), we let

‖vT ‖cvem,p,T B

(
‖∇π0,`−2

T vT ‖pLp (T )2 +
∑
F ∈FT

h1−p
F ‖vT − Π`−2

T vT ‖pLp (F)

) 1
p

.

(5.105)
The relevant norm for the Poisson problem corresponds to p = 2. Finally, the local
interpolator I`T : C(T) → U`T is defined as follows: For all v ∈ C(T),

I`T v is the unique element in U`T that has the same DOFs as v. (5.106)
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Since P`(T) ⊂ U`T , we clearly have

I
`
Tw = w ∀w ∈ P`(T). (5.107)

Remark 5.37 (Domain of interpolator). Using Lemma 5.30, a natural interpolator
for the virtual formulation of HHO is Ik ,nc

T defined as: Ik ,nc
T v is the unique element

in the virtual space (5.95) such that IkTI
k ,nc
T v = IkT v. Since IkT has domain W1,1(T),

the interpolator Ik ,nc
T also has domain W1,1(T).

This highlights a first important difference between the virtual formulation of
HHO and Conforming Virtual Elements: their local interpolators have different
domains. The Conforming Virtual Elements interpolator has domain C(T) to ensure
that the values of the functions at the vertices ofT arewell-defined. This has an impact
on the analysis which, when based on Sobolev spaces, requires to consider spaces
with enough derivatives to ensure, through Sobolev embeddings, the continuity of
the considered functions.

We note for future usage the following estimate:

‖Π`−2
T I

`
T v‖L∞(T ) . ‖v‖C(T ) ∀v ∈ C(T), (5.108)

which follows, if ` ≥ 2, from π0,`−2
T I`T v = π

0,`−2
T v together with the boundedness

(1.71) of π0,`−2
T with p = ∞ and, if ` = 1, from the estimates (5.4) and (5.103),

together with the geometric bounds (1.7)–(1.8) and the definition of I`T , which
imply, for all F ∈ FT ,

|ωTF (I`T v,1)F | . hT |F |d−1‖(I`T v) |F ‖L∞(F) . |T |d max
i∈{0,...,` }

|I`T v(xF ,i)|

= |T |d max
i∈{0,...,` }

|v(xF ,i)|.

5.5.6.2 Boundedness of the interpolator and approximation properties of the
projector

As already noticed in the convergence analysis of HHO (see Lemma 2.14), the
boundedness of the interpolator is essential to ensure optimal approximation prop-
erties of the stabilisation terms. This is also the case in the present context. The
following lemma is the counterpart, in the Conforming Virtual Elements framework,
of Proposition 2.2.

Lemma 5.38 (Boundedness of I`T ). Let T ∈ Th , p ∈ (1,+∞), and q ∈ N be such
that qp > 2. Then, for all v ∈ Wq,p(T),

‖I`T v‖cvem,p,T .

q∑
r=1

hr−1
T |v |W r ,p (T ), (5.109)

with hidden constant independent of h, T , and v.
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Proof. Since we consider in this section the dimension d = 2, the condition on p
and q ensures that Wq,p(T) ⊂ C(T) (so that I`T v is well defined for v ∈ Wq,p(T)),
and that, for all w ∈ Wq,p(T),

‖w‖C(T ) . |T |
− 1

p

d

q∑
r=0

hrT |w |W r ,p (T ), (5.110)

with hidden constant independent of h, T or w. This estimate is established in [77,
Lemma 4.3.4] without the explicit dependencies on |T |d or hT , but with a constant
that only depends on q, p, and γ, where γ is such that T is star-shaped with respect
to all points in a ball of radius γhT . To obtain the dependencies on |T |d and hT
as in (5.110), one simply has to scale T to an element of diameter 1, apply [77,
Lemma 4.3.4] on that element, and come back to T accounting for the various
scaling properties of each derivative in the sum, in a similar way as in the proof
of Lemma 1.28. Using the mesh regularity property (Definition 1.9) together with
the geometric bounds stated in Lemma 1.12, the inequality (5.110) is proved for T
a mesh element by taking the maximum of the same inequalities written on each
simplex τ ∈ TT .

Let us now establish (5.109). If ` ≤ 2, the volumetric contribution to ‖·‖cvem,p,T
vanishes. If ` > 2, by definition of I`T , we have π0,`−2

T I`T v = π0,`−2
T v. Using the

boundedness property (1.77) of π0,`−2
T , we infer

‖∇π0,`−2
T I

`
T v‖Lp (T )2 = ‖∇π0,`−2

T v‖Lp (T )2 . |v |W 1,p (T ). (5.111)

We now consider the boundary contributions to ‖I`T v‖cvem,p,T . Let ṽ B v − π0,0
T v.

Using the polynomial invariance (5.107) of I`T we have I`T ṽ = I
`
T v − π0,0

T v and, by
definition (5.104) of Π`−2

T (and choice (5.2b) of the weights if ` = 1), Π`−2
T π0,0

T v =

π0,0
T v. Hence, I`T v − Π`−2

T I`T v = I
`
T ṽ − Π`−2

T I`T ṽ. Fixing F ∈ FT , we then write

‖I`T v − Π`−2
T I

`
T v‖Lp (F) ≤ |F |

1
p

d−1‖I`T ṽ − Π`−2
T I

`
T ṽ‖L∞(F)

. |F |
1
p

d−1 max
i∈{0,...,` }

|I`T ṽ(xF ,i)| + |F |
1
p

d−1‖Π`−2
T I

`
T ṽ‖C(T )

. |F |
1
p

d−1‖ṽ‖C(T )

. |F |
1
p

d−1 |T |
− 1

p

d

q∑
r=0

hrT |v − π0,0
T v |W r ,p (T ), (5.112)

where we have used the triangle inequality and (5.103) with w = (I`T ṽ) |F in the
second line, followed by the definition (5.106) of I`T ṽ (which ensures I`T ṽ(xF ,i) =
ṽ(xF ,i) for all i ∈ {0, . . . , `}) and the estimate (5.108) (with ṽ instead of v) in the
third line, and we have concluded invoking (5.110) with w = ṽ = v − π0,0

T v. The
approximation property (1.74) of π0,0

T gives
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‖v − π0,0
T v‖Lp (T ) . hT |v |W 1,p (T ),

and, since π0,0
T v is constant, we have |v− π0,0

T v |W r ,p (T ) = |v |W r ,p (T ) whenever r ≥ 1.
Hence, (5.112) yields

‖I`T v − Π`−2
T I

`
T v‖Lp (F) . h

− 1
p

T

q∑
r=1

hrT |v |W r ,p (T ), (5.113)

where themesh regularity property (seeLemma1.12)was used towrite |F |
1
p

d−1 |T |
− 1

p

d
.

h
− 1

p

T . Raising (5.113) to the power p, multiplying by h1−p
F . h1−p

T and summing over
F ∈ FT leads to∑

F ∈FT
h1−p
F ‖I`T v − Π`−2

T I
`
T v‖pLp (F) . h−pT

(
q∑

r=1
hrT |v |W r ,p (T )

)p
=

(
q∑

r=1
hr−1
T |v |W r ,p (T )

)p
.

Together with (5.111), this concludes the proof of (5.109). ut

As it will become clear in the analysis carried out in Section 5.5.6.3, the operator
whose approximation properties are essential to the error analysis of Conforming
Virtual Elements is

π1,`
T ,cvem B π̃1,`

T I
`
T : C(T) → P`(T), (5.114)

where π̃1,`
T is the modified elliptic projector defined by (5.14). Note that by (5.107)

and the idempotency of π̃1,`
T , the mapping π1,`

T ,cvem is a polynomial projector. The
approximation properties of this projector are established in Theorem 5.40 below.
The next lemma states a boundedness result that will be essential to prove this
theorem.

Lemma 5.39 (Estimate on the elliptic projection of virtual functions). LetT ∈ Th
and p ∈ (1,+∞). It holds

‖∇π̃1,`
T vT ‖Lp (T )2 . ‖vT ‖cvem,p,T ∀vT ∈ U`T , (5.115)

where the hidden constant is independent of h, T and vT , and U`T is the conforming
virtual space defined by (5.102).

Proof. (i) The case p = 2. Using the definition (5.14a) of the modified elliptic
projector and an integration by parts, we have, for all w ∈ P`(T),
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(∇π̃1,`
T vT ,∇w)T = − (vT ,∆w)T +

∑
F ∈FT
(vT ,∇w·nTF )F

= − (π0,`−2
T vT ,∆w)T +

∑
F ∈FT
(vT ,∇w·nTF )F

= (∇π0,`−2
T vT ,∇w)T +

∑
F ∈FT
(vT − π0,`−2

T vT ,∇w·nTF )F , (5.116)

where the introduction of π0,`−2
T in the second line is justified by ∆w ∈ P`−2(T), and

the conclusion follows from another integration by parts. In the case ` = 1, since
w ∈ P1(T), we have∑

F ∈FT
(Z,∇w·nTF )F = −(Z,∆w)T = 0 ∀Z ∈ R.

Applied to Z = Π`−2
T vT − π0,`−2

T vT (constant since ` = 1), this gives∑
F ∈FT
(vT − π0,`−2

T vT ,∇w·nTF )F =
∑
F ∈FT
(vT − Π`−2

T vT ,∇w·nTF )F .

This relation obviously also holds for ` ≥ 2, since Π`−2
T = π0,`−2

T in this case. Hence,
(5.116) yields, for any ` ≥ 1,

(∇π̃1,`
T vT ,∇w)T = (∇π0,`−2

T vT ,∇w)T +
∑
F ∈FT
(vT − Π`−2

T vT ,∇w·nTF )F . (5.117)

Specifying w = π̃1,`
T vT and using a Cauchy–Schwarz inequality for the volumetric

term, generalised Hölder inequalities with exponents (2,2,∞) for the boundary terms
(together with ‖nTF ‖L∞(F)2 = 1), and the discrete trace inequality (1.55) with p = 2
on ∇π̃1,`

T vT , we infer

‖∇π̃1,`
T vT ‖2L2(T )2 . ‖∇π

0,`−2
T vT ‖L2(T )2 ‖∇π̃1,`

T vT ‖L2(T )2

+
∑
F ∈FT

‖vT − Π`−2
T vT ‖L2(F)h

− 1
2

T ‖∇π̃1,`
T vT ‖L2(T )2 .

Simplify by ‖∇π̃1,`
T vT ‖L2(T )2 , use a Cauchy–Schwarz inequality together with the

bounds h−1
T ≤ h−1

F and card(FT ) . 1 (see (1.5)), and recall the definition (5.105) of
the norm on U`T to obtain (5.115) for p = 2.

(ii) The case p ∈ (1,+∞). The functions ∇π̃1,`
T vT , ∇π0,`−2

T vT , (vT − Π`−2
T vT ) |F (for

F ∈ FT ) appearing in the left-hand side of (5.115) and in the addends in ‖vT ‖cvem,p,T
in the right-hand side of this equation are all polynomial functions. They are therefore
amenable to the inverse Lebesgue inequalities (1.35), and we can write
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‖∇π̃1,`
T vT ‖Lp (T )2 . |T |

1
p − 1

2
d
‖∇π̃1,`

T vT ‖L2(T )2

. |T |
1
p − 1

2
d

(
‖∇π0,`−2

T vT ‖2L2(T )2 +
∑
F ∈FT

h−1
F ‖vT − Π`−2

T vT ‖2L2(F)

) 1
2

. |T |
1
p − 1

2
d

(
|T |1−

2
p

d
‖∇π0,`−2

T vT ‖2Lp (T )2 +
∑
F ∈FT

h−1
F |F |

1− 2
p

d−1 ‖vT − Π`−2
T vT ‖2Lp (F)

) 1
2

,

where the second line corresponds to (5.115) for p = 2. By the geometric bounds

(1.6), (1.7) and (1.8), it holds h−1
F |F |

1− 2
p

d−1 . h
2
p −2
F |T |1−

2
p

d
and thus, using the uniform

bound (1.5) on the number of edges of T ,

‖∇π̃1,`
T vT ‖Lp (T )2 . ‖∇π0,`−2

T vT ‖Lp (T )2 +
∑
F ∈FT

h
1
p −1
F ‖vT − Π`−2

T vT ‖Lp (F)

.

(
‖∇π0,`−2

T vT ‖pLp (T )2 +
∑
F ∈FT

h1−p
F ‖vT − Π`−2

T vT ‖pLp (F)

) 1
p

,

which concludes the proof of (5.115). ut
We now establish the approximation properties of the projector π1,`

T ,cvem defined
by (5.114).

Theorem 5.40 (Approximation properties of the projector π1,`
T ,cvem). Let

(Mh)h∈H = (Th,Fh)h∈H be a regular mesh sequence in the sense of Definition
1.9. Let a real number p ∈ (1,∞) and a natural number q ≥ 1 be chosen such
that qp > 2. Let a polynomial degree ` ≥ max(1,q − 1) and an integer
s ∈ {q, . . . , ` + 1} be given. Then, for all T ∈ Th , all v ∈ W s,p(T), and all
m ∈ {0, . . . , s},

|v − π1,`
T ,cvemv |Wm,p (T ) . hs−m

T |v |W s ,p (T ). (5.118)

Moreover, for all F ∈ FT and all m ∈ {0, . . . , s − 1}, it holds that

h
1
p

T |v − π1,`
T ,cvemv |Wm,p (F) . hs−m

T |v |W s ,p (T ). (5.119)

In the above estimates, the hidden constants depend only on d, %, p, q, `, and
s.

Remark 5.41 (Commutation of interpolator and elliptic projection: HHO and Con-
forming Virtual Elements). We defined in Remark 5.37 the interpolator I`,nc

T for
the virtual element interpretation of HHO by: IkTI

k ,nc
T v = IkT v. Taking v ∈ W1,1(T)
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and applying pk+1
T to this relation, the commutation property (2.14) shows that

π1,k+1
T I

k ,nc
T v = π1,k+1

T v. In other words, for the virtual HHO reformulation, a func-
tion and its interpolate on the virtual space have the same elliptic projection. The
equivalent of Theorem 5.40 in that case is nothing but Theorem 1.48, which states
the approximation properties of π1,k+1

T .
On the contrary, for Conforming Virtual Elements, we have, in general, π̃1,`

T I`T ,

π̃1,`
T (that is, π1,`

T ,cvem , π̃
1,`
T ). This is due to the fact that a function and its virtual inter-

polate do not have the samemoments up to degree ` on each edge. As a consequence,
the approximation properties of π1,`

T ,cvem have to be established separately.

Proof (Theorem 5.40). By choice of q and p, Wq,p(T) is contained in C(T) and
π1,`
T ,cvem is thus well defined on Wq,p(T). We already noticed that this mapping is a

polynomial projector, so its approximation properties (5.118) follow from Lemma
1.43, provided we establish (1.63). The trace approximation properties (5.119) are
then a consequence of (5.118), using the same argument as in the proof of Theorem
1.45. We now focus on proving (1.63).

(i) Case m = 1. Recall the definition (5.114) of π1,`
T ,cvem and combine (5.115) and

(5.109) to write

‖∇π1,`
T ,cvemv‖Lp (T )2 . ‖I`T v‖cvem,p,T .

q∑
r=1

hr−1
T |v |W r ,p (T ), (5.120)

which is exactly the relevant estimate (1.63a) since m = 1 ≤ q (note that, in the case
q = m, (1.63a) and (1.63b) are identical).

(ii) Case m = 0. We reason as in the proof of Theorem 5.7 (with l = `). Introducing
±π0,0

T (π1,`
T ,cvemv), using a triangle inequality, and applying the approximation property

(1.74) of π0,0
T to π1,`

T ,cvemv instead of v, we have

‖π1,`
T ,cvemv‖Lp (T ) ≤ ‖π1,`

T ,cvemv − π0,0
T (π1,`

T ,cvemv)‖Lp (T ) + ‖π0,0
T (π1,`

T ,cvemv)‖Lp (T )

. hT ‖∇π1,`
T ,cvemv‖Lp (T )2 + ‖π0,0

T (π1,`
T ,cvemv)‖Lp (T ). (5.121)

Applying (5.23) to I`T v instead of v, we find

|T |d
���π0,0

T (π1,`
T ,cvemv)

��� . hT |T |
1
p′
d
‖∇π̃1,`

T I
`
T v‖Lp (T )2 +

����� ∑
F ∈FT

ωTF (I`T v,1)F
����� .

Combined with ‖π0,0
T (π1,`

T ,cvemv)‖Lp (T ) = |T |
1
p

d
|π0,0

T (π1,`
T ,cvemv)|, (5.121) and (5.120),

this leads to

‖π1,`
T ,cvemv‖Lp (T ) .

q∑
r=1

hrT |v |W r ,p (T ) + |T |
1
p −1
d

����� ∑
F ∈FT

ωTF (I`T v,1)F
����� . (5.122)
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To estimate the last addend, we write����� ∑
F ∈FT

ωTF (I`T v,1)F
����� ≤ ∑

F ∈FT
|ωTF | |F |d−1‖I`T v‖L∞(F)

.
∑
F ∈FT

hT |F |d−1‖v‖C(T )

. |T |d |T |
− 1

p

d

q∑
r=0

hrT |v |W r ,p (T ),

where the second line follows from (5.4) and (5.103) applied to w = (I`T v) |F for each
F ∈ FT (recall that I`T v(xF ,i) = v(xF ,i) for all i ∈ {0, . . . , `}), and the conclusion
is obtained using the geometric bounds stated in Lemma 1.12 together with the
estimate (5.110). Plugged into (5.122), this shows that

‖π1,`
T ,cvemv‖Lp (T ) .

q∑
r=0

hrT |v |W r ,p (T ),

which is exactly (1.63a) in the case m = 0.

(iii) Case m ≥ 2 and m ≤ q. Using the linearity and idempotency of the projector
π1,`
T ,cvem, we have

π1,`
T ,cvemv = π

1,`
T ,cvem(v − π0,`

T v) + π0,`
T v.

Taking the Wm,p(T)-seminorm and using the inverse inequality (1.46) on the poly-
nomial function π1,`

T ,cvem(v − π0,`
T v), together with the boundedness property (1.77)

of π0,`
T with m instead of s, we infer

|π1,`
T ,cvemv |Wm,p (T ) . h−(m−1)

T |π1,`
T ,cvem(v − π0,`

T v)|W 1,p (T ) + |v |Wm,p (T ). (5.123)

Apply (5.120) with v − π0,`
T v instead of v to get

|π1,`
T ,cvem(v − π0,`

T v)|W 1,p (T ) .
q∑

r=1
hr−1
T |v − π0,`

T v |W r ,p (T )

.
m∑
r=1

hr−1
T hm−r

T |v |Wm,p (T ) +
q∑

r=m+1
hr−1
T |v |W r ,p (T )

. hm−1
T |v |Wm,p (T ) +

q∑
r=m+1

hr−1
T |v |W r ,p (T ),

where the second line follows using, for each r ≤ m, the approximation property
(1.74) of π0,`

T with (r,m) in lieu of (m, s) (note that m ≤ `+1) and, for each r ≥ m+1,
the boundedness (1.77) of π0,`

T with r instead of s. Plugged into (5.123), this estimate
yields
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|π1,`
T ,cvemv |Wm,p (T ) . |v |Wm,p (T ) +

q∑
r=m+1

hr−mT |v |W r ,p (T )

=

q∑
r=m

hr−mT |v |W r ,p (T ), (5.124)

which establishes (1.63a).
(iv) Case m ≥ q. Making m = q in (5.124) proves (1.63b). ut

5.5.6.3 A Conforming Virtual Elements scheme for the Poisson problem

In this section, we present and analyse the Conforming Virtual Element Method for
the Poisson problem (2.1).

The relation (5.116) and the closure equation (5.14b) show that, for any vT ∈ U`T ,
π̃1,`
T vT is computable from the DOFs of vT . This justifies the following definition of

the local bilinear form acvem
T : U`T ×U`T → R, mimicking (∇u,∇v)T , with consistent

contribution based on the modified elliptic projector: For all uT ,vT ∈ U`T ,

a
cvem
T (uT ,vT ) B (∇π̃1,`

T uT ,∇π̃1,`
T vT )T + scvem

T (uT ,vT ),

where scvem
T : U`T×U`T → R is a symmetric positive semidefinite stabilisation bilinear

form, computable from the DOFs and which satisfies the following polynomial
consistency and stability properties:

s
cvem
T (w,vT ) = 0 ∀(w,vT ) ∈ P`(T) × U`T , (5.125)

‖∇π̃1,`
T vT ‖2T + scvem

T (vT ,vT ) ' ‖vT ‖2cvem,2,T ∀vT ∈ U`T , (5.126)

where the hidden constants are independent of both h and T .

Remark 5.42 (Alternative for the consistent term). In the case ` ≥ 2, since the average
on a mesh element of a virtual function is computable from the DOFs, the standard
elliptic projector π1,`

T can be used instead of the modified elliptic projector π̃1,`
T .

As usual, the global space is defined patching together the local spaces and
strongly enforcing the homogeneous Dirichlet boundary conditions:

U
`
h,0 B

{
vh ∈ H1

0 (Ω) : vT B (vh) |T ∈ U`T ∀T ∈ Th
}
.

This space is endowed with the norm

‖vh ‖cvem,2,h B

( ∑
T ∈Th

‖vT ‖2cvem,2,T

) 1
2

∀vh ∈ U`h,0. (5.127)

Since each local virtual element space is made of functions that are continuous (on
the boundary as well as inside the elements), a function inU`

h,0 is actually continuous
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overΩ. The global DOFs are also obtained patching together the local DOFs, and are
therefore made of: the values of the virtual functions at themesh vertices, their values
at each (xF ,i)i=1,...,`−1 for all F ∈ F i

h
, and their local L2-orthogonal projections on

P`−2(T) for all T ∈ Th . The global interpolator I`h : C(Ω)∩H1
0 (Ω) → U`

h,0 is defined
such that, for all v ∈ C(Ω) ∩ H1

0 (Ω), I`hv is the unique element in U`
h,0 that has the

same global DOFs as v.
Finally, we assemble the global bilinear form acvem

h
: U`

h,0 × U`h,0 → R from the
local contributions:

a
cvem
h (uh,vh) B

∑
T ∈Th

a
cvem
T (uT ,vT ) ∀uh,vh ∈ U`h,0.

The energy norm is then defined by

‖vh ‖cvem,a,h B a
cvem
h (vh,vh)

1
2 ∀vh ∈ U`h,0.

The property (5.126) ensures the following norm equivalence, in which the hidden
constant does not depend on h:

‖vh ‖cvem,a,h ' ‖vh ‖cvem,2,h ∀vh ∈ U`h,0. (5.128)

The Conforming Virtual Elements scheme for the Poisson problem then reads:
Find uh ∈ U`h,0 such that

a
cvem
h (uh,vh) = ( f ,Π`−2

h vh) ∀vh ∈ U`h,0, (5.129)

where (Π`−2
h
vh) |T = Π`−2

T vT for all T ∈ Th . Existence and uniqueness of the solu-
tion to this scheme follows from the Lax-Milgram lemma (Lemma 2.20). An error
estimate in discrete energy norm is provided in the following theorem.

Theorem 5.43 (Discrete energy error estimate for Conforming Virtual
Elements). Let (Mh)h∈H denote a regular mesh sequence in the sense of
Definition 1.9. Let a polynomial degree ` ≥ 1 be fixed. Let u ∈ H1

0 (Ω) denote
the unique solution to (2.2), for which we assume the additional regularity
u ∈ Hr+2(Th) for some r ∈ {0, . . . , ` − 1}. For all h ∈ H , let uh ∈ U`h,0 denote
the unique solution to (5.129). Then,

‖uh − I`hu‖cvem,a,h . hr+1 |u|Hr+2(Th ), (5.130)

where the hidden constant is independent of both h and u.

Remark 5.44 (L2-error estimates). In the case ` ≥ 3, an optimal error estimate in L2-
norm can also be obtained using the Aubin–Nitsche trick (Theorem A.10). For ` = 1
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this requires, as for the HHO(0,−1) method (see Theorem 5.16), to choose weights
that satisfy the quadrature rule (5.5) of order one. For ` = 2, the discretisation of
the source term must be modified in a similar way as for the HHO(1,0) scheme, see
Remark 5.17: ( f ,Π0

h
vh) is replaced with∑

T ∈Th
( f , ṽT )T

where, for all T ∈ Th and all x ∈ T , ṽT (x) = π0,0
T vT + π

0,0
T (∇vT )·(x − xT ), with

xT = π
0,0
T (x) the centre of mass of T ; see [44] for details.

Remark 5.45 (Small edges).The analysis of the ConformingVirtual ElementMethod
is carried out here under our standard mesh regularity assumption, which allows
for non-star-shaped elements but imposes each edge diameter to be comparable to
the diameters of the elements it belongs to. For linear problems, an analysis of
Conforming Virtual Elements can be carried out without the latter restriction [53,
80], assuming that each element T is star-shaped with respect to a ball of diameter
comparable to hT . Understanding if the analysis tools developed for non-linear
problems in Section 5.5.6.2 can be adapted to meshes with small edges is currently
an open question.

Proof (Theorem 5.43).We use the Third Strang Lemma A.7, with Uh = U`h endowed
with the norm ‖·‖cvem,a,h (for which acvem

h
is obviously coercive with constant 1),

ah = a
cvem
h

, lh(vh) = ( f ,Π`−2
h
vh), and Ihu = I`

h
u. We only have to show that the

dual norm of the consistency error is bounded above by the right-hand side in (5.130)
Recalling that f = −∆u and the definition (5.114) of π1,`

T ,cvem, this consistency
error is

Eh(u; vh) =
∑
T ∈Th
−(∆u,Π`−2

T vT )T −
∑
T ∈Th
(∇π1,`

T ,cvemu,∇π̃1,`
T vT )T

−
∑
T ∈Th

s
cvem
T (I`Tu,vT ) C T1 + T2 + T3.

(5.131)

Let us first consider the stabilisation terms. Using the polynomial consistency (5.125)
of scvem

T together with the polynomial invariance (5.107) of I`T , we have

s
cvem
T (I`Tu,I`Tu) 1

2 = scvem
T (I`T (u − π0,`

T u),I`T (u − π0,`
T u)) 1

2

. ‖I`T (u − π0,`
T u)‖cvem,2,T

. |u − π0,`
T u|H1(T ) + hT |u − π0,`

T u|H2(T )
. hr+1

T |u|Hr+2(T ),

where the second inequality follows from the boundedness (5.126) of scvem
T , the third

inequality from (5.109) with q = p = 2 and v = u − π0,`
T u, and the conclusion from

the approximation properties (1.74) of π0,`
T u. Using Cauchy–Schwarz inequalities

on each scvem
T and on the sum, together with the definition of ‖·‖cvem,a,h , we infer



5.5 Virtual Elements 231

|T3 | ≤
∑
T ∈Th

s
cvem
T (I`Tu,I`Tu) 1

2 s
cvem
T (vT ,vT )

1
2

. hr+1 |u|Hr+2(Th )‖vh ‖cvem,a,h . (5.132)

We now turn to the first two terms in (5.131). Integrating by parts and noticing
that, for any value of ` ≥ 1, the definition (5.104) of Π`−2

T gives ∇Π`−2
T = ∇π0,`−2

T ,
we find

T1 =
∑
T ∈Th
(∇u,∇π0,`−2

T vT )T −
∑
T ∈Th

∑
F ∈FT
(∇u·nTF ,Π

`−2
T vT − vT )F .

where the introduction of vT = (vh) |T into the face integrals is justified by Corollary
1.19 after recalling that vh is continuous. On the other hand, applying (5.117) to
w = π1,`

T ,cvemu for each T ∈ Th , we have

T2 =

−
∑
T ∈Th
(∇π1,`

T ,cvemu,∇π0,`−2
T vT )T −

∑
T ∈Th

∑
F ∈FT
((∇π1,`

T ,cvemu)·nTF ,vT − Π`−2
T vT )F .

We infer that

|T1 + T2 | ≤
��� ∑
T ∈Th
(∇(u − π1,`

T ,cvemu),∇π0,`−2
T vT )T

+
∑
T ∈Th

∑
F ∈FT
(∇(u − π1,`

T ,cvemu)·nTF ,vT − Π`−2
T vT )F

���
≤

∑
T ∈Th

‖∇(u − π1,`
T ,cvemu)‖T ‖∇π0,`−2

T vT ‖T

+
∑
T ∈Th

∑
F ∈FT

h
1
2
F ‖∇(u − π1,`

T ,cvemu)‖F h
− 1

2
F ‖vT − Π`−2

T vT ‖F

. hr+1 |u|Hr+2(Th )‖vh ‖cvem,a,h,

where the second bound follows using Cauchy–Schwarz inequalities on the volu-
metric terms and generalised Hölder inequalities with exponents (2,2,∞) on the
boundary terms along with ‖nTF ‖L∞(F)2 = 1, and the conclusion is obtained using
the approximation properties of π1,`

T ,cvem stated in Theorem 5.40 together with dis-
crete Cauchy–Schwarz inequalities, the definition (5.127) (see also (5.105)) of the
norm ‖·‖cvem,2,h , and the norm equivalence (5.128).

Combined with (5.132) and (5.131), this bound on |T1 + T2 | shows that

sup
vh ∈U`h ,0\{0}

|E
h
(u; vh)|

‖vh ‖cvem,a,h
. hr+1 |u|Hr+2(Th ),

which concludes the proof. ut
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5.6 Gradient Discretisation Method

The Gradient Discretisation Method (GDM) is a generic framework for the design
and analysis of schemes for linear and nonlinear diffusion problems [174]. It covers
many classical methods, such as Finite Elements (conforming, nonconforming and
mixed), Finite Volumes, Discontinuous Galerkin, etc. The principle of the GDM is
to replace, in the weak formulation of the PDE, the continuous space and operators
by discrete counterparts; each choice of discrete space and operator corresponds to
a different numerical method, that is usable on a range of different models (the same
discrete space and operators can be re-used for different PDEs).

Our purpose here is to construct a Gradient Discretisation Method inspired by
the HHO method. Because the GDM is designed to tackle fully anisotropic and
heterogeneous (possibly nonlinear) diffusion models, it makes more sense to base
our construction on the HHOmethod designed in Section 4.2 for the locally variable
diffusion model (4.33).

The material presented here is adapted from [145], which also covers GDMs
designed from the HHO method of Chapter 2 and from the HHO(k, `) method of
Section 5.1.

5.6.1 The Gradient Discretisation Method

The GDM consists in replacing, in the continuous weak formulation of the problem,
the infinite-dimensional space, functions, and gradients with a finite dimensional
space and reconstructions of functions and gradients. The set of these discrete
elements (space, reconstruction of functions, reconstruction of gradients) is called a
Gradient Discretisation (GD).

Definition 5.46 (Gradient Discretisation). A Gradient Discretisation (for homoge-
neous Dirichlet boundary conditions) is a triplet D = (XD ,0,ΠD,∇D ) where

• XD ,0 is a finite dimensional space (the space of discrete unknowns of the
method),

• ΠD : XD ,0 → L2(Ω) is a linear operator that reconstructs functions from vectors
of discrete unknowns,

• ∇D : XD ,0 → L2(Ω)d is a linear operator that reconstructs “gradients” from
vectors of discrete unknowns; it must be chosen such that v 7→ ‖∇Dv‖ is a norm
on XD ,0.

A Gradient Discretisation D having been chosen, using its discrete elements in
lieu of their continuous counterparts in the weak formulation of the problem leads to
aGradient Scheme (GS) for that problem. Let us illustrate this principle on the locally
variable diffusion model of Section 4.2. We recall that K : Ω→ Rd×dsym is a bounded
uniformly coercive diffusion tensor (see (4.34)), and that the weak formulation of
the problem is (see (4.35))
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Find u ∈ H1
0 (Ω) such that

∫
Ω

K∇u·∇v =
∫
Ω

f v ∀v ∈ H1
0 (Ω). (5.133)

The Gradient Scheme for this problem is then: Find uD ∈ XD ,0 such that∫
Ω

K∇DuD ·∇DvD =
∫
Ω

fΠDv ∀vD ∈ XD ,0. (5.134)

The existence and uniqueness of a solution to problem (5.134) follows from the Lax–
Milgram lemma (Lemma 2.20). Specific choices of GDs lead to GSs that correspond
to known schemes for (5.133), see [174,Chapters 8–14]. In Section 5.6.2we construct
a Gradient Discretisation such that (5.134) is the HHO discretisation of the locally
variable diffusion problem.

Remark 5.47 (Usage of integral signs).Above and throughout the rest of this section,
we write integrals instead of L2-inner products. The reason is twofold: first, because
this is the way GDM has been historically presented; second, to emphasise the
ability of the GDM to generate schemes for nonlinear problems, possibly posed in a
non-Hilbertian setting, such as the ones considered in Chapter 6.

The accuracy of a Gradient Discretisation is measured through three quantities.
The first one is the discrete Poincaré constant

CD = max
v∈XD ,0\{0}

‖ΠDv‖
‖∇Dv‖ . (5.135)

The second is the interpolation error SD : H1
0 (Ω) → R defined by

SD (ϕ) = min
v∈XD ,0

(‖ΠDv − ϕ‖ + ‖∇Dv − ∇ϕ‖) ∀ϕ ∈ H1
0 (Ω). (5.136)

The third and last measure of accuracy associated with D is WD : H(div;Ω) → R
that measures the defect of conformity of the method (how well a discrete Stokes
formula holds):

WD (ψ) = max
v∈XD ,0\{0}

1
‖∇Dv‖

����∫
Ω

(
∇Dv·ψ + ΠDv ∇·ψ

) ���� ∀ψ ∈ H(div;Ω).
(5.137)

Based on these quantities, an error estimate for the GS can be established.

Theorem 5.48 (Error estimate for the Gradient Scheme). Let u be the weak
solution to the locally variable diffusion problem (5.133), and let uD be the solution
to the Gradient Scheme (5.134). Then,

‖∇u − ∇DuD ‖ ≤ K−1
[
WD (K∇u) + (K + K)SD (u)

]
(5.138)

and

‖u − ΠDuD ‖ ≤ K−1
[
CDWD (K∇u) + (CDK + K)SD (u)

]
, (5.139)
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where K and K are as in (4.34).

Proof. A standalone proof can be found in [174, Theorem 2.28]. For the sake
of completeness, we show here how these error estimates can be deduced from
the abstract framework of Appendix A. The setting we consider is: U = H1

0 (Ω),
a(u, v) = (K∇u,∇v), l(v) = ( f , v), Uh = XD ,0 endowed with the norm ‖∇D ·‖,
ah(uD, vD ) = (K∇DuD,∇DvD ), and lh(vD ) = ( f ,ΠDvD ). The interpolate Ihu =
IDu is defined as the element of XD ,0 that realises the minimum defining SD (u), so
that

SD (u) = ‖ΠDIDu − u‖ + ‖∇DIDu − ∇u‖. (5.140)

We note that the index “h” was kept in Uh , ah , etc. to match the notations in Appendix
A, but that in the GDM framework such an index is rarely used (as GDMs need not
be mesh-based), and replaced with the index D.

Inserting ±∇DIDu into the norm and using the triangle inequality together with
(5.140), we have

‖∇u − ∇DuD ‖ ≤ ‖∇u − ∇DIDu‖ + ‖∇DIDu − ∇DuD ‖
≤ SD (u) + ‖∇D (IDu − uD )‖.

Similarly, inserting±ΠDIDu, using the triangle inequality, (5.140) and the definition
(5.135) of CD , we have

‖u − ΠDuD ‖ ≤ ‖u − ΠDIDu‖ + ‖ΠD (IDu − uD )‖
≤ SD (u) + CD ‖∇D (IDu − uD )‖.

These estimates prove (5.138)–(5.139) provided we can establish that

‖∇D (IDu − uD )‖ ≤ K−1
(
WD (K∇u) + KSD (u)

)
. (5.141)

This bound will follow from the Third Strang lemma (Lemma A.7). By assumption
(4.34) on K , the bilinear form ah is coercive with respect to the norm on XD ,0, with
constant K . We now estimate the consistency error

Eh(u; vD ) B
∫
Ω

fΠDvD −
∫
Ω

K∇DIDu·∇DvD .

Recalling that f = −∇·(K∇u) and inserting ±
∫
Ω
K∇u·∇DvD , we write

|Eh(u; vD )|

=

����−∫
Ω

(
∇·(K∇u)ΠDvD + K∇u·∇DvD

)
+

∫
Ω

K
(
∇u − ∇DIDu

) ·∇DvD ����
≤ WD (K∇u)‖∇DvD ‖ +

����∫
Ω

K (∇u − ∇DIDu)·∇DvD
����

≤ WD (K∇u)‖∇DvD ‖ + KSD (u)‖∇DvD ‖,
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where we have used the triangle inequality and the definition (5.137) of WD (K∇u)
in the first inequality, and invoked the Cauchy–Schwarz inequality together with
(5.140) and (4.34) to conclude. Recalling that ‖∇DvD ‖ is the norm of vD in XD ,0,
this estimate on E

h
(u; vD ) readily gives

‖Eh(u; ·)‖X?D ,0 ≤ WD (K∇u) + KSD (u)

which, according to (A.6) and the coercivity of ah , yields (5.141). ut

5.6.2 Discontinuous Skeletal Gradient Discretisations

In this section, we construct a GD inspired by the HHO method designed for the
locally variable diffusion problem. We show that, in case of piecewise-constant
diffusion tensor, the Gradient Scheme corresponding to this Gradient Discretisation
is exactly the HHO scheme (4.63) for (5.133). This Gradient Discretisation is called
Discontinuous Skeletal Gradient Discretisation (DSGD) to recall one of the main
features of HHO schemes, that will carry to the GS corresponding to this GD:
the main unknowns of the scheme, after static condensation (see Section B.3.2),
are polynomial functions on the mesh faces (the skeleton of the mesh), without
continuity conditions at the vertices (if d = 2) or at the edges (if d = 3).

LetMh be a polytopal mesh and define Dh = (XDh ,0,ΠDh
,∇Dh

) by setting:

XDh ,0 B Uk
h,0, (5.142a)

ΠDh
vh B vh ∀vh ∈ Uk

h,0 = XDh ,0, (5.142b)

∇Dh
vh B Gk

hvh + Shvh ∀vh ∈ Uk
h,0 = XDh ,0, (5.142c)

whereUk
h,0 is defined by (2.36), vh by (2.33),G

k
h is the global gradient reconstruction

(4.74) (with Gk
T defined by (4.37)), and the stabilisation term Sh : Uk

h
→ L2(Ω)d is

given by
(Shvh) |T B ST vT ∀T ∈ Th , ∀vh ∈ Uk

h, (5.142d)

with local stabilisation terms (ST )T ∈Th satisfying the design properties in Assump-
tion 5.49 below. To state these properties, for a given T ∈ Th we introduce the
difference seminorm |·|δ,∂T on Uk

T such that

|vT |2δ,∂T B
∑
F ∈FT

h−1
F ‖(δkTF − δkT )vT ‖2F ∀vT ∈ Uk

T , (5.143)

where the difference operators δkT and (δkTF )F ∈FT are defined by (2.19).

Assumption 5.49 (DSGD local stabilisation term ST ) The local stabilisation term
ST : Uk

T → L2(T)d is a linear map that satisfies the following conditions:
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(GDM-S1) Stability and boundedness. For all vT ∈ Uk
T , it holds that

‖ST vT ‖2T ' |vT |2δ,∂T , (5.144)

where the hidden constants are independent of h, T and vT (but may
depend on K ).

(GDM-S2) Orthogonality. For all vT ∈ Uk
T and all φ ∈ Pk(T)d , it holds

(ST vT ,φ)T = 0. (5.145)

(GDM-S3) Polynomial consistency. For all w ∈ Pk+1(T), it holds ST IkTw = 0.

An example of such a stabilisation term is constructed in Section 5.6.3.

Remark 5.50 (Non-Hilbertian setting). To use the DSGD in non-Hilbertian setting
(e.g., for the p-Laplacian equation, see Chapter 6), we additionally need to assume
that the range of ST is contained in a space of piecewise polynomials on T ; see [145]
for details.

The following theorem makes explicit the link between Dh constructed above
and the HHO scheme for the locally variable diffusion problem (5.133).

Theorem 5.51 (HHO is a GDM). LetMh be a polytopal mesh, and assume
that K is piecewise constant on Th . Then, there exists a choice of stabilisation
terms (ST )T ∈Th , satisfying Assumption 5.49, such that the Gradient Scheme
(5.134) with D = Dh given by (5.142) is the HHO scheme (4.63) for (5.133).

Remark 5.52 (Locally variable diffusion tensor). An inspection of the proof below
shows that the result extends to the case where K varies inside each cell, provided
that the orthogonality condition (5.145) holds for all φ = K |Tψ with ψ ∈ Pk(T)d .

Proof. The definition (5.142b) of ΠDh
shows that the right-hand sides of (4.63) and

(5.134) are identical. We therefore only have to prove that, for all uh, vh ∈ Uk
h,0,

recalling the definition (4.45) of aK ,h , it holds

aK ,h(uh, vh) =
∫
Ω

K∇Dh
uh ·∇Dh

vh .

Developing the right-hand side according to (5.142c), this amounts to showing that

aK ,h(uh, vh) = (KGk
huh,G

k
hvh) + (KGk

huh,Shvh)
+ (Shuh,KGk

hvh) + (KShuh,Shvh)
= (KGk

huh,G
k
hvh) + (KShuh,Shvh), (5.146)
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where the cross terms have been eliminated in the third line using (GDM-S2) in
Assumption 5.49 which yields, since K |TGk

TuT ∈ Pk(T)d (because K |T is constant)
for all T ∈ Th ,

(KGk
huh,Shvh) =

∑
T ∈Th
(K |TGk

TuT ,ST vT )T = 0

(and similarly with uh and vh swapped). By definition (4.47) of aK ,h (see also (4.45)),
a sufficient condition for (5.146) to hold is that, for all T ∈ Th ,

(K |TSTuT ,ST vT )T = sK ,T (uT , vT ), (5.147)

where sK ,T is given by (4.46).
Let VT B Uk

T /[IkTPk+1(T)] be the quotient space of Uk
T for the relation ∼ defined

by: uT ∼ vT if and only if uT − vT ∈ IkTP
k+1(T). Let P : Uk

T → VT be the canonical
projection. If uT , vT ,wT ∈ Uk

T with uT ∼ wT , then the polynomial consistency
(2.21) of the difference operators and the definition of sK ,T yield sK ,T (uT , vT ) =
sK ,T (wT , vT ). Hence, sK ,T defines a symmetric bilinear form s̃K ,T on VT × VT such
that

s̃K ,T (PuT ,PvT ) B sK ,T (uT , vT ) ∀uT , vT ∈ Uk
T . (5.148)

Let us show that s̃K ,T is an inner product on VT . It is clearly positive semidefinite,
so we only have to show that, if s̃K ,T (PvT ,PvT ) = 0, then PvT = 0. Assuming the
former relation, we have sK ,T (vT , vT ) = 0 and thus, using the polynomial consistency
(2.21) of the difference operators and the definition (4.46) of sK ,T ,

sK ,T (vT − IkTpk+1
T vT , vT − IkTpk+1

T vT ) = 0.

Let z
T
B vT − IkTpk+1

T vT , so that the relation above becomes sK ,T (zT , zT ) = 0. Using
then (4.53) with z

T
instead of vT , we infer∑
F ∈FT

KTF

hF
‖zF − zT ‖2F . KT ‖∇pk+1

T z
T
‖2T , (5.149)

where the hidden constant is independent of h,T , and z
T
. The commutation property

(2.14) and the polynomial invariance of the elliptic projector yield

pk+1
T z

T
= pk+1

T vT − pk+1
T IkT (pk+1

T vT ) = pk+1
T vT − π1,k+1

T pk+1
T vT

= pk+1
T vT − pk+1

T vT = 0.
(5.150)

Hence, (5.149) shows that zF = (zT ) |F for all F ∈ FT . Plugged together with (5.150)
into the definition (2.12) of pk+1

T z
T
, this yields (∇zT ,∇w)T = 0 for all w ∈ Pk+1(T),

and thus ∇zT = 0. As a consequence, zT is constant equal to some c ∈ R, and thus
zF = zT = c for all F ∈ FT . We therefore have z

T
= IkT c, from which we infer

vT = IkT (pk+1
T vT + c) ∈ IkTP

k+1(T). Hence, PvT = 0 and s̃K ,T is indeed an inner
product on VT .
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Let now E : VT → [Pk(T)d]⊥ ⊂ L2(T)d be an embedding, where [Pk(T)d]⊥
denotes the orthogonal complement of Pk(T)d in L2(T)d . Such an embedding can
be constructed, for example, taking an arbitrary basis (vi)i∈I on VT , a linearly-
independent family (φi)i∈I in [Pk(T)d]⊥ (this space is infinite-dimensional), and
setting E(∑i∈I αivi) =

∑
i∈I αiφi for any real numbers (αi)i∈I . The mapping

Im(E) × Im(E) 3 (φ,ψ) 7→ s̃K ,T (E−1(φ),E−1(ψ)) ∈ R is an inner product on
Im(E). The bilinear form (φ,ψ) 7→ (K |Tφ,ψ)T is another inner product on Im(E).
Applying Lemma 5.53 below on Im(E) endowed with these inner products yields an
isomorphism L of Im(E) such that

s̃K ,T (E−1(φ),E−1(ψ)) = (K |TLφ,Lψ)T ∀φ,ψ ∈ Im(E).

Applying this to φ = E(PuT ) and ψ = E(PvT ), for arbitrary uT , vT ∈ Uk
T , we obtain

s̃K ,T (PuT ,PvT ) = (K |TLE(PuT ),LE(PvT ))T .

Recalling (5.148) then yields (5.147) with ST = LEP. The coercivity and bounded-
ness (GDM-S1) for ST follows from (5.147) and from the definition (4.46) of sK ,T .
The polynomial consistency (GDM-S3) is also a consequence of (5.147) (using
uT = vT = IkTw), and of the polynomial consistency (2.21) of the difference opera-
tors which yields sK ,T (IkTw, IkTw) = 0 whenever w ∈ Pk+1(T). Finally, the range of
ST is contained Im(L) = Im(E) ⊂ [Pk(T)d]⊥, and (GDM-S2) thus holds. ut

The following lemma, used in the proof above, corresponds to [176, Lemma 5.2].

Lemma 5.53. LetV be a finite-dimensional vector space, and let 〈·, ·〉V ,1 and 〈·, ·〉V ,2
be two inner products on V . Then, there exists an isomorphism L : V → V such
that, for all (x, y) ∈ V2,

〈x, y〉V ,1 = 〈Lx,Ly〉V ,2.

5.6.3 Construction of a stabilisation term satisfying the design
conditions

The proof of Theorem 5.51 provides a way to construct suitable stabilisation terms
(ST )T ∈Th that satisfy Assumption 5.49. This construction however appears cumber-
some. We present another, more practical, way to construct stabilisation terms, using
a Raviart–Thomas–Nédélec space on a simplicial subdivision of the elements.

LetMh = (Th,Fh) be a mesh from a regular sequence, and let T ∈ Th . In this
section, the hidden constants in . and & may depend on the regularity parameter %
of this sequence and on the polynomial degree k, but not on h or T .
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5.6.3.1 A key property and a lifting of face differences

We start with a few preliminary comments and results. Let δk∇,T : Uk
T → Pk(T)d be

the operator defined by
δk∇,T B ∇pk+1

T −Gk
T . (5.151)

For all vT ∈ Uk
T and φ ∈ Pk(T)d , it holds

(δk∇,T vT ,φ)T = (∇pk+1
T vT ,φ)T − (Gk

T vT ,φ)T
= −(pk+1

T vT ,∇·φ)T +
∑
F ∈FT
(pk+1

T vT ,φ·nTF )F

+ (vT ,∇·φ)T −
∑
F ∈FT
(vF ,φ·nTF )F

= (vT − pk+1
T vT ,∇·φ)T +

∑
F ∈FT
(pk+1

T vT − vF ,φ·nTF )F ,

where we have used the definition of δk∇,T in the first line, an integration by parts
together with the definition (4.37) of Gk

T in the second line, and we have gathered
the volumetric and boundary contributions in the third line. Since ∇·φ ∈ Pk−1(T) ⊂
Pk(T) and φ |F ·nTF ∈ Pk(F), we can introduce the L2-orthogonal projectors π0,k

T

and π0,k
F and continue with

(δk∇,T vT ,φ)T
= (π0,k

T (vT − pk+1
T vT ),∇·φ)T +

∑
F ∈FT
(π0,k

F (pk+1
T vT − vF ),φ·nTF )F

= −(δkT vT ,∇·φ)T +
∑
F ∈FT
(δkTFvT ,φ·nTF )F

= (∇δkT vT ,φ)T +
∑
F ∈FT
((δkTF − δkT )vT ,φ·nTF )F ,

where the second equality follows from the definitions (2.19) of the difference
operators, and the conclusion is obtained integrating by parts the volumetric term.
Rearranging the terms, we arrive at

−((δk∇,T − ∇δkT )vT ,φ)T
+

∑
F ∈FT
((δkTF − δkT )vT ,φ·nTF )F = 0 ∀φ ∈ Pk(T)d . (5.152)

When evaluated with a function φ from a space larger than Pk(T)d , the left-hand side
no longer vanishes in general. It then defines a residual that is linear with respect to
φ, and can thus be lifted as a function over T using the Riesz representation theorem.

More precisely, let ST be a subspace of L2(T)d such that, for all φ ∈ ST and
all F ∈ FT , it holds φ |F ·nTF ∈ L2(F). For a given vT ∈ Uk

T , the left-hand side of
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(5.152) is linear onST and therefore has a Riesz representation, i.e., there is a unique
ST vT ∈ ST such that

(ST vT ,φ)T = − ((δk∇,T − ∇δkT )vT ,φ)T
+

∑
F ∈FT
((δkTF − δkT )vT ,φ·nTF )F ∀φ ∈ ST .

(5.153)

The mapping Uk
T 3 vT 7→ ST vT ∈ ST thus defined satisfies two of the three

properties in Assumption 5.49.

Lemma 5.54 (Orthogonality and polynomial consistency of ST ). The mapping
ST defined by (5.153) is linear and satisfies (GDM-S3). If Pk(T)d ⊂ ST , then ST

also satisfies (GDM-S2).

Proof. The linearity easily follows from the uniqueness of the Riesz representation,
and the fact that the right-hand side of (5.153) is linear with respect to vT .

By definition (5.151) of δk∇,T we have, for all w ∈ Pk+1(T),

δk∇,T IkTw = ∇pk+1
T IkTw −Gk

T IkTw

= ∇π1,k+1
T w − π0,k

T (∇w)
= ∇w − ∇w = 0, (5.154)

wherewe have used, to pass to the second line, the commutation properties (2.14) and
(4.40) of pk+1

T and Gk
T , respectively, and the conclusion follows from the polynomial

invariance of the elliptic and orthogonal projectors. Plugged into (5.153) together
with the polynomial consistency (2.21) of the difference operators, (5.154) shows
that (ST IkTw,φ)T = 0 for all w ∈ Pk+1(T) and all φ ∈ ST . Hence, ST IkTw = 0 and
ST satisfies (GDM-S3) in Assumption 5.49.

We now turn to (GDM-S2), assuming that Pk(T)d ⊂ ST . Equation (5.153) can
thus be applied to any φ ∈ Pk(T)d and, using (5.152), leads to (ST vT ,φ)T = 0, which
precisely proves (GDM-S2). ut
Remark 5.55 (Lifting of face differences). Equation (5.153) can be recast as

(ST vT + (δk∇,T − ∇δkT )vT ,φ) =
∑
F ∈FT
((δkTF − δkT )vT ,φ·nTF )F ,

showing that the function ST vT + (δk∇,T −∇δkT )vT ∈ L2(T)d is indeed a lifting on T
of terms based on the face differences on ∂T .

5.6.3.2 A stabilisation term based on a local Raviart–Thomas–Nédélec space

We now have to find a finite-dimensional space ST which is “rich” enough so that
ST satisfies the stability assumption (GDM-S1). This space will be the Raviart–
Thomas–Nédélec space on the simplicial subdivision of T .
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Let Mh = (Th,Fh) be a matching simplicial submesh given by the definition of
regular mesh sequence (see Definition 1.9). We recall that TT is the set of simplices
τ ∈ Th contained in T . For F ∈ FT , we denote by FF the set of simplicial faces
σ ∈ Fh contained in F. Finally, Fi

T is the set of simplicial faces of Fh contained in
T but not in any of its faces (and, as usual, if σ ∈ Fi

T , then Tσ is the set of two
simplices in TT that share σ as a face).

Let us recall a few facts on the Raviart–Thomas–Nédélec (RTN) spaces, for a
proof of which we refer, e.g., to [196]. For a simplex τ ∈ Th , the RTN space of
degree (k + 1) on τ is RTNk+1(τ) B Pk+1(τ)d + xPk+1(τ)d . If η ∈ RTNk+1(τ) then,
for all σ ∈ Fτ with unit normal nτσ pointing out of τ, η |σ ·nτσ ∈ Pk+1(σ), and
η is entirely determined by its L2-orthogonal projection on Pk(τ)d and its normal
traces on ∂τ. More precisely, for all q ∈ Pk(τ)d and (qσ)σ∈Fτ ∈ (Pk+1(σ))σ∈Fτ ,
there exists a unique η ∈ RTNk+1(τ) such that π0,k

τ η = q and η |σ ·nτσ = qσ for all
σ ∈ Tτ . Moreover,

‖η‖2τ ' ‖π0,k
τ η‖2τ +

∑
σ∈Fτ

hσ ‖η |σ ·nτσ ‖2σ . (5.155)

In what follows, we consider the local RTN space on the subdivision TT of T ,
obtained by patching the RTN spaces on each simplex and imposing the continuity
of the normal traces:

RTNk+1(TT ) B
{
η ∈ L2(T)d : η |τ ∈ RTNk+1(τ) ∀τ ∈ TT and

η |τ1
·nτ1σ + η |τ2

·nτ2σ = 0 ∀σ ∈ Fi
T , with {τ1, τ2} = Tσ

}
.

(5.156)

We will prove that RTNk+1(TT ) is a proper choice for ST . To do so, we need the
following lemma.

Lemma 5.56 (Control of the element-based difference through face-based dif-
ferences). Recalling the definition (5.143) of the difference seminorm, it holds: For
all vT ∈ Uk

T ,
‖(δk∇,T − ∇δkT )vT ‖T . |vT |δ,∂T . (5.157)

Proof. Since (δk∇,T − ∇δkT )vT ∈ Pk(T)d , we have

‖(δk∇,T − ∇δkT )vT ‖T = sup
φ∈Pk (T )d , ‖φ ‖T=1

((δk∇,T − ∇δkT )vT ,φ)T

= sup
φ∈Pk (T )d , ‖φ ‖T=1

∑
F ∈FT
((δkTF − δkT )vT ,φ·nTF )F

≤ sup
φ∈Pk (T )d , ‖φ ‖T=1

∑
F ∈FT

h
− 1

2
F ‖(δkTF − δkT )vT ‖F h

1
2
T ‖φ‖F

≤ sup
φ∈Pk (T )d , ‖φ ‖T=1

|vT |δ,∂T h
1
2
T ‖φ‖∂T ,
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where we have used (5.152) in the second line, a generalised Hölder inequality with
exponents (2,2,∞) on the integrals over F together with ‖nTF ‖L∞(F)d = 1 and
hF ≤ hT in the third line, and a Cauchy–Schwarz inequality on the sum to conclude.
Invoking the discrete trace inequality (1.55) with p = 2 and v = components of φ,
we deduce

‖(δk∇,T − ∇δkT )vT ‖T . sup
φ∈Pk (T )d , ‖φ ‖T=1

|vT |δ,∂T ‖φ‖T = |vT |δ,∂T ,

and the proof is complete. ut
We can now conclude the construction of an explicit and computable stabilisation

term for the DSGD.

Theorem 5.57 (DSGD stabilisation based on RTNk+1). If ST = RTN
k+1(TT ),

given by (5.156), then ST defined by (5.153) satisfies Assumption 5.49.

Proof. The property (GDM-S3) has already been established in Lemma 5.54.
If η ∈ Pk(T)d , then η |τ ∈ Pk(τ)d ⊂ RTNk+1(τ) for all τ ∈ TT , and η is

continuous over T so its (normal) traces across the faces in Fi
T are continuous.

Hence, η ∈ RTNk+1(TT ). This proves that Pk(T)d ⊂ RTNk+1(TT ) and, by Lemma
5.54, that ST satisfies (GDM-S2).

It remains to prove (GDM-S1), which we do by establishing two inequalities.
Making φ = ST vT in (5.153), we have

‖ST vT ‖2T ≤ ‖(δk∇,T − ∇δkT )vT ‖T ‖ST vT ‖T +
∑
F ∈FT

‖(δkTF − δkT )vT ‖F ‖ST vT ‖F

. |vT |δ,∂T ‖ST vT ‖T +
∑
F ∈FT

h
− 1

2
F ‖(δkTF − δkT )vT ‖F ‖ST vT ‖T

. |vT |δ,∂T ‖ST vT ‖T ,

where we have used in the first line the Cauchy–Schwarz and generalised Hölder
inequalities (with exponents (2,2,∞) for the second one) along with ‖nTF ‖L∞(F)d =
1, followed in the second line by (5.157) and the discrete trace inequality (1.55)
with v = components of ST vT (valid by the mesh regularity property, since this
function is polynomial on each simplex in TT ), and we have concluded invoking the
Cauchy–Schwarz inequality on the sum and the definition (5.143) of the difference
seminorm. Simplifying leads to

‖ST vT ‖T . |vT |δ,∂T . (5.158)

To prove the converse inequality, let η ∈ RTNk+1(TT ) be defined by:

π0,k
τ η = 0 ∀τ ∈ TT , (5.159a)

η |σ ·nτσ = 0 ∀σ ∈ Fi
T , (5.159b)

η |σ ·nTF = h−1
F (δkTF − δkT )vT ∀F ∈ FT ,∀σ ∈ FF . (5.159c)
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These equations properly define η since, in (5.159c), nTF = nτσ and (δkTF −δkT )vT ∈
Pk(σ). Moreover, summing (5.155) over τ ∈ TT , we have

‖η‖2T '
∑
τ∈TT

∑
σ∈Fτ\Fi

T

hσh−2
F ‖(δkTF − δkT )vT ‖2σ

'
∑
F ∈FT

h−1
F

∑
σ∈FF

‖(δkTF − δkT )vT ‖2σ = |vT |2δ,∂T , (5.160)

where we have gathered, in the second line, the sum by faces of T (noting that all
simplicial faces σ in the first line lie on ∂T), and we have used hσ ≤ hF (for σ ∈ FF )
in the second line. Making φ = η in (5.153), we obtain

(ST vT ,η)T = − ((δk∇,T − ∇δkT )vT ,η)T +
∑
F ∈FT
((δkTF − δkT )vT ,η·nTF )F

= −
∑
τ∈TT

((((
(((

((((δk∇,T − ∇δkT )vT ,η)τ +
∑
F ∈FT

∑
σ∈FF
((δkTF − δkT )vT ,η·nTF )σ

=
∑
F ∈FT

h−1
F

∑
σ∈FF

‖(δkTF − δkT )vT ‖2σ = |vT |2δ,∂T ,

where the cancellation in the second line is justified by (5.159a) along with the fact
that ((δk∇,T − ∇δkT )vT ) |τ ∈ Pk(τ)d (see (5.151)), and the conclusion follows from
(5.159c). Using the Cauchy–Schwarz inequality in the left-hand side together with
(5.160), we infer

‖ST vT ‖T |vT |δ,∂T & |vT |2δ,∂T
which, after simplification, yields ‖ST vT ‖T & |vT |δ,∂T . Combined with (5.158), this
proves (GDM-S1). ut

5.6.4 Properties of Discontinuous Skeletal Gradient Discretisations

We prove here the following theorem, which gives the expected estimates on the
measures CD , SD and WD for the DSGD.

Theorem 5.58 (Properties of the DSGD). Let (Mh)h∈H be a regular mesh
sequence in the sense of Definition 1.9 and, for each h ∈ H , let Dh be a
Discontinuous Skeletal Gradient Discretisation defined by (5.142) with stabil-
isation terms satisfying Assumption 5.49. Then,

CDh
. 1 (5.161)

and, for all r ∈ {0, . . . , k},
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SDh
(ϕ) . hr+1‖ϕ‖Hr+2(Th ) ∀ϕ ∈ H1

0 (Ω) ∩ Hr+2(Th), (5.162)

WDh
(ψ) . hr+1‖ψ‖Hr+1(Th )d ∀ψ ∈ H(div;Ω) ∩ Hr+1(Th)d, (5.163)

where CDh
, SDh

, and WDh
are respectively defined by (5.135), (5.136),

(5.137), while the hidden constants depend only on Ω, d, k, and the mesh
regularity parameter %.

Proof. (i) Estimate on CDh
. Let vh ∈ Uk

h,0\{0}. By (GDM-S2), for all T ∈ Th ,
the functions Gk

T vT and ST vT are L2(T)d-orthogonal. The Pythagorean theorem
together with the definition (5.142c) of ∇Dh

vh and (GDM-S1) thus gives

‖∇Dh
vh ‖2T = ‖Gk

T vT ‖2T + ‖ST vT ‖2T ' ‖Gk
T vT ‖2T + |vT |2δ,∂T . (5.164)

Using the seminorm equivalence (6.19) proved in Chapter 6 below with p = 2, we
infer ‖vT ‖21,T . ‖∇Dh

vh ‖2T . Summing these estimates over T ∈ Th and taking the
square root gives

‖vh ‖1,h . ‖∇Dh
vh ‖. (5.165)

The discrete Poincaré inequality (2.37) together with the definition (5.142b) of
ΠDh

vh then yield

‖ΠDh
vh ‖ = ‖vh ‖ . ‖vh ‖1,h . ‖∇Dh

vh ‖.

Dividing by ‖∇Dh
vh ‖ and taking the supremum over vh ∈ Uk

h,0\{0} yieldsCDh
. 1.

(ii) Estimate on SDh
. Let ϕ ∈ H1

0 (Ω) ∩ Hr+2(Th) and set vh B Ik
h
ϕ ∈ Uk

h,0. By
definitions (5.136) of SDh

, (5.142b) of ΠDh
and (5.142c) of ∇Dh

,

SDh
(ϕ) ≤ ‖ΠDh

vh − ϕ‖ + ‖∇Dh
vh − ∇ϕ‖

≤ ‖π0,k
h
ϕ − ϕ‖ + ‖Gk

h Ikhϕ − ∇ϕ‖ + ‖Sh Ikhϕ‖
= ‖π0,k

h
ϕ − ϕ‖ + ‖π0,k

h
(∇ϕ) − ∇ϕ‖ + ‖Sh Ikhϕ‖,

where the global projector π0,k
h

is defined by (1.59), and we have used the commuta-
tion property (4.40). Invoking the approximation property (1.74) of the L2-projector
with (l, s,m, p) = (k,r + 1,0,2) and v = ϕ or v = components of ∇ϕ, together with
(GDM-S1), we infer

SDh
(ϕ) . hr+1 |ϕ|Hr+1(Th ) + hr+1 |∇ϕ|Hr+1(Th )d +

( ∑
T ∈Th

|IkTϕ|2δ,∂T
) 1

2

. (5.166)

The consistency property (2.31) applied to the HHO stabilisation bilinear form (2.22)
yields |IkTϕ|δ,∂T . hr+1

T |ϕ|Hr+2(T ). Plugged into (5.166), this proves (5.162).
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(iii) Estimate on WDh
. Let ψ ∈ H(div;Ω) ∩ Hr+1(Th)d , and take an arbitrary

vh ∈ Uk
h,0\{0}. Recalling the definition (5.142c) of ∇Dh

vh , we write∫
Ω

∇Dh
vh ·ψ =

∑
T ∈Th
(Gk

T vT ,ψ)T +
∑
T ∈Th
(ST vT ,ψ)T

=
∑
T ∈Th
(∇vT ,ψ)T +

∑
T ∈Th

∑
F ∈FT
(vF − vT , (π0,k

T ψ)·nTF )F

+
∑
T ∈Th
(ST vT ,ψ − π0,k

T ψ)T

=
∑
T ∈Th
−(vT ,∇·ψ)T +

∑
T ∈Th

∑
F ∈FT
(vF − vT , [(π0,k

T ψ) − ψ]·nTF )F

+
∑
T ∈Th
(ST vT ,ψ − π0,k

T ψ)T ,

where the second line follows from the property (4.41) ofGk
T vT with τ = ψ and from

the orthogonality property (GDM-S2), and we have concluded using element-wise
integration by parts and (1.28) with (τ, (ϕF )F ∈Fh ) = (ψ, (vF )F ∈Fh ) to write∑

T ∈Th

∑
F ∈FT
(vF ,ψ·nTF )F = 0.

Recalling the definition (5.142b) of ΠDh
vh , we infer∫

Ω

(
∇Dh

vh ·ψ + ΠDh
vh∇·ψ

)
=

∑
T ∈Th

∑
F ∈FT
(vF − vT , [(π0,k

T ψ) − ψ]·nTF )F

+
∑
T ∈Th
(ST vT ,ψ − π0,k

T ψ)T

=: T1 + T2.
(5.167)

Using the generalisedHölder inequalitywith exponents (2,2,∞) alongwith ‖nTF ‖L∞(F)d =
1, we write

|T1 | ≤
∑
T ∈Th

∑
F ∈FT

h
− 1

2
F ‖vF − vT ‖F h

1
2
F ‖(π0,k

T ψ) − ψ‖F

.

( ∑
T ∈Th

∑
F ∈FT

h−1
F ‖vF − vT ‖2F

) 1
2
( ∑
T ∈Th

∑
F ∈FT

hF h2r+1
T |ψ |2

Hr+1(T )d

) 1
2

. ‖vh ‖1,hhr+1 |ψ |Hr+1(Th )d ,

where we have used the trace approximation property (1.75) of the local L2-projector
with (l, s,m, p) = (k,r + 1,0,2), and we have concluded using the definition (2.35) of
‖·‖1,h (see also (2.7)) and hF ≤ hT . Using (5.165), we deduce



246 5 Variations and comparison with other methods

|T1 | . ‖∇Dh
vh ‖hr+1 |ψ |Hr+1(Th )d . (5.168)

To estimate T2, we write

|T2 | ≤
∑
T ∈Th

‖ST vT ‖T ‖ψ − π0,k
T ψ‖T

.
∑
T ∈Th

‖∇Dh
vh ‖T hr+1

T |ψ |Hr+1(T )d

. ‖∇Dh
vh ‖hr+1 |ψ |Hr+1(Th )d , (5.169)

where we have used Cauchy–Schwarz inequalities on the integrals over the mesh
elements T in the first line, (5.164) and the approximation property (1.74) with
(l, s,m, p) = (k,r+1,0,2) in the second line, and we have concluded using a Cauchy–
Schwarz inequality on the sum. Plugging (5.168) and (5.169) into (5.167) yields����∫

Ω

(
∇Dh

vh ·ψ + ΠDh
vh∇·ψ

) ���� . ‖∇Dh
vh ‖hr+1 |ψ |Hr+1(Th )d .

Dividing by ‖∇Dh
vh ‖ and taking the supremum over vh ∈ Uk

h,0\{0} concludes the
proof of (5.163). ut



Part II
Applications to advanced models





Chapter 6
p-Laplacian and Leray–Lions

Weconsider in this chapter an extension of theHHOmethod to fully nonlinear elliptic
equations of Leray–Lions kind [230]. This class of problems contains as a special
case the p-Laplace equation, which appears in the modelling of glacier motion [201],
of incompressible turbulent flows in porous media [164], in airfoil design [200], and
can be regarded as a simplified version of the viscous terms in power-law fluids. The
pure diffusion linear problems treated in Chapter 2, Section 3.1, and Section 4.2 can
also be recovered as special cases of the framework developed here.

Several novelties are present with respect to the previous chapters. The first
obvious difference is that the continuous problem (and, therefore, its HHO approxi-
mation) are possibly nonlinear. This will give us the opportunity to introduce general
techniques for the discretisation and analysis of nonlinear problems, as well as a set
of functional analysis results of independent interest. A second difference, related to
the first, is that Leray–Lions problems are naturally posed in a non-Hilbertian setting.
This will require to emulate a Sobolev structure at the discrete level, which we do by
extending the discrete norms of Chapter 2 and associated results to the W1,p-setting.
Finally, unlike previous chapters, we consider non-homogeneous Neumann bound-
ary conditions to illustrate how the HHO method is constructed and analysed in this
case.

The material is organised as follows. In Section 6.1 we state the general Leray–
Lions problem and formulate the assumptions on the flux function. Section 6.2
focuses on the HHO discretisation. We first introduce the general setting required
to deal with problems posed in a non-Hilbertian setting. As for the locally variable
diffusion model studied in Section 4.2, the gradient of the potential reconstruction
(2.11) (see also (3.22)) is not a valid choice to discretise fully nonlinear problems, and
the HHO scheme for such problems is rather based on the gradient Gk

T reconstructed
in the full space Pk(T)d , see (4.37). Section 6.3 covers the special case of the
p-Laplace equation mentioned in Remark 6.2 below. In this case, the flux function
enjoys strongermonotonicity and continuity properties than general Leray–Lions flux
functions, which permit to establish error estimates. Numerical results are provided
to illustrate the practical behaviour of the HHO scheme for this nonlinear equation.
Finally, in Section 6.4, we go back to generic Leray–Lions equations and prove
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the convergence of the HHO method using compactness arguments. The analysis
follows, in this case, a well-established pattern [169, Section 1.2]: first, an a priori
estimate, uniform in h, is established on the discrete solution; second, compactness
properties are inferred for a sequence of discrete solutions on refined meshes; finally,
the limit of such a sequence (up to the extraction of a subsequence) is shown to solve
the PDE model.

The analysis done in this chapter follows ideas originally developed in [141, 142],
where the homogeneous Dirichlet case is considered.

6.1 Model

The Leray–Lions problem reads: Find u : Ω→ R such that

−∇·σ(x,u,∇u) = f in Ω, (6.1a)
σ(x,u,∇u)·nΩ = g on ∂Ω, (6.1b)

where σ is a possibly nonlinear flux function, f is a volumetric source term, g is
the non-homogeneous Neumann boundary condition, and nΩ denotes the outer unit
normal to Ω on ∂Ω. The precise assumptions on the problem data are discussed in
what follows. Let p ∈ (1,∞) be fixed, and denote its conjugate exponent by

p′ B
p

p − 1
.

Concerning f and g, we assume that

f ∈ Lp′(Ω), g ∈ Lp′(∂Ω), and
∫
Ω

f +
∫
∂Ω

g = 0. (6.2)

The third relation above is a compatibility condition, obtained by integrating (6.1a)
over the domain Ω and using the divergence theorem and the Neumann boundary
condition (6.1b) to write∫

Ω

f = −
∫
Ω

∇·σ(x,u,∇u) = −
∫
∂Ω
σ(x,u,∇u)·nΩ = −

∫
∂Ω

g.

The requirements on the flux function are gathered in the following standard as-
sumption on Leary–Lions operators.
Assumption 6.1 (Leray–Lions flux function) The following holds:
(i) Carathéodory function. The Leray–Lions flux function

σ : Ω × R × Rd → Rd is a Carathéodory function, (6.3a)

that is,σ(·, s, ξ) is measurable for all (s, ξ) ∈ R×Rd andσ(x, ·, ·) is continuous
for a.e. x ∈ Ω;
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(ii) Growth. Setting p̂ B dp
d−p if p < d, or p̂ B ∞ if p ≥ d, there exists a function

σ ∈ Lp′(Ω) along with real numbers βσ ∈ (0,∞) and 0 ≤ t < p̂
p′ such that, for

a.e. x ∈ Ω and all (s, ξ) ∈ R × Rd ,

|σ(x, s, ξ)| ≤ σ(x) + βσ |s |t + βσ |ξ |p−1; (6.3b)

(iii) Monotonicity. It holds, for a.e. x ∈ Ω and all (s, ξ,η) ∈ R × Rd × Rd ,

[σ(x, s, ξ) − σ(x, s,η)] ·(ξ − η) ≥ 0; (6.3c)

(iv) Coercivity. There is a real number λσ ∈ (0,∞) such that, for a.e. x ∈ Ω and
all (s, ξ) ∈ R × Rd ,

σ(x, s, ξ)·ξ ≥ λσ |ξ |p . (6.3d)

Remark 6.2 (p-Laplace equation). A classical example of a Leray–Lions flux func-
tion is given by

σ(x, s, ξ) B |ξ |p−2ξ . (6.4)

The corresponding equation (6.1a) is then called the p-Laplace equation, and it
generalises the Poisson problem considered in Chapter 2 (recovered taking p = 2).
Notice that, in this case, the flux function does not actually depend on its first two
arguments.

Under Assumptions (6.2) and (6.3), and setting

W1,p
? (Ω) B

{
u ∈ W1,p(Ω) :

∫
Ω

u = 0
}
, (6.5)

the weak formulation of problem (6.1) reads: Find u ∈ W1,p
? (Ω) such that, for all

v ∈ W1,p
? (Ω),

A(u; v) =
∫
Ω

f v +
∫
∂Ω

gv |∂Ω , (6.6)

where the function A : W1,p(Ω) ×W1,p(Ω) → R is such that

A(u; v) B
∫
Ω

σ(u,∇u)·∇v. (6.7)

Remark 6.3 (Notation). Unlike the models encountered so far, problem (6.6) is pos-
sibly nonlinear and posed in a non-Hilbertian setting. For this reason, a few changes
in the notation are due.

First, in order to distinguish the function A (which is only linear in its second
argument) from the bilinear form a used in previous chapters for linear problems, we
use a capital letter and a semi-colon, instead of a colon, to separate its arguments.
A similar notation is adopted for the functions Ah and ST , respectively defined by
(6.27) and (6.28) below.
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Second, the L2-product notation introduced in Remark 1.14 is systematically
dropped in favour of integrals. In order to alleviate the notations, in (6.7) and in
the integrals that follow we do not explicitly indicate the dependence of σ, u and
other functions on x, and we also omit the measure, which can be unequivocally
inferred from the context. Thus, in (6.6), the last integral is to be understood for
the (d − 1)-dimensional measure on ∂Ω, and v |∂Ω is taken in the sense of the trace
of a W1,p(Ω) function. Similar considerations hold for the other boundary integrals
appearing in the rest of this chapter.

Remark 6.4 (Zero average condition). The zero average condition in W1,p
? (Ω) is

used to ensure that a priori estimates on the solution to (6.6) can be obtained using
the Poincaré–Wirtinger inequality valid in this space (see, e.g., [81, Comments on
Chapter 9]). In the case of linear equations with Neumann boundary conditions, this
zero average condition also ensures the uniqueness of the solution (since any two
solutions only differ by an additive constant). This is not necessarily the case for
nonlinear models such as (6.1); see Remark 6.16.

6.2 Discrete problem

In this section, after introducing a global discrete HHO space that incorporates
in a suitable way the zero-average condition, we equip it with a norm ‖·‖1,p,h
that generalises to the W1,p

? -setting the one defined by (2.35). Three key discrete
functional analysis results are then stated, and two additional reconstruction-based
norms are introduced and shown to be equivalent to ‖·‖1,p,h , uniformly in h. Finally,
we state the discrete problem and, based on the previous tools along with standard
results from nonlinear analysis, study the existence of a solution.

6.2.1 DiscreteW 1,p
? space and discrete functional analysis

In Chapter 2, the discrete space Uk
h,0 (see (2.36)) and the norm ‖·‖1,h (see (2.35)

and (2.7)) played the role of the Hilbert space H1
0 (Ω) and of the seminorm |·|H1(Ω),

respectively (notice that |·|H1(Ω) is a norm on H1
0 (Ω) by virtue of the continuous

Poincaré inequality). For the Leray–Lions equation (6.1) with Neumann boundary
conditions, the discretisation space must replace at the discrete level the Sobolev
space W1,p

? (Ω) (cf. (6.5)) with its associated norm. A natural candidate for this
discrete space is

Uk
h,? B

{
vh ∈ Uk

h :
∫
Ω

vh = 0
}
, (6.8)

where we remind the reader that, for any vh ∈ Uk
h
, the broken polynomial function

vh ∈ Pk(Th) is given by (2.33), that is, (vh) |T = vT for allT ∈ Th . The counterpart, on
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Uk
h,?

, of the seminorm |·|W 1,p (Ω) is the followingmap ‖·‖1,p,h defined by generalising
(2.7) and (2.35) to the non-Hilbertian setting: For all vh ∈ Uk

h,?
,

‖vh ‖1,p,h B
( ∑
T ∈Th

‖vT ‖p1,p,T
) 1

p

,

‖vT ‖1,p,T B
(
‖∇vT ‖pLp (T )d +

∑
F ∈FT

h1−p
F ‖vF − vT ‖pLp (F)

) 1
p

∀T ∈ Th .
(6.9)

The power of hF in the second term ensures that both contributions have the same
scaling. Note that it holds ‖·‖1,2,h = ‖·‖1,h (cf. (2.35) and (2.7)).

Because we are dealing with non-homogeneous Neumann boundary conditions,
we will also need the discrete trace operator γh : Uk

h
→ Lp(∂Ω) such that, for all

vh ∈ Uk
h
,

(γhvh) |F B vF ∀F ∈ F b
h . (6.10)

Three theorems on Uk
h,?

will be required for the analysis of the HHO method
for (6.1): a discrete Sobolev–Poincaré–Wirtinger inequality, a trace inequality, and a
compactness property. These theoremsmimic, at the discrete level, known functional
analysis results onW1,p

? (Ω). Following [174, Appendix B], we therefore refer to them
as discrete functional analysis results. Their proofs are postponed to Section 6.5. The
discrete Sobolev–Poincaré–Wirtinger and trace inequalities will be instrumental in
establishing a priori estimates. The compactness theorem will be essential to prove
the convergence of the HHO solution in cases where error estimates cannot be
obtained, due to the lack of an appropriate structure of σ.

Theorem 6.5 (Discrete Sobolev–Poincaré–Wirtinger inequality). Let a
polynomial degree k ≥ 0 and an index p ∈ (1,∞) be fixed. Let (Mh)h∈H denote
a regular sequence of meshes in the sense of Definition 1.9. Let 1 ≤ q ≤ dp

d−p
if 1 ≤ p < d, and 1 ≤ q < ∞ if p ≥ d. Then, for all vh ∈ Uk

h,?
,

‖vh ‖Lq (Ω) . ‖vh ‖1,p,h, (6.11)

where the hidden multiplicative constant depends only on Ω, %, k, p, and q.

Proof. See Section 6.5. ut

Remark 6.6 (Discrete Sobolev–Poincaré–Wirtinger inequalities on broken spaces).
Discrete Sobolev embeddings for the HHO space (2.36) strongly incorporating the
homogeneous Dirichlet boundary conditions can be found in [142, Proposition 5.4].
The proof provided therein hinges on similar results for broken polynomial spaces;
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see Remark 2.17 for further details. In the Finite Elements literature, discrete coun-
terparts of Sobolev embeddings for broken spaces are proved, e.g., in [225] for p = 2
and in [88] for generic exponents p. In both cases, stronger assumptions on the mesh
are made, namely the fact that every mesh element is the image through an affine
map of one polyhedron out of a finite set of reference polyhedra.

Theorem 6.7 (Global discrete trace inequality in Uk
h,?

). Let a polynomial
degree k ≥ 0 and an index p ∈ (1,∞) be fixed. Let (Mh)h∈H denote a regular
sequence of meshes in the sense of Definition 1.9. Then, for all vh ∈ Uk

h,?
,

‖γhvh ‖Lp (∂Ω) . ‖vh ‖1,p,h, (6.12)

where the hidden multiplicative constant depends only on Ω, %, k, and p.

Proof. See Section 6.5. ut
To state the discrete compactness result, we need the global discrete gradient

operator Gk
h : Uk

h
→ Pk(Th)d defined by (4.74) and such that, for all vh ∈ Uk

h,?
,

(Gk
hvh) |T B Gk

T vT ∀T ∈ Th,

where, for any T ∈ Th , the local gradient reconstruction Gk
T : Uk

T → Pk(T)d , given
by (4.37), is such that, for all vT ∈ Uk

T and all τ ∈ Pk(T)d ,∫
T

Gk
T vT ·τ = −

∫
T

vT (∇·τ) +
∑
F ∈FT

∫
F

vF (τ·nTF ) (6.13)

=

∫
T

∇vT ·τ +
∑
F ∈FT

∫
F

(vF − vT )(τ·nTF ). (6.14)

We also need the potential reconstruction defined by (2.11). To avoid confusion
with the exponent p, throughout this chapter we rename this reconstruction rk+1

T :
Uk

T → Pk+1(T). For the sake of convenience, its definition is recalled hereafter:∫
T

∇rk+1
T vT ·∇w = −

∫
T

vT∆w +
∑
F ∈FT

∫
F

vF (∇w·nTF ) ∀w ∈ Pk+1(T),∫
T

rk+1
T vT =

∫
T

vT .

(6.15)

We finally recall the definition of the global potential reconstruction rk+1
h

: Uk
h
→

Pk+1(Th) such that, for all vh ∈ Uk
h
,

(rk+1
h vh) |T B rk+1

T vT ∀T ∈ Th .
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Theorem 6.8 (Discrete compactness). Let a polynomial degree k ≥ 0 and an
index p ∈ (1,∞) be fixed. Let (Mh)h∈H denote a regular sequence of meshes
in the sense of Definition 1.9. Let (vh)h∈H ∈ (Uk

h,?
)h∈H be a sequence for

which there exists a real number C > 0 independent of h such that

‖vh ‖1,p,h ≤ C ∀h ∈ H .

Then, there exists v ∈ W1,p
? (Ω) such that, up to a subsequence as h→ 0,

(i) vh → v and rk+1
h

vh → v strongly in Lq(Ω) for all 1 ≤ q <
dp
d−p if

1 ≤ p < d, and 1 ≤ q < ∞ if p ≥ d;
(ii) γhvh → v |∂Ω strongly in Lp(∂Ω);
(iii) Gk

hvh ⇀ ∇v weakly in Lp(Ω)d .

Proof. See Section 6.5. ut

Remark 6.9 (Role of discrete Sobolev–Poincaré–Wirtinger embeddings). The dis-
crete embeddings (6.11) are essential to obtain the convergence of vh in Lq(Ω), and
thus to deal with the dependency of σ with respect to u (in particular through the
growth condition involving t in (6.3b)).

6.2.2 Reconstruction-based discreteW 1,p-norms

The norm (6.9) on Uk
h,?

mimics the W1,p-norm and is used to establish proper-
ties on sequences in this space (e.g., boundedness of reconstructed functions in
Lebesgue norms through Theorem 6.5, or compactness through Theorem 6.8). For
the convergence analysis, two additional norms based on local reconstructions that
we introduce hereafter will be useful.

6.2.2.1 Gradient reconstruction-basedW 1,p-norm

The first norm, based on the discrete gradient operator, is given by

‖vh ‖G,p,h B
( ∑
T ∈Th

‖vT ‖pG,p,T
) 1

p

,

‖vT ‖G,p,T B
(
‖Gk

T vT ‖pLp (T )d + |vT |
p
δ,p,T

) 1
p ∀T ∈ Th,

(6.16)
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where, recalling the difference operators δkT and δkTF defined by (2.19), the difference
seminorm |·|δ,p,T is such that

|vT |δ,p,T B
( ∑
F ∈FT

h1−p
F ‖δkTFvT − δkT vT ‖pLp (F)

) 1
p

. (6.17)

Remark 6.10 (Choice of the consistent gradient). The locally variable diffusion case
covered in Section 4.2 is a special case of (6.1a), obtained by selecting σ(x,u,∇u) =
K (x)∇u. As a consequence, it is clear from the discussion at the beginning of
Section 4.2.1 that the gradient of the potential reconstruction is not a good choice
for the consistent contribution in the discretisation of (6.7), and that the gradient
reconstruction Gk

T should be used instead. The norm ‖·‖G,p,h will therefore appear
as the natural norm to establish a priori estimates on the solution to the HHO scheme
for (6.1).

6.2.2.2 Potential reconstruction-based W 1,p-norm

The second norm hinges on the potential reconstruction defined by (6.15):

‖vh ‖∇r,p,h B

( ∑
T ∈Th

‖vT ‖p∇r,p,T

) 1
p

,

‖vT ‖p∇r,p,T B
(
‖∇rk+1

T vT ‖pLp (T )d + |vT |
p
δ,p,T

) 1
p ∀T ∈ Th,

(6.18)

where |·|δ,p,T is given by (6.17). This norm generalises to the non-Hilbertian setting
the norm ‖·‖a,h defined by (2.41) with the choice (2.22). It will enable the proof of
convergence of the reconstructed potential.

6.2.2.3 Equivalence of reconstruction-based W 1,p-norms

The following lemma establishes the equivalence, uniform in h, of the three norms
constructed on Uk

h,?
.

Lemma 6.11 (Equivalence of norms). It holds, with hidden constants depending
only on k, p and %:

‖vT ‖1,p,T ' ‖vT ‖∇r,p,T ' ‖vT ‖G,p,T ∀T ∈ Th , ∀vT ∈ Uk
T . (6.19)

As a consequence,

‖vh ‖1,p,h ' ‖vh ‖∇r,p,h ' ‖vh ‖G,p,h ∀vh ∈ Uk
h . (6.20)
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Remark 6.12. Note that ‖·‖1,p,h , ‖·‖∇r,p,h and ‖·‖G,p,h are only seminorms on Uk
h
,

but genuine norms on Uk
h,?

. Indeed, if vh ∈ Uk
h,?

and ‖vh ‖1,p,h = 0, then reasoning
as in the proof of Corollary 2.16 shows that all element and face components in
vh are constant and equal, and by the Poincaré–Sobolev–Wirtinger inequality (6.11)
that this constant is zero.

Proof. The global equivalence (6.20) is obtained by raising the local equivalences
(6.19) to the power p, summing over T ∈ Th , and taking the power 1/p of the resul-
ting relation. We therefore only have to prove the local equivalences.

(i) The case p = 2. For p = 2, we have ‖·‖1,2,T = ‖·‖1,T (defined by (2.7)), and
‖·‖∇r,2,T = aT (·, ·) 1

2 , where aT is given by (2.15) with the stabilisation term (2.22).
Proposition 2.13 shows that ‖·‖1,2,T ' ‖·‖∇r,2,T , thus proving the first equivalence
in (6.19). To conclude the proof in the case p = 2, it only remains to establish the
following two estimates:

‖·‖∇r,2,T . ‖·‖G,2,T (6.21)

and
‖·‖G,2,T . ‖·‖1,2,T . (6.22)

Let vT ∈ Uk
T . By Remark 4.9,∇rk+1

T vT is the L2(T)d-orthogonal projection of Gk
T vT

onto ∇Pk+1(T). Hence, ‖∇rk+1
T vT ‖L2(T )d ≤ ‖Gk

T vT ‖L2(T )d , which readily proves
(6.21) (with actually ≤ instead of the less precise .).

We now turn to (6.22). Since ‖vT ‖∇r,2,T . ‖vT ‖1,2,T , we have |vT |δ,2,T .
‖vT ‖1,2,T , and proving (6.22) thus reduces to showing that ‖Gk

T vT ‖L2(T )d .
‖vT ‖1,2,T . To establish this, take τ = Gk

T vT in (6.14) and write

‖Gk
T vT ‖2L2(T )d =

∫
T

∇vT ·Gk
T vT +

∑
F ∈FT

∫
F

(vF − vT )(Gk
T vT ·nTF )

≤ ‖∇vT ‖L2(T )d ‖Gk
T vT ‖L2(T )d +

∑
F ∈FT

‖vF − vT ‖L2(F)‖Gk
T vT ‖L2(F)

. ‖∇vT ‖L2(T )d ‖Gk
T vT ‖L2(T )d +

∑
F ∈FT

h
− 1

2
F ‖vF − vT ‖L2(F)‖Gk

T vT ‖L2(T )d

. ‖vT ‖1,2,T ‖Gk
T vT ‖L2(T )d , (6.23)

where we have used a Cauchy–Schwarz inequality and generalised Hölder inequali-
ties with exponents (2,2,∞) along with ‖nTF ‖L∞(F)d = 1 to pass to the second line,
the discrete trace inequality (1.55) applied with p = 2 to the components of Gk

T vT
along with hF ≤ hT to pass to the third line, and the definition (6.9) of the ‖·‖1,2,T -
norm to conclude.After simplification, (6.23) shows that ‖Gk

T vT ‖L2(T )d . ‖vT ‖1,2,T ,
which concludes the proof of (6.22).

(ii) The case p , 2. The idea is to leverage the equivalence proved in the case p = 2
by using the direct and inverse Lebesgue inequalities (1.35) on mesh elements and
faces; see Remark 1.27. These inequalities show that, for all ϕT ∈ Pk(T)d ,
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‖ϕT ‖pLp (T )d ' |T |
1− p

2
d
‖ϕT ‖pL2(T )d = |T |

1− p
2

d

(
‖ϕT ‖2L2(T )d

) p
2 (6.24)

and, for all F ∈ FT and ϕF ∈ Pk(F),

h1−p
F ‖ϕF ‖pLp (F) ' h1−p

F |F |1−
p
2

d−1 ‖ϕF ‖
p

L2(F)

= h
− p

2
F (hF |F |d−1)1−

p
2 ‖ϕF ‖pL2(F)

' |T |1−
p
2

d

(
h−1
F ‖ϕF ‖2L2(F)

) p
2
,

(6.25)

where we have used the mesh regularity property to write hF |F |d−1 ' |T |d , owing to
(1.6), (1.7) and (1.8). We also notice that, for any finite family (ai)i∈I of non-negative
numbers and any exponent α > 0,∑

i∈I
aαi ≤ card(I)

(∑
i∈I

ai

)α
≤ card(I)1+α

∑
i∈I

aαi . (6.26)

The first inequality is obtained writing ai ≤
∑

j∈I aj for all i ∈ I, while the
second follows from (∑i∈I ai)α ≤ (card(I)maxi∈I ai)α = card(I)α maxi∈I aαi ≤
card(I)α ∑

i∈I aαi . Summing (6.25) over F ∈ FT , adding (6.24) and using (6.26)
(with I = {T} ∪ FT , aT = ‖ϕT ‖2L2(T )d , aF = h−1

F ‖ϕF ‖2L2(F) for all F ∈ FT , and
α = p/2), we have

‖ϕT ‖pLp (T )d +
∑
F ∈FT

h1−p
F ‖ϕF ‖pLp (F) ' |T |

1− p
2

d

(
‖ϕT ‖2L2(T )d +

∑
F ∈FT

h−1
F ‖ϕF ‖2L2(F)

) p
2

.

Apply this relation to

(ϕT , (ϕF )F ∈FT ) = (∇vT , (vF − vT )F ∈FT ),
(ϕT , (ϕF )F ∈FT ) = (∇rk+1

T vT , (δkTFvT − δkT vT )F ∈FT ),
(ϕT , (ϕF )F ∈FT ) = (Gk

T vT , (δkTFvT − δkT vT )F ∈FT )

to obtain, respectively,

‖vT ‖p1,p,T ' |T |
1− p

2
d
‖vT ‖

p
2

1,2,T ,

‖vT ‖p∇r,p,T ' |T |
1− p

2
d
‖vT ‖

p
2
∇r,2,T ,

‖vT ‖pG,p,T ' |T |
1− p

2
d
‖vT ‖

p
2

G,2,T .

The equivalences (6.19) then follow from the case p = 2 covered in Point (i). ut
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6.2.3 Discrete problem and well-posedness

The discrete counterpart of the function A defined by (6.7) is the function Ah :
Uk

h
×Uk

h
→ R such that, for all uh, vh ∈ Uk

h
,

Ah(uh; vh) B
∫
Ω

σ(uh,Gk
huh)·Gk

hvh +
∑
T ∈Th

ST (uT ; vT ). (6.27)

Here, for all T ∈ Th , ST : Uk
T ×Uk

T → R is a local stabilisation function which can
be obtained, e.g., by generalising (2.22) to the non-Hilbertian setting:

ST (uT ; vT ) B∑
F ∈FT

h1−p
F

∫
F

|δkTFuT − δkTuT |p−2(δkTFuT − δkTuT )(δkTFvT − δkT vT ), (6.28)

where we remind the reader that the difference operators δkT and δkTF are given
by (2.19).

Remark 6.13 (Scaling of ST ). As in Section 4.2.2, a scaling factor can be introduced
in the stabilisation term ST to match the (local) magnitude of σ, when such a thing
can be defined. See, e.g., the discussion in [72, Remark 7], where nonlinear elasticity
problems with p = 2 are considered.

Recalling the definition (6.10) of γh , the discrete problem reads: Find uh ∈ Uk
h,?

such that
Ah(uh; vh) =

∫
Ω

f vh +
∫
∂Ω

g γhvh ∀vh ∈ Uk
h,?. (6.29)

The existence of a solution to (6.29) can be established using results from the
topological degree theory.

Lemma 6.14 (Existence of a solution and a priori bound). Problem (6.29) admits
at least one solution, and any solution uh to this problem satisfies

‖uh ‖1,p,h .
(
‖ f ‖Lp′ (Ω) + ‖g‖Lp′ (∂Ω)

) 1
p−1

, (6.30)

where the hidden constant is independent of h.

Proof. Endow the spaceUk
h,?

with an inner product 〈·, ·〉 and associated norm |·|. For
all uh ∈ Uk

h,?
, the mapping Ah(uh; ·) is linear on Uk

h,?
, and the Riesz representation

theorem thus gives a unique Φ(uh) ∈ Uk
h,?

such that

Ah(uh; vh) = 〈Φ(uh), vh〉 ∀vh ∈ Uk
h,?.

Likewise, there is a unique wh ∈ Uk
h,?

such that
∫
Ω

f vh +
∫
∂Ω

g γhvh = 〈wh, vh〉 for
all vh ∈ Uk

h,?
. We note that uh is a solution to (6.29) if and only if Φ(uh) = wh .
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Using the assumptions (6.3a) and (6.3b) on σ, it can easily be checked that
the mapping Φ : Uk

h,?
→ Uk

h,?
is continuous since, the space Uk

h,?
being finite-

dimensional, convergence of a sequence in this space for the norm |·| is equivalent
to the convergence of all its components on a fixed basis of the space. Moreover, by
the coercivity condition (6.3d) and the definition of ST , for all uh ∈ Uk

h,?
,

〈Φ(uh),uh〉 = Ah(uh; uh)
≥ λσ ‖Gk

huh ‖pLp (Ω)d +
∑
T ∈Th

∑
F ∈FT

h1−p
F ‖δkTFuT − δkTuT ‖pLp (F)

& ‖uh ‖pG,p,h (6.31)

≥ ch |uh |p,

where we have used, in the conclusion, the equivalence of ‖·‖G,p,h and |·| on the
finite-dimensional space Uk

h,?
; here, ch > 0 possibly depends on h but not on uh .

This estimate shows that 〈Φ(uh ),uh 〉
|uh | →∞ as |uh | → ∞. Using Theorem 6.15 below,

we infer the existence of uh ∈ Uk
h,?

such that Φ(uh) = wh , which precisely means
that uh is a solution to (6.29).

To establish (6.30), we write

‖uh ‖p1,p,h . ‖uh ‖
p
G,p,h

. Ah(uh; uh) =
∫
Ω

f uh +
∫
∂Ω

g γhuh

≤ ‖ f ‖Lp′ (Ω)‖uh ‖Lp (Ω) + ‖g‖Lp′ (∂Ω)‖γhuh ‖Lp (∂Ω)

.
(
‖ f ‖Lp′ (Ω) + ‖g‖Lp′ (∂Ω)

)
‖uh ‖1,p,h,

where the first line follows from the equivalence (6.20), the second line is a con-
sequence of (6.31) and of the fact that uh solves (6.29), the third line is obtained
using Hölder’s inequalities, and the conclusion follows from the Sobolev–Poincaré–
Wirtinger Theorem 6.5 with q = p and from the trace inequality (6.12). Simplify by
‖uh ‖1,p,h on each side and take the power 1

p−1 to get (6.30). ut
The following theorem, used in the proof above, corresponds to [139, Theorem

3.3]

Theorem 6.15 (Surjectivity of nonlinear coercive mappings). Let E be a Eu-
clidean space with inner product 〈·, ·〉 and norm |·|. If f : E → E is a continuous
function that satisfies

lim
|x |→∞

〈 f (x), x〉
|x | = ∞,

then f is surjective, that is, for any y ∈ E there exists at least one x ∈ E such that
f (x) = y.

Remark 6.16 (Uniqueness). The uniqueness of the continuous and discrete solutions
cannot be established under Assumption 6.1; see [176, Remark 3.4] in the case of
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homogeneous Dirichlet boundary conditions. Uniqueness can be proved under the
additional assumption (6.82) of strict monotonicity of the flux function; see Theorem
6.19 (and its proof in Section 6.3.4) for the p-Laplace equation. For more general
Leray–Lions models, we refer to [230] for the continuous model and to [170] for a
Mixed Finite Volumes approximation (close to an HHO method of degree k = 0).
We also mention [73, Theorem 7] concerning nonlinear elasticity problems.

6.2.4 Flux formulation

We state here an equivalent formulation of the discrete problem (6.29) using numer-
ical fluxes. We start with some preliminaries, for an arbitrary mesh element T ∈ Th ,
on the stabilisation function ST defined by (6.28). This function only depends on its
arguments through the difference operators (δkT , (δkTF )F ∈FT ). Following the proof of
Proposition 2.24, we can therefore write

ST (uT ; vT ) = ST

(
(0,∆k

∂TuT ); (0,∆k
∂T vT )

)
, (6.32)

where ∆k
∂T : Uk

T → Dk
∂T

is given by (2.56). We then define, in a similar way as in
(2.59), a (nonlinear) boundary residual operator Rk

∂T
: Uk

T → Dk
∂T

such that, for all
uT ∈ Uk

T , Rk
∂T
(uT ) = (Rk

TF (uT ))F ∈FT with, for all α∂T = (αTF )F ∈FT ∈ Dk
∂T

,

−
∑
F ∈FT

∫
F

Rk
TF (uT )αTF = ST ((0,∆k

∂TuT ); (0, α∂T )). (6.33)

Lemma 6.17 (Flux formulation for the HHO approximation of the Leray–
Lions problem). LetMh denote a polytopal mesh in the sense of Definition
1.4. Let uh ∈ Uk

h,?
and, for all T ∈ Th and all F ∈ FT , define the numerical

normal trace of the flux

ΦTF (uT ) B −π0,k
T

(
σ(uT ,Gk

TuT )
)
·nTF + Rk

TF (uT )

with Rk
TF given by (6.33).

Then, uh is a solution of problem (6.29) if and only if the following three
properties hold:

(i) Local balance. For all T ∈ Th and all vT ∈ Pk(T), it holds∫
T

σ(uT ,Gk
TuT )·∇vT +

∑
F ∈FT

∫
F

ΦTF (uT )vT =
∫
T

f vT . (6.34a)
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(ii) Continuity of the numerical normal traces of the flux. For any interface
F ∈ F i

h
such that F ⊂ ∂T1 ∩ ∂T2 with distinct mesh elements T1,T2 ∈ Th ,

it holds
ΦT1F (uT1

) + ΦT2F (uT2
) = 0. (6.34b)

(iii) Values of boundary fluxes. For any boundary face F ∈ F b
h
, lettingT ∈ Th

be such that F ∈ FT , it holds

ΦTF (uT ) = −π0,k
F g. (6.34c)

Remark 6.18 (Neumann boundary conditions). Comparing with Lemma 2.25, we
notice a third property involving the boundary fluxes. This additional property cor-
responds to the Neumann boundary condition considered here (see (6.1b)).

Proof. The proof follows the ideas developed in Section 2.2.5, with adaptations to
deal with non-homogeneous Neumann boundary conditions.

Let vh ∈ Uk
h
. Using the relation (4.41) with τ = σ(uT ,Gk

TuT ), we have∫
T

σ(uT ,Gk
TuT )·Gk

T vT =

∫
T

σ(uT ,Gk
TuT )·∇vT

+
∑
F ∈FT

∫
F

π0,k
T (σ(uT ,Gk

TuT ))·nTF (vF − vT ).

The relations (6.32) and (6.33) yield

ST (uT ; vT ) = −
∑
F ∈FT

∫
F

Rk
TF (uT )(vF − vT ).

Plugging these two equations into (6.27), we see that the scheme (6.29) can be recast
as: ∑

T ∈Th

( ∫
T

σ(uT ,Gk
TuT )·∇vT −

∑
F ∈FT

∫
F

ΦTF (uT )(vF − vT )
)

=

∫
Ω

f vh +
∫
∂Ω

g γhvh ∀vh ∈ Uk
h,?.

(6.35)

Define 1h ∈ Uk
h
such that 1T = 1 for all T ∈ Th and 1F = 1 for all F ∈ Fh .

If vh ∈ Uk
h
and m = 1

|Ω |
∫
Ω
vh , then vh − m1h ∈ Uk

h,?
can be used in (6.35). A

simple inspection shows that the terms involving 1h in the left-hand side then vanish,
while the compatibility condition (6.2) ensures that the corresponding terms in the
right-hand side cancel out. This proves that (6.35) also holds for vh ∈ Uk

h
.

The conclusion of the proof is then similar to the proof of Lemma 2.21, selecting
for vh elements that span a basis of Uk

h
, that is, the same elements as in the proof of
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Lemma 2.21 but including also non-zero polynomials on boundary faces. The cell
basis functions yield (6.34a) and, noticing that the normal trace of the numerical flux
ΦTF (uT ) is a polynomial of degree k on F, the internal face basis functions yield
(6.34b), while the boundary face basis functions correspond to (6.34c). ut

6.3 Error estimates for the p-Laplacian

When dealing with high-order methods, it is important to determine the convergence
rates attained when the solution is regular enough. General Leray–Lions operators
lack the structure that enables the proof of theoretical rates of convergence. It is
however possible, for certain operators, to establish error estimates and deduce from
them convergence rates. The goal of this section is precisely to prove such estimates
for the p-Laplace equation, that is, (6.1) with flux function given by (6.4). For
this choice, stronger monotonicity and continuity properties hold than the ones in
Assumption 6.1, which are crucial to our goal.

The material is organised as follows: in Section 6.3.1 we state and comment the
main result, Theorem 6.19, and give a general overview of its proof; Sections 6.3.2
and 6.3.3 contain preliminary results, namely a study of the consistency properties
of the stabilisation function applied to interpolates of smooth functions, and a proof
of the monotonicity and continuity properties of the p-Laplace flux function; finally,
Section 6.3.4 contains the proof of Theorem 6.19.

6.3.1 Statement of the error estimates

The main result is the following estimate in a discrete energy norm, where the
discrete solution is compared to the interpolate of the continuous one.

Theorem 6.19 (Error estimate in discrete energy norm). Let a polynomial
degree k ≥ 0 and an index p ∈ (1,∞) be fixed, and assume that

σ(x, s, ξ) = |ξ |p−2ξ for a.e. x ∈ Ω , ∀s ∈ R , ∀ξ ∈ Rd .

Let (Mh)h∈H denote a regular mesh sequence in the sense of Definition 1.9.
Let h ∈ H and assume that the solution to (6.6) satisfies u ∈ Wr+2,p(Th)
and σ(∇u) ∈ Wr+1,p′(Th)d for some r ∈ {0, . . . , k}. Define Eh(u) ∈ R+ the
following way:
(i) If p ≥ 2,

Eh(u) B hr+1 |u|W r+2,p (Th ) + h
r+1
p−1

(
|u|

1
p−1

W r+2,p (Th ) + |σ(∇u)|
1

p−1

W r+1,p′ (Th )d

)
;
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(ii) If p < 2,

Eh(u) B h(r+1)(p−1) |u|p−1
W r+2,p (Th ) + hr+1 |σ(∇u)|W r+1,p′ (Th )d .

Then, there exists a unique uh ∈ Uk
h,?

solution to (6.29), and it satisfies

‖uh − Ikhu‖G,p,h . Eh(u) (6.36)

with hidden constant independent of h and u, but possibly depending on Ω, p,
%, and on an upper bound of ‖ f ‖Lp′ (Ω) + ‖g‖Lp′ (∂Ω).

Proof. See Section 6.3.4, based on the results of Sections 6.3.2 and 6.3.3. ut

From this estimate in a discrete energy norm, we can derive a convergence result
for the error measured as the difference between the discrete and continuous gradient.

Corollary 6.20 (Error estimate for reconstructed gradient). Under the assump-
tions and notations of Theorem 6.19, it holds

‖Gk
huh − ∇u‖Lp (Ω)d + |uh |δ,p,h . Eh(u) + hr+1 |u|W r+2,p (Th ), (6.37)

where we have introduced the seminorm |·|δ,p,h on Uk
h
such that, for all vh ∈ Uk

h
,

|vh |pδ,p,h B
∑
T ∈Th

|vT |pδ,p,T =
∑
T ∈Th

ST (vT ; vT ).

A few remarks are in order.

Remark 6.21 (Order of convergence). The asymptotic scaling for the approximation
error in the left-hand sides of (6.36) and (6.37) is determined by the leading terms
in the right-hand side Eh(u), namely:

Eh(u) .
{

h
r+1
p−1 if p ≥ 2,

h(r+1)(p−1) if p < 2.
(6.38)

Remark 6.22 (Error estimate in other norms). The norm equivalence (6.20) shows
that the error estimate (6.36) also holds for ‖uh − Ik

h
u‖1,p,h and for ‖uh − Ik

h
u‖∇r,p,h .

As a consequence, the error estimate (6.37) could also be stated with ∇hrk+1
h

uh
instead of Gk

huh , see [141, Theorem 3.2 and Corollary 3.1].

Remark 6.23 (Error estimates for the Dirichlet problem). Error estimates analogous
to the ones of Theorem 6.19 and Corollary 6.20 for the Dirichlet problem have been
proved in [141], to which we refer for further details.
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Proof (Corollary 6.20). Let T ∈ Th . Inserting Gk
T IkTu − π0,k

T (∇u) = 0 (see (4.40))
into the norm and invoking the approximation property (1.74) of the L2-orthogonal
projector with X = T , l = k, m = 0, and s = r + 1 and v = components of ∇u, we
write

‖Gk
TuT − ∇u‖Lp (T )d ≤ ‖Gk

T (uT − IkTu)‖Lp (T )d + ‖π0,k
T (∇u) − ∇u‖Lp (T )d

. ‖Gk
T (uT − IkTu)‖Lp (T )d + hr+1

T |∇u|W r+1,p (T )d . (6.39)

Since |·|δ,p,h is a seminorm, we can invoke the triangle inequality to write

|uh |δ,p,h ≤ |uh − Ikhu|δ,p,h + |Ikhu|δ,p,h . (6.40)

Apply (6.48) below to φ = u, raise to the power p, and sum over T ∈ Th to see that

|Ikhu|p
δ,p,h

.
∑
T ∈Th

h(r+1)p
T |u|p

W r+2,p (T ) ≤ h(r+1)p |u|p
W r+2,p (Th ). (6.41)

Raising (6.39) to the power p, summing over T ∈ Th , adding the power p of (6.40),
recalling the definition (6.16) of ‖·‖G,p,h , and invoking (6.41), we find

‖Gk
huh − ∇u‖p

Lp (Ω)d + |uh |
p
δ,p,h

. ‖uh − Ikhu‖pG,p,h + h(r+1)p |u|p
W r+2,p (Th ).

The proof of (6.37) is completed by taking the power 1/p and using (6.36). ut

Let us now briefly discuss the approach to proving Theorem 6.19. As the contin-
uous equation (6.6), the HHO scheme (6.29) is of course nonlinear in general. The
theory of Appendix A is therefore not directly applicable. That being said, some
similarities with this linear theory can be found and exploited. Specifically, the HHO
scheme (6.29) shows that, for all vh ∈ Uk

h,?
,

Ah(uh; vh) − Ah(Ikhu; vh) = `h(vh) − Ah(Ikhu; vh), (6.42)

where
`h(vh) B

∫
Ω

f vh +
∫
∂Ω

g γhvh .

The right-hand side in equation (6.42) is a linear map in vh that defines a consistency
error, identical to (A.5) in the linear setting. Since the left-hand side of this equation
involves uh and Ik

h
u, (6.42) can be considered as a sort of error equation except that,

contrary to the linear case (see (A.7)), this left-hand side is not an expression of
the difference uh − Ik

h
u. We can nonetheless follow the principles of the analysis in

Appendix A, namely:

(i) estimate the consistency error in an appropriate dual norm, and
(ii) establish a stability property of the left-hand side in the corresponding primal

norm.
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The consistency error will be estimated, as for linear equations, by expressing `h
in terms of u through the relations f = −∇·(σ(∇u)) and g = σ(∇u)·nΩ, and by
invoking optimal approximation properties of the reconstructions composed with
the interpolator. The stability property, on the other hand, will not directly rely on
an inf–sup or coercivity condition, but rather on strong monotonicity properties of
Ah (stemming, in turn, from the monotonicity properties of σ).

6.3.2 Consistency of the stabilisation function

The first preliminary result, required to estimate the consistency error, concerns the
consistency properties of the global stabilisation term when one of its arguments is
the interpolate of a smooth function. As in the Hilbertian setting of Chapter 2, these
consistency properties follow from the boundedness of the local interpolator IkT and
from the polynomial consistency of the local stabilisation terms ST .

Proposition 6.24 (Boundedness of the local interpolator, W1,p-setting). For all
T ∈ Th and all v ∈ W1,p(T),

‖IkT v‖1,p,T . |v |W 1,p (T ), (6.43)

where the hidden constant depends only on d, p, % and k.

Proof. The proof is similar to that of Proposition 2.2, with L2-norms replaced with
Lp-norms. Using the definitions (2.8) and (6.9) of IkT and ‖·‖1,p,T , we write

‖IkT v‖p1,p,T = ‖∇π0,k
T v‖p

Lp (T )d +
∑
F ∈FT

h1−p
F ‖π0,k

F v − π0,k
T v‖p

Lp (F)

. ‖∇v‖p
Lp (T )d +

∑
F ∈FT

h1−p
F ‖v − π0,k

T v‖p
Lp (F),

where we have used, to pass to the second line, the boundedness (1.77) of π0,k
T with

s = 1 together with the idempotency, linearity, and boundedness (1.77) of π0,k
F with

s = 0 to write

‖π0,k
F v − π0,k

T v‖Lp (F) = ‖π0,k
F (v − π0,k

T v)‖Lp (F) . ‖v − π0,k
T v‖Lp (F).

We then continue invoking the trace approximation property (1.75) of the L2-
orthogonal projector with l = k, s = 1, and m = 0:

‖IkT v‖p1,p,T . ‖∇v‖
p

Lp (T )d +
∑
F ∈FT

h1−p
F hp−1

T ‖∇v‖p
Lp (T )d .

The estimate (6.43) follows using the mesh regularity assumption to write hp−1
T .

hp−1
F and card(FT ) . 1; see Lemma 1.12. ut
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Proposition 6.25 (Consistency of Sh). For all r ∈ {0, . . . , k}, all φ ∈ Wr+2,p(Th),
and all vh ∈ Uk

h
, it holds

|Sh(vh; Ikhφ)| . ‖vh ‖p−1
G,p,h

( ∑
T ∈Th

hp(r+1)
T |φ|p

W r+2,p (T )

) 1
p

(6.44)

and

|Sh(Ikhφ; vh)| . ‖vh ‖G,p,h
( ∑
T ∈Th

hp(r+1)
T |φ|p

W r+2,p (T )

) p−1
p

, (6.45)

where the hidden constants are independent of h, φ and vh , and we have set, for all
wh, zh ∈ Uk

h
,

Sh(wh; z
h
) B

∑
T ∈Th

ST (wT ; z
T
). (6.46)

Proof. Let wh, zh ∈ Uk
h
. Using the Hölder inequality with exponents p and p′ = p

p−1
we have, for any T ∈ Th ,

|ST (wT ; z
T
)| ≤

∑
F ∈FT

h1−p
F ‖δkTFwT − δkTwT ‖p−1

Lp (F)‖δkTF z
T
− δkT z

T
‖Lp (F).

Hence, writing h1−p
F = h

(1−p) 1
p′

F h
(1−p) 1

p

F and using a discrete Hölder inequality on
the summations, with the same exponents as before, we infer

|Sh(wh; z
h
)| ≤

( ∑
T ∈Th

∑
F ∈FT

h1−p
F ‖δkTFwT − δkTwT ‖pLp (F)

) p−1
p

×
( ∑
T ∈Th

∑
F ∈FT

h1−p
F ‖δkTF z

T
− δkT z

T
‖p
Lp (F)

) 1
p

=

( ∑
T ∈Th

|wT |pδ,p,T
) p−1

p
( ∑
T ∈Th

|z
T
|pδ,p,T

) 1
p

. (6.47)

Estimates (6.44) and (6.45) follow applying (6.47) to, respectively, (wh, zh) =
(vh, Ikhφ) and (wh, zh) = (Ikhφ, vh), using |vT |

p
δ,p,T ≤ ‖vT ‖

p
G,p,T , and invoking the

following estimate: For all T ∈ Th and all φ ∈ Wr+2,p(T),

|IkT φ|δ,p,T . hr+1
T |φ|W r+2,p (T ), (6.48)

where the hidden constant is additionally independent of T .
Let us prove (6.48). The polynomial consistency property (2.21) of the difference

operators shows that δkT IkT φ = δ
k
T IkT (φ−π0,k+1

T φ) and δkTF IkT φ = δ
k
TF IkT (φ−π0,k+1

T φ)
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for all F ∈ FT . Hence,

|IkT φ|δ,p,T = |IkT (φ − π0,k+1
T φ)|δ,p,T

≤ ‖IkT (φ − π0,k+1
T φ)‖G,p,T

. |φ − π0,k+1
T φ|W 1,p (T ),

where the first inequality follows from the definition (6.16) of the ‖·‖G,p,T -seminorm,
while the second is a consequence of the seminorm equivalence (6.19) and of the
boundedness property (6.43) of IkT . The approximation property (1.74) of π0,k+1

T
with s = r + 2 and m = 1 then concludes the proof of (6.48). ut

6.3.3 Strong monotonicity and continuity of the p-Laplace flux
function

The second preliminary result, contained in this section, concerns the strong mono-
tonicity and continuity properties of the p-Laplace flux function σ defined by (6.4).
As discussed at the end of Section 6.3.1, these properties are stronger than the ones
listed in Assumption 6.1, and are instrumental to the consistency and strong mono-
tonicity analysis carried out in the next section. Similar results can be found in [35,
Lemma 2.1] and in [174, Lemma 2.40], with different proofs.

Lemma 6.26 (Strongmonotonicity of the p-Laplace flux function). Let p ∈ (1,∞)
and σ(τ) = |τ |p−2τ for all τ ∈ Rd . Set C(p) = 21−p if p ≥ 2, and C(p) = p − 1 if
p < 2. Then, for any ξ,η ∈ Rd ,

(σ(ξ) − σ(η)) ·(ξ − η) ≥ C(p) (|ξ | + |η |)p−2 |ξ − η |2. (6.49)

As a consequence, for any ξ,η ∈ Rd ,
(i) If p ≥ 2,

|ξ − η |p ≤ 2p−1 (σ(ξ) − σ(η)) ·(ξ − η). (6.50)

(ii) If p < 2,

|ξ − η |p

≤ (p − 1)− p
2 2(p−1) 2−p

2

[
(σ(ξ) − σ(η)) ·(ξ − η)

] p
2
[
|ξ |p+|η |p

] 2−p
2
. (6.51)

Remark 6.27 (Case d = 1). The case d = 1 will also be of interest to us, as we will
see in the proof of Theorem 6.19 that it is related to monotonicity properties of the
stabilisation term (6.28). For future use, we make here explicit the estimates (6.50)
and (6.51) for d = 1: For all s, t ∈ R,
(i) If p ≥ 2,

|s − t |p ≤ 2p−1
(
|s |p−2s − |t |p−2t

)
(s − t). (6.52)
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(ii) If p < 2,

|s − t |p

≤ (p − 1)− p
2 2(p−1) 2−p

p

[ (
|s |p−2s − |t |p−2t

)
(s − t)

] p
2 [|s |p + |t |p] 2−p

2 . (6.53)

Proof. (i) Proof of (6.49). Let us first consider the case p ≥ 2. Writing

|ξ |p−2 =
|ξ |p−2 + |η |p−2

2
+
|ξ |p−2 − |η |p−2

2

and
|η |p−2 =

|ξ |p−2 + |η |p−2

2
− |ξ |

p−2 − |η |p−2

2
,

we have

(σ(ξ) − σ(η))·(ξ − η)

=
|ξ |p−2 + |η |p−2

2
(ξ − η)·(ξ − η) + |ξ |

p−2 − |η |p−2

2
(ξ + η)·(ξ − η)

=
|ξ |p−2 + |η |p−2

2
|ξ − η |2 + |ξ |

p−2 − |η |p−2

2
(|ξ |2 − |η |2).

The last term in the above expression is nonnegative. To see this, notice that, since
p ≥ 2, the mappings s 7→ sp−2 and s 7→ s2 are both increasing, so the quantities
|ξ |p−2 − |η |p−2 and |ξ |2 − |η |2 have the same sign. As a result,

(σ(ξ) − σ(η))·(ξ − η) ≥ |ξ |
p−2 + |η |p−2

2
|ξ − η |2.

The proof of (6.49) is completed using the estimate

(|ξ | + |η |)p−2 ≤ (2 max(|ξ |, |η |))p−2 ≤ 2p−2(|ξ |p−2 + |η |p−2).

We now deal with the case p < 2. Outside 0, σ is differentiable with derivative
Dσ(z)h = |z |p−2h + (p − 2)|z |p−4(z·h)z for all h ∈ Rd . Since p − 2 < 0, the
Cauchy–Schwarz inequality shows that

Dσ(z)h·h = |z |p−2 |h |2 + (p − 2)|z |p−4(z·h)2
≥ |z |p−2 |h |2 + (p − 2)|z |p−4 |z |2 |h |2
= (p − 1)|z |p−2 |h |2.

Hence, if the segment [ξ,η] does not contain 0, a Taylor expansion of σ(ξ) − σ(η)
yields
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(σ(ξ) − σ(η))·(ξ − η) =
∫ 1

0
Dσ(sξ + (1 − s)η)(ξ − η)·(ξ − η) ds

≥ (p − 1)|ξ − η |2
∫ 1

0
|sξ + (1 − s)η |p−2 ds. (6.54)

We have |sξ + (1 − s)η | ≤ s |ξ | + (1 − s)|η | ≤ |ξ | + |η | and thus, since p − 2 < 0,

|sξ + (1 − s)η |p−2 ≥ (|ξ | + |η |)p−2.

Plugging this estimate into (6.54) concludes the proof of (6.49) for p < 2, in the
case where 0 < [ξ,η]. If 0 is on that segment, then we approximate ξ,η by vectors
(ξ i)i∈N and (ηi)i∈N such that 0 < [ξ i,ηi] (such vectors always exist in dimension
d ≥ 2), and pass to the limit i → ∞ in (6.49) applied to ξ i,ηi . The estimate (6.49)
for d = 1, namely

(|s |p−2s − |t |p−2t)(s − t) ≥ C(p)(|s | + |t |)p−2 |s − t |2 ∀s, t ∈ R,

follows by applying (6.49) for d = 2 to the vectors ξ = se and η = te, where e is a
fixed unit vector in R2.
(ii) Proof of (6.50) and (6.51). If p ≥ 2, we write

|ξ − η |p = |ξ − η |2 |ξ − η |p−2 ≤ |ξ − η |2 (|ξ | + |η |)p−2

and we invoke (6.49), recalling that C(p) = 21−p in this case.
If p < 2, assuming without loss of generality that |ξ | + |η | , 0, raise (6.49) to the

power p/2 and multiply by C(p)− p
2 (|ξ | + |η |)(2−p) p2 to find

|ξ − η |p ≤ C(p)− p
2

[
(σ(ξ) − σ(η)) ·(ξ − η)

] p
2
[
|ξ | + |η |

] p 2−p
2
.

The conclusion follows recalling that C(p) = p − 1 and writing (|ξ | + |η |)p ≤
2p−1(|ξ |p + |η |p), by convexity of s 7→ sp . ut
Lemma 6.28 (Continuity of the p-Laplace flux function). Let p ∈ (1,∞) and
σ(τ) = |τ |p−2τ for all τ ∈ Rd . Then, for all ξ,η ∈ Rd ,
(i) If p ≥ 2,

|σ(ξ) − σ(η)| ≤ (p − 1)|ξ − η |
(
|ξ |p−2 + |η |p−2

)
. (6.55)

(ii) If p < 2,
|σ(ξ) − σ(η)| ≤ 22−p |ξ − η |p−1. (6.56)

Proof. We first notice that we can always assume that 0 < [ξ,η]. Otherwise, we
reason as in Point (i) of the proof of Lemma 6.26, taking (ξ i)i∈N and (ηi)i∈N that
respectively converge to ξ and η and such that 0 < [ξ i,ηi] for any i ∈ N, and then
passing to the limit in the corresponding inequalities applied to ξ i,ηi .

Let us first consider p ≥ 2. As seen in the proof of Lemma 6.26, for z , 0 we
have Dσ(z)h = |z |p−2h + (p − 2)|z |p−4(z·h)z, and thus, for the induced norm,
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|Dσ(z)| ≤ |z |p−2 + (p − 2)|z |p−4 |z | |z | = (p − 1)|z |p−2.

The mean value theorem then yields

|σ(ξ) − σ(η)| ≤ |ξ − η | sup
z∈[ξ,η]

[(p − 1)|z |p−2] .
Since p ≥ 2, it holds |z |p−2 ≤ max(|ξ |p−2, |η |p−2) ≤ |ξ |p−2 + |η |p−2 whenever
z ∈ [ξ,η], which concludes the proof of (6.55).

We now deal with the case p < 2. We still have |Dσ(z)| ≤ (p − 1)|z |p−2 so

|σ(ξ) − σ(η)| ≤ (p − 1)
∫
[ξ,η]
|z |p−2 dl,

where dl is the integration element over the line (ξ,η). Let 0̃ be the orthogonal
projection of 0 on this line. The line (ξ,η) is equipped with an arbitrary orientation
and a parametrisation z = z(s) of its points using their signed distance s from 0̃ (see
Fig. 6.1). Then,

z(s)

0

s

η

ξ

0̃

Fig. 6.1: Illustration of the case p < 2 in the proof of Lemma 6.28.

|σ(ξ) − σ(η)| ≤ (p − 1)
∫ a+L

a

|z(s)|p−2ds,

where a is the smallest between the abscissa of ξ and η on this line, and L B |ξ −η |.
By definition of the orthogonal projection, |s | = |z(s) − 0̃| ≤ |z(s) − 0| = |z(s)| and
thus, since p − 2 < 0,

|σ(ξ) − σ(η)| ≤ (p − 1)
∫ a+L

a

|s |p−2ds.
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The shape of the function s 7→ |s |p−2 shows that, for a fixed L, the maximum of
R 3 b 7→

∫ b+L

b
|s |p−2ds is reached for b = −L/2 (a straightforward analysis of the

variations of this function also leads to the same conclusion). Hence,

|σ(ξ) − σ(η)| ≤ (p − 1)
∫ L/2

−L/2
|s |p−2ds = 2(p − 1)

∫ L/2

0
|s |p−2ds = 22−pLp−1.

Recalling that L = |ξ − η | concludes the proof of (6.56). ut

6.3.4 Proof of the error estimates

We are now ready to prove Theorem 6.19.

Proof (Theorem 6.19). The existence of a solution uh to (6.29) is established in
Lemma 6.14. To prove its uniqueness when σ(x, s, ξ) = σ(ξ) = |ξ |p−2ξ , assume
that uh and wh are two such solutions, subtract the corresponding equations and take
vh = uh − wh as a test function to obtain∫

Ω

[
σ(Gk

huh) − σ(Gk
hwh)

] · [Gk
huh −Gk

hwh

]
+

∑
T ∈Th

(
ST (uh; uh − wh) − ST (wh; uh − wh)

)
= 0.

The monotonicity properties (6.49) (with ξ = Gk
huh and η = Gk

hwh) and (6.52)–
(6.53) (with s = δkTFuT −δkTuT and t = δkTFwT −δkTwT , forT ∈ Th and F ∈ FT ) show
that all addends in the above equation are positive, and must thus vanish. Hence,
the same monotonicity properties ensure that Gk

huh = Gk
hwh and δkTFuT − δkTuT =

δkTFwT − δkTwT for all T ∈ Th and F ∈ FT . This proves that ‖uh − wh ‖G,p,h = 0,
and thus that uh = wh by virtue of Remark 6.12.

We now turn to the error estimate (6.36). Following the discussion at the end of
Section 6.3.1, we have to estimate the consistency error in the right-hand side of
(6.42), and establish stability properties for the left-hand side.

(i) Estimate of the consistency error. We have −∇·(σ(∇u)) = f in Ω and, by
the assumed regularity on σ(∇u), it holds σ(∇u)·nΩ = g on ∂Ω. Hence, for any
vh ∈ Uk

h,?
, we write
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`h(vh) =
∫
Ω

f vh +
∫
∂Ω

g γhvh

= −
∑
T ∈Th

∫
T

∇·σ(∇u)vT +
∑

F ∈Fb
h
, TF={T }

∫
F

(
σ(∇u) |T ·nTF

)
vF

=
∑
T ∈Th

∫
T

σ(∇u)·∇vT −
∑
T ∈Th

∑
F ∈FT

∫
F

(
σ(∇u) |T ·nTF

)
vT

+
∑

F ∈Fb
h
, TF={T }

∫
F

(
σ(∇u) |T ·nTF

)
vF

=
∑
T ∈Th

∫
T

σ(∇u)·∇vT +
∑
T ∈Th

∑
F ∈FT

∫
F

(
σ(∇u) |T ·nTF

) (vF − vT ),
where the third equality follows from an element-wise integration by parts, and the
conclusion is a consequence of Corollary 1.19 with τ = σ(∇u) ∈ W p′(div;Ω) ∩
W1,p′(Th)d and (ϕF )F ∈Fh = (vF )F ∈Fh . Invoking then (4.41) with τ = σ(∇u) to
substitute the volumetric terms involving ∇vT , we obtain

`h(vh) =
∑
T ∈Th

∫
T

σ(∇u)·Gk
T vT

+
∑
T ∈Th

∑
F ∈FT

∫
F

[
σ(∇u) |T − π0,k

T (σ(∇u))
]
·nTF (vF − vT ).

Recalling the definitions (6.27) of Ah and (6.46) of Sh , and since Gk
T IkTu = π0,k

T (∇u)
by virtue of (4.40), the consistency error can be recast as

`h(vh) − Ah(Ikhu; vh) =
∑
T ∈Th

∫
T

[
σ(∇u) − σ(π0,k

T (∇u))
]
·Gk

T vT︸                                                ︷︷                                                ︸
T1

−Sh(Ikhu; vh)︸        ︷︷        ︸
T2

+
∑
T ∈Th

∑
F ∈FT

∫
F

[
σ(∇u) |T − π0,k

T (σ(∇u))
]
·nTF (vF − vT ).︸                                                                     ︷︷                                                                     ︸

T3

The term T2 has already been estimated in Proposition 6.25 (see (6.45)):

|T2 | = |Sh(Ikhu; vh)| . h(r+1)(p−1) |u|p−1
W r+2,p (Th )‖vh ‖G,p,h . (6.57)

For T3, we write
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|T3 | ≤
∑
T ∈Th

∑
F ∈FT

h
1
p′
F ‖σ(∇u) |T − π0,k

T (σ(∇u))‖Lp′ (F)d h
1
p −1
F ‖vF − vT ‖Lp (F)

≤
( ∑
T ∈Th

∑
F ∈FT

hT ‖σ(∇u) |T − π0,k
T (σ(∇u))‖p′

Lp′ (F)d

) 1
p′

×
( ∑
T ∈Th

∑
F ∈FT

h1−p
F ‖vF − vT ‖pLp (F)

) 1
p

.

( ∑
T ∈Th

h(r+1)p′
T |σ(∇u)|p′

W r+1,p′ (T )d

) 1
p′

‖vh ‖1,p,h

. hr+1 |σ(∇u)|W r+1,p′ (Th )d ‖vh ‖G,p,h, (6.58)

where we obtained the first inequality using a generalised Hölder inequality (on
the integrals over F) with exponents (p′,∞, p) along with ‖nTF ‖L∞(F)d = 1 and
1
p′ +

1
p − 1 = 0, we invoked the Hölder inequality on the sums with exponents

(p′, p) together with hF ≤ hT to write the second inequality, we applied the trace
approximation property (1.75) of the L2(T)-projector (with l = k, m = 0, s = r + 1,
v = components of σ(∇u), and p′ instead of p) together with the definition (6.9) of
‖·‖1,p,h to pass to the penultimate line, and we concluded by the norm equivalence
(6.20).

To estimate T1, we first use a Hölder inequality (on the integrals and the sum)
with exponents (p′, p) and then recall the definition (6.16) of ‖·‖G,p,h:

|T1 | ≤
( ∑
T ∈Th

‖σ(∇u) − σ(π0,k
T (∇u))‖p′

Lp′ (T )d

) 1
p′

( ∑
T ∈Th

‖Gk
T vT ‖pLp (T )d

) 1
p

.

( ∑
T ∈Th

∫
T

|σ(∇u) − σ(π0,k
T (∇u))|p′

) 1
p′

‖vh ‖G,p,h . (6.59)

Continuing further requires the continuity property of σ (see Lemma 6.28), and
therefore a separation of the cases p ≥ 2 and p < 2.

(i.A) Case p ≥ 2. The continuity property (6.55) and a Hölder inequality with
exponents (p − 1, p−1

p−2 ) yield∫
T

|σ(∇u) − σ(π0,k
T (∇u))|p′

.

∫
T

|∇u − π0,k
T (∇u)|p′

(
|∇u|p−2 + |π0,k

T (∇u)|p−2
)p′

. ‖∇u − π0,k
T (∇u)‖p′

Lp (T )d
(
‖∇u‖Lp (T )d + ‖π0,k

T (∇u)‖Lp (T )d
)p′(p−2)

,
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the conclusion following from the relation (p − 2)p′ p−1
p−2 = p and multiple usages of

the inequality (a + b)α ≤ 2α(aα + bα), valid for any non-negative numbers a, b, α.
Invoking the approximation property (1.74) (with X = T , l = k, m = 0, s = r + 1
and v = components of ∇u) and the boundedness property (1.77) (with the same
choices except s = 0) of the local L2-projector, we infer∫

T

|σ(∇u) − σ(π0,k
T (∇u))|p′ . hp′(r+1)

T |∇u|p′
W r+1,p (T )d ‖∇u‖p′(p−2)

Lp (T )d . (6.60)

The following estimate is obtained choosing v = u in (6.6) and using the coercivity
(6.3d) of σ together with a Poincaré and trace inequality in W1,p

? (Ω):

‖∇u‖p−1
Lp (Ω)d . ‖ f ‖Lp′ (Ω) + ‖g‖Lp′ (∂Ω) . 1. (6.61)

Plugging (6.60) into (6.59), using the Hölder inequality on the sum with exponents(
p − 1, p−1

p−2

)
, and invoking (6.61), we obtain

|T1 | ≤ hr+1 |u|W r+2,p (Th )‖vh ‖G,p,h . (6.62)

(i.B) Case p < 2. Invoking (6.56) in (6.59) gives

|T1 | .
( ∑
T ∈Th

‖∇u − π0,k
T (∇u)‖p

Lp (T )d

) 1
p′

‖vh ‖G,p,h

.

( ∑
T ∈Th

hp(r+1)
T |∇u|p

W r+1,p (T )d

) 1
p′

‖vh ‖G,p,h

. h(r+1)(p−1) |u|p−1
W r+2,p (Th )‖vh ‖G,p,h, (6.63)

where we have used in the second line the approximation property (1.74) of the
L2(T)-projector with l = k, m = 0, s = r + 1 and v = components of ∇u.

Gathering (6.57), (6.58) and either (6.62) or (6.63), we arrive at the consistency
estimate

`h(vh) − Ah(Ikhu; vh)

. ‖vh ‖G,p,h
[
h(r+1)(p−1) |u|p−1

W r+2,p (Th ) + hr+1 |σ(∇u)|W r+1,p′ (Th )d

+

{
hr+1 |u|W r+2,p (Th ) if p ≥ 2
0 if p < 2

]
.

(6.64)

(ii) Stability property. The stability property of Ah hinges on the strongmonotonicity
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of σ expressed in Lemma 6.26. As a consequence, the cases p ≥ 2 and p < 2 have
to be handled separately. Before dealing with each case, we write the stabilisation
terms in a more condensed form: For T ∈ Th and F ∈ FT , we set dk

TF B δkTF − δkT
so that, recalling the definition (6.28) of ST , for all wT , zT ∈ Uk

T ,

ST (wT ; z
T
) =

∑
F ∈FT

h1−p
F

∫
F

|dk
TFwT |p−2dk

TFwT dk
TF z

T
. (6.65)

(ii.A) Case p ≥ 2. For any T ∈ Th , by (6.50) we have∫
T

(
σ(Gk

TuT ) − σ(Gk
T IkTu)

)
·(Gk

TuT −Gk
T IkTu) & ‖Gk

T (uT − IkTu)‖p
Lp (T )d . (6.66)

Using (6.65) with (wT , zT ) = (uT ,uT − IkTu) and (wT , zT ) = (IkTu,uT − IkTu), and
invoking (6.52) with s = dk

TFuT and t = dk
TF IkTu, we can write

ST (uT ; uT − IkTu) − ST (IkTu; uT − IkTu)

=
∑
F ∈FT

h1−p
F

∫
F

(
|dk
TFuT |p−2dk

TFuT − |dk
TF IkTu|p−2dk

TF IkTu
)
dk
TF (uT − IkTu)

&
∑
F ∈FT

h1−p
F

∫
F

|dk
TF (uT − IkTu)|p . (6.67)

Adding together (6.66) and (6.67), summing overT ∈ Th , and recalling the definitions
(6.27) of Ah and (6.16) of ‖·‖G,p,h , we arrive at

Ah(uh; uh − Ikhu) − Ah(Ikhu; uh − Ikhu) & ‖uh − Ikhu‖pG,p,h . (6.68)

(ii.B) Case p < 2. Let T ∈ Th . Starting from (6.51) with ξ = Gk
TuT and η = Gk

T IkTu,
integrating over T and using a Hölder inequality with exponents

(
2
p ,

2
2−p

)
, we have

‖Gk
T (uT − IkTu)‖p

Lp (T )d .
(∫

T

(
σ(Gk

TuT ) − σ(Gk
T IkTu)

)
·Gk

T (uT − IkTu)
) p

2

×
(
‖Gk

TuT ‖pLp (T )d + ‖G
k
T IkTu‖p

Lp (T )d
) 2−p

2
.

Summing overT ∈ Th and using a discreteHölder inequalitywith the same exponents
as above yields
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∑
T ∈Th
‖Gk

T (uT − IkTu)‖p
Lp (T )d .

( ∑
T ∈Th

∫
T

(
σ(Gk

TuT ) − σ(Gk
T IkTu)

)
·Gk

T (uT − IkTu)
) p

2

×
( ∑
T ∈Th

‖Gk
TuT ‖pLp (T )d +

∑
T ∈Th

‖Gk
T IkTu‖p

Lp (T )d

) 2−p
2

.

(6.69)

We estimate the second factor in the right-hand side as∑
T ∈Th

‖Gk
TuT ‖pLp (T )d +

∑
T ∈Th

‖Gk
T IkTu‖p

Lp (T )d ≤ ‖uh ‖
p
G,p,h +

∑
T ∈Th

‖π0,k
T (∇u)‖p

Lp (T )d

. ‖uh ‖p1,p,h + ‖∇u‖p
Lp (Ω)d

. 1,

where we have used in the first line the definition (6.16) of ‖·‖G,p,h together with
the commutation property Gk

T IkTu = π0,k
T (∇u) (see (4.40)), passed to the second

line invoking the norm equivalence (6.20) for the first term and, for all T ∈ Th ,
the boundedness property (1.77) of π0,k

T with s = 0 and v = components of ∇u,
and concluded using the discrete and continuous energy estimates (6.30) and (6.61).
Plugged into (6.69), this leads to∑

T ∈Th
‖Gk

T (uT − IkTu)‖p
Lp (T )d

.

( ∑
T ∈Th

∫
T

(
σ(Gk

TuT ) − σ(Gk
T IkTu)

)
·Gk

T (uT − IkTu)
) p

2

. (6.70)

Let us now turn to the stabilisation term. Starting from its representation (6.65), the
monotonicity property (6.53) and the arguments that led to (6.69) give
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T ∈Th

∑
F ∈FT

h1−p
F ‖dk

TF (uT − IkTu)‖p
Lp (F)

.

( ∑
T ∈Th

ST (uT ; uT − IkTu) − ST (IkTu; uT − IkTu)
) p

2

×
( ∑
T ∈Th

∑
F ∈FT

h1−p
F ‖dk

TF (uT )‖pLp (F) +
∑
T ∈Th

∑
F ∈FT

h1−p
F ‖dk

TF (IkTu)‖p
Lp (F)

) 2−p
2

.

( ∑
T ∈Th

ST (uT ; uT − IkTu) − ST (IkTu; uT − IkTu)
) p

2

×
( ∑
T ∈Th

|uT |pδ,p,T +
∑
T ∈Th

|IkTu|pδ,p,T
) 2−p

2

, (6.71)

where the conclusion follows from the definitions of dk
TF and |·|δ,p,T (see (6.17)).

For the first term in the last bracket, we have∑
T ∈Th

|uT |pδ,p,T ≤ ‖uh ‖
p
G,p,h . ‖uh ‖

p
1,p,h . 1, (6.72)

where the first inequality is deduced from the definition (6.16) of ‖·‖G,p,h , the
second inequality follows from the norm equivalence (6.20), and the third inequality
is obtained invoking the discrete a priori estimate (6.30). The second term in the
last bracket of (6.71) is bounded invoking the local seminorm equivalence (6.19)
together with the boundedness property (6.43) of IkT to write∑

T ∈Th
|IkTu|pδ,p,T ≤

∑
T ∈Th

‖IkTu‖pG,p,T .
∑
T ∈Th

‖IkTu‖p1,p,T

.
∑
T ∈Th

|u|p
W 1,p (T ) = |u|

p

W 1,p (Ω) . 1, (6.73)

the last inequality being a consequence of the continuous a priori estimate (6.61).
Plugging (6.72) and (6.73) into (6.71), we infer∑

T ∈Th

∑
F ∈FT

h1−p
F ‖dk

TF (uT − IkTu)‖p
Lp (F)

.

( ∑
T ∈Th

ST (uT ; uT − IkTu) − ST (IkTu; uT − IkTu)
) p

2

. (6.74)

Adding together (6.70) and (6.74), using the inequality a
p
2 + b

p
2 ≤ 2(a + b) p2 (valid

for any non-negative numbers a, b), and recalling the definition (6.27) of Ah yields
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‖uh − Ikhu‖pG,p,h .
(
Ah(uh; uh − Ikhu) − Ah(Ikhu; uh − Ikhu)

) p
2
. (6.75)

To summarise (6.68) and (6.75),

Ah(uh; uh − Ikhu) − Ah(Ikhu; uh − Ikhu) &
{
‖uh − Ik

h
u‖pG,p,h if p ≥ 2,

‖uh − Ik
h
u‖2G,p,h if p < 2.

(6.76)

(iii)Conclusion.The error bound (6.36) is obtained plugging the consistency estimate
(6.64) with vh = uh − Ik

h
u and the stability property (6.76) into the error equation

(6.42), and simplifying by ‖uh − Ik
h
u‖G,p,h . ut

6.3.5 Numerical example

To illustrate the performance of theHHOmethod,we solve the p-Laplacian version of
the problem considered in Section 2.5.1, for p ∈ {2,3,4}. This test is taken from [141,
Section 3.5], where Dirichlet boundary conditions are considered; see Remark 6.23.
The domain is again the unit squareΩ = (0,1)2, the exact solution is given by (2.89),
and the volumetric source term f is inferred from (6.1). The convergence results
for the same triangular and polygonal mesh families of Section 2.5.1 (see Fig. 1.1a
and 1.1c) are displayed in Fig. 6.2. Here, the error is measured by the quantity
‖Ik

h
u − uh ‖1,p,h , for which analogous estimates as those in Theorem 6.19 hold

by Remark 6.22. For p = 2, we recover results coherent with those expected for
the Poisson problem (2.2). For p ∈ {3,4}, better orders of convergence than the
asymptotic ones in (6.38) are observed in some cases. One possible explanation is
that the lowest-order terms in Eh(u) are not yet dominant for the specific problem
data and mesh. Another possibility is that compensations occur among terms that
are separately estimated in the proof of Theorem 6.19.

6.4 Convergence by compactness for general Leray–Lions
operators

We now come back to the generic model (6.1) under Assumption 6.1. In this situa-
tion, establishing an error estimate is in general impossible (because such an error
estimate would impose the uniqueness of the solution to the continuousmodel, which
sometimes fails; see Remark 6.16). The convergence analysis of the HHO scheme
is then performed using compactness techniques, following the general process de-
scribed in [169, Section 1.2]. The first step of this process consists in establishing a
priori estimates on the solution to the scheme. This was done in Lemma 6.14. The
second step, consisting in showing that sequences that satisfy such estimates enjoy
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(f) Polygonal mesh, p = 4

Fig. 6.2: ‖Ik
h
u − uh ‖1,p,h vs. h for the test case of Section 6.3.5.



6.4 Convergence by compactness for general Leray–Lions operators 281

compactness properties, is covered by Theorem 6.8. The last step is to show that
limits of such sequences solve the continuous PDE.

The convergence of solutions to problem (6.29) is stated in the following theorem.
Notice that this convergence is proved for exact solutions that display only the
minimal regularity property u ∈ W1,p

? (Ω) required by the weak formulation (6.6).
This is an important point when dealing with nonlinear problems, for which further
regularity is sometimes unknown, or possibly requires assumptions on the data that
are too strong to be matched in practical situations.

Theorem 6.29 (Convergence of the HHO scheme for the Leray–Lions
problem). Let a polynomial degree k ≥ 0 and an index p ∈ (1,∞) be fixed.
Assume that σ satisfies Assumption 6.1, and that f and g satisfy (6.2). Let
(Mh)h∈H denote a regular mesh sequence in the sense of Definition 1.9 and,
for each h ∈ H , denote by uh ∈ Uk

h,?
a solution to (6.29) on Mh . Then,

there exists a solution u ∈ W1,p
? (Ω) to (6.6) such that, along a subsequence as

h→ 0, it holds:

(i) uh → u and rk+1
h

uh → u strongly in Lq(Ω), for all 1 ≤ q <
dp
d−p if

1 ≤ p < d and all 1 ≤ q < ∞ if p ≥ d;
(ii) γhuh → u |∂Ω strongly in Lp(∂Ω);
(iii) Gk

huh ⇀ ∇u weakly in Lp(Ω)d .

Proof. Combining the discrete a priori estimate (6.30) and Theorem 6.8, we obtain
the existence of u ∈ W1,p

? (Ω) such that, along a subsequence, the convergences (i),
(ii) and (iii) stated in the theorem hold. It remains to prove that u satisfies (6.6).

Using the growth condition (6.3b) on σ we have

‖σ(uh,Gk
huh)‖Lp′ (Ω)d ≤ ‖σ‖Lp′ (Ω) + βσ

(∫
Ω

|uh |p′t
) 1

p′
+ βσ ‖Gk

huh ‖p−1
Lp (Ω)d .

Since q B p′t < p̂ and p̂ = dp
d−p if p < d, p̂ = ∞ if p ≥ d, the convergence uh → u

in Lq(Ω) shows that
∫
Ω
|uh |p′t is bounded as h→ 0. Similarly, the weak convergence

Gk
huh ⇀ ∇u in Lp(Ω)d shows that ‖Gk

huh ‖Lp (Ω)d is bounded. Hence, σ(uh,Gk
huh)

is bounded in Lp′(Ω)d and, up to a subsequence as h→ 0, converges weakly in this
space to some χ.

Let φ ∈ W1,p
? (Ω) ∩W2,p(Ω) and use the scheme (6.29) with vh = Ik

h
φ:∫

Ω

σ(uh,Gk
huh)·Gk

h Ikhφ =
∫
Ω

f π0,k
h
φ +

∫
∂Ω

gπ0,k
h,∂
φ −

∑
T ∈Th

ST (uT ; IkT φ), (6.77)
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where π0,k
h,∂

is the patched projector on the boundary, defined in a similar way as π0,k
h

(see Definition 1.38), that is, for all F ∈ F b
h
, (π0,k

h,∂
φ) |F B π0,k

F φ |F . The commutation
property (4.40), the W2,p-regularity of φ, and the approximation properties (1.74)
of π0,k

T (with s = 1, m = 0, and v = φ or v = components of ∇φ) show that, as
h → 0, Gk

h Ik
h
φ = π0,k

h
(∇φ) → ∇φ in Lp(Ω)d and π0,k

h
φ → φ in Lp(Ω). Since

φ |∂Ω ∈ W1,p(∂Ω), the same approximation properties (1.74) but for π0,k
F show that

π0,k
h,∂
φ→ φ in Lp(∂Ω). Additionally, by the consistency property (6.44) with r = 0,

the norm equivalence (6.20) and the estimate (6.30),����� ∑
T ∈Th

ST (uT ; IkT φ)
����� . h‖uh ‖p−1

1,p,h |φ|W 2,p (Ω) → 0 as h→ 0.

Gathering all these convergences in (6.77) leads to∫
Ω

χ·∇φ =
∫
Ω

f φ +
∫
∂Ω

gφ. (6.78)

By density of W1,p
? (Ω) ∩W2,p(Ω) in W1,p

? (Ω), this relation also holds if φ is merely
in W1,p

? (Ω).
We now conclude the proof using the Minty trick (cf. [238]). Take Λ ∈ Lp(Ω)d

and write, using the monotonicity (6.3c) of σ,∫
Ω

[σ(uh,Gk
huh) − σ(uh,Λ)]·[Gk

huh − Λ] ≥ 0. (6.79)

The scheme (6.29) with vh = uh shows that∫
Ω

σ(uh,Gk
huh)·Gk

huh =
∫
Ω

f uh +
∫
∂Ω

g γhuh −
∑
T ∈Th

ST (uT ; uT )

≤
∫
Ω

f uh +
∫
∂Ω

g γhuh . (6.80)

Developing (6.79) and using this relation gives∫
Ω

f uh +
∫
∂Ω

g γhuh −
∫
Ω

σ(uh,Gk
huh)·Λ −

∫
Ω

σ(uh,Λ)·[Gk
huh −Λ] ≥ 0. (6.81)

Using the convergences uh → u in Lp(Ω) and γhuh → u |∂Ω in Lp(∂Ω), we have∫
Ω

f uh +
∫
∂Ω

g γhuh →
∫
Ω

f u +
∫
∂Ω

gu |∂Ω as h→ 0.

The weak convergence of σ(uh,Gk
huh) towards χ shows that
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Ω

σ(uh,Gk
huh)·Λ→

∫
Ω

χ·Λ as h→ 0.

Since uh → u in Lq(Ω) for all q < p̂, the continuity and growth properties (6.3a)
and (6.3b) of σ show that σ(uh,Λ) → σ(u,Λ) strongly in Lp′(Ω) (see, e.g., [177,
Lemma A.1]). Hence, using the weak convergence Gk

huh ⇀ ∇u in Lp(Ω)d ,∫
Ω

σ(uh,Λ)·[Gk
huh − Λ] →

∫
Ω

σ(u,Λ)·[∇u − Λ] as h→ 0.

Gathering all these convergences, we pass to the limit in (6.81) and find∫
Ω

f u +
∫
∂Ω

gu |∂Ω −
∫
Ω

χ·Λ ≥
∫
Ω

σ(u,Λ)·[∇u − Λ].

Take v ∈ W1,p
? (Ω) and apply this relation to Λ = ∇u ± ρ∇v, with ρ > 0:∫

Ω

f u +
∫
∂Ω

gu |∂Ω −
∫
Ω

χ·∇(u ± ρv) ≥ ∓ρ
∫
Ω

σ(u,∇u ± ρ∇v)·∇v.

Invoking (6.78) with φ = u ± ρv leads to the simplification

∓ρ
(∫
Ω

f v +
∫
∂Ω

gv |∂Ω

)
≥ ∓ρ

∫
Ω

σ(u,∇u ± ρ∇v)·∇v.

Divide by ρ and let ρ→ 0. The continuity of σ(u, ·) and the growth condition (6.3b)
show, by dominated convergence theorem, thatσ(u,∇u± ρ∇v) → σ(u,∇u) strongly
in Lp′(Ω)d , and thus

∓
(∫
Ω

f v +
∫
∂Ω

gv |∂Ω

)
≥ ∓

∫
Ω

σ(u,∇u)·∇v.

Considering separately the cases + and − in ∓ leads to
∫
Ω

f v +
∫
∂Ω

gv |∂Ω =∫
Ω
σ(u,∇u)·∇v, which shows that u is indeed a solution to (6.6). ut

We conclude this chapter with an improved convergence result on the recon-
structed gradients, in the case where σ is strictly monotonic, that is, satisfies (6.3c)
with a strict inequality when ξ , η.

Theorem 6.30 (Strong convergence of the reconstructed gradients).Under
the assumptions of Theorem 6.29, suppose additionally that, for a.e. x ∈ Ω
and all (s, ξ,η) ∈ R × Rd × Rd with ξ , η,

[σ(x, s, ξ) − σ(x, s,η)]·[ξ − η] > 0. (6.82)
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Then, along the same subsequence as in Theorem 6.29, Gk
huh → ∇u strongly

in Lp(Ω)d .

Proof. The proof follows classical arguments, see e.g. [15, 170]. Define Fh : Ω→ R
by

Fh B [σ(uh,Gk
huh) − σ(uh,∇u)]·[Gk

huh − ∇u].
The function Fh is integrable, non-negative, and its integral is equal to the left-hand
side of (6.79) with Λ = ∇u. Hence, considering (6.81) with this choice of Λ,∫
Ω

Fh =

∫
Ω

f uh +
∫
∂Ω

g γhuh −
∫
Ω

σ(uh,Gk
huh)·∇u −

∫
Ω

σ(uh,∇u)·[Gk
huh − ∇u].

We saw in the proof of Theorem 6.29 that, along a subsequence, uh → u in Lp(Ω),
γhuh → u |∂Ω in Lp(∂Ω), σ(uh,Gk

huh) ⇀ χ weakly in Lp′(Ω)d (where χ satisfies
(6.78)), σ(uh,∇u) → σ(u,∇u) strongly in Lp′(Ω)d , and Gk

huh ⇀ ∇u weakly in
Lp(Ω)d . Hence, as h→ 0 along the same subsequence,∫

Ω

Fh →
∫
Ω

f u +
∫
∂Ω

gu |∂Ω −
∫
Ω

χ·∇u = 0.

This proves that Fh → 0 in L1(Ω). Along a subsequence, we can assume that the
convergence holds a.e. on Ω. By strong convergence in Lp(Ω) we can also assume
that uh converges a.e. onΩ as h→ 0. The strict monotonicity of σ and Lemma 6.31
below then show that Gk

huh → ∇u a.e. on Ω.
By the continuity property (6.3a) of σ(x, ·, ·), we infer that σ(uh,Gk

huh)·Gk
huh →

σ(u,∇u)·∇u a.e. on Ω. Taking the superior limit of (6.80) and using the fact that u
is a solution to (6.6), we also have

lim sup
h→0

∫
Ω

σ(uh,Gk
huh)·Gk

huh ≤
∫
Ω

f u +
∫
∂Ω

gu |∂Ω =
∫
Ω

σ(u,∇u)·∇u.

Together with the a.e. convergence of σ(uh,Gk
huh)·Gk

huh and Lemma 6.32 below,
this proves that σ(uh,Gk

huh)·Gk
huh converges strongly in L1(Ω) to σ(u,∇u)·∇u.

In particular,
(
σ(uh,Gk

huh)·Gk
huh

)
h→0 is equi-integrable in L1(Ω), from which we

deduce, using the coercivity property (6.3d), that
(
Gk

huh
)
h→0 is equi-integrable in

Lp(Ω)d . Since this sequence converges a.e. to ∇u, the Vitali theorem concludes the
proof that Gk

huh → ∇u strongly in Lp(Ω)d . ut
The following lemma, used in the proof above, is a particular case of [174, Lemma

2.47].

Lemma 6.31. Let β : R × Rd → Rd be a continuous function such that

(β(s, ξ) − β(s,η)) ·(ξ − η) > 0, ∀(s, ξ,η) ∈ R × Rd × Rd with ξ , η.
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Let (sm, ξm)n∈N be a sequence in R × Rd and (s, ξ) ∈ R × Rd be such that(
β(sm, ξm) − β(sm, ξ)

) ·(ξm − ξ) → 0 and sm → s as m→∞.

Then, ξm → ξ as m→∞.
The lemma belowwas also used in the proof of Theorem 6.30. Its proof is sketched

in [174, Lemma 2.48]; we provide it here in full for the sake of completeness.

Lemma 6.32. Let X be a measured space, f ∈ L1(X) and ( fm)m∈N be non-
negative functions in L1(X). Assume that fm → f a.e. on X as m → ∞, and
that lim supm→∞

∫
X

fm ≤
∫
X

f . Then, fm → f in L1(X) as m→∞.

Proof. Since fm ≥ 0, f is also positive and we have ( f − fm)+ ≤ f where we
recall that, for any α ∈ R, α+ B 1

2 (|α | + α) = max(α,0) is the positive part of
α. Moreover, ( f − fm)+ → 0 a.e. on X . The dominated convergence theorem then
shows that

∫
X
( f − fm)+ → 0 as m→∞. Writing | f − fm | = 2( f − fm)+ + ( fm − f ),

we infer that

lim sup
m→∞

∫
X

| f − fm | = lim sup
m→∞

(
2
∫
X

( f − fm)+ +
∫
X

( fm − f )
)

= lim sup
m→∞

∫
X

fm −
∫
X

f ≤ 0,

which proves that
∫
X
| f − fm | → 0 as m→∞. ut

6.5 Proofs of the discrete functional analysis results

The proofs of the discrete Sobolev–Poincaré–Wirtinger inequality (Theorem 6.5),
the discrete trace inequality (Theorem 6.7), and the discrete compactness property
(Theorem 6.8) hinge on results established in [174, Section B.3] for the lowest-order
case k = 0 and under a star-shapedness assumptions on the mesh elements. Our
approach to leverage these results to high-order and non-star-shaped elements is to
project unknowns in Uk

h,?
onto the lowest-order unknowns on a matching simplicial

submesh, and to apply the results of [174] on that simplicial submesh.

6.5.1 Mapping high-order unknowns to lowest-order unknowns on
simplicial submeshes

We recall that, for each polytopal mesh Mh = (Th,Fh) in a regular sequence
(Mh)h∈H , there exists a matching simplicial submesh Mh = (Th,Fh) of Mh and
that, by Definition 1.9, the sequence of simplicial meshes (Mh)h∈H is itself regular.
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This means that, for each τ ∈ Th , the ratio of the diameter of τ over the diameter of
the largest ball contained in τ is bounded above independently of h.

Let us fix h ∈ H , and let U0
h be the lowest-order space of unknowns onMh , that

is

U
0
h B

{
wh = ((wτ)τ∈Th

, (wσ)σ∈Fh ) :

wτ ∈ R ∀τ ∈ Th and wσ ∈ R ∀σ ∈ Fh
}
. (6.83)

For p ∈ [1,∞), this space is endowed with the (semi)-norm |||·|||1,p,h defined by: For
all wh ∈ U0

h ,

|||wh |||1,p,h B
( ∑
τ∈Th

∑
σ∈Fτ

|σ |dτσ
����wσ −wτdτσ

����p) 1
p

, (6.84)

where Fτ is the set of faces of τ and dτσ is the orthogonal distance between σ and
the centre of the largest ball contained in τ.

For each τ ∈ Th , there is a unique T ∈ Th such that τ ⊂ T ; we denote this element
T by T(τ). Let Fh,sk be the set of simplicial faces in Fh that lie on the skeleton Fh
ofMh and, for each σ ∈ Fh,sk, denote by F(σ) the unique face F ∈ Fh such that
σ ⊂ F. If σ ∈ Fh\Fh,sk is an “internal” simplicial face, i.e., it completely lies inside
one mesh element T ∈ Th , we set T(σ) B T . The function Πh : Uk

h
→ U0

h that maps
high-order unknowns onMh to low-order unknowns onMh is then defined by: For
all vh ∈ Uk

h
,

Πhvh = wh with

wτ = π0,0

τ vT (τ) ∀τ ∈ Th,

wσ = π0,0
σ vF(σ) ∀σ ∈ Fh,sk,

wσ = π0,0
σ vT (σ) ∀σ ∈ Fh\Fh,sk.

(6.85)

We remark that Πh sends Uk
h,?

into

U
0
h,? =

{
wh ∈ U0

h :
∫
Ω

wh = 0
}
,

where we have denoted by wh the function in P0(Th) such that (wh) |τ = wτ for all
τ ∈ Th . To prove this, it suffices to notice that, if wh = Πhvh for some vh ∈ Uk

h,?
,∫

Ω

wh =
∑
T ∈Th

∑
τ∈Th , τ⊂T

∫
τ
wτ =

∑
T ∈Th

∑
τ∈Th , τ⊂T

∫
τ
π0,0
τ vT

=
∑
T ∈Th

∑
τ∈Th , τ⊂T

∫
τ
vT =

∑
T ∈Th

∫
T

vT =

∫
Ω

vh = 0.

We now prove a boundedness property on Πh .
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Lemma 6.33 (Boundedness of Πh). We have

|||Πhvh |||1,p,h . ‖vh ‖1,p,h ∀vh ∈ Uk
h, (6.86)

with hidden constant depending only on p, k, and %.

Proof. Let vh ∈ Uk
h
and set wh B Πhvh . Take τ ∈ Th and σ ∈ Fτ . By the mesh

regularity assumption, it holds dτσ ' hτ ' hσ , and thus

|σ |dτσ
����wσ −wτdτσ

����p = d1−p
τσ |σ | |wσ −wτ |p ' h1−p

σ ‖wσ −wτ ‖pLp (σ). (6.87)

Let X(σ) = F(σ) if σ ∈ Fh,sk and X(σ) = T(σ) if σ < Fh,sk. The linearity and
idempotency of π0,0

σ yield

wσ −wτ = π0,0
σ vX(σ) − π0,0

τ vT (τ) = π0,0
σ

(
vX(σ) − π0,0

τ vT (τ)
)
.

Plugging this into (6.87) and using the Lp-stability of π0,0
σ (see Lemma 1.44), we

infer
|σ |dτσ

����wσ −wτdτσ

����p . h1−p
σ ‖vX(σ) − π0,0

τ vT (τ)‖pLp (σ). (6.88)

We now separate the cases σ < Fh,sk and σ ∈ Fh,sk. In the former case, X(σ) =
T(σ) = T(τ) and thus, by the trace approximation property (1.75) of π0,0

τ with τ
instead of T and (l, s,m) = (0,1,0),

‖vX(σ) − π0,0
τ vT (τ)‖pLp (σ) . hp−1

τ ‖∇vT (τ)‖pLp (τ)d . hp−1
σ ‖∇vT (τ)‖pLp (τ)d , (6.89)

where we have additionally used the fact that hτ . hσ by mesh regularity. Plugged
into (6.88), this yields

|σ |dτσ
����wσ −wτdτσ

����p . ‖∇vT (τ)‖pLp (τ)d

and, after summing over σ ∈ Fτ\Fh,sk (there are at most d + 1 such faces since τ is
a simplex) and τ ∈ Th ,∑
τ∈Th

∑
σ∈Fτ\Fh ,sk

|σ |dτσ
����wσ −wτdτσ

����p. ∑
τ∈Th

‖∇vT (τ)‖pLp (τ)d=
∑
T ∈Th
‖∇vT ‖pLp (T )d , (6.90)

the conclusion following from
∑
τ∈Th

• = ∑
T ∈Th

∑
τ∈Th , τ⊂T •.

Consider now the case σ ∈ Fh,sk. In this case, X(σ) = F(σ) and (6.88) gives
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|σ |dτσ
����wσ −wτdτσ

����p . h1−p
σ ‖vF(σ) − π0,0

τ vT (τ)‖pLp (σ)

. h1−p
σ ‖vF(σ) − vT (τ)‖pLp (σ) + h1−p

σ ‖vT (τ) − π0,0
τ vT (τ)‖pLp (σ)

. h1−p
F(σ)‖vF(σ) − vT (τ)‖

p

Lp (σ) + ‖∇vT (τ)‖
p

Lp (τ)d , (6.91)

where the second inequality is obtained inserting ±vT (τ) into the norm and using
the triangle inequality, while the conclusion follows from hσ ' hF(σ) and (6.89) (in
which we recall that X(σ) = T(σ) = T(τ)). Summing (6.91) over σ ∈ Fτ ∩ Fh,sk
and τ ∈ Th , rearranging the sums over T ∈ Th and F ∈ FT , and noticing that, for all
F ∈ Fh , ∑

σ∈Fh , σ⊂F
h1−p
F(σ)‖vF(σ) − vT ‖

p

Lp (σ) = h1−p
F ‖vF − vT ‖pLp (F),

we infer∑
τ∈Th

∑
σ∈Fτ∩Fh ,sk

|σ |dτσ
����wσ −wτdτσ

����p
.

∑
T ∈Th

∑
F ∈FT

h1−p
F ‖vF − vT ‖pLp (F) +

∑
T ∈Th

‖∇vT ‖pLp (T )d . (6.92)

Adding this estimate to (6.90) and recalling the definition (6.9) of ‖·‖1,p,h yields
(6.86). ut

Remark 6.34 (Equivalence of norms onU0
h). Letting ‖·‖1,p,U,h be the standard semi-

norm ‖·‖1,p,h on U0
h (that is, (6.9) with k = 0 andMh instead ofMh) and summing

(6.87) over σ ∈ Fτ and τ ∈ Th gives the uniform equivalence

|||wh |||1,p,h ' ‖wh ‖1,p,U,h ∀wh ∈ U0
h . (6.93)

The following lemma will be the key to comparing vh and Πhvh , in order to lift
discrete functional analysis properties of [174] from U0

h,? to Uk
h,?

. It will be used
both with the original meshMh , and withMh replaced byMh .

Lemma 6.35 (Poincaré–Wirtinger–Sobolev inequality for broken polynomial
functions with local zero average). Let (Mh)h∈H be a regular mesh sequence,
and take a real number r such that

p ≤ r ≤
{

dp
d−p if p < d,
∞ if p ≥ d.

If w ∈ Pk(Th) satisfies
∫
T
w = 0 for all T ∈ Th , then

‖w‖Lr (Ω) . h1+ d
r − d

p ‖∇hw‖Lp (Ω)d , (6.94)
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with hidden multiplicative constant depending on Ω, %, k, r , and p.

Remark 6.36 (Power of h in (6.94)). The proof shows that (6.94) is actually valid for
any r ≥ p, without upper bound restriction. However, in the case p < d, if r > dp

d−p
then the exponent of h in (6.94) is negative.

Proof. For all T ∈ Th , we have π0,0
T w = 0 and thus, by the optimal approximation

property (1.74) of π0,0
T (with s = 1, m = 0, and r instead of p),

‖w‖Lr (T ) = ‖w − π0,0
T w‖Lr (T ) . hT ‖∇w‖Lr (T )d

. hT |T |
1
r − 1

p

d
‖∇w‖Lp (T )d

. h
1+ d

r − d
p

T ‖∇w‖Lp (T )d , (6.95)

where the second line follows from the inverse Lebesgue inequality (1.35), and the
third line is a consequence of (1.7).

If r is finite, take the power r of (6.95), sum over T ∈ Th , and use ‖∇w‖r−pLp (T )d ≤
‖∇hw‖r−pLp (Ω)d (since r ≥ p) to infer

‖w‖rLr (Ω) . hr+d−
dr
p

∑
T ∈Th

‖∇w‖r
Lp (T )d

≤ hr+d−
dr
p ‖∇hw‖r−pLp (Ω)d

∑
T ∈Th

‖∇w‖p
Lp (T )d

= hr+d−
dr
p ‖∇hw‖r−pLp (Ω)d ‖∇hw‖pLp (Ω)d

= hr+d−
dr
p ‖∇hw‖rLp (Ω)d .

Taking the power 1/r of this inequality concludes the proof of (6.94).
If r = ∞, apply (6.95) to T ∈ Th such that ‖w‖L∞(T ) = ‖w‖L∞(Ω) to obtain

‖w‖L∞(Ω) . h1− d
p ‖∇w‖Lp (T )d ≤ h1− d

p ‖∇hw‖Lp (Ω)d . ut

6.5.2 Discrete Sobolev–Poincaré–Wirtinger embeddings

Proof (Theorem 6.5). Let vh ∈ Uk
h,?

and q as in the theorem.Without restriction, we
can assume that q ≥ p. Otherwise, we use the Hölder inequality to write ‖vh ‖Lq (Ω) .
‖vh ‖Lp (Ω) and (6.11) follows from the same estimate with p instead of q.

Set wh B Πhvh ∈ U0
h,?, and denote by π0,0

Th
the L2-orthogonal projection on

piecewise constant functions on Th , that is, (π0,0
Th
φ) |τ B π0,0

τ φ for all τ ∈ Th and
all φ ∈ L1(Ω). The definition (6.85) of Πh shows that π0,0

Th
vh = wh , and thus

vh = vh − π0,0
Th

vh +wh . Moreover, by definition of π0,0
Th

, it holds
∫
τ
(vh − π0,0

Th
vh) = 0
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for all τ ∈ Th . Hence, letting ∇Th
denote the broken gradient on Th , the estimate

(6.11) follows from

‖vh ‖Lq (Ω) ≤ ‖vh − π0,0
Th

vh ‖Lq (Ω) + ‖wh ‖Lq (Ω)

. h1+ d
q − d

p ‖∇Th
vh ‖Lp (Ω)d + |||wh |||1,p,h

. ‖vh ‖1,p,h, (6.96)

where, to pass to the second line, we have used (6.94) (with r = q, w = vh − π0,0
Th

vh ,
and Th instead of Th) together with Lemma 6.37 below, and the conclusion is
obtained recalling the definition (6.9) of ‖·‖1,p,h , the property 1 + d

q − d
p ≥ 0 (by

choice of q) together with h . 1, and the boundedness property (6.86) of Πh . ut

The following lemma, used in the proof above, is a special case of [174, Lemma
B.25].

Lemma 6.37 (Discrete Sobolev embedding for U0
h,?). Let (Mh)h∈H be a regular

sequence of matching simplicial meshes, and let p ∈ [1,∞). Take q ∈
[
1, dp

d−p
]
if

p < d, and q ∈ [1,∞) if p ≥ d. Then,

‖wh ‖Lq (Ω) . |||wh |||1,p,h ∀wh ∈ U0
h,?,

with hidden constant depending only on Ω, %, p, and q.

6.5.3 Discrete trace inequality

Proof (Theorem 6.7). Let vh ∈ Uk
h,?

. We naturally map vh to an element ṽh ∈ Uk
h,?

(the space of high-order unknowns onMh) by setting, in a similar way as in (6.85),

ṽτ = vT (τ) ∀τ ∈ Th,
ṽσ = vF(σ) ∀σ ∈ Fh,sk,
ṽσ = vT (σ) ∀σ ∈ Fh\Fh,sk.

(6.97)

Recalling that ‖·‖1,p,U,h is the norm ‖·‖1,p,h onMh , it can easily be checked that

‖ṽh ‖1,p,U,h ' ‖vh ‖1,p,h (6.98)

with hidden constant depending only on d, %, and p. Set z
h
B ṽh − Πhvh ∈ Uk

h,?.
Let σ ∈ Fb

h
, the set of simplicial faces in Fh that lie on ∂Ω, and take τσ ∈ Th such

that σ is a face of τσ . A triangle inequality yields

‖zσ ‖pLp (σ) . ‖zσ − zτσ ‖pLp (σ) + ‖zτσ ‖
p

Lp (σ)

. ‖zσ − zτσ ‖pLp (σ) + hp−1
τσ ‖∇vT (τσ )‖pLp (τσ )d , (6.99)
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the conclusion following from zτσ = vT (τσ ) − π0,0
τσ vT (τσ ) (see (6.97) and (6.85)) and

from the trace approximation property (1.75) of the L2-orthogonal projector with
X = τσ , l = 0, s = 1, and m = 0. Let γMh

: Uk
h → Lp(∂Ω) be the trace defined by:

(γMh
wh) |σ B wσ ∀σ ∈ Fb

h , ∀wh ∈ Uk
h . (6.100)

Summing (6.99) over σ ∈ Fb
h
, we obtain

‖γMh
z
h
‖p
Lp (∂Ω)

.
∑
σ∈Fb

h

‖zσ − zτσ ‖pLp (σ) +
∑
σ∈Fb

h

hp−1
τσ ‖∇vT (τσ )‖pLp (τσ )d

. hp−1
∑
τ∈Tb

h

∑
σ∈Fτ∩Fb

h

h1−p
σ ‖zσ − zτ ‖pLp (σ) + hp−1

∑
τ∈Tb

h

‖∇vT (τ)‖pLp (τ)d ,

(6.101)

where Tb
h
is the set of elements τ ∈ Th that have at least one face on ∂Ω, and the

second inequality follows from 1 = hp−1
σ h1−p

σ ≤ hp−1h1−p
σ and from∑

σ∈Fb
h

• =
∑
τ∈Tb

h

∑
σ∈Fτ∩Fb

h

•.

The definition (6.97) shows that γMh
ṽh = γhvh , and thus that γMh

z
h
= γhvh −

γMh
Πhvh . Hence, recalling the definitions of ‖·‖1,p,U,h (on Mh) and ‖·‖1,p,h (on

Mh), we infer from (6.101) that

‖γhvh − γMh
Πhvh ‖pLp (∂Ω) . hp−1‖z

h
‖p1,p,U,h + hp−1‖vh ‖p1,p,h

. hp−1‖vh ‖p1,p,h, (6.102)

where the conclusion follows from z
h
= ṽh − Πhvh , the relation (6.98), the norm

equivalence (6.93), and the boundedness property (6.86) of Πh .
Invoking Lemma 6.38 below, we can write ‖γMh

Πhvh ‖Lp (∂Ω) . |||Πhvh |||1,p,h ,
and the proof is completed using the triangle inequality, (6.102), the property (6.86),
and h . 1 to write

‖γhvh ‖Lp (∂Ω) ≤ ‖γhvh − γMh
Πhvh ‖Lp (∂Ω) + ‖γMh

Πhvh ‖Lp (∂Ω) . ‖vh ‖1,p,h . ut

The following lemma is a straightforward consequence of [174, Eq. (B.58) and
Lemma B.24].

Lemma 6.38 (Discrete trace inequality in U0
h,?). Let (Mh)h∈H be a regular family

of matching simplicial meshes, and let p ∈ [1,∞). Then, defining the trace γMh
:

U0
h → Lp(∂Ω) by (6.100) with k = 0, it holds

‖γMh
wh ‖Lp (∂Ω) . |||wh |||1,p,h ∀wh ∈ U0

h,?,

with hidden constant depending only on Ω, % and p.
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6.5.4 Discrete compactness

Proof (Theorem 6.8). Set wh B Πhvh ∈ U0
h,?. The boundedness property (6.86) of

Πh shows that
( |||wh |||1,p,h

)
h∈H is bounded. ByLemma6.39 below,we get v ∈ Lp(Ω)

and ω ∈ Lp(∂Ω) such that, up to a subsequence as h → 0, wh → v in Lp(Ω) and
γMh

wh → ω in Lp(∂Ω). Since
∫
Ω
wh = 0 for all h ∈ H , we have

∫
Ω
v = 0.

As in the proof of Theorem 6.5, we have vh = vh − π0,0
Th

vh + wh . Hence, using
(6.94) with r = p, w = vh − π0,0

Th
vh and Th instead of Th , and recalling that

‖∇Th
vh ‖Lp (Ω)d ≤ ‖vh ‖1,p,h,

we find

‖vh − v‖Lp (Ω) ≤ ‖vh − π0,0
Th

vh ‖Lp (Ω) + ‖wh − v‖Lp (Ω)

. h‖vh ‖1,p,h + ‖wh − v‖Lp (Ω)

(here and in the rest of the proof, the hidden constants in . do not depend on h). This
shows that, as h→ 0, vh → v in Lp(Ω), and thus also in Lq(Ω) if q ≤ p. Take now
q > p satisfying the condition in Theorem 6.8. We can find r > q such that r ≤ dp

d−p
if p < d, and r < ∞ if p ≥ d. The Sobolev–Poincaré–Wirtinger inequality (Theorem
6.5) then shows that (vh)h∈H is bounded in Lr (Ω). Moreover, letting θ ∈ (0,1) be
such that 1

q =
θ
r +

1−θ
p , by Hölder’s inequality on |vh − v |q = |vh − v |θq |vh − v |(1−θ)q

with exponents r
θq and p

(1−θ)q , we have

‖vh − v‖Lq (Ω) ≤ ‖vh − v‖θLr (Ω)‖vh − v‖1−θLp (Ω).

Together with the convergence of vh to v in Lp(Ω) and its boundedness in Lr (Ω),
this estimate shows that vh → v in Lq(Ω) as h→ 0.

Using (6.102) and recalling that γMh
wh = γMh

Πhvh converges to ω in Lp(∂Ω),
we also have γhvh → ω in Lp(∂Ω) as h→ 0, along the same subsequence as before.

We now turn to the convergence of rk+1
h

vh still assuming, without loss of gener-
ality, that q ≥ p (the convergence in Lq(Ω) for q < p follows from the convergence
in Lp(Ω)). Since

∫
T
(vh − rk+1

h
vh) = 0 for all T ∈ Th , estimate (6.94) applied to

w = vh − rk+1
h

vh with r = q shows that

‖vh − rk+1
h vh ‖Lq (Ω) . h1+ d

q − d
p ‖∇hvh − ∇hrk+1

h vh ‖Lp (Ω)d

. h1+ d
q − d

p
(‖vh ‖1,p,h + ‖vh ‖∇r,p,h

)
. h1+ d

q − d
p ‖vh ‖1,p,h,

wherewe have used the definitions (6.9) and (6.18) of the norms ‖·‖1,p,h and ‖·‖∇r,p,h
in the second line, and the norm equivalence (6.20) in the third line. The choice of q
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ensures that 1 + d
q − d

p > 0, from which we deduce that vh − rk+1
h

vh → 0 in Lq(Ω).
This proves that rk+1

h
vh → v in Lq(Ω) as h→ 0.

It remains to show that v ∈ W1,p(Ω), that ω = v |∂Ω, and that Gk
hvh ⇀ ∇v

weakly in Lp(Ω)d as h → 0. The norm equivalence (6.20), the boundedness of(‖vh ‖1,p,h )h∈H , and the definition (6.16) of ‖·‖G,p,h show that Gk
hvh is bounded in

Lp(Ω)d . Hence, up to a subsequence, it converges weakly in this space to some G.
The conclusion follows if we prove that G = ∇v in the sense of distributions on Ω,
and that ω = v |∂Ω.

Take τ ∈ C∞(Ω)d and write∫
Ω

Gk
hvh ·τ =

∑
T ∈Th

∫
T

Gk
T vT ·τ

=
∑
T ∈Th

∫
T

∇vT ·τ +
∑
T ∈Th

∑
F ∈FT

∫
F

(vF − vT ) (π0,k
T τ·nTF )

=
∑
T ∈Th

∫
T

∇vT ·τ +
∑
T ∈Th

∑
F ∈FT

∫
F

(vF − vT ) (τ·nTF )

+
∑
T ∈Th

∑
F ∈FT

∫
F

(vF − vT ) (π0,k
T τ − τ)·nTF︸                                                ︷︷                                                ︸

T1,h

where the second line is a consequence of the property (4.41) of Gk
T , and the third

equality is obtained introducing±τ in the boundary terms. Continuing with element-
wise integration by parts, we find∫

Ω

Gk
hvh ·τ = −

∑
T ∈Th

∫
T

vT (∇·τ) +
∑
T ∈Th

∑
F ∈FT

∫
F

vF (τ·nTF ) + T1,h

= −
∫
Ω

vh (∇·τ) +
∫
∂Ω
γhvh (τ·n∂Ω) + T1,h, (6.103)

the conclusion being a consequence of formula (1.27) in Corollary 1.19 with
(ϕF )F ∈Fh = (vF )F ∈Fh , together with, by definition (6.10) of γh ,∑

F ∈Fb
h

∫
F

(τ·nF )vF =
∫
∂Ω
γhvh (τ·n∂Ω).

We now deal with T1,h . Using the generalised Hölder inequality with exponents
(p, p′,∞) on the integrals over F together with ‖nTF ‖L∞(F)d = 1 and the trace
approximation property (1.75) (with (l, s,m) = (k, k + 1,0) and p′ instead of p), we
write
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|T1,h | .
∑
T ∈Th

∑
F ∈FT

‖vF − vT ‖Lp (F)h
k+1− 1

p′
T ‖τ‖W k+1,p′ (T )d

.
∑
T ∈Th

∑
F ∈FT

h
1
p −1
F ‖vF − vT ‖Lp (F)hk+1

T ‖τ‖W k+1,p′ (T )d

. hk+1

( ∑
T ∈Th

∑
F ∈FT

h1−p
F ‖vF − vT ‖pLp (F)

) 1
p

‖τ‖W k+1,p′ (Ω)d

. hk+1‖vh ‖1,p,h ‖τ‖W k+1,p′ (Ω)d ,

where the second line follows from − 1
p′ =

1
p −1 and the uniform equivalence (1.6) of

face and element diameters, the third line is obtained applying a Hölder inequality on
the sum, and we have used the definition (6.9) of ‖·‖1,p,h to conclude. This estimate
proves that T1,h → 0.

Coming back to (6.103) and using vh → v in Lp(Ω), γhvh → ω in Lp(∂Ω) and
Gk

hvh ⇀ G weakly in Lp(Ω)d , we deduce that∫
Ω

G·τ = −
∫
Ω

v (∇·τ) +
∫
∂Ω
ω (τ·n∂Ω).

Specifying τ ∈ C∞c (Ω)d in this formula, the boundary term disappears and the
equation shows thatG = ∇v in the sense of distributions. Taking then anyτ ∈ C∞(Ω),
we obtain ∫

∂Ω
ω (τ·n∂Ω) =

∫
Ω

G·τ +
∫
Ω

v (∇·τ)

=

∫
Ω

∇v·τ +
∫
Ω

v (∇·τ) =
∫
∂Ω

v |∂Ω (τ·n∂Ω),

where the conclusion follows from an integration by parts. The generic nature of τ
enables us to conclude that ω = v |∂Ω, and the proof is complete. ut

The following compactness result is a special case of [174, Lemma B.27].

Lemma 6.39 (Discrete compactness in U0
h,?). Let (Mh)h∈H be a regular family

of matching simplicial meshes and let p ∈ (1,∞). Let (wh)h∈H ∈ (U0
h,?)h∈H and

assume that
( |||wh |||1,p,h

)
h∈H is bounded. Then, (wh)h∈H is relatively compact in

Lp(Ω) and, defining the trace operator γMh
: U0

h → Lp(∂Ω) by (6.100) with k = 0,
(γMh

wh)h∈H is relatively compact in Lp(∂Ω).



6.6 Discrete functional analysis for homogeneous Dirichlet boundary conditions 295

6.6 Discrete functional analysis for homogeneous Dirichlet
boundary conditions

To adapt the convergence analysis of Section 6.4 to homogeneous Dirichlet boundary
conditions, Theorems 6.5 and 6.8 have to be modified as described in this section.
The results stated in the present section will be useful in Chapter 9 on Navier–Stokes
equations.

Theorem 6.40 (Discrete Sobolev–Poincaré inequality). Let a polynomial de-
gree k ≥ 0 and an index p ∈ (1,∞) be fixed. Let (Mh)h∈H denote a regular se-
quence of meshes in the sense of Definition 1.9. Let 1 ≤ q ≤ dp

d−p if 1 ≤ p < d,
and 1 ≤ q < ∞ if p ≥ d. Then, for all vh ∈ Uk

h,0, with Uk
h,0 defined by (2.36),

‖vh ‖Lq (Ω) . ‖vh ‖1,p,h,

where the hidden multiplicative constant depends only on Ω, %, k, p, and q.

Theorem 6.41 (Discrete compactness for homogeneous Dirichlet bound-
ary conditions). Let a polynomial degree k ≥ 0 and an index p ∈ (1,∞)
be fixed. Let (Mh)h∈H denote a regular sequence of meshes in the sense of
Definition 1.9. Let (vh)h∈H ∈

(
Uk

h,0
)
h∈H (with Uk

h,0 defined by (2.36)) be a
sequence for which there exists a real number C > 0 independent of h such
that

‖vh ‖1,p,h ≤ C ∀h ∈ H .
Then, there exists v ∈ W1,p

0 (Ω) such that, up to a subsequence as h→ 0,

(i) vh → v and rk+1
h

vh → v strongly in Lq(Ω) for all 1 ≤ q <
dp
d−p if

1 ≤ p < d, and 1 ≤ q < ∞ if p ≥ d;
(ii) Gk

hvh ⇀ ∇v weakly in Lp(Ω)d .

These theorems can be established following the same ideas as in Section 6.5,
using the operator Πh that sends Uk

h,0 into

U
0
h,0 B

{
wh ∈ U0

h : wσ = 0 ∀σ ∈ Fb
h

}
and invoking the lemmas below, special cases of [174, Lemmas B.15 and B.19]. We
let the reader go over the details of these proofs.
Lemma 6.42 (Discrete Sobolev embedding for U0

h,0). Let (Mh)h∈H be a regular
sequence ofmatching simplicialmeshes, and let p ∈ [1,∞). Then, for all 1 ≤ q ≤ dp

d−p
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if p < d, and 1 ≤ q < ∞ if p ≥ d, it holds

‖wh ‖Lq (Ω) . |||wh |||1,p,h ∀wh ∈ U0
h,0,

with hidden constant depending only on Ω, %, p, and q.

Lemma 6.43 (Discrete compactness in U0
h,0). Let (Mh)h∈H be a regular family

of matching simplicial meshes and let p ∈ (1,∞). Let (wh)h∈H ∈
(
U0
h,0

)
h∈H and

assume that
( |||wh |||1,p,h

)
h∈H is bounded. Then, (wh)h∈H is relatively compact in

Lp(Ω).



Chapter 7
Linear elasticity

In this chapter, we discuss HHO discretisations of linear elasticity. This problem,
central in solid mechanics, is encountered when modelling the (small) deformations
of a body under a volumetric load. From the mathematical point of view, there are
relevant differences with respect to the Poisson problem discussed in Chapter 2, both
at the continuous and at the discrete level. The first, obvious, difference is that, in
this case, the unknown is vector-valued. The second, far-reaching, difference is that
the key differential operator is the symmetric part of the gradient which, applied to
the displacement field, yields the infinitesimal strain tensor. As a consequence, well-
posedness for the continuous problem hinges on the Korn inequality, which states
that, for homogeneous Dirichlet boundary conditions, the L2-norm of the gradient
is controlled by the L2-norm of its symmetric part.

In Section 7.1, we discuss the model. After introducing some tensor-related
notations, defining the symmetric and skew-symmetric parts of the gradient of a
vector field, and discussing rigid-bodymotions, we state the linear elasticity problem
along with its weak formulation. To study the well-posedness of the continuous weak
problem, we recall and prove the first Korn inequality, a result which will be later
mimicked at the discrete level in Lemmas 7.23 and 7.24.

In Section 7.2, we discuss the local construction. We start by introducing the
strain projector which, for polynomial degrees > 1, differs from applying the elliptic
projector of Definition 1.39 component-wise in that the symmetric part of the gra-
dient replaces the gradient. Adapting the theory of Section 1.3.2, we show that this
projector has optimal approximation properties. The proof hinges on uniform local
Korn inequalities inside mesh elements. We next identify inspiring relations which
serve as a starting point for the choice of the discrete unknowns in the HHO method
and for the definition of two local reconstruction operators, one for the gradient
of the displacement and another for the displacement itself. These ingredients are
combined to formulate a local contribution composed, as usual, of consistency and
stabilisation terms. The approximation properties of the strain projector are used
here to design a particular stabilisation term that satisfies the required assumptions.
A crucial difference with respect to the Poisson problem is that, in order to match
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the stability assumption, one needs to use polynomials of degree k ≥ 1, that is, the
lowest-order case k = 0 requires a specific treatment.

In Section 7.3 we formulate the HHO scheme. More specifically, after defining
the global space of discrete unknowns with single-valued interface values, we prove
discrete global Korn inequalities in broken polynomial and HHO spaces, define the
global bilinear form, state the discrete problem, and prove its well-posedness. The
error analysis is carried out in Section 7.4 based on the abstract analysis frame-
work of Appendix A. We prove error estimates for both the energy- and L2-norms
of the displacement. To close Section 7.4, we discuss the robustness of our esti-
mates in the case when Lamé’s first coefficient takes large values, corresponding
to quasi-incompressible bodies which deform at constant volume. In this case, it
is well-known that lowest-order conforming Finite Elements approximations do not
deliver satisfactory approximations owing to their inability to represent non-trivial
divergence-free fields; see, e.g., [30]. This phenomenon is often referred to as numer-
ical locking in the literature. From a mathematical point of view, this can be avoided
by making sure that the error estimates are uniform in Lamé’s first coefficient, which
we show to be the case for the HHO method studied here.

In Section 7.6 we hack the HHO scheme to cover the case k = 0, which can be
useful to reduce the number of unknowns in large three-dimensional simulations, or
whenever the solution is not expected to be smooth. As previously observed, it is not
possible in this case to attain stability by means of a local stabilisation term devised
inside each mesh element. The solution proposed here consists in adding a jump
penalisation term inspired by the discrete Korn inequality in broken polynomial
spaces proved in Lemma 7.23, which restores coercivity. The price to pay is that,
owing to the presence of the jump penalisation term, additional links are introduced
among element-based unknowns, and static condensation is no longer an interesting
option. Notice that, despite this fact, a significant cost reduction is achieved taking
k = 0 in three-dimensional cases when compared to k = 1.

While most of the chapter focuses on (homogeneous) Dirichlet boundary condi-
tions corresponding to a clamped boundary, other boundary conditions are briefly
discussed in Section 7.5.

Finally, in Section 7.7 we provide a proof of the uniform local second Korn
inequality stated in Lemma 7.7. This inequality plays a key role in proving optimal
approximation properties for the strain projector as well as the coercivity of the
discrete bilinear form; see Remark 7.10.

7.1 Model

In this section we discuss the continuous setting.
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7.1.1 Notations and concepts related to tensors

The tensor product of two vectors a = (ai)1≤i≤d and b = (bi)1≤i≤d in Rd is the
matrix a ⊗ b ∈ Rd×d given by

a ⊗ b B (aibj)1≤i, j≤d . (7.1)

The Frobenius inner product in Rd×d is defined by: For all σ = (σi j)1≤i, j≤d ∈ Rd×d
and all τ = (τi j)1≤i, j≤d ∈ Rd×d ,

σ:τ B
d∑

i, j=1
σi jτi j . (7.2)

The associated norm is obtained setting, for all τ ∈ Rd×d , |τ | B (τ:τ) 1
2 . This inner

product naturally carries out to the space L2(Ω)d×d of square-integrable matrix-
valued functions by: For σ and τ in L2(Ω)d×d ,

(σ,τ) B
∫
Ω

σ(x):τ(x) dx.

The corresponding norm is obtained setting, for all τ ∈ L2(Ω)d×d , ‖τ‖ B (τ,τ) 1
2 .

Coherently with Remark 1.14, these notations are extended as (·, ·)X and ‖·‖X when
the domain is no longer Ω but a measurable set X .

The set of symmetric real-valued matrices of size d is denoted by Rd×dsym , and we
denote by L2(Ω;Rd×dsym ) the space of square-integrable functions that take values in
Rd×dsym .

Finally, the divergence of a sufficiently smooth tensor-valued function σ : Ω →
L2(Ω)d×d is taken row-wise: If σ = (σi j)1≤i, j≤d , then

∇·σ = ((∇·σ)i)1≤i≤d with (∇·σ)i = ∇·(σi•) =
d∑
j=1

∂jσi j, (7.3)

with σi• denoting the ith row of σ.

7.1.2 Symmetric and skew-symmetric gradients, rigid-body motions

Let d ∈ {2,3}, and denote by X ⊂ Rd a polytopal set in the sense of Definition 1.1.
We define the tensor-valued gradient operator ∇ : H1(X)d → L2(X)d×d acting on
vector-valued functions as follows: For any v = (v1, . . . , vd) ∈ H1(X)d ,
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∇v B (∂jvi)1≤i, j≤d =
©«
∂1v1 . . . ∂dv1
...

. . .
...

∂1vd . . . ∂dvd

ª®®¬ ,
where ∂j denotes the weak derivative with respect to the jth variable. The symmetric
and skew-symmetric parts of the gradient (in short, symmetric and skew-symmetric
gradients, respectively) are such that, for all v ∈ H1(X)d ,

∇sv B
1
2
(∇v + (∇v)ᵀ) , ∇ssv B

1
2
(∇v − (∇v)ᵀ) , (7.4)

where (∇v)ᵀ denotes the transpose of the matrix-valued function ∇v. We notice for
future usage that, if v ∈ H1(X)d and τ ∈ L2(X;Rd×dsym ), then

(∇v,τ)X = (∇sv,τ)X . (7.5)

This follows from the relation, valid for a.e. x ∈ X:

∇v(x):τ(x) =
d∑

i, j=1
∂jvi(x)τi j(x)

=
1
2

d∑
i, j=1

∂jvi(x)τi j(x) + 1
2

d∑
i, j=1

∂jvi(x)τji(x)

=
1
2

d∑
i, j=1

∂jvi(x)τi j(x) + 1
2

d∑
i, j=1

∂ivj(x)τi j(x)

=

d∑
i, j=1

1
2

(
∂jvi(x) + ∂ivj(x)

)
τi j(x) = ∇sv(x):τ(x),

where the symmetry of τ was used in the second line, and the exchange of indices
i ↔ j was performed in the second sum in the third line. The kernel of the symmetric
gradient is the space of rigid-body motions:

RMd(X) B ker(∇s) =
{
v ∈ H1(X)d : ∇sv = 0

}
.

It can be checked that v ∈ RMd(X) if and only if there exists a vector tv ∈ Rd and a
skew-symmetric matrix Rv ∈ Rd×d such that, for almost every x ∈ X ,

v(x) = tv + Rvx. (7.6)

If v is a displacement field, the first term in this expression represents a translation.
In dimension d = 2, the second term is a rotation of angle π/2 around the origin
composed by a (positive or negative) dilatation. In dimension d = 3, it can be seen
that there existsωv ∈ R3 such that Rvx = ωv× x, where × denotes the cross-product
of two vectors in R3. An immediate consequence of this characterisation of rigid-
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body motions is that RMd(X) is a vector space of dimension 3 when d = 2 and 6
when d = 3 and, in both cases, it holds that RMd(X) ⊂ P1(X)d .

7.1.3 The elasticity problem

Consider a body which, in its reference configuration, occupies a region of space
corresponding to the domain Ω ⊂ Rd , d ∈ {2,3}. We are interested in finding the
displacement u : Ω → Rd of the body when it is subjected to a given force per
unit volume f : Ω → Rd . We work, in what follows, under the small deformations
assumption which implies, in particular, that the strain tensor is given by

ε = ∇su.

We further assume, for the sake of simplicity, that the body is clamped along its
boundary, so that the displacement is zero on ∂Ω. Other boundary conditions are
briefly discussed in Section 7.5. The displacement field is then obtained solving
the following linear elasticity problem, which expresses the equilibrium between
internal stresses and external loads: Find u : Ω→ Rd such that

−∇·(σ(∇su)) = f in Ω, (7.7a)
u = 0 on ∂Ω, (7.7b)

where the linear mapping σ : Rd×dsym → Rd×dsym represents the strain-stress law. For
isotropic but not necessarily homogeneous media, the strain-stress law is such that,
for any τ ∈ Rd×dsym ,

σ(τ) = 2µτ + λ tr(τ)Id, (7.8)

where tr(τ) B ∑d
i=1 τii is the trace of τ and Id is the d × d identity matrix. The two

real-valued Lamé coefficients λ : Ω → R and µ : Ω → R are such that, for given
real numbers 0 < µ ≤ µ, α > 0, and λ ≥ 0 it holds, for almost every x ∈ Ω,

µ ≤ µ(x) ≤ µ, α ≤ 2µ(x) − dλ−(x) and |λ(x)| ≤ λ, (7.9)

where λ− B 1
2 (|λ | − λ) = max(−λ,0) denotes the negative part of λ. Clearly, if

λ ≥ 0, then the second condition in (7.9) is a consequence of the first one with
α = 2µ.

In what follows, the Lamé coefficients, the related bounds (7.9), and the body
force per unit volume f will be collectively referred to as the problem data. When
relevant, we will track the dependencies on the problem data of the multiplicative
constants in error estimates in order to highlight the robustness properties of the
HHO method.

Throughout the rest of this chapter, we make the following additional assumption
concerning the spatial dependence of the Lamé coefficients:
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Assumption 7.1 (Piecewise constant Lamé coefficients) TheLamé coefficients are
piecewise constant on a finite collection PΩ B {Ωi}i∈I , I ⊂ N, of disjoint polytopes
Ωi such that Ω =

⋃
i∈I Ωi , i.e.,

µ |Ωi
∈ P0(Ωi) and λ |Ωi

∈ P0(Ωi) for all i ∈ I .

Assumption 7.1 is often verified in practice, and corresponds to the case of a he-
terogeneous body composed of homogeneous materials. The extension to the more
general case of Lamé coefficients that are piecewise smooth is possible in the spirit
of Section 4.2.

Remark 7.2 (Two-dimensional elasticity). The mechanical theory of linear elasticity
is inherently three-dimensional. As a result, the interpretation of problem (7.7) for
d = 2 requires some care. Denote by σ = (σi j)1≤i, j≤d the value of the stress tensor
at a point, and let us consider, for instance, the plane stress problem, for which
σ13 = σ23 = σ33 = 0, and the non-zero components of σ depend only on x1 and
x2. Further assume, for the sake of simplicity, that both λ and µ are constant over Ω.
Enforcing σ33 = 0 in (7.8) with τ = ε reveals that the component ε33 of the strain
tensor cannot be zero in general, but is instead equal to − λ

2µ+λ (ε11 + ε22). Plugging
this relation into the constitutive law leads us again to a problem of the form (7.7)
with d = 2, but where the quantity λ 2µ

2µ+λ replaces Lamé’s first coefficient λ in the
second term of (7.8). Further developments lead to altogether different mathematical
models, such as those encountered in the theory of thin plates and shells. Since our
book focuses on the numerical approximation, we will not develop further this topic,
and refer the interested reader to textbooks inmechanics such as, e.g., [204]. AnHHO
method for the approximation of Kirchhoff–Love plates is discussed in [60]; see also
[18] for related developments in the context of nonconforming Virtual Elements.

7.1.4 Weak formulation and well-posedness

Assume f ∈ L2(Ω)d . Classically, a weak formulation of problem (7.7) reads: Find
u ∈ H1

0 (Ω)d such that
a(u, v) = ( f , v), (7.10)

with bilinear form a : H1(Ω)d × H1(Ω)d → R defined by

a(u, v) B (σ(∇su),∇sv) = (2µ∇su,∇sv) + (λ∇·u,∇·v), (7.11)

wherewe have expanded the stress tensor according to its definition (7.8) to conclude.
Thewell-posedness of problem (7.10) hinges on the firstKorn inequality,which states
that the L2-norm of the symmetric part of the gradient controls the L2-norm of the
gradient for functions in H1

0 (Ω)d .
Proposition 7.3 (First Korn inequality). For all v ∈ H1

0 (Ω)d ,
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‖∇v‖ ≤
√

2‖∇sv‖. (7.12)

Proof. For any v ∈ C∞c (Ω)d , expanding the symmetric gradient according to its
definition (7.4), it is inferred that

2
∫
Ω

|∇sv |2 =
∫
Ω

|∇v |2 +
∫
Ω

∇v:(∇v)ᵀ .

Using an integration by parts and the fact that v = 0 on ∂Ω, for all 1 ≤ i, j ≤ d, we
have ∫

Ω

∂jvi ∂ivj = −
∫
Ω

vi ∂j∂ivj = −
∫
Ω

vi ∂i∂jvj =

∫
Ω

∂ivi ∂jvj .

Hence, since ∇v:(∇v)ᵀ = ∑d
i, j=1 ∂jvi ∂ivj ,

2
∫
Ω

|∇sv |2 =
∫
Ω

|∇v |2 +
∫
Ω

|∇·v |2 ≥
∫
Ω

|∇v |2.

The conclusion follows taking the square root of this inequality and invoking the
density of C∞c (Ω)d in H1

0 (Ω)d . ut

The first Korn inequality implies, in particular, that the strain seminorm ‖·‖ε such
that

‖v‖ε B ‖∇sv‖ ∀v ∈ H1
0 (Ω)d

is a norm on H1
0 (Ω)d . We notice, in passing, that the extension of this result to more

general boundary conditions is not trivial; see, e.g., the discussion in [211].

Proposition 7.4 (Well-posedness of problem (7.10)). Problem (7.10) is well-posed
with a priori estimate

‖∇su‖ ≤
√

2CΩ
α
‖ f ‖,

where α is given in (7.9) and CΩ > 0 is the constant of the continuous Poincaré
inequality ‖v‖ ≤ CΩ‖∇v‖ valid for all v ∈ H1

0 (Ω).

Proof. We check the assumptions of the Lax–Milgram Lemma 2.20 with U =
H1

0 (Ω)d , a = a, and 〈f, v〉U?,U = ( f , v). It can be easily verified that H1
0 (Ω)d equipped

with the inner product norm ‖·‖ε is a Hilbert space. Let us check that the bilinear
form a is U-coercive and continuous. We first notice that, for almost every x ∈ Ω, it
holds ∇·v(x) = tr(∇v(x)) = tr(∇sv(x)), so that, by the Cauchy–Schwarz inequality
on the sum defining the trace,

|∇·v(x)|2 ≤ d |∇sv(x)|2. (7.13)

As a consequence, continuity holds with constant (2µ + d |λ |). For the coercivity,
using the definition (7.11) of the bilinear form a, we infer
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a(v, v) = (2µ∇sv,∇sv) + (λ∇·v,∇·v)

≥
∫
Ω

2µ|∇sv |2 − λ− |∇·v |2

≥
∫
Ω

(2µ − dλ−)|∇sv |2

≥ α‖∇sv‖2,

where we have used (7.13) to pass to the third line and the definition (7.9) of α to
conclude. This relation proves that a is U-coercive with coercivity constant α. To
conclude the proof, it suffices to observe that, owing to the continuous Poincaré and
Korn (7.12) inequalities, it holds, for any v ∈ H1

0 (Ω)d ,

|( f , v)| ≤ ‖ f ‖ ‖v‖ ≤ CΩ‖ f ‖ ‖∇v‖ ≤
√

2CΩ‖ f ‖ ‖∇sv‖,

which implies that the dual norm of the linear form f : v 7→ ( f , v) is bounded above
by
√

2CΩ‖ f ‖. ut

7.2 Local construction

In this section we state a uniform local second Korn inequality, introduce a novel
local projector geared towards vector problems, and present the local ingredients
underlying the HHO construction: discrete unknowns, reconstruction operators, and
local approximation of the global continuous bilinear form defined by (7.11).

Throughout the rest of this chapter, we let (Mh)h∈H denote a regular mesh
sequence in the sense of Definition 1.9. We additionally make the following assump-
tion.

Assumption 7.5 (Compliant mesh sequence) For all h ∈ H , we assume thatMh

is compliant with the partition PΩ introduced in Assumption 7.1 in the sense that,
for all T ∈ Th , there exists a unique index i ∈ I such that T ⊂ Ωi .

Assumption 7.5 is typically satisfied in the context of computer-assisted modelling,
where the different parts corresponding to each subdomain Ωi are first separately
created, and then assembled together to form the complete model. Combining As-
sumptions 7.1 and 7.5 we have that

µ |T ∈ P0(T) and λ |T ∈ P0(T) for all T ∈ Th . (7.14)

For any mesh element T ∈ Th , we let µT B µ |T and λT B λ |T denote the constant
values of µ and λ inside T , respectively.
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7.2.1 Regular mesh sequence with star-shaped elements

Some results established hereafter require the following assumption on the mesh
elements, which is slightly stronger than the one introduced in Chapter 1.

Assumption 7.6 (Regular mesh sequence with star-shaped elements) Let (Mh)h∈H
denote a sequence of polygonal (if d = 2) or polyhedral (if d = 3) meshes in the
sense of Definition 1.4. We assume that there exists a real number % > 0 such that
(Mh)h∈H is regular in the sense of Definition 1.9 with parameter % and, for all
h ∈ H , every mesh element T ∈ Th is star-shaped (see Definition 1.40) with respect
to every point of a ball of radius %hT .

Assumption 7.6 is verified, in particular, by regular mesh sequences, in the sense of
Definition 1.9, made of convex elements. The following uniform second Korn in-
equality inside mesh elements plays a key role in the proof of optimal approximation
properties for the strain projector (see Theorem 7.9 below), and of the local norm
equivalence (7.46) for the HHO stabilisation bilinear form (7.54); see Proposition
7.21 below.

Lemma 7.7 (Uniform local secondKorn inequality). Denoting by (Mh)h∈H
a mesh sequence satisfying Assumption 7.6 it holds, for all h ∈ H and all
T ∈ Th ,

‖∇u − π0,0
T (∇ssu)‖T . ‖∇su‖T ∀u ∈ H1(T)d, (7.15)

where the symmetric and skew-symmetric parts of the gradient are defined by
(7.4) and the hidden constant depends only on d and %.

Proof. See Section 7.7. ut

7.2.2 The strain projector

Throughout the rest of this section we work on a fixed mesh element T ∈ Th . We
study a novel projector for vector-valued functions that will be used to formulate a
stabilisation term in the HHO discretisation of problem (7.10). Specifically, for a
given integer l ≥ 1, the strain projector πε,lT : H1(T)d → Pl(T)d is such that, for
any v ∈ H1(T)d ,

(∇s(πε,lT v − v),∇sw)T = 0 ∀w ∈ Pl(T)d . (7.16a)

By the Riesz representation theorem in ∇sP
l(T)d for the inner product of L2(T)d×d ,

relation (7.16a) defines a unique element ∇sπ
ε,l
T v ∈ ∇sP

l(T)d , and thus a unique
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polynomial πε,lT v up to a rigid-body motion. The latter can be fixed by further
prescribing that ∫

T

πε,lT v =

∫
T

v,

∫
T

∇ssπ
ε,l
T v =

∫
T

∇ssv. (7.16b)

To see why these relations fix πε,lT v, let us write πε,lT v = q + w where q is a fixed
polynomial in Pl(T)d that satisfies (7.16a), and w is an unknown rigid-body motion.
The representation (7.6) of w can be recast under the form

w(x) = (tw + RwxT ) + Rw(x − xT ),

with xT = π
0,0
T x the centre of mass of T , and the conditions (7.16b) admit straight-

forward interpretations: the second one prescribes the matrix Rw (since Rw = ∇ssw),
whereas the first one prescribes tw + RwxT . The following characterisation holds:

πε,lT v = argmin
w∈V l (T )

‖∇s(w − v)‖2T , (7.17)

whereV l(T) B {
w ∈ Pl(T)d :

∫
T
w =

∫
T
v and

∫
T
∇ssw =

∫
T
∇ssv

}
. As a matter of

fact, (7.16a) is nothing but the Euler equation for theminimisation problem (7.17). To
check that πε,lT satisfies the polynomial invariance requirement (1.56) (and thus, by
Proposition 1.35, that it meets the conditions of Definition 1.34) it suffices to observe
that, if v ∈ Pl(T)d , then making w = πε,lT v − v in (7.16a) implies ∇s(πε,lT v − v) = 0;
hence (πε,lT v − v) is a rigid-body motion inside T , from which we deduce, using
(7.16b), that πε,lT v − v = 0.

Remark 7.8 (Link with the elliptic projector for l = 1). When l = 1, combining the
second condition in (7.16b) and (7.16a) with ∇sw replaced by ∇w (this is possible
by virtue of (7.5)), and observing that the latter spans P0(T)d×d (since ∇P1(T)d
coincides with this space), we infer, for any v ∈ H1(T)d ,

(∇(πε,1T v − v),∇w)T = 0 ∀w ∈ P1(T)d .

Combining this result and the first condition in (7.16b), and comparing with the
definition (1.60) of the elliptic projector, we conclude that

πε,1T = π1,1
T , (7.18)

where π1,1
T is obtained applying π1,1

T component-wise.

We next study the approximation properties of the strain projector, focusing on the
Hilbertian case relevant for the developments considered in this chapter. These results
are instrumental to proving optimal consistency properties for the local stabilisation
bilinear form; see Remark 7.20.
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Theorem 7.9 (Approximation properties of the strain projector). Let a
polynomial degree l ≥ 1 be fixed, denote by (Mh)h∈H = (Th,Fh)h∈H a regular
mesh sequence in the sense of Definition 1.9 and, if l > 1, further assume that
(Mh)h∈H satisfies Assumption 7.6. Let an integer s ∈ {1, . . . , l + 1} be given.
Then, for all T ∈ Th , all v ∈ Hs(T)d , and all m ∈ {0, . . . , s},

|v − πε,lT v |Hm(T )d . hs−m
T |v |H s (T )d . (7.19)

Moreover, if m ≤ s − 1, then, for all F ∈ FT ,

h
1
2
T |v − πε,lT v |Hm(F)d . hs−m

T |v |H s (T )d . (7.20)

The hidden constants in (7.19) and (7.20) depend only on d, %, l, s, and m.

Proof. We start by noticing that (7.20) can be deduced from (7.19) proceeding as in
Theorem 1.45. It therefore suffices to prove (7.19). If l = 1, accounting for (7.18),
(7.19) follows from Theorem 1.48, which does not require Assumption 7.6. If l > 1,
we can apply the abstract results of Lemma 1.43, which readily extend to the vector
case. This requires to prove that it holds, for all v ∈ H1(T)d ,

|πε,lT v |H1(T )d . |v |H1(T )d , if m ≥ 1, (7.21a)

‖πε,lT v‖T . ‖v‖T + hT |v |H1(T )d if m = 0. (7.21b)

(i) The case m ≥ 1. We start by observing that equation (7.16a) implies

‖∇sπ
ε,l
T v‖T ≤ ‖∇sv‖T , (7.22)

as can be easily checked letting w = πε,lT v and using a Cauchy–Schwarz inequality.
We can now write

|πε,lT v |H1(T )d . ‖∇πε,lT v‖T
≤ ‖∇πε,lT v − π0,0

T (∇ssπ
ε,l
T v)‖T + ‖π0,0

T (∇ssv)‖T
. ‖∇sπ

ε,l
T v‖T + ‖π0,0

T (∇ssv)‖T
. ‖∇sv‖T + ‖∇ssv‖T . |v |H1(T )d , (7.23)

where we have inserted 0 = π0,0
T (∇ssv) − π0,0

T (∇ssπ
ε,l
T v) (see (7.16b)) into the norm

and used the triangle inequality to pass to the second line, we have used the uniform
local Korn inequality (7.15) to pass to the third line, and we have invoked (7.22)
together with the boundedness of π0,0

T expressed by (1.77) with l = 0, X = T , s = 0,
and p = 2 to conclude. This proves (7.21a).

(ii) The case m = 0. We can write
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‖πε,lT v‖T ≤ ‖v‖T + ‖πε,lT v−v‖T . ‖v‖T +hT ‖∇(πε,lT v−v)‖T . ‖v‖T +hT |v |H1(T )d ,

where we have inserted ±v into the norm and used the triangle inequality in the first
bound, the local Poincaré–Wirtinger inequality (1.76) for the zero-average function
(πε,lT v− v) in the second bound, and we have concluded using the triangle inequality
together with (7.23) to write ‖∇(πε,lT v − v)‖T ≤ ‖∇πε,lT v‖T + ‖∇v‖T . |v |H1(T )d .
This proves (7.21b). ut

Remark 7.10 (Uniform local Korn inequalities onmesh elements). In the above proof,
the uniform local Korn inequality (7.15) is invoked in the case l > 1 to pass to the
third line in (7.23), for which a crucial requirement is that the hidden constant is
independent of the element shape.

7.2.3 Two inspiring relations

Let a polynomial degree k ≥ 0 be fixed. In a similar way as in Section 2.1.1, we
derive two relations that will inspire the choice of the discrete unknowns and the
definitions of the local reconstructions.

The starting point in both cases is the following integration by parts formula: For
all v ∈ H1(T)d and all τ ∈ C∞(T)d×d ,

(∇v,τ)T = −(v,∇·τ)T +
∑
F ∈FT
(v,τnTF )F . (7.24)

Specialising this formula to τ ∈ Pk(T)d×d , we obtain the first inspiring result:

(π0,k
T (∇v),τ)T = −(π0,k

T v,∇·τ)T +
∑
F ∈FT
(π0,k

F v,τnTF )F , (7.25)

where, to insert the L2-orthogonal projectors, we have used their definition (1.57)
after observing that ∇·τ ∈ Pk−1(T)d ⊂ Pk(T)d and τ |FnTF ∈ Pk(F)d for all
F ∈ FT . Relation (7.25) shows that the L2-orthogonal projection π0,k

T (∇v) of the
gradient of v can be computed from the L2-projections π0,k

T v and (π0,k
F v)F ∈FT . This

is a straightforward extension to the vector case of the discussion in Section 4.2.1.
Letting now τ = ∇sw with w ∈ C∞(T)d in (7.24) and using (7.5) to write

(∇v,∇sw)T = (∇sv,∇sw)T in the left-hand side, we obtain

(∇sv,∇sw)T = −(v,∇·∇sw)T +
∑
F ∈FT
(v,∇swnTF )F . (7.26)

Specialising this formula to w ∈ Pk+1(T)d gives

(∇sπ
ε,k+1
T v,∇sw)T = −(π0,k

T v,∇·∇sw)T +
∑
F ∈FT
(π0,k

F v,∇swnTF )F , (7.27a)
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where we have used (7.16a) to insert the strain projector πε,k+1
T into the left-hand side

and (1.57) to insert the L2-orthogonal projectors π0,k
T and π0,k

F into the right-hand
side. Moreover, using again the definition (1.57) of the L2-orthogonal projectors
over T and its faces, we infer that ∫

T

π0,k
T v =

∫
T

v (7.27b)

and
1
2

∑
F ∈FT

∫
F

(
π0,k
F v ⊗ nTF − nTF ⊗ π0,k

F v
)

=
1
2

∑
F ∈FT

∫
F

(v ⊗ nTF − nTF ⊗ v)

=
1
2

∫
T

(∇v − (∇v)ᵀ) =
∫
T

∇ssv,

(7.27c)

where we have used an integration by parts in the second equality and (7.4) to
conclude. The relations (7.27) show that the strain projection πε,k+1

T v can also be
computed from the L2-projections π0,k

T v and (π0,k
F v)F ∈FT .

Remark 7.11 (Degree of orthogonal projection in the cell). In the spirit of Remark
2.1, we could have replaced π0,k

T v by π0,k−1
T v in both (7.25) and (7.27a). This would

have required a separate treatment for the case k = 0 in order to express the condition
(7.27b) in terms of face unknowns only; see Section 5.1.

7.2.4 Local space of discrete unknowns

The discussion in the previous section motivates the introduction of the following
local space of discrete unknowns:

Uk
T B

{
vT = (vT , (vF )F ∈FT ) : vT ∈ Pk(T)d and vF ∈ Pk(F)d ∀F ∈ FT

}
.

We define the local interpolator IkT : H1(T)d → Uk
T such that

IkT v B (π0,k
T v, (π0,k

F v)F ∈FT ) ∀v ∈ H1(T)d,

as well as the local strain seminorm ‖·‖ε,T such that, for all vT ∈ Uk
T ,

‖vT ‖ε,TB
(
‖∇svT ‖2T + |vT |21,∂T

) 1
2 with |vT |1,∂TB

( ∑
F ∈FT

h−1
F ‖vF − vT ‖2F

) 1
2

, (7.28)

where the negative power of the diameter of F in the boundary seminorm ensures
that both contributions have the same scaling.



310 7 Linear elasticity

In analogy with (2.7), for vT ∈ Uk
T we set

‖vT ‖1,T B
(
‖∇vT ‖2T + |vT |21,∂T

) 1
2
. (7.29)

Applying Proposition 2.2 component-wise yields

‖IkT v‖1,T . ‖∇v‖T ∀v ∈ H1(T)d,

with hidden constant depending only on d, % and k. Since ‖·‖ε,T ≤ ‖·‖1,T , we infer
that

‖IkT v‖ε,T . ‖∇v‖T ∀v ∈ H1(T)d . (7.30)

In the case k ≥ 1, this result can be improved using only the symmetric gradient of
v, as seen in the following lemma.

Lemma 7.12 (Boundedness of IkT , case k ≥ 1). Assume that k ≥ 1 and that
Assumption 7.6 holds. Then, for all T ∈ Th and v ∈ H1(T)d , it holds, with hidden
constant depending only on d, % and k,

‖IkT v‖ε,T . ‖∇sv‖T . (7.31)

Proof. Let v ∈ H1(T)d and vrm,T ∈ RMd(T) be the rigid-body motion such that
vrm,T (x) = Rx with R = π0,0

T (∇ssv). Then, ∇svrm,T = 0 and ∇ssvrm,T = π
0,0
T (∇ssv).

Since vrm,T ∈ P1(T)d ⊂ Pk(T)d (as k ≥ 1) we also have, by idempotency of π0,k
T

and π0,k
F ,

π0,k
T vrm,T = vrm,T , π0,k

F vrm,T = (vrm,T ) |F ∀F ∈ FT .

Hence,

‖IkT vrm,T ‖2ε,T = ‖∇sπ
0,k
T vrm,T ‖2T +

∑
F ∈FT

h−1
F ‖π0,k

F vrm,T − π0,k
T vrm,T ‖2F

= ‖∇svrm,T ‖2T +
∑
F ∈FT

h−1
F ‖vrm,T − vrm,T ‖2F = 0. (7.32)

We then write

‖IkT v‖ε,T ≤ ‖IkT (v − vrm,T )‖ε,T + ‖IkT vrm,T ‖ε,T
. ‖∇(v − vrm,T )‖T
. ‖∇sv‖T ,

where we have introduced ±vrm,T and used the triangle inequality in the first line,
we have invoked (7.30) and (7.32) to pass to the second line, and the conclusion
follows using ∇vrm,T = ∇ssvrm,T = π

0,0
T (∇ssv) and the local second Korn inequality

(7.15). ut
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Remark 7.13 (Assumption k ≥ 1). The assumption k ≥ 1 ensures that RMd(T) ⊂
Pk(T)d , which is not the case for k = 0; see Section 7.1.2 on this point.

7.2.5 Local reconstructions

Inspired by (7.25), we introduce the gradient reconstruction operator Gk
T : Uk

T →
Pk(T)d×d such that, for all vT ∈ Uk

T and all τ ∈ Pk(T)d×d ,

(Gk
T vT ,τ)T = −(vT ,∇·τ)T +

∑
F ∈FT
(vF ,τnTF )F (7.33)

= (∇vT ,τ)T +
∑
F ∈FT
(vF − vT ,τnTF )F , (7.34)

where we have integrated by parts the first term in the right-hand side to pass to the
second line. From Gk

T , we can define the local symmetric gradient reconstruction
operator Gk

s,T : Uk
T → Pk(T ;Rd×dsym ) and the local divergence reconstruction operator

Dk
T : Uk

T → Pk(T) setting, for all vT ∈ Uk
T ,

Gk
s,T vT B

1
2

(
Gk

T vT + (Gk
T vT )ᵀ

)
, Dk

T vT B tr(Gk
T vT ) = tr(Gk

s,T vT ). (7.35)

Remark 7.14 (Characterisation ofGk
s,T ).Combining (7.35)with (7.34), and recalling

(7.5), it can be checked that Gk
s,T satisfies, for all τ ∈ Pk(T ;Rd×dsym ),

(Gk
s,T vT ,τ)T = (∇svT ,τ)T +

∑
F ∈FT
(vF − vT ,τnTF )F . (7.36)

This formula can be used in place of (7.34) to actually compute Gk
s,T .

By construction it holds, for all v ∈ H1(T)d ,

(Gk
T ◦ IkT )v = π0,k

T (∇v) (7.37)

and, as a result,

(Gk
s,T ◦ IkT )v = π0,k

T (∇sv), (Dk
T ◦ IkT )v = π0,k

T (∇·v). (7.38)

These commutation properties are illustrated in Fig. 7.1.
Bearing in mind (7.27a), we also introduce the displacement reconstruction op-

erator pk+1
T : Uk

T → Pk+1(T)d such that, for all vT ∈ Uk
T and all w ∈ Pk+1(T)d ,

(∇spk+1
T vT ,∇sw)T = −(vT ,∇·∇sw)T +

∑
F ∈FT
(vF ,∇swnTF )F (7.39a)
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H1(T)d L2(T)d×d

Uk
T Pk(T)d×d

I kT

∇

π0,k
T

Gk
T

H1(T)d L2(T ;Rd×dsym )

Uk
T Pk(T ;Rd×dsym )

I kT

∇s

π0,k
T

Gk
s,T

H1(T)d L2(T)

Uk
T Pk(T)

I kT

∇ ·

π0,k
T

Dk
T

Fig. 7.1: Illustration of the commutation properties (7.37) of Gk
T (above) and (7.38)

of Gk
s,T and Dk

T (below).

and, in accordance with (7.27b) and (7.27c),∫
T

pk+1
T vT =

∫
T

vT ,∫
T

∇sspk+1
T vT =

1
2

∑
F ∈FT

∫
F

(vF ⊗ nTF − nTF ⊗ vF ) .
(7.39b)

By construction, it holds, for all v ∈ H1(T)d ,

(pk+1
T ◦ IkT )v = πε,k+1

T v. (7.40)

This commutation property is illustrated in Fig. 7.2. For future use, we record the

H1(T)d Uk
T

Pk+1(T)d

I kT

πε ,k+1
T pk+1

T

Fig. 7.2: Illustration of the commutation property (7.40) of pk+1
T .

following equivalent reformulation of (7.39a), obtained integrating by parts the first
term in the right-hand side:

(∇spk+1
T vT ,∇sw)T = (∇svT ,∇sw)T +

∑
F ∈FT
(vF − vT ,∇swnTF )F . (7.41)
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To close this section, we highlight a link between Gk
s,T and ∇spk+1

T . Taking
w ∈ Pk+1(T)d , making τ = ∇sw in (7.36), and using (7.41) shows that

(Gk
s,T vT − ∇spk+1

T vT ,∇sw)T = 0 ∀w ∈ Pk+1(T)d .

Since ∇spk+1
T vT ∈ ∇sP

k+1(T)d , this shows that

∇spk+1
T vT is the L2-orthogonal projection of Gk

s,T vT on ∇sP
k+1(T)d . (7.42)

As a consequence, we have the following estimate:

‖∇spk+1
T vT ‖T ≤ ‖Gk

s,T vT ‖T ∀vT ∈ Uk
T . (7.43)

Remark 7.15 (Equivalent definition of pk+1
T ). Let αT and βT be two non-zero real

numbers. In the spirit of Remark 2.3, the definition (7.39) of pk+1
T is equivalent to:

For all vT ∈ Uk
T and all w ∈ Pk+1(T)d ,

(∇spk+1
T vT ,∇sw)T + αT

(∫
T

pk+1
T vT

)
·
(∫

T

w

)
+ βT

(∫
T

∇sspk+1
T vT

)
:
(∫

T

∇ssw

)
= (∇svT ,∇sw)T +

∑
F ∈FT
(vF − vT ,∇swnTF )F + αT

(∫
T

vT

)
·
(∫

T

w

)
+ βT

(
1
2

∑
F ∈FT

∫
F

(vF ⊗ nTF − nTF ⊗ vF )
)

:
(∫

T

∇ssw

)
. (7.44)

This relation is obtained from (7.39) taking the scalar product of each equation in
(7.39b) with αT

∫
T
w and βT

∫
T
∇ssw, respectively, and by adding the two resulting

equations to (7.41) (equivalent to (7.39a)). Conversely, taking w a generic constant
vector (resp. w(x) = R(x − xT ) with R a generic skew-symmetric matrix and
xT = π

0,0
T x) in (7.44) show that the first (resp. second) equation in (7.39b) hold, and

thus also that (7.44) boils down to (7.41).
The characterisation (7.44) of pk+1

T is particularly useful for computing, in an
implementation of the HHO method, the matrix corresponding to this operator; see
Section B.2.1 for the scalar case.

7.2.6 Local contribution

Inside T , we approximate the continuous bilinear form a defined by (7.11) by the
discrete bilinear form aT : Uk

T × Uk
T → R such that, for all uT , vT ∈ Uk

T ,

aT (uT , vT ) B (σ(Gk
s,T uT ),Gk

s,T vT )T + (2µT )sT (uT , vT ), (7.45)
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where the first term is the usual Galerkin contribution in charge of consistency,
while sT : Uk

T × Uk
T → R is a local stabilisation bilinear form on which we make

the following assumptions.

Assumption 7.16 (Local stabilisation bilinear form sT ) The local stabilisation bi-
linear form sT : Uk

T × Uk
T → R has the following properties:

(SE1) Symmetry and positivity. sT is symmetric and positive semidefinite;
(SE2) Stability and boundedness. It holds, for all T ∈ Th and all vT ∈ Uk

T ,

‖Gk
s,T vT ‖2T + sT (vT , vT ) ' ‖vT ‖2ε,T (7.46)

with local discrete strain seminorm defined by (7.28) and hidden constants
independent of h, T , and of the problem data;

(SE3) Polynomial consistency. For all w ∈ Pk+1(T)d and all vT ∈ Uk
T , it holds

sT (IkTw, vT ) = 0.

Some remarks are in order.

Remark 7.17 (Reformulation of the consistency term). Recalling the expression (7.8)
of the strain-stress law, we have the following reformulation of the local bilinear
form:

aT (uT , vT ) = (2µT )
(
(Gk

s,T uT ,G
k
s,T vT )T + sT (uT , vT )

)
+ λT (Dk

T uT ,D
k
T vT )T .

(7.47)

Remark 7.18 (Coercivity and boundedness of aT ). Observing that, owing to (7.35),

‖Dk
T vT ‖2T ≤ d‖Gk

s,T vT ‖2T ∀vT ∈ Uk
T , (7.48)

we have the local semi-norm equivalence: For all vT ∈ Uk
T ,

(2µT − dλ−T )‖Gk
s,T vT ‖2 + (2µT )sT (vT , vT )

. aT (vT , vT ) . (2µT + d |λT |)‖Gk
s,T vT ‖2 + (2µT )sT (vT , vT ).

(7.49)

Combined with (7.46), this also yields

(2µT − dλ−T )‖vT ‖2ε,T . aT (vT , vT ) . (2µT + d |λT |)‖vT ‖2ε,T . (7.50)

In these estimates, λ−T B
1
2 (|λT | − λT ) denotes the negative part of λT , and the

hidden constants are independent of h, T , vT , and of the problem data.

Remark 7.19 (Comparison with the original HHO bilinear form). In the original
work [146] on HHO methods for linear elasticity, a different local bilinear form is
considered, corresponding to (7.47) with Gk

s,T replaced by ∇spk+1
T in the first term;

see Eqs. (24) and (17) therein. Coercivity for this alternative bilinear form requires
the stronger condition λ ≥ 0 on the first Lamé coefficient (compare with (7.9))
since the bound (7.48) no longer holds in general if we replace Gk

s,T with ∇spk+1
T .
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While the condition λ ≥ 0 is often verified in practice, we have preferred here the
expression (7.47) for aT which covers the entire range of physical values for the first
Lamé coefficient.

Remark 7.20 (Consistency of sT ). As in Proposition 2.14, using Assumption 7.16
and the boundedness (7.30) of IkT , we can show that, for all r ∈ {0, . . . , k} and all
v ∈ Hr+2(T)d ,

sT (IkT v, IkT v)
1
2 . hr+1

T |v |Hr+2(T )d , (7.51)

with hidden constant independent of h, T , v, and of the problem data.

As for scalar problems, the stabilisation bilinear form sT can be obtained penal-
ising, in a least square sense, differences that vanish for interpolates of polynomial
functions in Pk+1(T)d . Specifically, reasoning as in Lemma 2.11, one can prove that a
symmetric bilinear form sT satisfies (SE3) if and only if it depends on its arguments
through the vector difference operators δkT : Uk

T → Pk(T)d and, for all F ∈ FT ,
δkTF : Uk

T → Pk(F)d such that, for all vT ∈ Uk
T ,

δkT vT B π0,k
T (pk+1

T vT − vT ), δkTF vT B π0,k
F (pk+1

T vT − vF ) ∀F ∈ FT . (7.52)

Proceeding as in the proof of Proposition 2.6, it is readily inferred that it holds, for
all w ∈ Pk+1(T)d ,

δkT I
k
Tw = 0, δkTF I

k
Tw = 0 ∀F ∈ FT . (7.53)

In the following proposition we study the original HHO stabilisation of [146], which
generalises (2.22) to the vector case.

Proposition 7.21 (Original HHO stabilisation). Assume that k ≥ 1 and that As-
sumption 7.6 holds. Then, the stabilisation bilinear form sT : Uk

T × Uk
T → R such

that, for all uT , vT ∈ Uk
T ,

sT (uT , vT ) B
∑
F ∈FT

h−1
F ((δkTF − δkT )uT , (δkTF − δkT )vT )F (7.54)

satisfies Assumption 7.16.

Proof. The bilinear form sT is clearly symmetric and positive semidefinite, so that
property (SE1) holds. Property (SE3), on the other hand, is a consequence of the
fact that sT depends on its arguments only via the difference operators (7.52), and
that the latter vanish when their arguments are of the form IkTw with w ∈ Pk+1(T)d ,
see (7.53). It only remains to prove (SE2). The rest of the proof follows closely the
arguments in the proof of Proposition 2.13, using the boundedness property (7.31) of
IkT (valid here since we assume k ≥ 1 and work under Assumption 7.6). We denote
by vT a generic element of Uk

T and, for the sake of brevity, set

v̌T B pk+1
T vT .
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The notation A . B is understood with hidden constant independent of h, T , vT , and
of the problem data.

(i) Estimates on the volumetric components. We prove in this step that

‖∇svT ‖2T . ‖Gk
s,T vT ‖2T + |vT |21,∂T (7.55)

and
‖Gk

s,T vT ‖2T . ‖vT ‖2ε,T . (7.56)

We first consider (7.55). Let τ = ∇svT in (7.36) and rearrange the terms to write

‖∇svT ‖2T = (Gk
s,T vT ,∇svT )T −

∑
F ∈FT
(vF − vT ,∇svT nTF )F

≤ ‖Gk
s,T vT ‖T ‖∇svT ‖T +

( ∑
F ∈FT

h−1
F ‖vF − vT ‖2F

) 1
2
( ∑
F ∈FT

hF ‖∇svT ‖2F
) 1

2

.
(
‖Gk

s,T vT ‖T + |vT |1,∂T
)
‖∇svT ‖T ,

where, to pass to the second line, we have used a Cauchy–Schwarz inequality for the
volumetric term along with generalised Hölder inequalities with exponents (2,2,∞)
and ‖nTF ‖L∞(F)d = 1 for the boundary terms, while, to pass to the third line,
we have invoked the discrete trace inequality (1.55) with p = 2 together with the
uniform bound (1.5) on the number of faces of T . Simplifying, we get ‖∇svT ‖T .
‖Gk

s,T vT ‖T + |vT |1,∂T . Squaring this inequality and using the fact that (a + b)2 ≤
2a2 + 2b2 for any a, b ∈ R, we arrive at (7.55).

We now estimate ‖Gk
s,T vT ‖T . Using the characterisation (7.36) of Gk

s,T with
τ = Gk

s,T vT and proceeding as above with Cauchy–Schwarz, generalised Hölder,
and discrete trace inequalities, we have that

‖Gk
s,T vT ‖2T = (∇svT ,Gk

s,T vT ) +
∑
F ∈FT
(vF − vT ,Gk

s,T vT nTF )F

≤ ‖∇svT ‖T ‖Gk
s,T vT ‖T + |vT |1,∂T

( ∑
F ∈FT

hF ‖Gk
s,T vT ‖2F

) 1
2

. ‖vT ‖ε,T ‖Gk
s,T vT ‖T .

Simplifying the above inequality and squaring yields (7.56).

(ii) Proof of (SE2). Set

z
T
B IkT v̌T − vT = (δkT vT , (δkTF vT )F ∈FT )

and notice that
sT (vT , vT ) = |zT |21,∂T . (7.57)
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We also remark that, by the boundedness (7.31) of IkT and the estimate (7.43),

|IkT v̌T |1,∂T . ‖∇s v̌T ‖T . ‖Gk
s,T vT ‖T . (7.58)

Let us now prove (7.46). We first write

‖vT ‖2ε,T = ‖∇svT ‖2T + |vT |21,∂T
. ‖Gk

s,T vT ‖2T + |IkT v̌T − z
T
|21,∂T

. ‖Gk
s,T vT ‖2T + sT (vT , vT ),

where we have used the definition (7.28) of ‖·‖ε,T in the first line, the estimate (7.55)
together with vT = IkT v̌T − z

T
to pass to the second line, and we have concluded

using the triangle inequality and invoking (7.58) and (7.57). This establishes & in
(7.46).

To establish the converse inequality, we start from (7.57) and substitute the defi-
nition of z

T
to get

sT (vT , vT ) ≤ 2|IkT v̌T |21,∂T + 2|vT |21,∂T . ‖Gk
s,T vT ‖2T + |vT |21,∂T ,

where the second inequality is a consequence of (7.58). Adding ‖Gk
s,T vT ‖2T to both

sides of this relation and invoking (7.56), the proof of . in (7.46) is complete. ut

Remark 7.22 (Case k = 0). Assumption 7.6 along with k ≥ 1 are essential to the
proof of Proposition 7.21. Their role is to ensure that the boundedness property
(7.31) of IkT holds, and thus that (7.58) is valid.

Actually, in the case k = 0, (SE2) and (SE3) are incompatible. To see this,
assume (SE3), consider a rigid-body motion vrm,T and take vT = I0

T vrm,T . Since
vrm,T ∈ P1(T)d , (7.37) shows that G0

T vT = π0,0
T (∇vrm,T ) = ∇vrm,T = ∇ssvrm,T

so that, in particular, G0
T vT is skew-symmetric. Hence, G0

s,T vT = 0. Moreover, by
(SE3), sT (vT , vT ) = sT (I0

T vrm,T , vT ) = 0. Hence, the left-hand side of (7.46) vanishes
for all vT = I0

T vrm,T . It is however easy to construct vrm,T such that |vT |1,∂T , 0,
which shows that the right-hand side of (7.46) does not vanish and thus that (SE2)
cannot hold.

The consequence is that, for the lowest-order method, a stabilisation term cannot
be constructed such that Assumption 7.16 holds. An alternative approach must be
considered, that we present in Section 7.6.

7.3 Discrete problem

In this section we formulate the discrete problem, based on the local contributions
introduced in the previous section, and study its well-posedness.
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7.3.1 Global space of discrete unknowns

The global space of discrete unknowns is defined as

Uk
h B

{
vh = ((vT )T ∈Th , (vF )F ∈Fh ) :

vT ∈ Pk(T)d ∀T ∈ Th and vF ∈ Pk(F)d ∀F ∈ Fh
}
.

Given vh ∈ Uk
h , for all T ∈ Th we denote by vT B (vT , (vF )F ∈FT ) ∈ Uk

T its
restriction to T . We also define the broken polynomial function vh ∈ Pk(Th)d such
that

(vh) |T B vT ∀T ∈ Th . (7.59)

The discrete unknowns corresponding to a function v ∈ H1(Ω)d are obtained via the
global interpolator Ikh : H1(Ω)d → Uk

h such that

Ikhv B ((π0,k
T v)T ∈Th , (π0,k

F v)F ∈Fh ).

We define on Uk
h the global strain seminorm ‖·‖ε,h such that, for all vh ∈ Uk

h ,

‖vh ‖ε,h B
( ∑
T ∈Th

‖vT ‖2ε,T
) 1

2

, (7.60)

with local seminorm ‖·‖ε,T defined by (7.28). For future use, we also denote by
|·|s,h the global seminorm associated with the stabilisation bilinear forms: For all
vh ∈ Uk

h ,

|vh |s,h B
( ∑
T ∈Th

sT (vT , vT )
) 1

2

. (7.61)

Finally, to account for the homogeneous Dirichlet boundary condition (7.7b) in a
strong manner, we introduce the subspace

Uk
h,0 B

{
vh ∈ Uk

h : vF = 0 ∀F ∈ F b
h

}
. (7.62)

7.3.2 Global discrete Korn inequalities in broken polynomial and
HHO spaces

We next prove discrete counterparts of the Korn inequality (7.12), first for broken
polynomial spaces, then for HHO spaces. In the former case, the proof hinges on the
node-averaging operator on the submesh introduced in Remark 4.4, whose definition
and properties are briefly summarised here for the sake of convenience. LetMh =

(Th,Fh) denote a polytopal mesh in the sense of Definition 1.4, and letMh = (Th,Fh)
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denote a matching simplicial submesh ofMh in the sense of Definition 1.8. Given
an integer l ≥ 1, the node-averaging operator Ilav,h : Pl(Th) → Pl(Th) ∩ H1

0 (Ω) is
such that, for any function vh ∈ Pl(Th) and any Lagrange node N of Th (see, e.g.,
[183, Section 1.2.3] or [77, Section 3.2] for a precise definition of Lagrange nodes),

(Ilav,hvh)(N ) B


1
card(TN )

∑
τ∈TN

(vh) |τ(N ) if N ∈ Ω,

0 if N ∈ ∂Ω,

where TN ⊂ Th collects the simplices to which N belongs. The vector-version,
denoted by Ilav,h , acts component-wise. Reasoning as in [151, Section 5.5.2] (where
the original results of [216] on simplicial meshes are extended to polytopal meshes),
we infer that it holds, for all T ∈ Th ,

‖vh − Ilav,hvh ‖2T .
∑

F ∈FN ,T
hF ‖[vh]F ‖2F , (7.63)

where FN,T ⊂ Fh , defined by (4.22), denotes the set of faces whose closure has
nonempty intersection with ∂T . In (7.63), the hidden constant is independent of h,
T , and vh , but possibly depends on d, l, and %. Combining this result with the inverse
inequality (1.46) (see also Remark 1.33 concerning its validity for Ilav,hvh) for p = 2
we obtain, with hidden constants as before,

|vh − Ilav,hvh |2H1(Th ) =
∑
T ∈Th

‖∇(vh − Ilav,hvh)‖2T

.
∑
T ∈Th

h−2
T ‖vh − Ilav,hvh ‖2T

.
∑
T ∈Th

h−2
T

∑
F ∈FN ,T

hF ‖[vh]F ‖2F

.
∑
F ∈Fh

∑
T ∈TN ,F

h−1
F ‖[vh]F ‖2F ,

where we have used (7.63) to pass to the third line, while the conclusion was obtained
invoking the geometric bound (4.24) to write hF h−2

T . h−1
F for all F ∈ FN,T and

exchanging the order of the sums after introducing the notation TN,F B
{
T ∈ Th :

F∩∂T , ∅} for the set of mesh elements whose boundary intersects the closure of F.
Using the geometric bound (4.23) to infer that card(TN,F ) ≤

∑
T ∈TF card(TN,T ) . 1,

we arrive at
|vh − Ilav,hvh |2H1(Th ) .

∑
F ∈Fh

h−1
F ‖[vh]F ‖2F . (7.64)

We are now ready to prove the discrete Korn inequality in broken polynomial spaces.

Lemma 7.23 (Discrete Korn inequality in broken polynomial spaces). Let an
integer l ≥ 0 be fixed and set, for all vh ∈ Pl(Th)d ,
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‖vh ‖ε,j,h B
(
‖∇s,hvh ‖2+|vh |2j,h

) 1
2 with |vh |j,h B ©«

∑
F ∈Fh

h−1
F ‖[vh]F ‖2F

ª®¬
1
2

. (7.65)

Above, the broken symmetric gradient ∇s,h : H1(Th)d → L2(Ω;Rd×dsym ) is such that,
for all v ∈ H1(Th)d ,

(∇s,hv) |T B ∇sv |T ∀T ∈ Th,
while the jump operator is defined by (1.22) on internal faces and extended to
boundary faces F ∈ F b

h
by setting [vh]F B (vh) |F . Then, it holds, for all vh ∈

Pl(Th)d , with hidden constant depending only on Ω, d, l, and %:

|vh |H1(Th )d . ‖vh ‖ε,j,h . (7.66)

Proof. The case l = 0 is trivial, so we consider hereafter l ≥ 1. The proof adapts the
arguments of [75, Lemma 2.2]. We write

|vh |2H1(Th )d . |I
l
av,hvh |2H1(Ω)d + |vh − Ilav,hvh |2H1(Th )d

. ‖∇sIlav,hvh ‖2 + |vh |2j,h

. ‖∇s,hvh ‖2 + ‖∇s,h(Ilav,hvh − vh)‖2 + |vh |2j,h

. ‖∇s,hvh ‖2 + |vh |2j,h = ‖vh ‖2ε,j,h,

where we have inserted ±Ilav,hvh into the seminorm and used a triangle inequality in
the first line, we have applied the continuous Korn inequality (7.12) to the first term
and invoked (7.64) and the definition (7.65) of the jump seminorm for the second
term, we have inserted ±∇s,hvh and used a triangle inequality to pass to the third
line, we have invoked again (7.64) to estimate the second term in the right-hand side
and pass to the fourth line, and we have used the definition (7.65) of the ‖·‖ε,j,h-norm
to conclude. ut

Based on the result of Lemma 7.23, we next establish a Korn inequality in HHO
spaces.

Lemma 7.24 (Discrete Korn inequality in HHO spaces). Assume k ≥ 1. Then it
holds, for all vh ∈ Uk

h,0,
‖vh ‖1,h . ‖vh ‖ε,h, (7.67)

where the hidden constant depends only on Ω, d, k, and %, and, in analogy with
(2.35) and recalling the definition (7.29) of the ‖·‖1,T -seminorm, we have set

‖vh ‖1,h B
( ∑
T ∈Th

‖vT ‖21,T
) 1

2

=

( ∑
T ∈Th

‖∇vT ‖2T + |vT |21,∂T
) 1

2

. (7.68)

Proof. Let vh ∈ Uk
h,0 and recall the definition (7.59) of vh . By (7.66) we have that
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‖∇hvh ‖2 . ‖∇s,hvh ‖2 + |vh |2j,h C T1 + T2. (7.69)

Recalling the definitions (7.60) and (7.28) of the global and local strain norms on
HHO spaces, it is readily inferred that

T1 . ‖vh ‖2ε,h . (7.70)

For the second term, on the other hand, we can write

T2 =
∑
F ∈Fh

h−1
F ‖[vh]F ‖2F

.
∑
F ∈Fh

∑
T ∈TF

h−1
F ‖vT − vF ‖2F

=
∑
T ∈Th

∑
F ∈FT

h−1
F ‖vT − vF ‖2F =

∑
T ∈Th

|vT |21,∂T . ‖vh ‖2ε,h,

(7.71)

where we have expanded the jump seminorm according to its definition (7.65) in the
first line, we have used in the second line the definition (1.22) of the jump operator
followed by a triangle inequality after inserting ±vF inside the norm for all F ∈ F i

h

and used the fact that vF = 0 for all F ∈ F b
h
, we have exchanged the order of

the summations according to (1.25) to pass to the third line, and we have used the
definitions (7.60) and (7.28) of the global and local strain (semi)norms to conclude.
Plugging (7.70) and (7.71) into (7.69) yields∑

T ∈Th
‖∇vT ‖2T . ‖vh ‖2ε,h .

The proof of (7.67) is completed by recalling that
∑

T ∈Th |vT |21,∂T ≤ ‖vh ‖2ε,h . ut

Remark 7.25 (Discrete strain norm). Recalling Corollary 2.16, an immediate conse-
quence of (7.67) is that ‖·‖ε,h defines a norm on Uk

h,0.

Remark 7.26 (DiscreteKorn–Poincaré inequalities).Combining the discrete Poincaré
inequality resulting from [148, Theorem 6.1] (see also [151, Theorem 5.3 and Corol-
lary 5.4]) with (7.66), we infer that it holds, for all vh ∈ Pl(Th)d ,

‖vh ‖ . ‖vh ‖ε,j,h, (7.72)

with hidden constant independent of h and vh . Similarly, combining the discrete
Poincaré inequality (2.37) with (7.67) we infer, for all vh ∈ Uk

h,0, with hidden
constant as before,

‖vh ‖ . ‖vh ‖ε,h . (7.73)



322 7 Linear elasticity

7.3.3 Global bilinear form

We define the global bilinear form ah : Uk
h × Uk

h → R by element by element
assembly setting, for all uh, vh ∈ Uk

h ,

ah(uh, vh) B
∑
T ∈Th

aT (uT , vT ). (7.74)

Lemma 7.27 (Properties of ah). Let a polynomial degree k ≥ 1 be fixed. The
bilinear form ah enjoys the following properties:
(i) Stability and boundedness. For all vh ∈ Uk

h it holds

α‖vh ‖2ε,h . ah(vh, vh) . (2µ + dλ)‖vh ‖2ε,h, (7.75)

where the hidden constant is independent of h, vh , and of the problem data.
(ii) Consistency. It holds for all r ∈ {0, . . . , k} and all w ∈ H1

0 (Ω)d ∩ Hr+2(Th)d
such that ∇·σ(∇sw) ∈ L2(Ω)d ,

sup
vh ∈Uk

h ,0 , ‖vh ‖ε ,h=1

��Eh(w; vh)
��

. hr+1 [|σ(∇sw)|Hr+1(Th )d×d + (2µ)|w |Hr+2(Th )d
]
, (7.76)

where the hidden constant is independent of w, h, and of the problem data, and
the linear form E

h
(w; ·) : Uk

h,0 → R representing the consistency error is such
that, for all vh ∈ Uk

h,0,

Eh(w; vh) B −(∇·σ(∇sw), vh) − ah(Ikhw, vh). (7.77)

Remark 7.28 (Regularity of σ(∇sw)). By property (7.14) on the Lamé coefficients,
if w ∈ Hr+2(Th)d , then σ(∇sw) ∈ Hr+1(Th)d×d . The right-hand side of (7.76) is
thus well-defined.

Proof. (i) Stability and boundedness. Summing (7.50) over T ∈ Th and accounting
for the bounds (7.9) yields (7.75).

(ii) Consistency. Let vh ∈ Uk
h,0. For the sake of brevity we let, for all T ∈ Th ,

σ̌T B σ(Gk
s,T I

k
Tw) = σ(π0,k

T (∇sw)) = π0,k
T (σ(∇sw)) ∈ Pk(T ;Rd×dsym ), (7.78)

where we have used the commutation property (7.38) to replace Gk
s,T I

k
Tw with

π0,k
T (∇sw) in the first passage, and the fact that the Lamé coefficients are constant

over T (cf. (7.14)) together with the linearity of the L2-orthogonal projector to
conclude. Integrating by parts element by element, we write
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− (∇·σ(∇sw), vh)

=
∑
T ∈Th

(
(σ(∇sw),∇svT )T +

∑
F ∈FT
(σ(∇sw)nTF , vF − vT )F

)
, (7.79)

where we have replaced, in the volumetric terms, ∇vT with ∇svT using (7.5) with
τ = σ(∇sw) and, to insert vF into the second term in parentheses, we have used
Corollary 1.19 with, for any 1 ≤ i ≤ d, τ equal to the ith line of σ(∇sw) and
(ϕF )F ∈Fh = (vF ,i)F ∈Fh , vF ,i being the ith component of vF . On the other hand,
plugging the definition (7.45) of aT into (7.74), and expanding Gk

s,T vT according to
(7.36) with τ = σ̌T , it is inferred that

ah(Ikhw, vh)

=
∑
T ∈Th

(
(σ̌T ,∇svT )T +

∑
F ∈FT
(σ̌T nTF , vF − vT )F + (2µT )s(IkTw, vT )

)
. (7.80)

Subtracting (7.80) from (7.79), taking absolute values, invoking (7.78) followed by
the definition (1.57) of π0,k

T to cancel the first terms in the corresponding summations,
and using the triangle inequality we get

|Eh(w; vh)|

≤
����� ∑
T ∈Th

∑
F ∈FT
((σ(∇sw) − σ̌T )nTF , vF − vT )F

����� + ∑
T ∈Th
(2µT )|sT (IkTw, vT )|

≤
( ∑
T ∈Th

hT ‖σ(∇sw) − σ̌T ‖2∂T
) 1

2
( ∑
T ∈Th

|vT |21,∂T
) 1

2

+ (2µ)|Ikhw |s,h |vh |s,h,

(7.81)

where the conclusion follows using generalised Hölder inequalities with exponents
(2,∞,2) together with ‖nTF ‖L∞(F)d = 1 for the first term, continuous Cauchy–
Schwarz inequalities on the positive semidefinite bilinear forms sT , and discrete
Cauchy–Schwarz inequalities on the sums overT ∈ Th . Recalling (7.78) and invoking
the trace approximation properties (1.75) of the L2-orthogonal projector with l = k,
s = r + 1, and m = 0, it is inferred that

h
1
2
T ‖σ(∇sw) − σ̌T ‖∂T . hr+1

T |σ(∇sw)|Hr+1(T )d×d . (7.82)

Plugging this bound into (7.81) and using the approximation properties (7.51) of the
stabilisation bilinear form for the first factor in the second term, we get
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|Eh(w; vh)| . hr+1
(
|σ(∇sw)|Hr+1(Th )d×d + (2µ)|w |Hr+2(Th )d

)
×


( ∑
T ∈Th

|vT |21,∂T
) 1

2

+ |vh |s,h
 . (7.83)

Summing the local seminorm equivalence (7.46) over T ∈ Th and taking the square
root of the resulting inequality to infer the estimate |vh |s,h . ‖vh ‖ε,h , then passing
to the supremum over

{
vh ∈ Uk

h,0 : ‖vh ‖ε,h = 1
}
, (7.76) follows. ut

7.3.4 Discrete problem and well-posedness

The HHO scheme for the approximation of problem (7.10) reads: Find uh ∈ Uk
h,0

such that
ah(uh, vh) = ( f , vh) ∀vh ∈ Uk

h,0. (7.84)

Remark 7.29 (Static condensation for problem (7.84)). Following the ideas exposed
in Section B.3.2, an efficient resolution algorithm for problem (7.84) consists in
statically condensing the element-based discrete unknowns first, and then solving a
reduced global system of size d card(F i

h
)(k+d−1

d−1
)
where only face-based unknowns

are present.
Lemma 7.30 (Well-posedness of problem (7.84)). Let a polynomial degree k ≥ 1
be fixed. Problem (7.84) is well-posed, and we have the following a priori bound for
the unique discrete solution uh ∈ Uk

h,0:

‖uh ‖ε,h . α−
1
2 ‖ f ‖, (7.85)

where the hidden constant is independent of both h and of the problem data.
Proof. We check the assumptions of the Lax–Milgram Lemma 2.20 with U = Uk

h,0,
a = ah , and 〈f, vh〉U?,U = ( f , vh). Clearly, Uk

h,0 equipped with the norm ‖·‖ε,h is a
Hilbert space. By (7.75), the bilinear form ah is U-coercive with coercivity constant
& α. To conclude, observe that, owing to the discrete Korn–Poincaré inequality
(7.73), we have |( f , vh)| ≤ ‖ f ‖ ‖vh ‖ . ‖ f ‖ ‖vh ‖ε,h so that, in particular, the dual
norm of the linear form f : vh 7→ ( f , vh) is . ‖ f ‖. ut

7.3.5 Flux formulation

The following lemma identifies a flux formulation for the HHO scheme (7.84). Its
proof is a straightforward adaptation of that of Lemma 2.25, and is left as an exercise
to the reader.
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Lemma 7.31 (Flux formulation). Let a polynomial degree k ≥ 1 be fixed.
Let Mh denote a polytopal mesh in the sense of Definition 1.4. Let, for any
T ∈ Th , sT be a stabilisation bilinear form that satisfies Assumption 7.16.
Set Dk

∂T B
{
α∂T B (αF )F ∈FT : αF ∈ Pk(F)d ∀F ∈ FT

}
and define the

boundary residual operator Rk
∂T B (Rk

TF )F ∈FT : Uk
T → Dk

∂T such that, for
all vT ∈ Uk

T ,

−
∑
F ∈FT
(Rk

TF vT ,αF )F = sT (vT , (0,α∂T )) ∀α∂T ∈ Dk
∂T . (7.86)

Let uh ∈ Uk
h,0 and, for allT ∈ Th and all F ∈ FT , define the numerical normal

trace of the flux

ΦTF (uT ) B −σ |T (Gk
s,T uT )nTF + (2µT )Rk

TFuT .

Then uh is the unique solution of problem (7.84) if and only if the following
two properties hold:

(i) Local balance. For all T ∈ Th and all vT ∈ Pk(T)d , it holds

(σ(Gk
s,T uT ),∇svT )T +

∑
F ∈FT
(ΦTF (uT ), vT )F = ( f , vT )T . (7.87a)

(ii) Continuity of the numerical normal traces of the flux. For any interface
F ∈ F i

h
such that F ⊂ ∂T1 ∩ ∂T2 with distinct mesh elements T1,T2 ∈ Th ,

ΦT1F (uT1
) +ΦT2F (uT2

) = 0. (7.87b)

Remark 7.32 (Mechanical interpretation). In the context of the linear elasticity prob-
lem (7.7), for allT ∈ Th and all F ∈ FT , the quantityσ |T (∇su)nTF can be interpreted
as a traction acting on F. We have favoured here the terminology “flux formulation”
over “traction formulation” to emphasise the conceptual link with the other problems
considered throughout the book.

7.4 Error analysis

This section contains the error analysis of the method: we start by deriving an
estimate for the discrete error measured in the ‖·‖ε,h-norm; from this estimate, an
error on strains is inferred. We then derive an improved L2-error estimate on the
displacement under the usual elliptic regularity assumption; finally, we discuss the
robustness of our error estimates in the quasi-incompressible limit.
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7.4.1 Energy error estimate

We start by deriving a convergence result in the energy-norm, using the interpolate
of the solution to the continuous problem. This result is a direct application of the
generic analysis framework presented in Appendix A.

Theorem 7.33 (Discrete energy error estimate). Let (Mh)h∈H denote a reg-
ular mesh sequence in the sense of Definition 1.9. Let a polynomial degree
k ≥ 1 be fixed. Let u ∈ H1

0 (Ω)d denote the unique solution to (7.10), for which
we assume the additional regularity u ∈ Hr+2(Th)d for some r ∈ {0, . . . , k}.
For all h ∈ H , let uh ∈ Uk

h,0 denote the unique solution to (7.84) with sta-
bilisation bilinear forms sT , T ∈ Th , in (7.45) satisfying Assumption 7.16.
Then,

‖uh − Ikhu‖ε,h . α−1hr+1
(
|σ(∇su)|Hr+1(Th )d×d + (2µ)|u |Hr+2(Th )d

)
, (7.88)

where the norm ‖·‖ε,h is defined in (7.60) and the hidden constant is indepen-
dent of h, u, and of the problem data.

Proof. We invoke the Third Strang Lemma A.7 with U = H1
0 (Ω)d , a = a defined

by (7.11), l(v) = ( f , v), Uh = Uk
h,0 endowed with the norm ‖·‖ε,h , ah = ah ,

lh(vh) = ( f , vh), and Ihu = Ikhu. By (7.75), ah is coercive for ‖·‖ε,h with constant
& α and, since −∇·σ(∇su) = f , the consistency error (A.5) is exactly (7.77) with
w = u. Hence, (7.88) follows plugging (7.76) into (A.6). ut
Remark 7.34 (Discrete error estimate in the norm induced by ah). An estimate can
also be obtained for the error measured in the norm induced by the discrete bilinear
form ah such that, for all vh ∈ Uk

h,0,

‖vh ‖a,h B ah(vh, vh)
1
2 .

Specifically, we obtain in this case, under the assumptions of Theorem 7.33,

‖uh − Ikhu‖a,h . hr+1
(
α−

1
2 |σ(∇su)|Hr+1(Th )d×d + (2µ)

1
2 |u |Hr+2(Th )d

)
,

with hidden constant independent of h, u, and of the problem data.

From the error estimate (7.88) in the discrete strain norm, we prove an estimate for
the error measured with respect to the continuous solution. To this end, we define
the global symmetric gradient reconstruction Gk

s,h : Uk
h → Pk(Th;Rd×dsym ) such that,

for all vh ∈ Uk
h ,

(Gk
s,hvh) |T B Gk

s,T vT ∀T ∈ Th .
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Theorem 7.35 (Energy error estimate for the reconstructed approximate
solution). Under the assumptions of Theorem 7.33, it holds

‖Gk
s,huh − ∇su‖ + |uh |s,h
. hr+1

T

(
α−1 |σ(∇su)|Hr+1(Th )d×d + (1 + 2µα−1)|u |Hr+2(Th )d

)
, (7.89)

where the hidden constant is independent of h, u, and of the problem data.

Proof. We insert π0,k
h
(∇su) − Gk

s,hI
k
hu = 0 (see (7.38)) into the first norm in the

left-hand side of (7.89), we add and subtract Ikhu into the second seminorm, and we
apply triangle inequalities to infer

‖Gk
s,huh − ∇su‖ + |uh |s,h . ‖Gk

s,h(uh − Ikhu)‖ + |uh − Ikhu |s,h︸                                        ︷︷                                        ︸
T1

+ ‖π0,k
h
(∇su) − ∇su‖︸                  ︷︷                  ︸

T2

+ |Ikhu |s,h .︸    ︷︷    ︸
T3

Summing (7.46) over T ∈ Th and passing to the square root yields the estimate
T1 . ‖uh − Ikhu‖ε,h . The conclusion follows invoking the error estimate (7.88) to
estimateT1, using the approximation properties (1.74) of the L2-orthogonal projector
with X successively equal to the elements of Th , l = k, p = 2, m = 0, and s = r + 1
to bound T2, and the consistency properties (7.51) of sT to bound T3. ut

7.4.2 L2-error estimate

Combining the discrete Korn–Poincaré inequality (7.73) with the energy estimate
(7.88) gives, under the regularity assumptions of Theorem 7.33, an estimate in hr+1

for the L2-norm of the error. As for the Poisson problem (see Section 2.3.3), however,
an improved L2-error estimate can be derived also for the linear elasticity problem.
Throughout this section, we will make the following assumption, which is justified
by the elliptic regularity requirement; see Remark 3.21 for a discussion in the context
of variable diffusion problems.

Assumption 7.36 (Constant normalised Lamé coefficients) TheLamé coefficients
λ and µ are constant overΩ. Without loss of generality, we take 2µ = 1 (when 2µ , 1,
it suffices to divide equation (7.7a) by 2µ and to replace λ with λ/(2µ) and f with
f /(2µ)).
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In the context of linear elasticity problems, elliptic regularity holds if, for all g ∈
L2(Ω)d , the unique solution zg ∈ H1

0 (Ω)d of the dual problem

a(v, zg) = (g, v) ∀v ∈ H1
0 (Ω)d (7.90)

satisfies the a priori estimate

‖ zg ‖H2(Ω)d ≤ C‖g‖. (7.91)

This regularity property holds whenΩ is convex. Notice that the dual problem (7.90)
coincides with the primal problem since a is symmetric. A stronger a priori estimate
valid for λ ≥ 0 is given in Lemma 7.39 below.

Theorem 7.37 (Superconvergence of element unknowns). Let Assumption
7.36 hold true. Let (Mh)h∈H denote a regular mesh sequence in the sense of
Definition 1.9. Denote by u ∈ H1

0 (Ω)d the unique solution of (7.10), for which
we assume the additional regularity u ∈ Hr+2(Th)d for some r ∈ {0, . . . , k}.
Let a polynomial degree k ≥ 1 be fixed and, for all h ∈ H , let uh ∈ Uk

h,0
denote the unique solution to (7.84)with stabilisation bilinear forms sT ,T ∈ Th ,
in (7.45) satisfying Assumption 7.16. Further assuming elliptic regularity, it
holds, for all h ∈ H ,

‖uh − π0,k
h

u‖ . hr+2 |u |Hr+2(Th )d , (7.92)

with hidden constant independent of both h and u, but possibly depending on
Ω, d, %, k, r , and λ.

Remark 7.38 (L2-error estimate). Following similar arguments as in Section 2.3.3,
one can prove fromTheorem7.37 that the displacement reconstruction also converges
in hr+2. The details are left as an exercise to the reader.

Proof. The result follows from the Aubin–Nitsche Lemma A.10 in the appendix,
with the same setting as in Theorem 7.33, that is: U = H1

0 (Ω)d , a = a defined by
(7.11), l(v) = ( f , v), Uh = Uk

h,0, ‖·‖Uh = ‖·‖ε,h , ah = ah , lh(vh) = ( f , vh) and
Ihu = Ikhu. Additionally, we take L = L2(Ω)d and rh : Uk

h,0 → L2(Ω)d defined by
rhvh = vh . In what follows, the hidden constants in the inequalities A . B do not
depend on h, f , u or g in the dual problem (7.90) (but possibly depend on λ).

Since a is symmetric, the dual problem (A.10) coincides with (7.90) and, by
choice of rh , the dual consistency error Ed

h
(zg; ·) is equal to the primal consistency

error E
h
(zg; ·) defined by (7.77). By definition of rh and Ikh , the Aubin–Nitsche

Lemma A.10 therefore shows that
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‖uh − π0,k
h

u‖ ≤ ‖uh − Ikhu‖ε,h sup
g∈L2(Ω)d , ‖g ‖ ≤1

‖Eh(zg; ·)‖ε,h,?︸                                                        ︷︷                                                        ︸
T1

+ sup
g∈L2(Ω)d , ‖g ‖ ≤1

|Eh(u; Ikh zg)|︸                               ︷︷                               ︸
T2

,
(7.93)

where ‖·‖ε,h,? denotes the norm dual to ‖·‖ε,h .
(i) Estimate of T1. Since zg ∈ H1

0 (Ω)d ∩ H2(Ω)d , the estimate (7.76) with r = 0
yields

‖Eh(zg; ·)‖ε,h,? . h
(
|σ(∇s zg)|H1(Ω)d×d + |zg |H2(Ω)d

)
. h‖g‖,

where we have invoked the elliptic regularity estimate (7.91) to conclude. Combining
this bound with (7.88), the first term in the right-hand side of (7.93) is estimated as

T1 . hr+2 |u |Hr+2(Th )d . (7.94)

(ii) Estimate of T2. Apply (7.83) to w = u and vh = Ikh zg . After accounting for
Assumption 7.36 to estimate the first factor, we get

|Eh(u; Ikh zg)| . hr+1 |u |Hr+2(Th )d

( ∑
T ∈Th

|IkT zg |21,∂T
) 1

2

+ |Ikh zg |s,h
 . (7.95)

Using (7.51) with r = 0 for all T ∈ Th , we see that

|Ikh zg |s,h . h|zg |H2(Ω)d .

On the other hand, recalling the definition (7.28) of |·|1,∂T we write, for any T ∈ Th ,

|Ikh zg |21,∂T =
∑
F ∈FT

h−1
F ‖π0,k

F zg − π0,k
T zg ‖2F

=
∑
F ∈FT

h−1
F ‖π0,k

F (zg − π0,k
T zg)‖2F

≤
∑
F ∈FT

h−1
F ‖ zg − π0,k

T zg ‖2F . h2
T |zg |2H2(T )d ,

(7.96)

where we have used the definition of Ikh zg in the first equality followed by the
linearity and polynomial invariance (1.56) of π0,k

F in the second equality, the L2-
boundedness of π0,k

F in the third line, and concluded by the trace approximation
property (1.75) with l = k, m = 0 and s = 2 (we have s ≤ l + 1 since, here, k ≥ 1)
along with the uniform equivalence of face and element diameters (1.6). Plugging
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the above bounds into (7.95) and recalling the elliptic regularity estimate (7.91), we
infer that |Eh(u; Ikh zg)| . hr+2 |u |Hr+2(Th )d ‖g‖, hence

T2 . hr+2 |u |Hr+2(Th )d . (7.97)

Plugging (7.94) and (7.97) into (7.93), the conclusion follows. ut

7.4.3 Robustness in the quasi-incompressible limit

To simplify the discussion, throughout this section we work under Assumption 7.36.
We are interested in the case λ � 1 (which implies, in particular, λ ≥ 0). This situa-
tion corresponds to the quasi-incompressible limit, for which the displacement field
is nearly divergence-free. It is well known that the accuracy of P1-conforming Finite
Elements approximations deteriorates in this case, a phenomenon often referred to
as numerical locking; see, e.g., [28]. The underlying reason is that this Finite El-
ements space is unable to accurately represent divergence-free displacement fields
other than the constant ones, so that the numerical solution is “locked” to a constant
value. In the corresponding error estimates, this translates into the fact that the factor
that multiplies the meshsize explodes with λ. Robustness for λ � 1 is achieved, on
the other hand, when this factor is independent of λ, and the corresponding error
estimate (which is therefore uniform in λ) is referred to as locking-free. We show
here that the error estimates for the HHO method (7.84) are indeed locking-free. In
order to derive from Theorem 7.35 a locking-free error estimate, we must show that
the right-hand side of (7.89) can be estimated uniformly in λ. The key lies in the
following regularity result.

Lemma 7.39 (A priori bound on the exact solution). Assume d = 2. Let Ω denote
a convex polygonal set, and let Assumption 7.36 hold true along with λ ≥ λ0, where
λ0 > 0 denotes a sufficiently large real number. Then, problem (7.10) has a unique
solution u ∈ H1

0 (Ω)d ∩ H2(Ω)d , and it holds that

‖σ(∇su)‖H1(Ω)d×d . ‖u‖H2(Ω)d + λ‖∇·u‖H1(Ω) . ‖ f ‖, (7.98)

where the hidden constants depend only on Ω.

Proof. The first inequality is an immediate consequence of the expression (7.8) of
the stress tensor together with Assumption 7.36 on the Lamé coefficients. The proof
of the second inequality can be obtained reasoning as in [78, Lemma 2.2], leveraging
the regularity estimates of [217] for the two-dimensional Stokes problem (analogous
estimates for the three-dimensional case are derived in [138]). Notice that regularity
estimates for the planar elasticity problem in convex domains can also be found in
[33]. ut
Combining (7.98) with (7.89) written for r = 0 and observing that, having assumed
λ ≥ 0 and 2µ = 1, we can take α = 1 in (7.9), we infer that
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‖Gk
s,huh − ∇su‖ + |uh |s,h . h‖ f ‖,

where the hidden constant is independent of h, u, and of the problem data. Clearly,
this error estimate is locking-free since it is uniform in λ. The crucial point that
makes this possible is the commutation property (7.38), which yields the estimate
(7.82) on the stress in terms of its H1-seminorm, the latter being in turn bounded
by the L2-norm of the volumetric force term (see (7.98)). We close this section with
two remarks.

Remark 7.40 (High-order estimates).Higher-order estimates can be proved proceed-
ing as above whenever the following regularity shift hold for the continuous problem:
For any f ∈ Hr (Ω)d , it holds u ∈ Hr+2(Ω)d and, with hidden constant depending
only on Ω,

‖u‖Hr+2(Ω)d + λ‖∇·u‖Hr+1(Ω) . ‖ f ‖Hr (Ω)d .

This requires, in general, further regularity on the domain; see, e.g., [13], where the
corresponding results for the Stokes problem are detailed.

Remark 7.41 (Locking-free L2-error estimates).Minor modifications of the proof of
Theorem 7.37 accounting for the a priori estimate (7.98) reveal that a locking-free
error estimate can also be obtained for the L2-norm of the displacement; see also
[146, Theorem 11] on this subject.

7.4.4 Numerical examples

To illustrate the above results, we consider a test case inspired by [79]: we solve on
the unit squareΩ = (0,1)2 the Dirichlet problem corresponding to the exact solution
such that

u(x) =
((cos(2πx1) − 1) sin(2πx2) + 1

1+λ sin(πx1) sin(πx2)
(1 − cos(2πx2)) sin(2πx1) + 1

1+λ sin(πx1) sin(πx2)
)
.

The corresponding forcing term is

f (x) = −µ
(
4 sin(2πx2) (1 − 2 cos(2πx1)) − 2

1+λ sin(πx1) sin(πx2)
4 sin(2πx1) (2 cos(2πx2) − 1) − 2

1+λ sin(πx1) sin(πx2)
)

− λ + µ
1 + λ

(
cos(π(x1 + x2))
cos(π(x1 + x2))

)
.

We take µ = 1 and, in order to assess the robustness of the method in the quasi-
incompressible limit, we let λ vary in {1,103,106}. For the numerical resolution, we
consider a family of deformed quadrangular meshes.

The numerical results are collected in Tables 7.1–7.2, where the following quan-
tities are monitored: Ndof,h , the number of degrees of freedom; Nnz,h , the number
of non-zero entries in the problem matrix; ‖uh − Ikhu‖a,h , the energy-norm of the
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error (see Remark 7.34); and ‖uh − π0,k
h

u‖, the L2-norm of the error estimated in
Theorem 7.37. We additionally display the Estimated Order of Convergence (EOC)
which, denoting by ei an error measure on the ith mesh refinement with meshsize
hi , is computed as

EOC =
log ei − log ei+1
log hi − log hi+1

.

In all the cases, the asymptotic EOC match the ones predicted by the theory, that is,
(k + 1) for the energy-norm and (k + 2) for the L2-norm. The results additionally
highlight the robustness of the method in the quasi-incompressible limit, showing
errors of comparable magnitude irrespective of the value of λ.

Table 7.1: Numerical results for the test of Section 7.4.4, distorted quadrangular
mesh family, k = 1.

Ndof ,h Nnz,h ‖uh − I khu ‖a,h EOC ‖uh − π0,k
h

u ‖ EOC
λ = 1

96 2048 1.83e+00 – 1.02e-01 –
448 11136 5.26e-01 1.80 1.58e-02 2.70
1920 50816 1.32e-01 2.00 1.94e-03 3.02
7936 216192 3.36e-02 1.97 2.46e-04 2.98
32256 891008 8.48e-03 1.98 3.10e-05 2.99
130048 3616896 2.12e-03 2.00 3.86e-06 3.00

λ = 103

96 2048 1.81e+00 – 1.02e-01 –
448 11136 5.22e-01 1.79 1.57e-02 2.69
1920 50816 1.31e-01 2.00 1.93e-03 3.03
7936 216192 3.34e-02 1.97 2.45e-04 2.98
32256 891008 8.43e-03 1.98 3.09e-05 2.99
130048 3616896 2.11e-03 2.00 3.85e-06 3.00

λ = 106

96 2048 2.23e+00 – 1.02e-01 –
448 11136 5.39e-01 2.05 1.57e-02 2.69
1920 50816 1.31e-01 2.04 1.93e-03 3.03
7936 216192 3.34e-02 1.97 2.45e-04 2.98
32256 891008 8.43e-03 1.98 3.09e-05 2.99
130048 3616896 2.11e-03 2.00 3.85e-06 3.00

7.5 Other boundary conditions

We hint in this section at the treatment of more general boundary conditions. Specif-
ically, we consider the case where the displacement is prescribed on a portion of the
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Table 7.2: Numerical results for the test of Section 7.4.4, distorted quadrangular
mesh family, k = 2.

Ndof ,h Nnz,h ‖uh − I khu ‖a,h EOC ‖uh − π0,k
h

u ‖ EOC
λ = 1

144 4608 5.45e-01 – 2.80e-02 –
672 25056 7.56e-02 2.85 1.98e-03 3.82
2880 114336 1.05e-02 2.85 1.35e-04 3.87
11904 486432 1.32e-03 2.99 8.44e-06 4.00
48384 2004768 1.65e-04 2.99 5.28e-07 4.00
195072 8138016 2.06e-05 3.00 3.29e-08 4.01

λ = 103

144 4608 5.42e-01 – 2.78e-02 –
672 25056 7.54e-02 2.85 1.98e-03 3.81
2880 114336 1.04e-02 2.85 1.35e-04 3.87
11904 486432 1.31e-03 2.99 8.43e-06 4.00
48384 2004768 1.65e-04 2.99 5.28e-07 4.00
195072 8138016 2.06e-05 3.00 3.29e-08 4.01

λ = 106

144 4608 5.59e-01 – 2.78e-02 –
672 25056 7.56e-02 2.89 1.98e-03 3.81
2880 114336 1.04e-02 2.86 1.35e-04 3.87
11904 486432 1.31e-03 2.99 8.43e-06 4.00
48384 2004768 1.65e-04 2.99 5.28e-07 4.00
195072 8138016 2.06e-05 3.00 3.95e-08 3.74

boundary ΓD with non-zero (d − 1)-dimensional Hausdorff measure, while tractions
are prescribed on the remaining portion ΓN B ∂Ω \ ΓD. The extension to the pure
traction case is also possible up to minor modifications. Let gD B (uD) |ΓD with
uD ∈ H1(Ω)d , gN ∈ L2(ΓN)d , and consider the problem: Find u : Ω → Rd such
that

−∇·σ(∇su) = f in Ω,
u = gD on ΓD,

σ(∇su)nΩ = gN on ΓN,

(7.99)

where nΩ denotes the outer unit normal to Ω on ∂Ω. Denote by H1
D(Ω) the space of

functions in H1(Ω) which vanish (in the sense of traces) on ΓD. Classically, a weak
solution can be obtained as u = u0 + uD where u0 ∈ H1

D(Ω)d is such that

(σ(∇su0),∇sv) = ( f , v) − (σ(∇suD),∇sv) + (gN, v)ΓN ∀v ∈ H1
D(Ω)d . (7.100)

In order to write the HHO discretisation of problem (7.100), we consider a
polygonal (if d = 2) or polyhedral (if d = 3) mesh Mh that is boundary-datum
compliant (cf. Assumption 2.34). For a fixed polynomial degree k ≥ 1, we also
introduce the space
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Uk
h,D B

{
vh ∈ Uk

h : uF = 0 ∀F ∈ F D
h

}
,

and we let uh,D ∈ Uk
h be such that

uT ,D = 0 ∀T ∈ Th, uF ,D = π
0,k
F gD ∀F ∈ F D

h , uF ,D = 0 ∀F ∈ F 6D
h
,

where F 6D
h

is the set of non-Dirichlet faces defined by (2.87). Then, the HHO solution
uh ∈ Uk

h is obtained as uh = uh,0 + uh,D with uh,0 ∈ Uk
h,D such that

ah(uh,0, vh) = ( f , vh) − ah(uh,D, vh) +
∑
F ∈FN

h

(gN, vF )F ∀vh ∈ Uk
h,D. (7.101)

7.6 The lowest-order case

As seen in Remark 7.22, in the lowest-order case corresponding to k = 0 assumptions
(SE2) and (SE3) are incompatible, and one therefore cannot design a proper local
stabilisation term. In this sectionwe show, following [70], that a stable and convergent
method for k = 0 can be recovered adding a jump penalisation term inspired by the
discrete Korn inequality (7.66) in broken polynomial spaces. This comes at the price
of introducing additional links among element-based unknowns. Throughout the rest
of this section we work, for the sake of simplicity, under Assumption 7.36 (that is,
2µ = 1 and λ is constant).

7.6.1 A global discrete strain norm including jumps

Let the global displacement reconstruction p1
h

: U0
h → P1(Th)d be such that, for all

vh ∈ U0
h ,

(p1
hvh) |T B p1

T vT ∀T ∈ Th .
We define the map |||·|||ε,h : U0

h → R+ setting, for any vh ∈ U0
h ,

|||vh |||ε,h B
(
‖p1

hvh ‖2ε,j,h + |vh |2s,h
) 1

2 (7.102)

with ‖·‖ε,j,h-norm defined by (7.65) and |·|s,h-seminorm defined by (7.61) from the
local stabilisation bilinear forms given, for any T ∈ Th , by (7.54) with k = 0. We
have the following norm equivalence, upon which rests the stability of the HHO
method studied in this section.

Lemma 7.42 (Global stability and boundedness). For all vh ∈ U0
h,0, it holds

‖∇s,hp1
hvh ‖2 + |vh |2s,h . ‖vh ‖21,h . |||vh |||2ε,h, (7.103)
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with ‖·‖1,h-norm defined by (7.68) and hidden constants independent of both h and
vh , but possibly depending onΩ, d, and %. As a consequence, the map |||·|||ε,h defines
a norm on U0

h,0.

Proof. By Remark 7.8, the local displacement reconstruction p1
T coincides with the

component-wise application of the reconstruction operator p1
T defined by (2.11).

Hence, it follows from (2.41) that

‖∇hp1
hvh ‖2 + |vh |2s,h ' ‖vh ‖21,h . (7.104)

On the other hand, using the definition of the symmetric gradient for the first bound
and the global discrete Korn inequality (7.66) for the second, we can write

‖∇s,hp1
hvh ‖2 . ‖∇hp1

hvh ‖2 . ‖p1
hvh ‖2ε,j,h . (7.105)

Combining (7.105) with (7.104) yields (7.103). The fact that |||·|||ε,h defines a norm
on U0

h,0 follows observing that ‖·‖1,h is itself a norm on this space (see Corollary
2.16). ut

7.6.2 A global bilinear form with jump penalisation

We consider the bilinear form alo
h

: U0
h × U0

h → R such that, for all uh, vh ∈ U0
h ,

alo
h (uh, vh) B

∑
T ∈Th

aT (uT , vT ) + jh(p1
huh,p

1
hvh), (7.106)

where, for all T ∈ Th , the local bilinear form aT is given by (7.45) with local
stabilisation bilinear form sT as in (7.54) with k = 0, while the jump penalisation
bilinear form jh : H1(Th)d × H1(Th)d → R is such that, for all u, v ∈ H1(Th)d ,

jh(u, v) B
∑
F ∈Fh

h−1
F ([u]F , [v]F )F .

Wenext reformulate alo
h
in amore convenient way. Observing that it holds∇sP

1(T)d =
P0(T ;Rd×dsym ) for all T ∈ Th and using (7.42), we infer that

(∇s,hp1
hvh) |T = G0

s,T vT ∀T ∈ Th . (7.107)

Expanding aT according to its definition (7.45) and using (7.107), we arrive at the
following equivalent expression for alo

h
: For all uh, vh ∈ U0

h,0,

alo
h (uh, vh) B (σ(∇s,hp1

huh),∇s,hp1
hvh) + jh(p1

huh,p
1
hvh) + sh(uh, vh), (7.108)
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where sh(uh, vh) B
∑

T ∈Th sT (uT , vT ). Inside the proof of the next lemma, we will
need the global strain projector πε,1

h
: H1(Ω)d → P1(Th)d such that

(πε,1
h

v) |T B πε,1T v |T .

Lemma 7.43 (Properties of alo
h
). The bilinear form alo

h
enjoys the following proper-

ties:
(i) Stability and boundedness. For all vh ∈ U0

h , it holds

α |||vh |||2ε,h . alo
h (vh, vh) . (1 + d |λ |) |||vh |||2ε,h, (7.109)

where the hidden constant is independent of h, vh and of the problem data, and
the triple-bar strain norm |||·|||ε,h is defined by (7.102).

(ii) Consistency. It holds, for all w ∈ H1
0 (Ω)d ∩ H2(Th)d such that ∇·σ(∇sw) ∈

L2(Ω)d ,

sup
vh ∈U0

h ,0 , |||vh |||ε ,h=1

��E lo
h (w; vh)

�� . h
(
|σ(∇sw)|H1(Th )d×d + |w |H2(Th )d

)
,

(7.110)
where the hidden constant is independent of w, h and of the problem data, and
the linear form E lo

h
(w; ·) : U0

h,0 → R representing the consistency error is such
that, for all vh ∈ U0

h,0,

E lo
h (w; vh) B −(∇·σ(∇sw), vh) − alo

h (I0
hw, vh). (7.111)

Proof. (i) Stability and boundedness. Accounting for Assumption 7.36, the norm
equivalence in (7.109) is an immediate consequence of the definition (7.102) of the
triple-bar strain norm |||·|||ε,h and of the reformulation (7.108) of the bilinear form
alo
h
.

(ii) Consistency. Let vh ∈ U0
h,0. Proceeding as in the proof of the second point of

Lemma 7.27, we deduce that

��E lo
h (w; vh)

�� = ( ∑
T ∈Th

hT ‖σ(∇sw) |T − π0,0
T (σ(∇sw))‖2∂T

) 1
2

︸                                                   ︷︷                                                   ︸
T1

( ∑
T ∈Th

|vT |21,∂T
) 1

2

+ |p1
hI

0
hw |j,h︸      ︷︷      ︸
T2

|p1
hvh |j,h + |I0

hw |s,h︸   ︷︷   ︸
T3

|vh |s,h .

Using the second inequality in (7.103) and recalling the definition (7.102) of the
triple-bar strain norm, we arrive at
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h (w; vh)

�� . (T1 + T2 + T3) |||vh |||ε,h . (7.112)

Let us estimate the terms in parentheses. Using the trace approximation properties
(1.75) of the L2-orthogonal projector with l = 0, m = 0, p = 2, and s = 1 we get, for
any T ∈ Th , h

1
2
T ‖σ(∇sw) |T−π0,0

T (σ(∇sw))‖∂T ≤ hT |σ(∇sw)|H1(T )d×d , which gives
for the first term

T1 . h|σ(∇sw)|H1(Th )d×d . (7.113)

Moving to the second term, we can write

T
2
2 =

∑
F ∈Fh

h−1
F ‖[πε,1h

w]F ‖2F

=
∑
F ∈Fh

h−1
F ‖[πε,1h

w − w]F ‖2F

.
∑
F ∈Fh

∑
T ∈TF

h−1
F ‖πε,1T w − w‖2F

.
∑
T ∈Th

h−1
T ‖πε,1T w − w‖2∂T ,

where we have used (7.40) to replace p1
h
I0
h by πε,1

h
along with the definition (7.65)

of the jump seminorm in the first line, the fact that the jumps of w vanish across
any F ∈ Fh (a consequence of the assumed regularity w ∈ H1

0 (Ω)d together with
Lemma 1.21 with p = 2) to insert them into the second line, the definition (1.22) of
the jump operator together with a triangle inequality in the third line, and we have
exchanged the order of the summations over faces and elements according to (1.25)
and used the mesh regularity to write h−1

F . h−1
T and conclude. Hence, using the

trace approximation properties (7.20) of the strain projector and taking the square
root, we arrive at

T2 . h|w |H2(Th )d . (7.114)

For the third term, invoking the consistency property (7.51), which also holds for
k = 0, of sT with r = 0 for all T ∈ Th readily gives

T3 . h|w |H2(Th )d . (7.115)

Plugging (7.113), (7.114), and (7.115) into (7.112) and passing to the supremum
over vh ∈ U0

h,0 such that |||vh |||ε,h = 1 yields (7.110). ut

7.6.3 Discrete problem and energy error estimate

The lowest-order HHO scheme for the approximation of problem (7.10) reads: Find
uh ∈ U0

h,0 such that
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alo
h (uh, vh) = ( f , vh) ∀vh ∈ U0

h,0. (7.116)

The well-posedness of problem (7.116), with corresponding a priori bounds on the
discrete solution, can be proved adapting the arguments of Lemma 7.30 and using
(7.109); the details are left to the reader.

Remark 7.44 (Static condensation for problem (7.116)). The jump stabilisation in-
troduces a direct link among element-based discrete unknowns of neighbouring
mesh elements. As a result, static condensation (see in Section B.3.2) is no longer
an interesting option.

A convergence result is stated in the following theorem.

Theorem 7.45 (Discrete energy error estimate for the lowest-order HHO
scheme). Suppose that Assumption 7.36 holds, and let (Mh)h∈H =

(Th,Fh)h∈H be a regular mesh sequence in the sense of Definition 1.9. Let
u ∈ H1

0 (Ω)d denote the unique solution to (7.10), for which we assume the
additional regularity u ∈ H2(Th)d . For all h ∈ H , let uh ∈ U0

h,0 denote the
unique solution to (7.116). Then,

|||uh − I0
hu |||ε,h . hα−1

(
|σ(∇su)|H1(Th )d×d + |u |H2(Th )d

)
, (7.117)

where, according to (7.9), α = 1 − dλ−, the norm |||·|||ε,h is defined in (7.102),
and the hidden constant is independent of h, u, and of the problem data.

Proof. We invoke the Third Strang Lemma A.7 with U = H1
0 (Ω)d , a = a defined

by (7.11), l(v) = ( f , v), Uh = U0
h,0 endowed with the norm |||·|||ε,h , ah = alo

h
,

lh(vh) = ( f , vh) and Ihu = I0
hu. By (7.109), ah is coercive for |||·|||ε,h with constant

& α and, since −∇·σ(∇su) = f , the consistency error (A.5) is exactly (7.111) with
w = u. Hence, (7.117) follows plugging (7.110) into (A.6). ut

A few remarks are in order.

Remark 7.46 (Discrete error estimate in the norm induced by alo
h
). In the spirit of

Remark 7.34, quasi-optimal error estimates can also be derived in the norm induced
by the bilinear form alo

h
and such that, for all vh ∈ U0

h,0,

|||vh |||a,h B alo
h (vh, vh)

1
2 . (7.118)

Specifically, under the assumptions of Theorem 7.45, it holds that

|||uh − Ikhu |||a,h . h
(
α−

1
2 |σ(∇su)|H1(Th )d×d + |u |H2(Th )d

)
.
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Remark 7.47 (L2-error estimate). An estimate in h2 for the L2-norm of the error can
be derived under the elliptic regularity assumption. The interested reader can find
the details in [70, Theorem 12].

Remark 7.48 (Robustness in the quasi-incompressible limit). In the framework of
Section 7.4.3, combining (7.117) with the a priori bound (7.98) yields the following
locking-free energy error estimate:

|||uh − I0
hu |||ε,h . h‖ f ‖.

Under the same assumptions, it can be proved that the L2-norm error estimate
discussed in the previous remark is also uniform in λ.

7.6.4 Numerical examples

We close this section with some numerical tests.

7.6.4.1 Quasi-incompressible test case

To illustrate the performance of the lowest-order scheme, we run the test case of
Section 7.4.4 for the same values of the Lamé coefficients. The results collected
in Table 7.3 show that the expected EOC of 1 for the energy-norm and 2 for the
L2-norm are attained.

7.6.4.2 Singular test case

We next consider the solution of [11, Section 5.1] which, in polar coordinates (r, θ),
reads

u(r, θ) = 1
2G

rL
(
(κ −Q(L + 1)) cos(Lθ) − L cos((L − 2)θ)
(κ +Q(L + 1)) sin(Lθ) + L sin((L − 2)θ)

)
,

where the various parameters take the following numerical values: µ = 0.65, λ =
0.98, G = 5

13 , κ =
9
5 , L = 0.5444837367825, Q = 0.5430755788367. The forcing

term in this case is equal to zero, while the Dirichlet boundary condition is inferred
from the exact solution. The domainΩ is illustrated in Fig. 7.3, while the solution on
the finest computational mesh considered here is depicted in Fig. 7.4. This test case
is representative of real-life situations corresponding to a mode 1 fracture in a plane
strain problem. The solution exhibits a singularity at the origin, which prevents the
method from attaining the full orders of convergence predicted for smooth solutions
on uniformly refined mesh sequences.

For the numerical resolution, we consider a sequence of refined structured quad-
rangular meshes. The numerical results collected in the top half of Table 7.4 show
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Table 7.3: Numerical results for the test of Section 7.6.4.1, distorted quadrangular
mesh family.

Ndof ,h Nnz,h |||uh − I0
hu |||a,h EOC ‖uh − π0,0

h
u ‖ EOC

λ = 1

80 2768 3.51e+00 – 1.89e-01 –
352 15856 1.91e+00 0.88 5.45e-02 1.79
1472 73904 1.08e+00 0.82 1.34e-02 2.03
6016 317488 5.83e-01 0.89 3.52e-03 1.93
24320 1314608 2.97e-01 0.97 9.18e-04 1.94
97792 5348656 1.49e-01 0.99 2.33e-04 1.98

λ = 103

80 2768 3.44e+00 – 1.96e-01 –
352 15856 1.87e+00 0.88 5.89e-02 1.73
1472 73904 1.07e+00 0.81 1.63e-02 1.85
6016 317488 5.74e-01 0.89 4.48e-03 1.86
24320 1314608 2.92e-01 0.97 1.18e-03 1.93
97792 5348656 1.47e-01 0.99 3.00e-04 1.97

λ = 106

80 2768 9.12e+00 – 1.96e-01 –
352 15856 2.27e+00 2.00 5.89e-02 1.73
1472 73904 1.08e+00 1.07 1.63e-02 1.85
6016 317488 5.74e-01 0.91 4.48e-03 1.86
24320 1314608 2.92e-01 0.97 1.18e-03 1.93
97792 5348656 1.47e-01 0.99 3.00e-04 1.97

an asymptotic EOC in the energy-norm of about 0.54, while the asymptotic EOC in
the L2-norm is about 1.31. For the sake of completeness, we show, in the bottom
half of Table 7.4, a comparison with the HHO method (7.84) with k = 1. The EOC
are also limited by the regularity of the solution, and coincide with those observed
for the lowest-order method (7.116). As expected, the number of unknowns on a
given mesh is larger for the method with k = 1 compared to the method with k = 0,
despite the fact that static condensation is applied in the former case. It has to be
noticed, however, that the reduction in the number of unknowns is balanced by the
increased number of non-zero entries in the matrix, due to both the absence of static
condensation and the presence of the jump penalisation term. This phenomenon is
specific to the two-dimensional case: in dimension d = 3, the matrix corresponding
to (7.84) with k = 1 is in general more dense; see [70, Section 6.3] for an example.
The errors in the energy norm appear to be smaller for the method with k = 1,
but this is in part due to the fact that the natural energy norm associated with the
corresponding bilinear form does not contain the norm of the jumps.
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Fig. 7.3: Domain for the test case of Section 7.6.4.2.

(a) u1 (b) u2

Fig. 7.4: Numerical solution for the test of Section 7.6.4.2.

7.7 Proof of the uniform local second Korn inequality

In this section we prove Lemma 7.7. A preliminary step consists in proving the
following lemma, which gives the existence of a uniform atlas for all mesh elements
that are star-shaped with respect to every point in a ball of radius comparable to their
diameter. For a given positive number ζ , recall that Bd(0, ζ) denotes the open ball
in Rd centred at the origin and of radius ζ . For a given unit vector r , we define the
semi-infinite cylinder

M(r, ζ) B {x B x⊥ + zr : x⊥ ∈ Bd(0, ζ) is orthogonal to r and z ∈ [0,∞)}.
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Table 7.4: Numerical results for the test of Section 7.6.4.2 and comparison with the
high-order method (7.84) with k = 1. For the latter, the energy norm is the one
associated to the corresponding bilinear form without jump stabilisation.

Ndof ,h Nnz,h ‖uh − I khu ‖a,h EOC ‖uh − π0,k
h

u ‖ EOC
Lowest-order HHO method (7.116)

256 10616 7.65e-01 – 7.51e-02 –
1088 52728 5.63e-01 0.44 3.34e-02 1.17
4480 232568 3.97e-01 0.50 1.40e-02 1.25
18176 974712 2.76e-01 0.53 5.72e-03 1.29
73216 3988856 1.90e-01 0.54 2.31e-03 1.31
293888 16136568 1.31e-01 0.54 9.29e-04 1.31

HHO method (7.84) with k = 1

320 7584 1.07e-01 – 9.40e-03 –
1408 36512 7.32e-02 0.55 3.64e-03 1.37
5888 158880 5.01e-02 0.55 1.41e-03 1.36
24064 661664 3.43e-02 0.55 5.52e-04 1.36
97280 2699424 2.35e-02 0.54 2.17e-04 1.35
391168 10903712 1.61e-02 0.54 8.57e-05 1.34

Fig. 7.5 provides an illustration of this definition, along with other notations used in
the proof of the lemma. In what follows, for the open unit ball centred at the origin,
we use the abridged notation Bd B Bd(0,1).

Lemma 7.49 (Uniform atlas for star-shaped elements). Let % > 0. There exists a
finite number m ∈ N of unit vectors r1, . . . , rm ∈ Rd and a real number L > 0, all
depending only on d and %, such that Bd ⊂

⋃m
l=1 M(r l, %/2) and, if T is a polytope

of Rd contained in Bd and star-shaped with respect to every point in Bd(0, %), for
any l = 1, . . . ,m,

T ∩ M(r l, %/2) = {x = (x1, . . . , xd) ∈ M(r l, %/2) : xd ≤ ϕl(x1, . . . , xd−1)} ,

where the system of orthonormal coordinates (x1, . . . , xd) is chosen such that xd is
the coordinate along r l , Hd B {x ∈ Rd : xd = 0} is the horizontal hyperplane in
this system of coordinates, and ϕl : Bd(0, %/2) ∩ Hd → R is a Lipschitz-continuous
function with Lipschitz constant bounded by L.

Proof. In the following, a . b means that a ≤ Cb with C depending only on d and
%. We first notice that, since Bd is determined by d, there is a fixed number m of unit
vectors (r1, . . . , rm), depending only on d and %, such that Bd ⊂

⋃m
l=1 M(r l, %/2).

The proof is completed by showing that, in each M(r l, %/2) and in the coordinates
associated with r l as in the lemma, T is the hypograph of a Lipschitz function ϕl ,
with a controlled Lipschitz constant. From this point on, we drop the index l for
legibility.
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Fig. 7.5: Illustration of the proof of Lemma 7.49.

The existence of a continuous function ϕ defined on M(r, %/2) ∩ Hd and such
that T ∩ M(r, %/2) is the hypograph of ϕ results from the fact that T is star-shaped
with respect to all points in Bd(0, %/2). Since the boundary of T is made of the faces
F ∈ FT , this function ϕ is piecewise affine, and it holds that

nTF =
(−∇d−1ϕ,1)(

1 + |∇d−1ϕ|2
) 1

2
,

where ∇d−1ϕ is the gradient in Hd of ϕ with respect to its (d − 1) variables. Hence,
since r = (0,1) in the local system of coordinates, it holds r ·nTF = (1+ |∇d−1ϕ|2)− 1

2 .
If we can prove that

1 . nTF ·r ∀F ∈ FT such that F ∩ M(r, %/2) , ∅, (7.119)

then we will have |∇d−1ϕ| . 1, which yields a uniform control of the Lipschitz
constant of ϕ.

To prove (7.119), let F ∈ FT and a ∈ F ∩ M(r, %/2), and let us translate the fact
that T is star-shaped with respect to every point in Bd(0, %). Working as in the proof
of [174, Lemma B.1], we see that this assumption forces Bd(0, %) to be fully on one
side of the hyperplane spanned by F, which translates into

(a − x)·nTF ≥ 0 ∀x ∈ Bd(0, %). (7.120)

On the other hand, since a ∈ M(r, %/2), we have a = a⊥ + zr with z > 0 and
a⊥ ∈ Bd(0, %/2) orthogonal to r . Apply (7.120) to x = a⊥ + (%/2)nTF , which
belongs to Bd(0, %) since |a⊥ | ≤ %/2. Noticing that a − x = zr − (%/2)nTF , this
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yields
zr ·nTF − %

2
≥ 0. (7.121)

Since a ∈ Bd(0,1) and r is a unit vector, we have z = a·r ∈ (0,1] and (7.121)
therefore gives r ·nTF = z−1(zr ·nTF ) ≥ z−1%/2 ≥ %/2. The proof of (7.119) is
complete. ut

We are now in a position to prove the local second Korn inequality.

Proof (Lemma 7.7). The reasoning of [270] shows that, if the following Nečas
inequality

‖v − π0,0
T v‖T ≤ C‖∇v‖H−1(T )d ∀v ∈ L2(T), (7.122)

holds with a certainC, then the secondKorn inequality (7.15) holds with the constant√
1 + 2C2. Hence, we only have to prove that the mesh elements T considered in the

proposition satisfy (7.122) with a constant C that depends only on d and %. This is
achieved proceeding in two steps: first, we scale the problem in order to reduce the
proof to the case of a polytopal set contained in the unit ball and star-shaped with
respect to Bd(0, %); second, we prove the sought result in this scaled case.

(i) Scaling. Since the inequality is obviously invariant by translation, we can assume
that T is star-shaped with respect to every point in Bd(0, %hT ). We then scale T so
that its diameter is equal to 1. Precisely, define T̂ = T/hT and, for f ∈ L2(T), set
f̂ ∈ L2(T̂) such that f̂ (x̂) = f (hT x̂) for all x̂ ∈ T̂ . Then hT̂ = 1 and T̂ is star-
shaped with respect to every point in Bd(0, %). Moreover, by the change of variable
T̂ 3 x̂ 7→ x = hT x̂ ∈ T , it holds that∫

T

f = hd
T

∫
T̂

f̂ (7.123)

and, if f ∈ H1(T),
∇̂ f̂ = hT ∇̂ f , (7.124)

where ∇̂ is the gradient in the coordinates x̂ ∈ T̂ . These properties show that, for
any v ∈ L2(T),

‖v − π0,0
T v‖T = hd/2

T ‖v̂ − π0,0
T̂

v̂‖T̂ , (7.125)

and that, furnishing H1
0 (T)d with the norm ‖·‖H1

0 (T )d B ‖∇·‖T ,
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‖∇v‖H−1(T )d = sup
ψ∈H1

0 (T )d

〈∇v,ψ〉H−1(T )d ,H1
0 (T )d

‖ψ‖H1
0 (T )d

= sup
ψ∈H1

0 (T )d

−
∫
T
v∇·ψ

‖ψ‖H1
0 (T )d

= sup
ψ∈H1

0 (T )d

−hd
T

∫
T̂
v̂ ∇̂·ψ

‖∇ψ‖T

= sup
ψ̂∈H1

0 (T̂ )d

−hd
T

∫
T̂
v̂h−1

T ∇̂· ψ̂
hd/2
T ‖∇̂ψ‖T̂

= sup
ψ̂∈H1

0 (T̂ )d

−hd
T h−1

T

∫
T̂
v̂ ∇̂· ψ̂

hd/2
T h−1

T ‖∇̂ψ̂‖T̂
= hd/2

T ‖∇̂v̂‖H−1(T̂ )d , (7.126)

where we have used the definition of the norm in H−1(T)d in the first line, the
definition of the weak gradient of v in the second line, the change of variable (7.123)
with f = v∇·ψ in the third line, (7.124) with f = components of ψ and the change
of variables (7.123) with f = |∇ψ | in the fourth line, once again the relation (7.124)
with f = components of ψ to pass to the fifth line, and the definition of ‖∇̂v̂‖H−1(T̂ )d
to conclude. If we prove (7.122), with C depending only on d and %, for all polytopal
sets T̂ of diameter 1 and star-shaped with respect to every point in Bd(0, %), the
relations (7.125)–(7.126) show that (7.122) also holds for T with the same constant.
To simplify the notations, in the following we drop the hat symbol and we simply
write T and v for T̂ and v̂. In other words, we reduced the proof to the case where
T is a polytopal set contained in Bd and star-shaped with respect to every point in
Bd(0, %).
(ii)Proof of (7.122) in the scaled case. [74, Theorem IV.1.1] establishes the existence
of CT such that

‖w‖T ≤ CT

(
‖w‖H−1(T ) + ‖∇w‖H−1(T )d

)
∀w ∈ L2(T). (7.127)

The proof [74, Theorem IV.1.1] gives a clear dependency on the constantCT in terms
of an atlas of ∂T . Lemma 7.49 provides an atlas, whose elements (open coverings,
domains, upper bound of the Lipschitz constants of the maps) depend only on d and
%, for all T contained in Bd and star-shaped with respect to every point in Bd(0, %).
Using this atlas in the proof of [74, Theorem IV.1.1], we see that (7.127) holds with
CT = C0 depending only on d and %. Applying this inequality to w = v − π0,0

T v (that
has a zero integral over T), the Nečas estimate (7.122) follows if we show that

‖w‖H−1(T ) ≤ C1‖∇w‖H−1(T )d for all w ∈ L2(T) such that
∫
T

w = 0, (7.128)

with C1 depending only on d and %. This estimate is established in [74, Proposition
IV.1.7], but with a proof by contradiction that does not directly provide the inde-
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pendence of C1 with respect to the domain T . We adapt here this proof to show that
(7.128) holds with a constant that is uniform with respect to the mesh element T .

The proof proceeds by contradiction. Assume that (7.128) does not hold uniformly
with respect to T . Then, there is a sequence (Tn,wn)n∈N such that Tn is contained in
Bd and is star-shaped with respect to every point in Bd(0, %), wn ∈ L2(Tn) has a zero
average over Tn, and

‖wn‖H−1(Tn) > n‖∇wn‖H−1(Tn)d . (7.129)

Replacing wn with wn/‖wn‖H−1(Tn), we can also assume that

‖wn‖H−1(Tn) = 1. (7.130)

Let w̃n be the extension of wn to Bd by 0 outside Tn. By (7.127), (7.129) and
(7.130), ‖wn‖Tn is bounded, and so w̃n is bounded in L2(Bd). Hence, L2(Bd) being
compactly embedded in H−1(Bd), we find w ∈ L2(Bd) such that, upon extracting a
subsequence,

w̃n → w weakly in L2(Bd) and strongly in H−1(Bd) as n→∞. (7.131)

The weak convergence in L2(Bd) together with the relation 0 =
∫
Tn

wn =
∫
Bd

w̃n

shows that ∫
Bd

w = 0. (7.132)

Considering the uniform atlas of ∂Tn given by Lemma 7.49 (whose covering and
domains of mappings are independent of n), we see that the corresponding maps
(ϕl,n)l=1,...,m are uniformly Lipschitz, with a constant not depending on n. Hence,
upon extracting another subsequence, we can assume that these maps converge
uniformly as n → ∞ to some Lipschitz functions (ϕl)l=1,...,m. The hypographs of
these Lipschitz functions define a Lipschitz open set U and, by uniform convergence
of the maps, the following two properties hold:

(i) the characteristic function χTn of Tn converges strongly in L2(Bd) towards the
characteristic function χU of U, and

(ii) for any ψ ∈ C∞c (U)d there is an N(ψ) ∈ N such that supp(ψ) ⊂ Tn for all
n ≥ N(ψ).

We exploit Property (i) by writing w̃n = χTn w̃n (since w̃n is equal to zero outside
Tn), and by passing to the L2-weak limit in the left-hand side and the weak/strong
distributional limit in the right-hand side, to see that w = χUw. In particular, this
shows that w = 0 outside U and, together with (7.132), that∫

U

w = 0. (7.133)

Consider now Property (ii) of (Tn)n∈N. Fixing ψ ∈ C∞c (U)d , for any n ≥ N(ψ) we
can write
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w̃n∇·ψ
���� = ����∫

Tn

wn∇·ψ
���� = ���−〈∇wn,ψ〉H−1(Tn)d ,H1

0 (Tn)d
���

≤ ‖∇wn‖H−1(Tn)d ‖ψ‖H1
0 (Tn)d ≤

1
n
‖ψ‖H1

0 (U)d

where the first line follows from the definitions of w̃n and ∇wn together with the fact
that ψ ∈ C∞c (Tn)d (since supp(ψ) ⊂ Tn), and the second line is a consequence of
(7.129)–(7.130) and of the fact that ψ has a compact support in U. Combined with
the weak convergence in (7.131) this shows that∫

Bd

w∇·ψ = 0.

Since it is true for any ψ ∈ C∞c (U)d , this property proves that∇w = 0 inD ′(U)d . By
construction, the open set U is connected, and thus w is constant over U. Invoking
(7.133), we deduce that w = 0 on U and thus, since w = 0 outside U, that w = 0 on
Bd . The strong convergence in (7.131) therefore shows that

w̃n → 0 strongly in H−1(Bd) as n→∞. (7.134)

To conclude the proof, recall (7.130) and notice that any function ϕ ∈ H1
0 (Tn)

can be considered, after extension by 0 outside Tn, as a function in H1
0 (Bd) with

‖ϕ‖H1
0 (Tn) = ‖ϕ‖H1

0 (Bd ). Hence, by definition of the norms in H−1(Bd) and H−1(Tn),

‖w̃n‖H−1(Bd ) = sup
ϕ∈H1

0 (Bd )

∫
Bd

w̃nϕ

‖ϕ‖H1
0 (Bd )

≥ sup
ϕ∈H1

0 (Tn)

∫
Tn

wnϕ

‖ϕ‖H1
0 (Tn)

= ‖wn‖H−1(Tn) = 1.

However, (7.134) shows that the left-hand side goes to 0 as n→∞, which establishes
the contradiction. ut

Remark 7.50 (Second Korn inequality in Lq). Following [74, Remark IV.1.1], we
could as well establish a uniform local second Korn inequality in Lq spaces, with
1 < q < ∞, rather than in the L2 space.





Chapter 8
Stokes

In this chapter, we apply the HHO method to the discretisation of the steady Stokes
problem, which models fluid flows where convective inertial forces are small com-
pared to viscous forces. From a physical point of view, the Stokes problem is obtained
writing momentum and mass balance equations. In the case of a uniform density
fluid, the mass balance translates into a zero-divergence constraint on the velocity,
enabling an interpretation as a constrainedminimisation (saddle-point) problemwith
the pressure acting as the Lagrangemultiplier; see Remark 8.7. As a consequence, the
well-posedness of the Stokes problem hinges on an inf–sup rather than a coercivity
condition. This property has to be reproduced at the discrete level, which requires to
select the discrete spaces for the velocity and pressure so that the discrete divergence
operator from the former to the latter is surjective. In the context of Finite Element
Methods, a large effort has been devoted to devising inf–sup stable space couples;
see, e.g., the discussions in [254, Chapter 9], [183, Chapter 4], and [57, Chapter 8].
As we will see, in the framework of HHO methods inf-sup stability can be achieved
via a suitably designed divergence reconstruction operator.

The chapter is organised as follows. In Section 8.1 we establish the continuous
setting for the model, state the weak formulation, discuss the continuous inf–sup
condition and, for the sake of completeness, sketch its proof.

In Section 8.2we describe local constructions required to design theHHOscheme.
After introducing the local space of discrete velocity unknowns, we define two local
reconstruction operators, one for the velocity and one for its divergence. The velocity
reconstruction is designed so that its compositionwith the local interpolator coincides
with the elliptic projector. The divergence reconstruction, on the other hand, yields
the L2-orthogonal projection of the continuous divergence when composed with
the interpolator. This commutation property plays a crucial role in the proof of the
discrete inf–sup condition.

In Section 8.3 we discuss the discrete problem. After introducing the global
spaces of discrete unknowns for the velocity and the pressure, we prove a second key
property for the discrete inf–sup condition, namely the uniform H1-boundedness of
the velocity interpolator. Together with the commutation property for the divergence
reconstruction, this expresses the fact that the latter is a Fortin interpolator. We next
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discuss the discretisation of the various terms in the Stokes equations. The viscous
term is discretised by adapting the bilinear form for the Poisson problem to the vector
case. The pressure–velocity coupling term, on the other hand, hinges on the discrete
divergence reconstruction introduced in the previous section. A central result of this
section is the proof of consistency and inf–sup stability for the discrete pressure–
velocity coupling bilinear form. In Section 8.4 we derive a reformulation of the HHO
method in terms of numerical fluxes, which shows that both momentum and mass
are conserved inside each element, and that the corresponding fluxes are continuous
across interfaces.

In Section 8.5,we carry out an error analysis.Wefirst derive energy error estimates
showing, for smooth enough solutions, convergence in hk+1 (with h and k ≥ 0
denoting, as usual, the meshsize and polynomial degree, respectively) for an H1-like
norm of the velocity error and the L2-norm of the pressure error. We next derive
an improved L2-error estimate in hk+2 for the velocity under an elliptic regularity
assumption. These theoretical estimates are illustrated by a numerical example.

Finally, in Section 8.6 we discuss a variation of the method which delivers an
error estimate for the velocity independent of both the pressure and the viscosity. In
practice, this property is relevant when dealing with large irrotational body forces,
as it typically delivers a better approximation of the velocity.

8.1 Model

In this section we discuss the continuous setting for the model.

8.1.1 The Stokes problem

Let d ∈ {2,3} and take Ω ⊂ Rd that satisfies Assumption 1.3. We additionally
assume that Ω has a Lipschitz continuous boundary, that is, for any x ∈ ∂Ω there is
a neighbourhood Ox of x in Rd such that Ω ∩ Ox is, in a suitable set of Cartesian
coordinates, the epigraph of a Lipschitz-continuous function.

Let ν > 0 denote a real number representing the kinematic viscosity, and let
f : Ω→ Rd denote a body force. The steady Stokes problem for a uniform density,
Newtonian fluid consists in finding the velocity u : Ω → Rd and the pressure
p : Ω→ R such that

−ν∆u + ∇p = f in Ω, (8.1a)
∇·u = 0 in Ω, (8.1b)

u = 0 on ∂Ω, (8.1c)∫
Ω

p = 0. (8.1d)
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Equation (8.1a) expresses the momentum balance. The first term in (8.1a) accounts
for viscous phenomena, and its expression is specialised to the case of uniform
kinematic viscosity: for variable viscosity, one should replace −ν∆u by −∇·(ν∇su),
with ∇s denoting the symmetric gradient defined by (7.4). The second term in (8.1a)
represents an isotropic contribution to internal stresses which, as we will see, is
intimately linked to the enforcement of the incompressibility constraint (8.1b); see
Remark 8.7. To close problem (8.1a), we have considered, for the sake of simplicity,
the so-calledwall (homogeneousDirichlet) boundary condition (8.1c); the discussion
extends without difficulties to other standard boundary conditions. Finally, condition
(8.1d) is introduced to uniquely identify the pressure, which would otherwise be
defined only up to an additive constant.

Remark 8.1 (Constant kinematic viscosity). As we have assumed constant kinematic
viscosity, dividing (8.1a) by ν and replacing p ← ν−1p and f ← ν−1 f shows that
we could in fact have simply taken ν = 1. This argument, however, does not apply
to the full Navier–Stokes problem owing to the presence of an additional nonlinear
term in (8.1a). Thus, in view of Chapter 9, we will keep the kinematic viscosity
throughout this chapter, with the exception of Section 8.5.2, which contains material
that will not be further developed in the context of the Navier–Stokes problem.

8.1.2 Weak formulation

We next discuss a standard weak formulation of the Stokes problem. For the sake of
uniformity with the sibling Chapter 9, the L2-product notation introduced in Remark
1.14 will often be dropped in favour of integrals. As a consequence, when they are
used, L2-norms and inner products are explicitly identified for the sake of coherence.

Assume f ∈ L2(Ω)d and define the following spaces for the velocity and the
pressure:

U B H1
0 (Ω)d, P B

{
q ∈ L2(Ω) :

∫
Ω

q = 0
}
. (8.2)

A classical weak formulation of problem (8.1) reads: Find (u, p) ∈ U × P such that

νa(u, v) + b(v, p) =
∫
Ω

f ·v ∀v ∈ U, (8.3a)

−b(u,q) = 0 ∀q ∈ L2(Ω), (8.3b)

with bilinear forms a : U × U → R and b : U × L2(Ω) → R defined by

a(w, v) B
∫
Ω

∇w:∇v, b(v,q) B −
∫
Ω

(∇·v) q, (8.4)

where we remind the reader that the Frobenius product is such that, for all σ,τ ∈
Rd×d , σ:τ B

∑d
i=1

∑d
j=1 σi jτi j .



352 8 Stokes

Remark 8.2 (Test space in (8.3b)). In (8.3b), it is possible to take L2(Ω) instead of P
as a test space because the following compatibility condition is verified:

− b(u,1) =
∫
Ω

∇·u =
∫
∂Ω

u·n = 0, (8.5)

where we have integrated by parts in the second passage and used the wall boundary
condition strongly incorporated in U to conclude.

An equivalent formulation of problem (8.3) is obtained the following way. Set

X B U × P,

and introduce the global bilinear formA : X×X → R such that, for all (w,r), (v,q) ∈
X ,

A((w,r), (v,q)) B νa(w, v) + b(v,r) − b(w,q). (8.6)

Then, (8.3) is equivalent to: Find (u, p) ∈ X such that

A((u, p), (v,q)) =
∫
Ω

f ·v ∀(v,q) ∈ X . (8.7)

The well-posedness of problem (8.3) (or, equivalently, (8.7)) hinges on two key
properties: (i) the coercivity of the bilinear form a, resulting from the Poincaré
inequality, and (ii) the inf–sup stability of the bilinear form b which, as we will see,
corresponds to the surjectivity of the divergence operator in the pressure space.

8.1.3 Inf–sup stability of the pressure–velocity coupling

We introduce the pressure–velocity coupling operator such that

B : U 3 v 7−→ Bv B −∇·v ∈ P. (8.8)

To check that, for any v ∈ U , Bv has zero mean-value on Ω (hence it belongs to P),
it suffices to proceed as in (8.5). Additionally, it is a simple matter to see that Bv is
the Riesz representation of the linear form b(v, ·) in L2(Ω) equipped with the usual
inner product (·, ·)L2(Ω), that is

(Bv,q)L2(Ω) = b(v,q) ∀q ∈ L2(Ω). (8.9)

Lemma 8.3 (Continuous inf–sup condition). There exists a real number β > 0
depending only on Ω such that
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∀q ∈ P, ∃vq ∈ U such that
q = Bvq = −∇·vq and β‖vq ‖H1(Ω)d ≤ ‖q‖L2(Ω). (8.10)

Moreover, property (8.10) is equivalent to the following inf–sup condition:

∀q ∈ P, β‖q‖L2(Ω) ≤ sup
v∈U\{0}

b(v,q)
‖v‖H1(Ω)d

. (8.11)

Remark 8.4 (Properties (8.10)). The first condition in (8.10) expresses the fact that
B is surjective. The second condition in (8.10) is inferred from the Open Mapping
Theorem (see, e.g., [81, Theorem 2.6]), whose statement is recalled next.

Theorem 8.5 (Open mapping). Let E and F be two Banach spaces, and let L be a
continuous linear operator from E to F that is surjective. Then, there is a constant
c > 0 such that BF (0, c) ⊂ L(BE (0,1)) where, with X Banach space and r > 0,
BX (0,r) B {x ∈ X : ‖x‖X < r} denotes the open ball in X centred at 0 and of
radius r .

Apply this result to E = U , F = P, and L = B, assuming that the surjectivity
of the latter operator has been established. Then, for all q ∈ P\{0}, c

2‖q ‖
L2(Ω)

q ∈
BP(0, c) and thus there exists v̂q ∈ BU (0,1) such that Bv̂q = c

2‖q ‖
L2(Ω)

q. Setting

vq B
2‖q ‖

L2(Ω)
c v̂q , we have Bvq = q and ‖vq ‖H1(Ω)d ≤

2‖q ‖
L2(Ω)
c , which shows that

(8.10) holds with β = c/2. This constant β depends only on Ω since c, provided by
the Open Mapping Theorem, depends only on B, which is fully determined by Ω.

Proof (Lemma 8.3). The proof is classical, and can be found in several textbooks;
see, e.g. [59, 180, 199, 259]. It is summarised here to make the exposition self-
contained. We proceed in two steps: first, we prove that conditions (8.10) and (8.11)
are equivalent; then we show that the inf–sup condition (8.11) holds.

(i) Proof of the equivalence (8.10) ⇐⇒ (8.11). Let us assume that (8.10) holds.
Then, by definition of vq and (8.9),

sup
v∈U\{0}

b(v,q)
‖v‖H1(Ω)d

≥ b(vq,q)
‖vq ‖H1(Ω)d

=
‖q‖2

L2(Ω)
‖vq ‖H1(Ω)d

≥ β‖q‖L2(Ω),

which is precisely (8.11).
We now assume that (8.11) holds. We denote by U? B [H−1(Ω)]d the dual space

ofU , and we identify P with its dual space. Let B? : P→ U? be the adjoint operator
of B such that

∀q ∈ P, 〈B?q, v〉U?,U = (Bv,q)L2(Ω) ∀v ∈ U,

where 〈·, ·〉U?,U denotes the duality pairing between U? and U . Using the character-
isation (8.9) of B followed by the above equation, we have that
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sup
v∈U\{0}

b(v,q)
‖v‖H1(Ω)d

= sup
v∈U\{0}

(Bv,q)L2(Ω)
‖v‖H1(Ω)d

= sup
v∈U\{0}

〈B?q, v〉U?,U

‖v‖H1(Ω)d
= ‖B?q‖U?,

where the conclusion follows from the standard definition of the dual norm. Hence,
condition (8.11) can be reformulated as follows:

∀q ∈ P, β‖q‖L2(Ω) ≤ ‖B?q‖U? . (8.12)

Condition (8.12) implies that

Ker(B?) = {0},

as can be checked observing that, for any q ∈ P, if B?q = 0 then ‖q‖L2(Ω) ≤
β−1‖B?q‖U? = 0, i.e., q = 0 since ‖·‖L2(Ω) is a norm on P.

Let us now prove that Im(B?) is closed in U?. Let {B?qn}n∈N be a converging
(and thus Cauchy) sequence inU?, for some sequence {qn}n∈N in P. Then, by (8.12),
we have

‖qn − qm‖L2(Ω) ≤ β−1‖B?qn − B?qm‖U?,

which shows that {qn}n∈N is a Cauchy sequence in P and thus converges toward
some q in this space. The continuity of B? then ensures that B?qn → B?q, which
proves that Im(B?) is closed in U?.

We next apply the Closed Range Theorem (see, e.g., [183, TheoremA.34]), whose
statement is recalled next.

Theorem 8.6 (Closed range). Let E and F be two real Banach spaces, and let L be
a continuous linear operator from E to F. Then, denoting by L? the adjoint operator
of L, the following statements are equivalent: (i) Im(L) is closed in F; (ii) Im(L?) is
closed in E?; (iii) Im(L) = (Ker(L?))⊥; (iv) Im(L?) = (Ker(L))⊥.
By virtue of this theorem, having proved that Im(B?) is closed in U?, it follows that
Im(B) = (Ker(B?))⊥ = {0}⊥ = P, i.e., B is surjective. The argument in Remark 8.4
then concludes the proof of (8.10).

(ii) Proof of (8.11). We start with the following Nečas inequality proved in [243]
under the Lipschitz assumption on Ω: There exists C > 0 such that

∀q ∈ L2(Ω), C‖q‖L2(Ω) ≤ ‖q‖H−1(Ω) + ‖∇q‖H−1(Ω)d . (8.13)

Reproducing the argument by contradiction used in Step (ii) of the proof of Lemma
7.7 to establish (7.128) with T = Tn = Ω (fixing the domain eliminates the need to
consider star-shaped regions) shows the existence of C ′ > 0 depending only on Ω
such that

∀q ∈ P, ‖q‖H−1(Ω) ≤ C ′‖∇q‖H−1(Ω)d .

Combining this estimate with (8.13) shows that ‖q‖L2(Ω) ≤ C−1(C ′+1)‖∇q‖H−1(Ω)d ,
which is precisely (8.12) (with β = C(C ′+1)−1) since B? is in fact the distributional
gradient from P toU?. The equivalence, established in Point (i) above, of (8.12) and
(8.11) concludes the proof. ut
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Remark 8.7 (Variational interpretation and role of the pressure). Problem (8.3) is
equivalent to the Lagrange multiplier formulation of the minimisation problem

min
v∈U ,∇ ·v=0

(
ν

2
‖∇v‖2

L2(Ω)d×d −
∫
Ω

f ·v
)
,

where the pressure acts as the Lagrange multiplier for the zero-divergence constraint.
The condition (8.11) ensures that ∇·U = P.

8.2 Local construction

We discuss here the local construction underlying the HHO discretisation of problem
(8.3). Throughout this section, we work on a fixed mesh element T ∈ Th .

8.2.1 Local space of discrete velocity unknowns

The viscous term in (8.3a) is nothing but the vector version of the pure diffusion
operator studied in Chapter 2 obtained applying the latter component-wise. Thus,
its HHO discretisation hinges on the following local space of discrete velocity
unknowns, which is the natural adaptation to the vector case of the space defined by
(2.6):

Uk
T B

{
vT = (vT , (vF )F ∈FT ) : vT ∈ Pk(T)d and vF ∈ Pk(F)d ∀F ∈ FT

}
.

The local interpolator IkT : H1(T)d → Uk
T is such that, for all v ∈ H1(T)d ,

IkT v B (π0,k
T v, (π0,k

F v)F ∈FT ). (8.14)

We define on Uk
T the local H1-like seminorm ‖·‖1,T such that, for all vT ∈ Uk

T ,

‖vT ‖1,T B
(
‖∇vT ‖2L2(T )d×d + |vT |21,∂T

) 1
2

|vT |1,∂T B
( ∑
F ∈FT

h−1
F ‖vF − vT ‖2L2(F)d

) 1
2

,

(8.15)

where, as usual, the negative power of the diameter of F in the boundary seminorm
ensures that both contributions have the same scaling.
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8.2.2 Velocity and divergence reconstructions

We next introduce the local reconstructions on which the HHO method hinges: (i) a
velocity reconstruction for use in the discretisation of the viscous term obtained by
adapting (2.11) to the vector case, and (ii) a divergence reconstruction for use in the
pressure–velocity coupling term.

Recalling the discussion of Section 2.1.3 for the scalar case, the local velocity
reconstruction rk+1

T : Uk
T → Pk+1(T)d is defined such that, for all vT ∈ Uk

T and all
w ∈ Pk+1(T)d ,∫

T

∇rk+1
T vT :∇w = −

∫
T

vT ·∆w +
∑
F ∈FT

∫
F

vF ·(∇wnTF ) (8.16a)

and ∫
T

(rk+1
T vT − vT ) = 0. (8.16b)

Notice that we have used the notation rk+1
T instead of pk+1

T to avoid confusion with the
displacement reconstruction (7.39) introduced in Chapter 7, as well as with pressure
unknowns. Using the exact same arguments that lead to (2.14), we infer that, for any
v ∈ H1(T)d ,

rk+1
T IkT v = π

1,k+1
T v, (8.17)

where π1,k+1
T denotes the vector version of the elliptic projector obtained applying

component-wise the scalar counterpart introduced in Definition 1.39. This commu-
tation property is illustrated in Fig. 8.1.

H1(T)d Uk
T

Pk+1(T)d

I kT

π1,k+1
T rk+1

T

Fig. 8.1: Illustration of the commutation property (8.17) of rk+1
T .

To define the divergence reconstruction, let us start with an inspiring remark, in
the spirit of Sections 2.1.1, 3.1.3.1, and 4.2.1. Let v ∈ H1(T)d . We have, for all
q ∈ Pk(T), ∫

T

(∇·v) q = −
∫
T

v·∇q +
∑
F ∈FT

∫
F

(v·nTF ) q

= −
∫
T

π0,k
T v·∇q +

∑
F ∈FT

∫
F

(π0,k
F v·nTF ) q, (8.18)
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where we have used an integration by parts, and (1.57) to insert the projectors in the
second line after observing that ∇q ∈ Pk−1(T)d ⊂ Pk(T)d and q |FnTF ∈ Pk(F)d
for all F ∈ FT . This formula shows that the L2-orthogonal projection of ∇·v on
Pk(T) can be computed using the projections of v on Pk(T)d and on Pk(F)d for
all F ∈ FT . It justifies the following definition of the divergence reconstruction
Dk
T : Uk

T → Pk(T): For all vT ∈ Uk
T and all q ∈ Pk(T),∫

T

Dk
T vT q = −

∫
T

vT ·∇q +
∑
F ∈FT

∫
F

(vF ·nTF ) q (8.19)

=

∫
T

(∇·vT )q +
∑
F ∈FT

∫
F

(vF − vT )·nTF q, (8.20)

where the second equation follows from the first one by an integration by parts. By
the Riesz representation theorem in Pk(T) endowed with the L2(T)-inner product,
Dk
T vT is well-defined. As a consequence of (8.18), and recalling the definition (8.14)

of the local interpolator, the following commutation property holds (see illustration
in Fig. 8.2): For all v ∈ H1(T)d ,

Dk
T I

k
T v = π

0,k
T (∇·v). (8.21)

H1(T)d L2(T)

Uk
T Pk(T)

I kT

∇ ·

π0,k
T

Dk
T

Fig. 8.2: Illustration of the commutation property (8.21) of Dk
T .

Remark 8.8 (Local divergence operator). We notice, in passing, that this local di-
vergence operator Dk

T is the same as the one defined in (7.35): formula (8.19) can
indeed be recovered writing (7.33) with test function τ = qId and q spanning Pk(T).

8.3 Discrete problem

In this sectionwe define the global spaces of discrete velocity and pressure unknowns,
formulate the discrete counterparts of the viscous and pressure–velocity coupling
terms, and state the discrete problem.
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8.3.1 Global spaces of discrete unknowns

The global space of discrete unknowns is defined as

Uk
h B

{
vh = ((vT )T ∈Th , (vF )F ∈Fh ) :

vT ∈ Pk(T)d ∀T ∈ Th and vF ∈ Pk(F)d ∀F ∈ Fh
}
. (8.22)

Given vh ∈ Uk
h , for all T ∈ Th we denote by vT B (vT , (vF )F ∈FT ) ∈ Uk

T its
restriction to T . We also define the broken polynomial function vh ∈ Pk(Th)d such
that

(vh) |T B vT ∀T ∈ Th .
The discrete unknowns corresponding to a smooth function v ∈ H1(Ω)d are obtained
via the global interpolator Ikh : H1(Ω)d → Uk

h such that

Ikhv B ((π0,k
T v)T ∈Th , (π0,k

F v)F ∈Fh ). (8.23)

Finally, we define on Uk
h the global H1-like seminorm ‖·‖1,h such that, for all

vh ∈ Uk
h ,

‖vh ‖1,h B
( ∑
T ∈Th

‖vT ‖21,T
) 1

2

, (8.24)

with local seminorm ‖·‖1,T given by (8.15). The following uniform boundedness
property of the global interpolator will be crucial to prove the discrete inf–sup
condition (8.36).

Proposition 8.9 (Boundedness of the global interpolator). There exists a real
number CI > 0 independent of h, but possibly depending on d, %, and k, such that,
for all v ∈ H1(Ω)d ,

‖Ikhv‖1,h ≤ CI |v |H1(Ω)d . (8.25)

Proof. Square the local boundedness property (2.9) applied to each component vi
of v = (vi)1≤i≤d , sum over T ∈ Th and over 1 ≤ i ≤ d, and take the square root of
the resulting inequality. ut

With the above definitions, the global spaces of discrete unknowns for the velocity
and the pressure, respectively accounting for the wall boundary condition (8.1c) and
the zero-average condition (8.1d), are

Uk
h,0 B

{
vh ∈ Uk

h : vF = 0 ∀F ∈ F b
h

}
,

Pk
h B P

k(Th) ∩ P =
{
qh ∈ Pk(Th) :

∫
Ω

qh = 0
}
.

(8.26)
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8.3.2 Viscous term

The viscous term is discretised by means of the bilinear form ah : Uk
h × Uk

h → R
such that, for all wh, vh ∈ Uk

h ,

ah(wh, vh) B
∑
T ∈Th

aT (wT , vT ), (8.27)

where, in analogy with (2.15), the local contribution is such that

aT (wT , vT ) B
∫
Ω

∇rk+1
T wT :∇rk+1

T vT + sT (wT , vT ). (8.28)

In the above expression, the first term in the right-hand side is the usual Galerkin
contribution responsible for consistency, while sT : Uk

T × Uk
T → R is a local

stabilisation bilinear form that satisfies the following conditions, adapting those in
Assumption 2.4 to the vector case.

Assumption 8.10 (Local stabilisation bilinear form sT ) The local stabilisation bi-
linear form sT : Uk

T × Uk
T → R satisfies the following properties:

(S1) Symmetry and positivity. sT is symmetric and positive semidefinite;
(S2) Stability and boundedness. There is a real number Ca > 0 independent of h

and of T such that, for all vT ∈ Uk
T ,

C−1
a ‖vT ‖21,T ≤ aT (vT , vT ) ≤ Ca‖vT ‖21,T ; (8.29)

(S3) Polynomial consistency. For all w ∈ Pk+1(T)d and all vT ∈ Uk
T , it holds

sT (IkTw, vT ) = 0.

As for the Poisson problem, viable local stabilisation bilinear forms can be obtained
penalising, in a least square sense, the high-order differences obtained through the
operators δkT : Uk

T → Pk(T)d and, for all F ∈ FT , δkTF : Uk
T → Pk(F)d such that,

for all vT ∈ Uk
T ,

δkT vT B π0,k
T (rk+1

T vT − vT ), δkTF vT B π0,k
F (rk+1

T vT − vF ) ∀F ∈ FT . (8.30)

Specifically, the vector versions of the stabilisation bilinear forms discussed in Ex-
amples 2.7 and 2.8 are, respectively,

sT (uT , vT ) =
∑
F ∈FT

h−1
F

∫
F

(δkTFuT − δkT uT )·(δkTF vT − δkT vT )

and
sT (uT , vT ) = h−2

T

∫
T

δkT uT ·δkT vT +
∑
F ∈FT

h−1
F

∫
F

δkTFuT ·δkTF vT .
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Lemma 8.11 (Properties of ah). The bilinear form ah enjoys the following proper-
ties:

(i) Stability and boundedness. For all vh ∈ Uk
h,0, it holds with Ca as in (8.29) that

C−1
a ‖vh ‖21,h ≤ ‖vh ‖2a,h ≤ Ca‖vh ‖21,h where ‖vh ‖a,h B ah(vh, vh)

1
2 . (8.31)

(ii) Consistency. It holds, for all r ∈ {0, . . . , k} and all w ∈ H1
0 (Ω)d ∩ Hr+2(Th)d

such that ∆w ∈ L2(Ω)d ,

sup
vh ∈Uk

h ,0 , ‖vh ‖1,h=1
|Ea,h(w; vh)| . hr+1 |w |Hr+2(Th )d , (8.32)

where the hidden constant is independent of w and h, and the linear form
Ea,h(w; ·) : Uk

h,0 → R representing the consistency error is such that, for all
vh ∈ Uk

h,0,

Ea,h(w; vh) B −
∫
Ω

∆w·vh − ah(Ikhw, vh). (8.33)

Proof. Property (8.31) readily follows summing (8.29) over T ∈ Th . The proof of
property (8.32) is obtained repeating the arguments in Point (ii) of Lemma 2.18, with
the sole difference that the second factor in (2.47) is bounded by ‖vh ‖1,h instead of
‖vh ‖a,h (this is possible thanks to the norm equivalence proved in Point (i)). ut

8.3.3 Pressure–velocity coupling

The pressure–velocity coupling is realised through the bilinear form bh : Uk
h ×

Pk(Th) → R such that, for all vh ∈ Uk
h and all qh ∈ Pk(Th),

bh(vh,qh) B −
∑
T ∈Th

∫
T

Dk
T vT qT , (8.34)

where we have set, for all T ∈ Th , qT B (qh) |T .
Lemma 8.12 (Properties of bh). The bilinear form bh enjoys the following proper-
ties:

(i) Consistency/1. For all v ∈ H1(Ω)d , it holds that

bh(Ikhv,qh) = b(v,qh) ∀qh ∈ Pk(Th). (8.35)

(ii) Inf–sup stability. There is a real number Cb > 0 independent of h, but possibly
depending on Ω, d, %, and k, such that
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∀qh ∈ Pk
h, Cb‖qh ‖L2(Ω) ≤ sup

vh ∈Uk
h ,0\{0}

bh(vh,qh)
‖vh ‖1,h

. (8.36)

(iii) Consistency/2. It holds, for all r ∈ {0, . . . k} and all q ∈ H1(Ω) ∩ Hr+1(Th),

sup
vh ∈Uk

h ,0 , ‖vh ‖1,h=1
|Eb,h(q; vh)| . hr+1 |q |Hr+1(Th ), (8.37)

where the hidden constant is independent of q and h, and the linear form
Eb,h(q; ·) : Uk

h → R representing the consistency error is such that, for all
vh ∈ Uk

h ,

Eb,h(q; vh) B
∫
Ω

∇q·vh − bh(vh, π0,k
h

q). (8.38)

Proof. (i) Consistency/1. It holds

bh(Ikhv,qh) = −
∑
T ∈Th

∫
T

Dk
T I

k
T v qT

= −
∑
T ∈Th

∫
T

π0,k
T (∇·v) qT

= −
∑
T ∈Th

∫
T

(∇·v) qT = b(v,qh),

where we have used the definition (8.34) of the bilinear form bh in the first line, the
commutation property (8.21) of the local discrete divergence operator in the second
line, the definition (1.57) of π0,k

T together with the fact that qT ∈ Pk(T) for all T ∈ Th
to pass to the third line, and the definition (8.4) of the bilinear form b to conclude.
(ii) Inf–sup stability.We start by noticing that the properties (8.25) and (8.35) express
the fact that Ikh is a Fortin (or B-compatible) operator; see [194] and also [57, Section
5.4]. Let now qh ∈ Pk

h
. From Lemma 8.3, we infer the existence of vqh ∈ H1

0 (Ω)d
such that −∇·vqh = qh and β‖vqh ‖H1(Ω)d ≤ ‖qh ‖L2(Ω), with constant β depending
only on Ω. Using the above fact, we get

‖qh ‖2L2(Ω) = −
∫
Ω

(∇·vqh ) qh = b(vqh ,qh) = bh(Ikhvqh ,qh),

where we have used the definition (8.4) of the continuous pressure–velocity coupling
bilinear form b and the consistency property (8.35) of its discrete counterpart bh
with v = vqh to conclude. Hence, denoting by Sh the supremum in the right-hand
side of (8.36) and using (8.25), we can write

‖qh ‖2L2(Ω) ≤ Sh ‖Ikhvqh ‖1,h . Sh ‖vqh ‖H1(Ω)d . Sh ‖qh ‖L2(Ω).

Simplifying yields (8.36).
(iii) Consistency/2. Integrating by parts element by element, and using, in a similar
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way as in the proof of Corollary 1.19, the fact that the jumps of q ∈ H1(Ω) vanish
across interfaces (use Lemma 1.21 with p = 2) and that vF is single-valued for all
F ∈ F i

h
while it vanishes on any F ∈ F b

h
to insert it into the second term, we can

write ∫
Ω

∇q·vh = −
∑
T ∈Th

(∫
T

q (∇·vT ) +
∑
F ∈FT

∫
F

q (vF − vT )·nTF

)
. (8.39)

On the other hand, recalling the definition (8.34) of bh and expanding, for all T ∈ Th ,
Dk
T vT according to (8.20) with π0,k

T q instead of q, we have that

bh(vh, π0,k
h

q) = −
∑
T ∈Th

(∫
T

q (∇·vT ) +
∑
F ∈FT

∫
F

π0,k
T q (vF − vT )·nTF

)
, (8.40)

where we have used the definition (1.57) of π0,k
T together with the fact that (∇·vT ) ∈

Pk−1(T) ⊂ Pk(T) to remove the projector from the first term inside the summation
over T ∈ Th . Subtracting (8.40) from (8.39), taking absolute values, and using
generalised Hölder inequalities with exponents (2,2,∞) followed by ‖nTF ‖L∞(F)d =
1 and hF ≤ hT , we get����∫

Ω

∇q·vh − bh(vh, π0,k
h

q)
����

≤
∑
T ∈Th

∑
F ∈FT

h
1
2
F ‖q − π0,k

T q‖L2(F) h
− 1

2
F ‖vF − vT ‖L2(F)d ‖nTF ‖L∞(F)d

≤
∑
T ∈Th

∑
F ∈FT

h
1
2
T ‖q − π0,k

T q‖L2(F) h
− 1

2
F ‖vF − vT ‖L2(F)d

.
∑
T ∈Th

hr+1
T |q |Hr+1(T ) |vT |1,∂T ,

(8.41)

where we have concluded using the trace approximation properties (1.75) of the
L2-orthogonal projector with l = k, p = 2, s = r + 1, and m = 0. Using a discrete
Cauchy–Schwarz inequality on the sum over T ∈ Th , noticing that hT ≤ h for all
T ∈ Th , and recalling the definition (8.24) of the norm ‖·‖1,h (see also (8.15)) gives����∫

Ω

∇q·vh − bh(vh, π0,k
h

q)
���� . hr+1 |q |Hr+1(Th )‖vh ‖1,h .

Passing to the supremum over
{
vh ∈ Uk

h,0 : ‖vh ‖1,h = 1
}
yields (8.37). ut
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8.3.4 Discrete problem and well-posedness

The HHO scheme for the approximation of problem (8.3) reads: Find (uh, ph) ∈
Uk

h,0 × Pk
h
such that

νah(uh, vh) + bh(vh, ph) =
∫
Ω

f ·vh ∀vh ∈ Uk
h,0, (8.42a)

−bh(uh,qh) = 0 ∀qh ∈ Pk(Th). (8.42b)

Remark 8.13 (Test space in (8.42b)). Similarly to the continuous problem (see Re-
mark 8.2), it holds that −bh(vh,1) = 0 for all vh ∈ Uk

h,0, which allows one to take
the full broken polynomial space Pk(Th) instead of its zero-average subspace Pk

h
as

a test space in (8.42b). To check this property, let vh ∈ Uk
h,0 and use the definitions

(8.34) of the bilinear form bh and (8.19) of the discrete divergence operator to write:

bh(vh,1) = −
∑
T ∈Th

∫
T

Dk
T vT

= −
∑
T ∈Th

∑
F ∈FT

∫
F

vF ·nTF

= −
∑
F ∈Fh

∑
T ∈TF

∫
F

vF ·nTF = 0,

where the conclusion follows using the fact that vF is single-valued on every interface
F ∈ F i

h
(so that, in particular,

∑
T ∈TF

∫
F
vF ·nTF =

∫
F
vF ·(nT1F + nT2F ) = 0, with

T1,T2 the two elements on each side of F), while it vanishes on every boundary face
F ∈ F b

h
.

Remark 8.14 (Efficient implementation). As originally noticed in [155, Section 6.2],
when solving the system of algebraic equations corresponding to (8.42), all element-
based velocity unknowns and all but one pressure unknowns per element can be
locally eliminated by computing the corresponding Schur complement element-
wise. Since all the computations are local, this static condensation procedure is a
trivially parallel task which can fully benefit from multi-thread and multi-processor
architectures. As a result, after eliminating the velocity unknowns corresponding to
Dirichlet boundary conditions, we end up solving a linear system of size

Ndof,h B d card(F i
h)

(
k + d − 1

d − 1

)
+ card(Th). (8.43)

As for the continuous problem, an equivalent reformulation can be obtained setting

Xk
h B Uk

h,0 × Pk
h, (8.44)
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introducing the global bilinear form Ah : Xk
h
× Xk

h
→ R such that, for all

(wh,rh), (vh,qh) ∈ Xk
h
,

Ah((wh,rh), (vh,qh)) B νah(wh, vh) + bh(vh,rh) − bh(wh,qh), (8.45)

and writing: Find (uh, ph) ∈ Xk
h
such that

Ah((uh, ph), (vh,qh)) =
∫
Ω

f ·vh ∀(vh,qh) ∈ Xk
h . (8.46)

To study the well-posedness of the discrete problem, we need the following dis-
crete Poincaré inequality, which immediately follows from the scalar case proved in
Lemma 2.15: For all vh ∈ Uk

h,0,

‖vh ‖L2(Ω)d ≤ CP‖vh ‖1,h . (8.47)

Lemma 8.15 (Well-posedness of problem (8.42)). Problem (8.42) (or, equiva-
lently, (8.46)) is well-posed, and we have the following a priori bounds for the
unique discrete solution (uh, ph) ∈ Uk

h,0 × Pk
h
:

ν‖uh ‖1,h ≤ CaCP‖ f ‖L2(Ω)d , ‖ph ‖L2(Ω) ≤ C−1
b

(
1 + C2

a

)
CP‖ f ‖L2(Ω)d , (8.48)

with Ca as in (8.29), Cb as in (8.36), and CP as in (8.47).
The proof hinges on the following result, which constitutes a special case of [183,
Theorem 2.34].
Lemma 8.16 (Well-posedness of saddle point problems). Let U and P be two
reflexive Banach spaces, let a : U × U→ R and b : U × P→ R denote two bounded
bilinear forms, and let f ∈ U? and g ∈ P?, with U? and P? denoting the dual spaces
of U and P, respectively. Further assume that:
(i) The bilinear form a is U-coercive, i.e., there exists a real number α > 0 such

that, for all v ∈ U,
α‖v‖2U ≤ a(v, v);

(ii) The bilinear form b is inf–sup stable, i.e., there exists a real number β > 0 such
that, for all q ∈ P,

β‖q‖P ≤ sup
v∈U\{0}

b(v,q)
‖v‖U .

Then, the problem: Find (u, p) ∈ U × P such that

a(u, v) + b(v, p) = 〈f, v〉U?,U ∀v ∈ U,
−b(u,q) = 〈g,q〉P?,P ∀q ∈ P,

is well-posed, i.e., it admits a unique solution for which the following a priori bounds
hold:
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‖u‖U ≤ C1‖f‖U? + C2‖g‖P?, ‖p‖P ≤ C2‖f‖U? + C3‖g‖P?, (8.49)

where C1 B
1
α , C2 B

1
β

(
1 + ‖a‖U×Uα

)
, and C3 B

‖a‖U×U
β2

(
1 + ‖a‖U×Uα

)
.

Proof (Lemma 8.15).We apply Lemma 8.16 with U = Uk
h,0 equipped with the norm

ν
1
2 ‖·‖1,h , P = Pk

h
equipped with the norm ν−

1
2 ‖·‖L2(Ω), a = νah (so that, by (8.31),

the coercivity constant is α = C−1
a and it holds ‖a‖U×U ≤ Ca), b = bh (so that, by

(8.36), the inf–sup constant is β = Cb), 〈f, v〉U?,U =
∫
Ω
f ·v, and 〈g,q〉P?,P = 0. The

a priori bounds (8.48) follow from (8.49) after estimating

|〈f, v〉U?,U | =
����∫
Ω

f ·v
���� ≤ ‖ f ‖L2(Ω)d ‖vh ‖L2(Ω)d ≤ ν−

1
2 CP‖ f ‖L2(Ω)d ν

1
2 ‖vh ‖1,h,

so that, in particular, ‖f‖U? ≤ ν− 1
2 CP‖ f ‖L2(Ω)d . ut

8.4 Flux formulation

Denote by (u, p) ∈ U × P the unique solution to (8.3) and assume, for the sake
of simplicity, that u ∈ H2(Th)d and p ∈ H1(Th). At the continuous level, we
have the following local momentum and mass balances: For all T ∈ Th and all
(vT ,qT ) ∈ Pk(T)d × Pk(T),∫

T

ν∇u:∇vT −
∫
T

p (∇·vT ) +
∑
F ∈FT

∫
F

(−ν∇u + pId) |T nTF ·vT =
∫
T

f ·vT

(8.50a)∫
T

u·∇qT −
∫
F

(u |T ·nTF ) qT = 0. (8.50b)

Here, for any F ∈ FT , the quantities (−ν∇u + pId) |T nTF and −u |T ·nTF can be
interpreted, respectively, as the momentum and mass fluxes exiting T through F.
Using Lemma 1.17 with τ successively equal to the rows of (−ν∇u + pId) for the
momentum flux and τ = u for the mass flux, we infer that their normal traces are
continuous across interfaces: For all F ∈ F i

h
such that F ⊂ ∂T1 ∩ ∂T2 with distinct

mesh elements T1,T2 ∈ Th , it holds that

(−ν∇u + pId) |T1 nT1F + (−ν∇u + pId) |T2 nT2F = 0, (8.51a)
u |T1 ·nT1F + u |T2 ·nT2F = 0. (8.51b)

We notice, in passing, that the stronger condition u |T1 = u |T2 holds for the traces
of the velocity on either side of F as a result of the regularity u ∈ U together with
Lemma 1.21 applied component-wise with p = 2. The conservation property (8.51)
can be formulated with weaker regularity, but we do not further develop this point
here as it is not relevant to our purpose.
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The goal of this section is to show that discrete counterparts of (8.50)–(8.51) hold
for the discrete solution. Following the discussion in Section 2.2.5, to identify the
viscous contribution to the momentum flux, we introduce the boundary difference
space

Dk
∂T B

{
α∂T B (αF )F ∈FT : αF ∈ Pk(F)d ∀F ∈ FT

}
,

along with the boundary residual operator Rk
∂T B (Rk

TF )F ∈FT : Uk
T → Dk

∂T such
that, for all vT ∈ Uk

T ,

−
∑
F ∈FT

∫
F

Rk
TF vT ·αF = sT (vT , (0,α∂T )) ∀α∂T ∈ Dk

∂T . (8.52)

Lemma 8.17 (Flux formulation). Let Mh denote a polytopal mesh in the
sense of Definition 1.4. Assume that, for any T ∈ Th , the stabilisation bilinear
form sT satisfies Assumption 8.10. Let (uh, ph) ∈ Uk

h,0×Pk
h
and, for all T ∈ Th

and all F ∈ FT , define the numerical normal trace of the viscous momentum
flux as follows:

Φvisc
TF (uT ) B ν

(
−∇rk+1

T uT nTF + Rk
TFuT

)
,

with Rk
TF defined by (8.52).

Then, (uh, ph) is the unique solution to the discrete problem (8.42) (or,
equivalently, (8.46)) if and only if the following two properties hold:

(i) Local momentum and mass balance. For all T ∈ Th and all (vT ,qT ) ∈
Pk(T)d × Pk(T),∫

T

ν∇rk+1
T uT :∇vT −

∫
T

pT (∇·vT )

+
∑
F ∈FT

∫
F

(
Φvisc

TF (uT ) + pT nTF

)
·vT =

∫
T

f ·vT , (8.53a)∫
T

uT ·∇qT −
∑
F ∈FT

∫
F

(uF ·nTF )qT = 0. (8.53b)

(ii) Continuity of the numerical normal traces of the momentum and mass
fluxes. For any interface F ∈ F i

h
such that F ⊂ ∂T1 ∩ ∂T2 for distinct

mesh elements T1,T2 ∈ Th , it holds(
Φvisc

T1F
(uT1
) + pT1nT1F

)
+

(
Φvisc

T2F
(uT2
) + pT2nT2F

)
= 0, (8.54a)

uF ·nT1F + uF ·nT2F = 0. (8.54b)
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Proof. The proof adapts that of Lemma2.21 accounting for the following differences:
first, the velocity is a vector-valued unknown; second, the continuity of the mass flux
is not enforced by the scheme, but rather built into the single-valuedness of face
velocity unknowns.

The following equivalent expression for the viscous bilinear form ah defined by
(8.27) is inferred as in Lemma 2.25, where the scalar case is considered: For all
vh ∈ Uk

h,0,

νah(uh, vh)

=
∑
T ∈Th

[
ν

∫
T

∇rk+1
T uT :∇vT −

∑
F ∈FT

∫
F

Φvisc
TF (uT )·(vF − vT )

]
.

(8.55)

Moreover, writing the definition (8.34) of bh for qh = ph and expanding, for all
T ∈ Th , Dk

T vT according to (8.20) with q = pT , we obtain

bh(vh, ph) = −
∑
T ∈Th

[∫
T

pT (∇·vT ) +
∑
F ∈FT

∫
F

pT nTF ·(vF − vT )
]
. (8.56)

Plugging (8.55) and (8.56) into the discrete momentum equation (8.42a), and ex-
panding Dk

T in (8.42b) (see also (8.34)) according to its definition (8.19), we see that
(uh, ph) solves (8.42) if and only if, for all vh ∈ Uk

h,0 and all qh ∈ Pk(Th),

∑
T ∈Th

[ ∫
T

ν∇rk+1
T uT :∇vT −

∫
T

pT (∇·vT )

+
∑
F ∈FT

∫
F

(
Φvisc

TF (uT ) + pT nTF

)
·(vT − vF )

]
=

∑
T ∈Th

∫
T

f ·vT (8.57)

and ∑
T ∈Th

(∫
T

uT ·∇qT −
∑
F ∈FT

∫
F

(uF ·nTF )qT
)
= 0. (8.58)

The momentum flux balance (8.53a) and conservation (8.54a) follow from (8.57) as
in the proof of Lemma 2.25, by selecting as test vectors vh elements of the canonical
basis ofUk

h: (8.53a) is obtained by taking vh such that vT spans Pk(T)d for a selected
mesh element T ∈ Th while vT ′ = 0 for all T ′ ∈ Th \ {T} and vF = 0 for all F ∈ Fh;
(8.54a) corresponds to vh such that vT = 0 for all T ∈ Th , vF spans Pk(F)d for
a selected interface F ∈ F i

h
such that F ⊂ ∂T1 ∩ ∂T2 for distinct mesh elements

T1,T2 ∈ Th , and vF′ = 0 for all F ′ ∈ Fh \ {F}.
The mass balance equation (8.53b) clearly corresponds to testing (8.58) against

the canonical basis of Pk(Th), obtained by selecting, for each element T ∈ Th , qh
such that qT spans Pk(T) while qT ′ = 0 for all T ′ ∈ Th \ {T}. Being able to take
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Pk(T), and not just Pk
h
, as space for the test functions in (8.42b) is crucial to do so;

see Remark 8.13 on this subject.
Finally, the continuity of the mass fluxes expressed by (8.54b) is an immediate

consequence of the single-valuedness of face unknowns, and the fact that nT1F +

nT2F = 0 whenever F is an interface between the two cells T1, T2. ut

8.5 Error analysis

We carry out in this section the convergence analysis for the HHO scheme (8.42).

8.5.1 Energy error estimate

We start, as usual, by a convergence estimate for the discretisation error measured
in discrete norm of Xk

h
which we take such that, for all (vh,qh) ∈ Xk

h
, in accordance

with (A.18) and the choice of norms made in the proof of Lemma 8.15,

‖(vh,qh)‖X ,h B
(
ν‖vh ‖21,h + ν−1‖qh ‖2L2(Ω)

) 1
2
. (8.59)

Theorem 8.18 (Discrete energy error estimate). Let (Mh)h∈H denote a reg-
ular mesh sequence in the sense of Definition 1.9. Let a polynomial degree
k ≥ 0 be fixed. Let (u, p) ∈ U ×P denote the unique solution to the continuous
problem (8.3) (or, equivalently, (8.7)), for which we assume the additional
regularity u ∈ Hr+2(Th)d and p ∈ H1(Ω) ∩Hr+1(Th) for some r ∈ {0, . . . , k}.
For all h ∈ H , let (uh, ph) ∈ Uk

h,0 × Pk
h
denote the unique solution to the

discrete problem (8.42) (or, equivalently, (8.46)) with stabilisation bilinear
forms sT , T ∈ Th , in (8.28) satisfying Assumptions 8.10. Then,

‖(uh − Ikhu, ph − π0,k
h

p)‖X ,h
. C−1

A hr+1
(
ν

1
2 |u |Hr+2(Th )d + ν

− 1
2 |p|Hr+1(Th )

)
, (8.60)

where the hidden constant is independent of u, p, h and ν, while CA depends
on the stability constants of ah (see (8.31)) and bh (see (8.36)) according to

CA B
[
C2

a

(
1 + 2C−2

b C2
a

)2
+ 4C−2

b

]− 1
2

. (8.61)
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Proof. We invoke Corollary A.13 with U = U , P = P, Uh = Uk
h,0 equipped with

the norm ν
1
2 ‖·‖1,h and the velocity interpolator Ih = Ikh , Ph = Pk

h
equipped with

the norm ν−
1
2 ‖·‖L2(Ω) and the pressure interpolator Jh = π0,k

h
, ah = νah (so that,

by (8.31), ah is coercive with constant α = C−1
a and ‖ah ‖Uh×Uh ≤ Ca), bh = bh (so

that, by (8.36), bh satisfies the inf–sup condition with constant β = Cb). With these
choices, it follows from Lemma A.11 that Ah satisfies an inf–sup condition on Xk

h
with constant given by (8.61). Moreover, by the assumed regularity on u and p, (8.1)
holds almost everywhere in Ω; hence, f = −ν∆u + ∇p and the consistency error
defined by (A.24) can be written

Eh((u, p); (vh,qh)) =
∫
Ω

f ·vh − νah(Ikhu, vh) − bh(vh, π0,k
h

p)

+ bh(Ikhu,qh) (8.62)

= ν

(
−

∫
Ω

∆u·vh − ah(Ikhu, vh)
)

+

(∫
Ω

∇p·vh − bh(vh, π0,k
h

p)
)
+ bh(Ikhu,qh). (8.63)

Using the definitions (8.33) of the viscous consistency error and (8.38) of the
pressure–velocity coupling consistency error for the first two terms in parenthe-
ses, along with the consistency property (8.35) of bh together with the mass balance
equation (8.3b) to write bh(Ikhu,qh) = b(u,qh) = 0, we obtain

Eh((u, p); (vh,qh)) = νEa,h(u; vh) + Eb,h(p; vh).

Hence, by the consistency properties (8.32) and (8.37) of the bilinear forms ah and
bh , respectively, it is inferred, with ‖·‖X ,h,? denoting the norm dual to ‖·‖X ,h ,

‖Eh((u, p); (vh,qh))‖X ,h,? . hr+1
(
ν

1
2 |u |Hr+2(Th )d + ν

− 1
2 |p|Hr+1(Th )

)
, (8.64)

and the conclusion follows. ut

8.5.2 Improved L2-error estimates for the velocity

We derive here improved L2-error estimates for the velocity. Recalling Remark 8.1,
since the topics of this section will not be further developed for the Navier–Stokes
problem, we work under the assumption

ν = 1. (8.65)

As for the Poisson problem, we need further regularity for the continuous operator.
Specifically, we assume that, for all g ∈ L2(Ω)d , the unique solution of the problem:
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Find (wg,rg) ∈ X such that

A((wg,rg), (v,q)) =
∫
Ω

g·v ∀(v,q) ∈ X (8.66)

satisfies the a priori estimate

‖wg ‖H2(Ω)d + ‖rg ‖H1(Ω) ≤ C‖g‖L2(Ω)d , (8.67)

with real number C depending only on Ω. This elliptic regularity is known, for
example, if Ω is a convex polygon [217] or polyhedron [138].

Remark 8.19 (Elliptic regularity for the dual problem). Elliptic regularity of the
primal problem implies elliptic regularity also for the dual problem. Given g ∈
L2(Ω)d , the dual problem reads: Find (zg, sg) ∈ X such that

A((v,q), (zg, sg)) =
∫
Ω

g·v ∀(v,q) ∈ X . (8.68)

The definition (8.6) of A shows that (zg,−sg) solves the primal problem with the
same right-hand side so that, by (8.67), we have the a priori estimate

‖ zg ‖H2(Ω)d + ‖sg ‖H1(Ω) ≤ C‖g‖L2(Ω)d . (8.69)

The L2-error estimate is expressed in terms of the global velocity reconstruction
rk+1
h

: Uk
h → Pk+1(Th)d such that, for all vh ∈ Uk

h ,

(rk+1
h vh) |T B rk+1

T vT ∀T ∈ Th . (8.70)

Theorem 8.20 (L2-error estimate for the velocity). Let (Mh)h∈H denote a
regular mesh sequence in the sense of Definition 1.9. Let a polynomial degree
k ≥ 0 be fixed and assume (8.65). Let (u, p) ∈ X denote the unique solution of
the continuous problem (8.3), for which we assume the additional regularity
u ∈ Hr+2(Th)d and p ∈ H1(Ω)∩Hr+1(Th) for some r ∈ {0, . . . , k}. For all h ∈
H , let (uh, ph) ∈ Xk

h
denote the unique solution to the discrete problem (8.42)

with stabilisation bilinear forms sT , T ∈ Th , in (8.28) satisfying Assumption
8.10. Under the elliptic regularity assumption, and further assuming that
f ∈ H1(Th)d if k = 0, it holds

‖rk+1
h uh − u‖L2(Ω)d .

{
h2‖ f ‖H1(Th )d if k = 0,
hr+2

(
|u |Hr+2(Th )d + |p|Hr+1(Th )

)
if k ≥ 1,

(8.71)

with hidden constant independent of h, but possibly depending onΩ, d, %, and
k.
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The proof of Theorem 8.20 follows the arguments of the proof of Theorem 2.32
(not repeated here for the sake of brevity) with the following lemma playing the role
of Lemma 2.33.

Lemma 8.21 (Superconvergence of velocity element unknowns). Under the as-
sumptions and notations of Theorem 8.20, it holds that

‖uh − π0,k
h

u‖L2(Ω)d .

{
h2‖ f ‖H1(Th )d if k = 0,
hr+2

(
|u |Hr+2(Th )d + |p|Hr+1(Th )

)
if k ≥ 1,

(8.72)

where, for any v ∈ L1(Ω)d , π0,k
h

v is the L2-orthogonal projection of v on the broken
polynomial space Pk(Th)d such that (π0,k

h
v) |T B π0,k

T v |T for all T ∈ Th .

Proof. The result follows from Lemma A.14 with the same setting as in Theorem
8.18 after accounting for (8.65), that is U = U , P = P, Uh = Uk

h,0 equipped with
the ‖·‖1,h-norm and the velocity interpolator Ih = Ikh , Ph = Pk

h
equipped with

the L2-norm and the pressure interpolator Jh = π0,k
h

, ah = ah , and bh = bh . We
additionally let L = L2(Ω)d with velocity reconstruction rh equal to the mapping
Uk

h,0 3 vh 7→ vh ∈ Pk(Th)d .
With this setting, taking (z

g
, sg) the solution to the dual problem (8.68) with given

body force g ∈ L2(Ω)d and letting, for the sake of brevity,

ûh B Ikhu, p̂h B π0,k
h

p, ẑ
g,h
B Ikh zg, ŝg,h B π0,k

h
sg,

the error estimate (A.30) translates into

‖uh − ûh ‖L2(Ω)d

. ‖(uh − ûh, ph − p̂h)‖X ,h sup
g∈L2(Ω)d , ‖g ‖

L2(Ω)d ≤1
‖Ed

h((zg, sg); ·)‖X ,h,?︸                                                                                   ︷︷                                                                                   ︸
E1

+ sup
g∈L2(Ω)d , ‖g ‖

L2(Ω)d ≤1
Eh((u, p); ( ẑg,h, ŝg,h))︸                                                 ︷︷                                                 ︸
E2

, (8.73)

where the primal consistency error E
h
((u, p); ·) is given by (8.63), while the dual

consistency error is such that, for any (vh,qh) ∈ Xk
h
,

Ed
h((zg, sg); (vh,qh)) =

∫
Ω

g·vh − Ah((vh,qh), ( ẑg,h, ŝg,h)). (8.74)

The error estimate (8.72) follows from (8.73) after bounding the terms in the right-
hand side.

(i) Estimate of E1. The first factor in E1 is readily estimated using (8.60) as follows:



372 8 Stokes

‖(uh − ûh, ph − p̂h)‖X ,h . hr+1
(
|u |Hr+2(Th )d + |p|Hr+1(Th )

)
. (8.75)

Noticing that the dual consistency error (8.74) is identical to the primal consistency
error (8.62) with (u, p, f ) replaced by (zg,−sg, g) and applied to (vh,−qh) instead of
(vh,qh), the second factor in E1 is estimated by using Remark 8.19 and (8.64) with
r = 1, and by invoking the regularity property (8.69):

sup
g∈L2(Ω)d , ‖g ‖

L2(Ω)d ≤1
‖Ed

h((zg, sg); ·)‖X ,h,? . h. (8.76)

Combining (8.75) and (8.76), we get

E1 . hr+2
(
|u |Hr+2(Th )d + |p|Hr+1(Th )

)
. (8.77)

(ii) Estimate of E2. To estimate the primal-dual consistency error, we distinguish two
different cases: k ≥ 1 and k = 0.

(ii.A) The case k ≥ 1. Recalling that (8.1a) is satisfied almost everywhere in Ω and
that ν = 1, we can replace f by −∆u+∇p in the expression (8.63) of the consistency
error evaluated at (vh,qh) = ( ẑg,h, ŝg,h) to write

Eh((u, p); ( ẑg,h, ŝg,h)) = −
∫
Ω

∆u· ẑg,h − ah(ûh, ẑg,h)︸                               ︷︷                               ︸
T1

+

∫
Ω

∇p· ẑg,h − bh( ẑg,h, p̂h)︸                            ︷︷                            ︸
T2

+ bh( ẑg,h, ŝg,h).︸           ︷︷           ︸
T3

Proceeding as in Point (ii.A) of the proof of Lemma 2.33 and using (8.69), we get
for the first term

|T1 | . hr+2 |u |Hr+2(Th )d ‖g‖.
For the second term, using (8.41) with q = p and vh = ẑ

g,h
together with hT ≤ h

for all T ∈ Th and a discrete Cauchy–Schwarz inequality on the sum over T ∈ Th ,
we obtain

|T2 | . hr+1 |p|Hr+1(Th )

( ∑
T ∈Th

| ẑ
g,T
|21,∂T

) 1
2

. hr+2 |p|Hr+1(Th ) |zg |H2(Ω)d ,

where the conclusion follows estimating the discrete boundary seminorm as in (2.78).
Finally, by the consistency property (8.35) of bh applied to v = zg and qh = ŝg,h ,
and since ∇·zg = 0, we have

T3 = 0.
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Using the above bounds for T1, T2 and T3, we conclude that

E2 . hr+2
(
|u |Hr+2(Th )d + |p|Hr+1(Th )

)
if k ≥ 1. (8.78)

(ii.B) The case k = 0. We start from a different decomposition of the primal-dual
consistency error. Proceeding as in Point (ii.B) in the proof of Lemma 2.33, we
notice that∫

Ω

f ·π0,0
h

zg =

∫
Ω

π0,0
h

f ·zg

=

∫
Ω

(π0,0
h

f − f )·zg +
∫
Ω

f ·zg

=

∫
Ω

(π0,0
h

f − f )·(zg − π0,0
h

zg) +
∫
Ω

(−∆u + ∇p)·zg

=

∫
Ω

(π0,0
h

f − f )·(zg − π0,0
h

zg) +
∫
Ω

∇u:∇zg −
�
��

��
�∫

Ω

p (∇·zg),

where we have used f = −∆u+∇p and the definition of the L2-orthogonal projector
to insert π0,0

h
zg in the third line, an integration by parts to pass to the fourth line, and

recalled the fact that∇·zg = 0 to cancel the last term in the right-hand side. Plugging
this expression into the definition (8.62) of the consistency error with vh = ẑ

g
, we

can write

Eh((u, p); ( ẑg,h, ŝg,h)) =
∫
Ω

(π0,0
h

f − f )·(zg − π0,0
h

zg)︸                                ︷︷                                ︸
T1

+

∫
Ω

∇u:∇zg − ah(ûh, ẑg,h)︸                            ︷︷                            ︸
T2

− bh( ẑg,h, p̂h) + bh(ûh, ŝg,h).︸                             ︷︷                             ︸
T3

For the first term, using the approximation properties (1.74) of the L2-orthogonal
projector with X successively equal to the elements in Th , l = 0, p = 2, s = 1 and
m = 0, it is readily inferred

|T1 | . h2 | f |H1(Th )d |zg |H1(Ω)d .

For the second term, proceeding as in Point (ii.B) of the proof of Lemma 2.33, we
get

|T2 | . h2 |u |H2(Ω)d |zg |H2(Ω)d .

Finally, recalling the consistency property (8.35) of bh and the fact that ∇·u =
∇·zg = 0, we have for the third term

T3 = 0.
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Using the above bounds forT1,T2 andT3 to estimate the primal-dual consistency er-
ror, and recalling that, by the elliptic regularity estimate (8.67), |u |H2(Ω)d+ |p|H1(Ω) .
‖ f ‖L2(Ω)d ≤ ‖ f ‖H1(Th )d , we conclude that

E2 . h2‖ f ‖H1(Th )d if k = 0. (8.79)

(iii) Conclusion. Plug the estimates (8.77), (8.78), and (8.79) into (8.73). ut

8.5.3 Other hybrid methods

Several hybrid methods have been developed for the Stokes problem on standard
meshes. In the Hybridisable Discontinuous Galerkin method of [245], polynomials
of degree k are used for the flux, velocity, and pressure variables, and convergence
in hk+1 is experimentally observed for the L2-norm of the error in each variable
(recall that, in our case, the L2-norm of the velocity converges as hk+2, see Theorem
8.20). Similar considerations apply to the methods considered in [125]. In [223], the
authors propose a Hybridisable Discontinuous Galerkin method where the velocity
unknowns are polynomials of degree k at mesh elements and faces. Also in this
case, the L2-norm of the errors on both the velocity and the pressure converges
as hk+1. In [182], on the other hand, a method based on polynomials of degree k
for the velocity and (k − 1) for the pressure is proposed, and its hp-convergence
analysis is carried out. In this case, both the L2-norms of the strain rate and of the
pressure converge as hk . Moving to general polyhedral meshes, we can cite: the
original HHO method of [8], which hinges on the hybridised version of the Mixed
High-Order method for the viscous terms (see Section 5.4) and an equal-order, fully
discontinuous approximation of the pressure; the nonconforming Virtual Element
Method of [93], which takes element-based velocity unknowns one degree less
than face-based velocity unknowns and pressure unknowns; the two-dimensional
H(div;Ω)-conforming Virtual Element Method of [51], where the velocity degrees
of freedom include, for any T ∈ Th and k ≥ 2, nodal and edge values, moments with
respect to the L2-orthogonal complement of ∇Pk−1(T) in Pk−2(T)2, and polynomial
moments of the divergence up to degree (k − 1).

8.5.4 Numerical example

We close this section with a numerical example that corroborates the theoretical
results. We let Ω = (0,1)2 and consider the exact solution with ν = 1, velocity
components

u1(x) = −ex1 (x2 cos x2 + sin x2) , u2(x) = ex1 x2 sin x2,
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and pressure
p(x) = 2ex1 sin x2 − 2(e − 1)(1 − cos 1).

The domain is discretised by means of a refined sequence of unstructured triangular
meshes, the first four refinements of which are depicted in Fig. 3.1a. We consider
polynomial degrees k ∈ {0, . . . ,3}. We report in Table 8.1 the following quantities:
(i) ‖uh − Ikhu‖a,h , the error on the velocity measured in the norm associated with
the viscous bilinear form ah – notice that, recalling the norm equivalence (8.31),
an estimate analogous to (8.60) holds for this quantity; (ii) ‖uh − π0,k

h
u‖L2(Ω)d , the

L2-error on the velocity; (iii) ‖ph − π0,k
h

p‖L2(Ω), the L2-error for the pressure. All
errors are relative to the corresponding norms of the discrete solution. The number
of degrees of freedom Ndof,h corresponds to the number of unknowns after static
condensation and is defined by (8.43). In each case, we display the Estimated Order
of Convergence (EOC) which, denoting by ei an error on the ith mesh refinement, is
computed as

EOC =
log ei − log ei+1
log hi − log hi+1

. (8.80)

As expected, the energy error estimate on the velocity and the L2-error estimate
on the pressure converge as hk+1, whereas the L2-error estimate on the velocity
converges as hk+2. For the last two mesh refinements with k = 3, a saturation of
the error is observed, with a decreased convergence rate for the velocity (and on the
pressure for the last refinement).

8.6 A pressure-robust variation

In this section, we consider a variation of the HHO method (8.42) which delivers
an estimate of the velocity independent of both the pressure and the viscosity, and
which is therefore referred to as pressure-robust.

8.6.1 A key remark

We start by highlighting a key property of the continuous problem, namely that
modifying the irrotational part of the body force only affects the pressure, not the
velocity.

Proposition 8.22 (Independence of the velocity from irrotational body forces).
For any ψ ∈ H1(Ω) such that

∫
Ω
ψ = 0, if (u, p) ∈ U × P solves the weak problem

(8.3) with body force f then, denoting by (ũ, p̃) ∈ U × P the solution of the weak
problem with body force f + ∇ψ, it holds (ũ, p̃) B (u, p + ψ).

Proof. By definition, (ũ, p̃) satisfies
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Table 8.1: Two-dimensional test case. Starred orders of convergence are affected by
machine precision.

Ndof ,h ‖uh − I khu ‖a,h EOC ‖uh − π0,k
h

u ‖L2(Ω)d EOC ‖ph − π0,k
h

p ‖L2(Ω) EOC

k = 0

134 4.54e-01 – 2.10e-02 – 2.25e-01 –
574 2.60e-01 0.81 5.98e-03 1.82 9.95e-02 1.18
2366 1.42e-01 0.87 1.67e-03 1.84 4.58e-02 1.12
9274 7.19e-02 0.98 4.29e-04 1.96 2.27e-02 1.01
38048 3.56e-02 1.01 1.05e-04 2.03 1.11e-02 1.03

k = 1

268 2.46e-02 – 4.06e-04 – 1.32e-02 –
1148 6.68e-03 1.88 5.79e-05 2.81 4.09e-03 1.69
4732 1.81e-03 1.88 8.00e-06 2.86 1.06e-03 1.95
18548 4.58e-04 1.98 9.98e-07 3.00 2.62e-04 2.02
76096 1.15e-04 2.00 1.24e-07 3.01 6.50e-05 2.01

k = 2

402 1.11e-03 – 1.50e-05 – 7.07e-04 –
1722 1.35e-04 3.04 8.81e-07 4.09 8.51e-05 3.05
7098 1.88e-05 2.85 6.13e-08 3.84 1.11e-05 2.93
27822 2.39e-06 2.97 3.90e-09 3.97 1.40e-06 2.99
114144 2.91e-07 3.04 2.38e-10 4.03 1.72e-07 3.03

k = 3

536 2.51e-05 – 3.10e-07 – 1.77e-05 –
2296 1.70e-06 3.88 9.58e-09 5.02 1.09e-06 4.03
9464 1.22e-07 3.80 3.65e-10 4.72 7.67e-08 3.82
37096 3.48e-08 1.81∗ 4.75e-11 2.94∗ 4.84e-09 3.99∗
152192 8.49e-08 -1.29∗ 5.70e-11 -0.26∗ 4.64e-10 3.38∗

νa(ũ, v) + b(v, p̃) =
∫
Ω

( f + ∇ψ) ·v ∀v ∈ U,

−b(ũ,q) = 0 ∀q ∈ L2(Ω).

Integrating by parts the second contribution in the right-hand side of the momentum
equation and recalling the definition (8.4) of the bilinear form b, we can write∫

Ω

∇ψ·v = −
∫
Ω

ψ (∇·v) +
��

�
��

∫
∂Ω
ψ (v·n) = b(v,ψ), (8.81)

where n denotes the unit normal vector field on ∂Ωwith exterior orientation, and we
have used the fact that v has zero trace on ∂Ω to cancel the boundary term. Hence,
rearranging, we have that
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νa(ũ, v) + b(v, p̃ − ψ) =
∫
Ω

f ·v ∀v ∈ U,

−b(ũ,q) = 0 ∀q ∈ L2(Ω).

From the well-posedness of problem (8.3) we deduce that (u, p) = (ũ, p̃−ψ), so that
(ũ, p̃) = (u, p + ψ). ut

8.6.2 An abstract modification of the right-hand side

It can be checked that a discrete counterpart of the property highlighted in the
previous section does not hold for the scheme (8.42). The reason is that relation
(8.81) fails at the discrete level. This remark prompts us to consider the following
variation of the scheme: Find (uh, ph) ∈ Uk

h,0 × Pk
h
such that

νah(uh, vh) + bh(vh, ph) = `h( f , vh) ∀vh ∈ Uk
h,0, (8.82a)

−bh(uh,qh) = 0 ∀qh ∈ Pk(Th), (8.82b)

where the discretisation `h of the body force satisfies the following assumption.

Assumption 8.23 (Pressure-robust discretisation of body forces) The bili-
near form `h : L2(Ω)d × Uk

h,0 → R satisfies the following properties:

(L1) Velocity invariance. For all ψ ∈ H1(Ω),

`h(∇ψ, vh) = bh(vh, π0,k
h
ψ) ∀vh ∈ Uk

h,0. (8.83)

(L2) Consistency. It holds for all r ∈ {0, . . . , k} and all w ∈ Hr (Th)d ,

sup
vh ∈Uk

h ,0 , ‖vh ‖1,h=1

��E`,h(w; vh)
�� . hr+1 |w |Hr (Th )d , (8.84)

where the hidden constant is independent of w and h, and the linear form
E`,h(w; ·) : Uk

h,0 → R representing the consistency error is such that

E`,h(w; vh) B `h(w, vh) −
∫
Ω

w·vh . (8.85)

Condition (L1) restores (8.81) at the discrete level, while condition (L2) guaran-
tees that the new discretisation of body forces preserves the original accuracy of the
scheme.
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8.6.3 Pressure-robust error estimate

In the following theorem, we investigate the effect of the novel formulation of the
right-hand side in (8.82a) on the error estimate.

Theorem 8.24 (Pressure-robust energy error estimate). Let (Mh)h∈H de-
note a regular mesh sequence in the sense of Definition 1.9. Let a polynomial
degree k ≥ 0 be fixed. Let (u, p) ∈ U × P denote the unique solution to
the continuous problem (8.3), for which we assume the additional regularity
u ∈ Hr+2(Th)d and p ∈ H1(Ω) ∩ Hr+1(Th) for some r ∈ {0, . . . , k}. For all
h ∈ H , let (uh, ph) ∈ Uk

h,0 × Pk
h
denote the unique solution to the discrete

problem (8.82)with stabilisation bilinear forms sT ,T ∈ Th , in (8.28) satisfying
Assumptions 8.10 and bilinear form `h satisfying Assumption 8.23. Then,

‖(uh − Ikhu, ph − π0,k
h

p)‖X ,h . hr+1ν
1
2 |u |Hr+2(Th )d , (8.86)

where the hidden constant is independent of u, p, h, and ν.

Remark 8.25 (Robustness of the error estimate (8.86)). The error estimate (8.86)
reveals a crucial difference with respect to (8.60), namely that the multiplicative
constant in the right-hand side is independent of the pressure. Accounting for Propo-
sition 8.22, this shows that the approximation error ‖(uh − Ikhu, ph − π0,k

h
p)‖X ,h is

unaffected by the presence of irrotational body forces, which leave the continuous ve-
locity (hence the factor multiplying hr+1 in the right-hand side of (8.86)) unchanged.
As remarked in [232], this is a practically relevant feature for, e.g., buoyancy-driven
flows such as the one considered in [167], or when the Coriolis force is added to the
incompressible Navier–Stokes equations as in [135, 136].

A related property is viscosity-robustness of the velocity estimate. Expanding the
‖·‖X ,h-norm according to its definition (8.59), we can write the following separate
estimates for the velocity and the pressure:

‖uh − Ikhu‖1,h . hr+1 |u |Hr+2(Th )d , ‖ph − π0,k
h

p‖L2(Ω) . νhr+1 |u |Hr+2(Th )d .

Crucially, themultiplicative constant in the first bound is independent of the viscosity.

Proof. Proceeding as in the proof of Theorem 8.18, we infer the following expression
for the consistency error:

Eh((u, p); (vh,qh)) = `h( f , vh) − νah(Ikhu, vh) − bh(vh, π0,k
h

p) + bh(Ikhu,qh).

Using the fact that f = −ν∆u + ∇p along with the linearity of `h in its first
argument, inserting ±

∫
Ω
ν∆u·vh , and recalling the definitions (8.33) and (8.85) of

the consistency error linear forms, we can go on writing
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Eh((u, p); (vh,qh)) = `h(−ν∆u, vh) +
∫
Ω

ν∆u·vh︸                             ︷︷                             ︸
E` ,h (−ν∆u;vh )

−
∫
Ω

ν∆u·vh − νah(Ikhu, vh)︸                               ︷︷                               ︸
νEa,h (u;vh )

+
(((

((((
((((

`h(∇p, vh) − bh(vh, π0,k
h

p) +����
�bh(Ikhu, vh),

we have used, respectively, (L1) and the consistency property (8.35) of bh together
with (8.3b) to cancel the terms in the last line. Passing to the ‖·‖X ,h,?-norm and
using the consistency properties (8.32) of ah and (L2) of `h , (8.86) follows. ut

8.6.4 A discretisation of body forces based on a
Raviart–Thomas–Nédélec velocity reconstruction

In this section, following the ideas of [69, 72, 154], we build a discrete bilinear form
`h satisfying Assumption 8.23 when Th is a matching simplicial mesh in the sense
of Definition 1.7.

8.6.4.1 The Raviart–Thomas–Nédélec space

The formulation of the discrete bilinear form `h hinges on a local velocity recon-
struction in the Raviart–Thomas–Nédélec [244, 255] space

RTNk(T) B Pk(T)d + xPk(T).

Functions in RTNk(T) have divergence in Pk(T) and normal traces in Pk(F) for all
F ∈ FT ; see, e.g., [196, Lemma 3.6]. For future use, we note the following estimate,
which results from a scaling argument:

‖wT ‖2T ' ‖π0,k−1
T wT ‖2T +

∑
F ∈FT

hF ‖wT ·nTF ‖2F ∀wT ∈ RTNk(T), (8.87)

with hidden constant independent of h, T , and wT , but possibly depending on % and
k.

The global Raviart–Thomas–Nédélec space is defined as

RTNk(Th) B
{
vh ∈ H(div;Ω) : (vh) |T ∈ RTNk(T) ∀T ∈ Th

}
.

8.6.4.2 An H(div;Ω)-conforming velocity reconstruction

Let T ∈ Th . The velocity reconstruction rkT : Uk
T → RTNk(T) is defined such that,

for all vT ∈ Uk
T ,
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T

(rkT vT − vT )·w = 0 ∀w ∈ Pk−1(T)d, (8.88a)∫
F

(rkT vT − vF )·nTFq = 0 ∀F ∈ FT , ∀q ∈ Pk(F). (8.88b)

The fact that these relations define rkT vT uniquely is a consequence of [57, Propo-
sition 2.3.4]; see also [196, Theorem 3.3]. Recalling the definition (1.57) of the
L2-orthogonal projector along with the properties of the local Raviart–Thomas–
Nédélec space, it is also immediate to see that (8.88) can be equivalently reformulated
as follows:

π0,k−1
T (rkT vT ) = π0,k−1

T vT and (rkT vT )·nTF = vF ·nTF ∀F ∈ FT . (8.89)

From these relations, it follows that, for any vT ∈ Uk
T and any q ∈ Pk(T),∫

T

(∇·rkT vT ) q = −
∫
T

rkT vT ·∇q +
∑
F ∈FT

∫
F

(rkT vT ·nTF ) q

= −
∫
T

vT ·∇q +
∑
F ∈FT

∫
F

(vF ·nTF ) q =
∫
T

Dk
T vT q,

where we have used an integration by parts in the first line followed by (8.89) together
with ∇q ∈ Pk−1(T)d and q |F ∈ Pk(F) to obtain the second equality. The conclusion
is a consequence of the definition (8.19) of Dk

T . Hence, since both∇·rkT vT and Dk
T vT

belong to Pk(T),
∇·rkT vT = Dk

T vT ∀vT ∈ Uk
T . (8.90)

A global velocity reconstruction rk
h

: Uk
h → RTNk(Th) is obtained patching the

local contributions: For all vh ∈ Uk
h ,

(rkhvh) |T B rkT vT ∀T ∈ Th .

Notice that, by Lemma 1.17, rk
h
vh indeed belongs to H(div;Ω) since its normal

component across each mesh interface is single-valued as a consequence of (8.89).

8.6.4.3 Pressure-robust bilinear form `h

We define the bilinear form `h : L2(Ω)d × Uk
h,0 → R such that, for any f ∈ L2(Ω)d

and any vh ∈ Uk
h,0,

`h( f , vh) B
∫
Ω

f ·rkhvh . (8.91)

Lemma 8.26 (Pressure-robust bilinear from `h). The bilinear form `h defined by
(8.91) satisfies Assumption 8.23.
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Proof. (i) Proof of (L1). Let ψ ∈ H1(Ω). It holds, for all vh ∈ Uk
h,0,

`h(∇ψ, vh) =
∫
Ω

∇ψ·rkhvh

= −
∫
Ω

ψ (∇·rkhvh) +����
���

∫
∂Ω
ψ (rkhvh ·n)

= −
∑
T ∈Th

∫
T

ψ (∇·rkT vT )

= −
∑
T ∈Th

∫
T

ψ Dk
T vT

= −
∑
T ∈Th

∫
T

π0,k
T ψ Dk

T vT = bh(vh, π0,k
h
ψ),

where we have used an integration by parts to pass to the second line along with
the fact that, by (8.89), the normal traces of the velocity reconstruction vanish on
∂Ω, (8.90) to pass to the fourth line, the definition (1.57) of the local L2-orthogonal
projector to pass to the fifth line, and the definitions (1.59) and (8.34) of the global
L2-orthogonal projector and of the bilinear form bh to conclude.

(ii) Proof of (L2). With w as in the statement of property (L2), and assuming first
k ≥ 1, it holds, for all vh ∈ Uk

h,0,��E`,h(w; vh)
�� = ����� ∑

T ∈Th

∫
T

w·(rkT vT − vT )
����� (8.92)

=

����� ∑
T ∈Th

∫
T

(
w − π0,k−1

T w
)
·(rkT vT − vT )

�����
≤

( ∑
T ∈Th

‖w − π0,k−1
T w‖2T

) 1
2
( ∑
T ∈Th

‖rkT vT − vT ‖2T
) 1

2

. hr |w |Hr (Th )d

( ∑
T ∈Th

‖rkT vT − vT ‖2T
) 1

2

, (8.93)

where we have used the definition (8.88a) of rkT vT to insert π0,k−1
T w in the second

line, a Cauchy–Schwarz inequality in the third line, and the approximation properties
(1.74) of the local L2-orthogonal projector with X = T , l = k − 1, p = 2, s = r ,
and m = 0 to conclude. If k = 0, then r = 0 and |w |Hr (Th )d = ‖w‖L2(Ω)d ; hence,
straightforward Cauchy–Schwarz inequalities on (8.92) yield (8.93). Let nowT ∈ Th ,
and observe that, applying (8.87) towT = r

k
T vT−vT ∈ RTNk(T) and recalling (8.89),

we have
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‖rkT vT − vT ‖2T .
∑
F ∈FT

hF ‖(rkT vT − vT )·nTF ‖2F

=
∑
F ∈FT

hF ‖(vF − vT )·nTF ‖2F ≤ h2
T |vT |21,∂T , (8.94)

where the conclusion follows from hF ≤ hT , a Hölder inequality together with
‖nTF ‖L∞(F)d = 1, and the definition (8.15) of |vT |1,∂T . Plugging (8.94) into (8.93)
and recalling the definition (8.24) of the global discrete H1-like norm, we arrive at��E`,h(w; vh)

�� . hr+1 |w |Hr (Th )d ‖vh ‖1,h .

Passing to the supremum over vh ∈ Uk
h,0 such that ‖vh ‖1,h = 1 yields (L2). ut

8.6.5 Numerical examples

We illustrate with numerical examples, taken from [154], the difference between the
original HHO scheme (8.42) and the modified version (8.82). For further numerical
tests we refer the reader to [154].

8.6.5.1 Viscosity-independence

To illustrate the viscosity-independence of the velocity approximation discussed in
Remark 8.25, we consider on the unit cube domain Ω = (0,1)3 the exact solution
such that u = ∇ψ with harmonic function ψ such that, for all x ∈ Ω,

ψ(x) = 5x6
1 − 90x4

1 x2
2 + 120x2

1 x4
2 + 15x4

1 x2
3

+ 5x6
3 − 90x2

2 x4
3 + 120x4

2 x2
3 + 15x2

1 x4
3 − 16x6

2 − 180x2
1 x2

2 x2
3

and p(x) = x5
1 + x5

2 + x5
3 − 1

2 . We show in Fig. 8.3 the velocity and pressure errors
corresponding to ν ∈ {1,10−1,10−2,10−3} and polynomial degrees k ∈ {0,1,2}.
All computations are realised on a fixed unstructured grid with 360 tetrahedra. The
pressure-robust variation (8.82) yields significantly better results compared to the
original version (8.42). The independence of the velocity approximation from the
viscosity highlighted in Remark 8.25 is confirmed while, as expected, the pressure
approximation does depend on the viscosity.

8.6.5.2 Convergence

We next confirm the theoretically predicted convergence rates by considering the
following solution on the unit cube domain Ω = (0,1)3:
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(a) ‖uh − I khu ‖a,h vs. ν, classical
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(b) ‖uh − I khu ‖a,h vs. ν, pressure-robust
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(c) ‖ph − π0,k
h

p ‖L2(Ω) vs. ν, classical

10−3 10−2 10−1 100
10−4
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10−2
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k = 0
k = 1
k = 2

(d) ‖ph−π0,k
h

p ‖L2(Ω) vs.ν, pressure-robust

Fig. 8.3: Results for the numerical example of Section 8.6.5.1.

u =
©«

1
2 sin(2πx1) cos(2πx2) cos(2πx3)
1
2 cos(2πx1) sin(2πx2) cos(2πx3)
− cos(2πx1) cos(2πx2) cos(2πx3)

ª®¬ , p(x) = sin(2πx1) sin(2πx2) sin(2πx3).

The viscosity is taken equal to 1, while the value of the inhomogeneous Dirichlet
boundary condition as well as that of the body force are inferred from the expressions
of u and p. As for the numerical example of Section 8.5.4, for polynomial values k ∈
{0,1}, we display in Table 8.2: (i) ‖uh − Ikhu‖a,h , the error on the velocity measured
in the norm associated with the viscous bilinear form ah – notice that, recalling the
norm equivalence (8.31), an estimate analogous to (8.60) holds for this quantity;
(ii) ‖ph − π0,k

h
p‖L2(Ω), the L2-error for the pressure. Each quantity is accompanied

by the corresponding EOC defined according to (8.80). The convergence rates are
coherent with those predicted by the error estimates (8.60) and (8.86).
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Table 8.2: Results for the numerical example of Section 8.6.5.2.

Classical HHO scheme (8.42) Pressure–robust HHO scheme (8.82)

card(Th ) ‖uh − I khu ‖a,h EOC ‖ph − π0,k
h

p ‖L2(Ω) EOC ‖uh − I khu ‖a,h EOC ‖ph − π0,k
h

p ‖ EOC
k = 0

44 4.36 — 0.68 — 3.05 — 1.58 —
360 3.52 0.31 0.48 0.51 3.4 -0.15 0.87 0.87

2,883 1.97 0.84 0.27 0.81 1.97 0.78 0.41 1.09
23,077 1.02 0.95 0.15 0.90 1.05 0.92 0.2 1.00

k = 1

44 4.34 — 0.82 — 3.52 — 2.18 —
360 1.46 1.57 0.28 1.57 1.24 1.50 0.66 1.72

2,883 0.45 1.71 8.71 · 10−2 1.66 0.4 1.62 0.18 1.92
23,077 0.12 1.95 2.33 · 10−2 1.90 0.11 1.91 4.36 · 10−2 2.01



Chapter 9
Navier–Stokes

In this chapter, we discuss HHO discretisations of the steady incompressible Navier–
Stokes equations. These equations, which model the motion of fluids, were originally
derived by Navier [242] and Poisson [251] using a molecular approach, while a more
specific derivation is due to Saint–Venant [34] and Stokes [262] based on a linear
relation between the stress tensor and the strain rate tensor. The main difference with
respect to the Stokes equations treated in Chapter 8 is the presence of a nonlinear
contribution in the momentum balance to model convective inertial forces. Our
focus is therefore on the design and analysis of HHO trilinear forms to discretise
this term. From a mathematical point of view, a relevant property of the convective
term is that it does not contribute to the kinetic energy balance, obtained taking the
velocity as a test function in the momentum equation. This property, referred to as
“non-dissipativity” in what follows, is reproduced at the discrete level, as it plays an
important role in the analysis.

The presence of the nonlinear term also entails relevant differences in the analysis
with respect to the Stokes problem. Specifically, uniqueness of the discrete solution
and error estimates require a data smallness condition. Convergence for general data,
on the other hand, can be proved resorting to the compactness techniques introduced
in Chapter 6, which do not deliver an estimate on the convergence rate.

The material is organised as follows. In Section 9.1 we establish the continuous
setting for themodel, state theweak formulation of the incompressible Navier–Stokes
equations, discuss the non-dissipativity of the continuous convective trilinear form,
and derive two equivalent reformulations to be used as inspiration for its discrete
counterpart.

In Section 9.2 we formulate an HHO discretisation based on an abstract discrete
convective trilinear form. Under the proposed design conditions, we prove the ex-
istence of a discrete solution using a topological degree argument, then show that
uniqueness holds under a data smallness condition. In Section 9.3 we prove an en-
ergy error estimate under a data smallness assumption. Specifically, for sufficiently
regular exact solutions, we prove convergence in hk+1 (with h and k ≥ 0 denoting,
as usual, the meshsize and the polynomial degree) for the H1-like norm of the error

385
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on the velocity and the L2-norm of the error on the pressure. We close this section by
briefly describing how convective stabilisation can be incorporated into the scheme.

In Section 9.5 we discuss two examples of discrete convective trilinear forms that
match the design conditions of Section 9.2. The first example, inspired by [157], is
obtained from a skew-symmetric reformulation of the continuous trilinear form by
replacing the continuous gradient operator with a discrete gradient reconstructed in
the space of polynomials of degree 2k. The second discrete trilinear form is inspired
by [268], with reconstructions of the advective derivative of degree k and of the
divergence of degree 2k replacing the corresponding continuous operators.

In Section 9.6 we prove convergence for general data using a compactness ar-
gument. Specifically, after proving preliminary results concerning the compactness
of sequences of HHO functions bounded uniformly in the discrete H1-norm and
the strong convergence of the interpolates of smooth functions, we prove: strong
convergence of the discrete velocity in Lq(Ω)d with q ∈ [1,∞) if d = 2, q ∈ [1,6) if
d = 3; strong convergence of the gradient of the reconstructed velocity in L2(Ω)d×d;
strong convergence of the pressure in L2(Ω); convergence to zero of the stabilisation
seminorm.

Finally, in Section 9.7 we numerically demonstrate the performance of themethod
on classical benchmark problems.

9.1 Model

We start by discussing the continuous setting for the model.

9.1.1 The Navier–Stokes problem

Let d ∈ {2,3}, and take Ω ⊂ Rd that satisfies Assumption 1.3. As in Chapter 8, this
domain is assumed to have a Lipschitz-continuous boundary. Let ν > 0 denote a real
number representing the kinematic viscosity, and let f : Ω → Rd denote a body
force. The steady incompressible Navier–Stokes problem for a uniform density,
Newtonian fluid consists in finding the velocity u : Ω → Rd and the pressure
p : Ω→ R such that

−ν∆u + (u·∇)u + ∇p = f in Ω, (9.1a)
∇·u = 0 in Ω, (9.1b)

u = 0 on ∂Ω, (9.1c)∫
Ω

p = 0. (9.1d)

In (9.1a), we have introduced the convective derivative such that, if u = (u j)1≤ j≤d ,
then (u·∇)u = ∑d

j=1 u j∂ju. As for the Stokes problem, equation (9.1a) expresses



9.1 Model 387

the momentum balance where, with respect to (8.1a), an additional nonlinear term
appears accounting for convective effects. This term is the source of nonlinearity in
the Navier–Stokes equations, and is at the root of physically relevant phenomena such
as turbulence.Wewill focus, for the sake of simplicity, on the homogeneous Dirichlet
(wall) boundary condition (9.1c); other standard boundary conditions can be treated
without difficulties. Finally, condition (9.1d) is introduced to uniquely identify the
pressure, which would otherwise be defined only up to an additive constant.

Remark 9.1 (Conservative reformulation of the momentum equation). Recalling the
definitions (7.1) of the tensor product of two vectors and (7.3) of the divergence of
a tensor, the momentum equation (9.1a) admits the following reformulation:

∇· (−ν∇u + u ⊗ u + pId) = f in Ω, (9.2)

which highlights the expression of the conserved momentum flux under the diver-
gence operator. To derive (9.1a) from (9.2), it suffices to observe that

∇·(u ⊗ u) = (u·∇)u +����u(∇·u),

where we have used the mass balance equation (9.1b) to cancel the second term.

9.1.2 Weak formulation

Recalling the velocity and pressure spaces defined in (8.2), that is,

U B H1
0 (Ω)d, P B

{
q ∈ L2(Ω) :

∫
Ω

q = 0
}
,

a classical weak formulation of problem (9.1) reads: Find (u, p) ∈ U × P such that

νa(u, v) + t(u, u, v) + b(v, p) =
∫
Ω

f ·v, ∀v ∈ U, (9.3a)

−b(u,q) = 0 ∀q ∈ L2(Ω), (9.3b)

with bilinear forms a : U ×U → R and b : U × L2(Ω) → R defined by (8.4), that is,

a(w, v) B
∫
Ω

∇w:∇v, b(v,q) B −
∫
Ω

(∇·v) q,

and trilinear form t : U × U × U → R such that

t(w, v, z) B
∫
Ω

(w·∇)v·z, (9.4)

where we remind the reader that, if w = (wi)1≤i≤d , v = (vi)1≤i≤d , and z = (zi)1≤i≤d ,
then (w·∇)v·z = ∑d

i=1
∑d

j=1(wj∂jvi)zi .
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The existence of a solution to problem (9.3) will be a side result of the convergence
analysis in Section 9.6; see Remark 9.33. Uniqueness, on the other hand, can be
proved assuming that the L2-norm of the body force f is small enough, the so-called
data smallness condition; see, e.g., [199, Eq. (2.12), Chapter IV]. In the analysis,
besides the properties of the bilinear forms a and b discussed in Section 8.1.2, a key
role is played by the non-dissipativity of the trilinear form t. This property deserves
a more in-depth discussion, which makes the object of the following section.

9.1.3 Non-dissipativity of the convective term

Let us examine the non-dissipativity property of t in order to illustrate the strategy
adopted to design its discrete counterpart.We start by noting the following integration
by parts formula: For all w, v, z ∈ H1(Ω)d ,∫

Ω

(w·∇)v·z +
∫
Ω

(w·∇)z·v +
∫
Ω

(∇·w)(v·z) =
∫
∂Ω
(w·nΩ)(v·z), (9.5)

where nΩ denotes the outward unit vector normal to ∂Ω. Writing (9.5) for w = v =
z = u (with u velocity solution to (9.3)), we get

t(u, u, u) =
∫
Ω

(u·∇)u·u = −1
2

∫
Ω

(∇·u)(u·u) + 1
2

∫
∂Ω
(u·nΩ)(u·u) = 0, (9.6)

where we have used (9.3b) to infer ∇·u = 0 and cancel the first term, and the fact
that u vanishes on ∂Ω to cancel the second. This relation expresses the fact that the
convective term does not contribute to the kinetic energy balance, obtained taking
v = u in (9.3a).

When attempting to reproduce property (9.6) at the discrete level, a difficulty
arises: the discrete counterparts of the terms in the right-hand side of (9.6) may
not vanish, since the discrete solution may not be “sufficiently” divergence-free (see
Remark 9.21) and/or it may not be zero on ∂Ω. To overcome this difficulty, the
following modified expression for t can be used as a starting point, an idea which
can be traced back to Temam [268]:

t̃(w, v, z) =
∫
Ω

(w·∇)v·z + 1
2

∫
Ω

(∇·w)(v·z) − 1
2

∫
∂Ω
(w·nΩ)(v·z). (9.7)

With this choice, the skew-symmetric nature of convective terms becomes apparent,
as we can write

t̃(w, v, z) = 1
2

∫
Ω

(w·∇)v·z

− 1
2

(
−

∫
Ω

(w·∇)v·z −
∫
Ω

(∇·w)(v·z) +
∫
∂Ω
(w·nΩ)(v·z)

)
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and, using (9.5) to reformulate the term in parentheses,

t̃(w, v, z) = 1
2

∫
Ω

(w·∇)v·z − 1
2

∫
Ω

(w·∇)z·v. (9.8)

It is a simple matter to check that the expressions (9.7) and (9.8) for the convective
trilinear form can be used in place of (9.4) in (9.3) without modifying this weak
formulation. From a numerical standpoint, they are more appropriate as a starting
point to derive a discretisation of the convective term, as they satisfy the following
generalised version of property (9.6): For all w, v ∈ H1(Ω)d ,

t̃(w, v, v) = 0.

This means, in particular, that t̃ is non-dissipative even if w is not divergence free
and v does not vanish on ∂Ω (as may be the case for the discrete velocity).

9.2 Discrete problem

In this section we formulate an HHO scheme based on a set of design properties for
the discrete convective trilinear form, and we discuss existence and uniqueness of
the discrete solution.

9.2.1 Discrete problem and design properties for the discrete
trilinear form

Let the discrete velocity and pressure spaces be defined by (8.26), that is

Uk
h,0 B

{
vh ∈ Uk

h : vF = 0 ∀F ∈ F b
h

}
, Pk

h B P
k(Th) ∩ P,

with Uk
h defined by (8.22). Let the viscous bilinear form ah be given by (8.27) with

local stabilisation bilinear forms in (8.28) matching Assumption 8.10, and let the
pressure–velocity coupling bilinear form bh be given by (8.34). We consider the
following HHO approximation to (9.3): Find (uh, ph) ∈ Uk

h,0 × Pk
h
such that

νah(uh, vh) + th(uh, uh, vh) + bh(vh, ph) =
∫
Ω

f ·vh ∀vh ∈ Uk
h,0, (9.9a)

−bh(uh,qh) = 0 ∀qh ∈ Pk(Th). (9.9b)

The assumptions on the trilinear form th are as follows.

Assumption 9.2 (Trilinear form th) The trilinear form th : Uk
h × Uk

h × Uk
h → R

satisfies the following properties:



390 9 Navier–Stokes

(T1) Non-dissipativity. For all wh, vh ∈ Uk
h,0, it holds that

th(wh, vh, vh) = 0. (9.10)

(T2) Boundedness. There is Ct ≥ 0 independent of h such that, for all wh, vh, zh ∈
Uk

h,0,
|th(wh, vh, zh)| ≤ Ct‖wh ‖1,h ‖vh ‖1,h ‖ zh ‖1,h, (9.11)

with ‖·‖1,h-norm defined by (8.24) and (8.15).
(T3) Consistency. For all r ∈ {0, . . . , k} and all w ∈ U ∩Wr+1,4(Th)d such that

∇·w = 0,

sup
z
h
∈Uk

h ,0 , ‖zh ‖1,h=1

����∫
Ω

(w·∇)w·zh − th(Ikhw, Ikhw, zh)
����

. hr+1‖w‖W 1,4(Ω)d |w |W r+1,4(Th )d , (9.12)

with hidden constant independent of both w and h.

Some remarks are of order.

Remark 9.3 (Efficient implementation). Assume that the trilinear form is designed
so that its stencil is the same as that of the diffusive bilinear form, that is, the coupling
between neighbouring elements is only established through the unknowns attached
to a common face (this is the case for the two examples of trilinear forms provided
in Section 9.5). Then, when solving the system of nonlinear algebraic equations
corresponding to (9.9) by a first-order (e.g., Newton) algorithm, all element-based
velocity unknowns and all but one pressure unknowns per element can be locally
eliminated at each iteration by computing the corresponding Schur complement
element-wise. As all the computations are local, this static condensation procedure is
a trivially parallel task which can fully benefit frommulti-thread andmulti-processor
architectures. This procedure has been described in detail for the Stokes problem
in [154, Section 6.2]. The only variation here is that also the linearised convective
term appears in the matrices therein denoted by AT . After further eliminating the
boundary unknowns by strongly enforcing the wall condition (9.1c), one ends up
solving at each iteration a linear system of size

d card(F i
h)

(
k + d − 1

d − 1

)
+ card(Th).

Remark 9.4 (Weak enforcement of boundary conditions). An interesting variation of
the HHO scheme (9.9) is obtained by weakly enforcing the wall boundary condition
adapting Nitsche’s techniques [246]. The weak enforcement of boundary conditions
can improve the resolution of boundary layers, since the boundary unknowns are not
constrained to a fixed value, and it can simplify the parallel implementation of the
method. We do not develop further this subject here, and refer the interested reader
to [68].
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Remark 9.5 (Pressure-robust variations). As we did in Section 8.6 for the Stokes
problem, it is possible to devise pressure-robust variations of the HHO scheme (9.9)
for the Navier–Stokes problem. In addition to modifying the right-hand side in order
to comply with Assumption 8.23, a corresponding modification of the convective
trilinear form is required in this case. We refer the reader to [99] for further details.

9.2.2 Existence and uniqueness of a discrete solution

The existence of a solution to problem (9.9) can be proved using the following
topological degree lemma (cf., e.g., [139]), as originally proposed in [187] in the
context of Finite Volumes for nonlinear hyperbolic problems; see also [148, 191]
concerning the incompressible Navier–Stokes equations.

Lemma 9.6 (Topological degree). Let W be a finite-dimensional vector space
equipped with a norm denoted by ‖·‖W , and let the function Ψ : W × [0,1] → W
satisfy the following assumptions:

(i) Ψ is continuous;
(ii) There exists µ > 0 such that, for any (w, ρ) ∈ W × [0,1], Ψ(w, ρ) = 0 implies
‖w‖W , µ;

(iii) Ψ(·,0) is an affine function and the equation Ψ(w,0) = 0 has a solution w ∈ W
such that ‖w‖W < µ.

Then, there exists w ∈ W such that Ψ(w,1) = 0 and ‖w‖W < µ.

Theorem 9.7 (Existence and a priori bounds). There exists a solution to
(9.9). Moreover, any solution (uh, ph) ∈ Uk

h,0×Pk
h
to this problem satisfies the

a priori bounds

ν‖uh ‖1,h ≤ CaCP‖ f ‖L2(Ω)d ,

‖ph ‖L2(Ω) ≤ C
(
‖ f ‖L2(Ω)d + ν

−2‖ f ‖2
L2(Ω)d

)
,

(9.13)

with Ca as in (8.31), CP as in (8.47), and C > 0 real number independent of ν,
h, uh and ph .

Proof. We consider the finite-dimensional space Xk
h
= Uk

h,0 × Pk
h
(see (8.44))

equipped with following the norm (notice that this definition is slightly different
from the one considered for the Stokes problem, see (8.59), hence the triple-bar
notation):

|||(vh,qh)|||X ,h B ν‖vh ‖1,h + ‖qh ‖L2(Ω) ∀(vh,qh) ∈ Xk
h ,
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and the function Ψ : Xk
h
× [0,1] → Xk

h
such that, for given (wh,rh) ∈ Xk

h
and

ρ ∈ [0,1], (ξ
h
, ζh) = Ψ((wh,rh), ρ) is defined as the unique element of Xk

h
that

satisfies: For all vh ∈ Uk
h,0 and all qh ∈ Pk

h
,

(ξ
h
, vh)0,h = νah(wh, vh) + ρth(wh,wh, vh) + bh(vh,rh) −

∫
Ω

f ·vh (9.14a)

(ζh,qh)L2(Ω) = −bh(wh,qh), (9.14b)

where (·, ·)0,h is the L2-like scalar product on Uk
h such that, for all wh, vh ∈ Uk

h ,

(wh, vh)0,h B
∫
Ω

wh ·vh +
∑
T ∈Th

∑
F ∈FT

hF

∫
F

(wF − wT )·(vF − vT ).

We next check the assumptions of the topological degree lemma.

(i) Since Xk
h

is a finite-dimensional space, the bilinear forms ah and bh , the
trilinear form th , and the scalar products are continuous, and so is the case for
the function Ψ.

(ii) Let (wh,rh) ∈ Xk
h
be such that Ψ((wh,rh), ρ) = (0,0) for some ρ ∈ [0,1]. We

next show that

ν‖wh ‖1,h ≤ CaCP‖ f ‖L2(Ω)d and ‖rh ‖L2(Ω) ≤ C
(
‖ f ‖L2(Ω)d + ν

−2‖ f ‖2
L2(Ω)d

)
,

with constant C in the second estimate independent of ν, h, ρ, wh and rh . This
proves Point (ii) in Lemma 9.6 for

µ = (CaCP + C)‖ f ‖L2(Ω)d + Cν−2‖ f ‖2
L2(Ω)d + ε

with ε > 0. Make vh = wh in (9.14a). Recalling the coercivity of ah expressed
by the first inequality in (8.31), that th(wh,wh,wh) = 0 by the non-dissipativity
property (9.10), and that bh(wh,rh) = 0 owing to (9.14b) with qh = rh , we
have

νC−1
a ‖wh ‖21,h ≤ νah(wh,wh) =

∫
Ω

f ·wh

≤ ‖ f ‖L2(Ω)d ‖wh ‖L2(Ω)d ≤ CP‖ f ‖L2(Ω)d ‖wh ‖1,h,

where we have used the discrete Poincaré inequality (8.47) to conclude. The
bound on wh follows. To prove the bound on rh , we proceed as follows:
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‖rh ‖L2(Ω) . sup
vh ∈Uk

h ,0 , ‖vh ‖1,h=1
bh(vh,rh)

= sup
vh ∈Uk

h ,0 , ‖vh ‖1,h=1

(∫
Ω

f ·vh − νah(wh, vh) − ρth(wh,wh, vh)
)

. ‖ f ‖L2(Ω)d + ν‖wh ‖1,h + ρ‖wh ‖21,h

. ‖ f ‖L2(Ω)d + ν
−2‖ f ‖2

L2(Ω)d ,

where we have used the inf–sup condition (8.36) on bh in the first line and
(9.14a) to pass to the second line; the Cauchy–Schwarz and the discrete
Poincaré inequalities together with the boundedness of ah and th , respectively
expressed by the second inequality in (8.31) and by property (T2), are used to
pass to the third line; finally, the bound on ‖wh ‖1,h and the fact that ρ ≤ 1
allowed us to conclude.

(iii) Ψ(·,0) is an affine function from Xk
h
to Xk

h
. The fact that Ψ(·,0) is invertible

corresponds to the well-posedness of the HHO scheme for the Stokes problem.
Additionally, the unique solution (wh,rh) ∈ Xk

h
to the equationΨ((wh,rh),0) =

(0,0) satisfies |||(wh,rh)|||X ,h < µ as a consequence of Point (ii).

The existence of a solution to (9.9) is then an immediate consequence of Lemma
9.6 after observing that, if (uh, ph) ∈ Xk

h
is such that Ψ((uh, ph),1) = (0,0), then

(uh, ph) solves (9.9). The bounds (9.13) follow from Point (ii) above. ut
We next consider uniqueness, which can be classically proved under a data small-

ness condition.

Theorem 9.8 (Uniqueness of the discrete solution). Assume that the body
force verifies, for some χ ∈ [0,1),

‖ f ‖L2(Ω)d ≤ χ
ν2

C2
a CtCP

(9.15)

where Ca, Ct, and CP are as in (8.31), (9.11), and (8.47), respectively. Then,
the solution (uh, ph) ∈ Uk

h,0 × Pk
h
of (9.9) is unique.

Remark 9.9 (Data smallness condition). The scaling in ν2 of the smallness assump-
tion on the source term f already appears in the proof of uniqueness for the solution
to the continuous problem (9.3); see, e.g., [268, Chapter 2, Theorem 1.6].

Proof. Let (u1,h, p1,h), (u2,h, p2,h) ∈ Uk
h,0 × Pk

h
solve (9.9), and set

wh B u1,h − u2,h and rh B p1,h − p2,h .

Uniqueness if proved if we show that (wh,rh) = (0,0).
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We start by proving that wh = 0, which expresses uniqueness for the velocity. Tak-
ing the difference of the discrete momentum balance equation (9.9a) written first for
(uh, ph) = (u1,h, p1,h) then for (uh, ph) = (u2,h, p2,h), inserting ±th(u1,h, u2,h, vh),
and using the linearity of th in its first and second arguments, we infer that it holds,
for all vh ∈ Uk

h,0,

νah(wh, vh) + th(u1,h,wh, vh) + th(wh, u2,h, vh) + bh(vh,rh) = 0. (9.16)

Making vh = wh in the above equation, observing that th(u1,h,wh,wh) = 0 owing
to the non-dissipativity property (9.10), that bh(wh,rh) = 0 as a consequence of
the discrete mass balance equation (9.9b) written for u1,h and u2,h with qh = rh ,
and using the coercivity of ah expressed by the first inequality in (8.31) and the
boundedness of th expressed by (9.11), we obtain(

νC−1
a − Ct‖u2,h ‖1,h

)
‖wh ‖21,h ≤ 0.

By the first a priori bound in (9.13) and the assumption (9.15) on f , the first factor
in the left-hand side is > 0. As a result, wh = 0.

Using wh = 0 in (9.16), it is inferred that it holds, for all vh ∈ Uk
h,0, bh(vh,rh) = 0.

The inf–sup stability (8.36) of bh then gives

‖rh ‖L2(Ω) . sup
vh ∈Uk

h ,0 , ‖vh ‖1,h=1
bh(vh,rh) = 0,

which proves uniqueness for the pressure and concludes the proof. ut

9.3 Energy error estimate for small data

We prove in this section an energy-norm error estimate valid under a small data
assumption. To state this assumption, we introduce the continuous Poincaré constant
CΩ, which depends only on Ω and is such that, for all v ∈ U ,

‖v‖L2(Ω)d ≤ CΩ‖∇v‖L2(Ω)d×d . (9.17)

Theorem 9.10 (Discrete energy error estimate for small data). Let
(Mh)h∈H denote a regular mesh sequence in the sense of Definition 1.9. Let
a polynomial degree k ≥ 0 be fixed. Assume that the forcing term f satisfies,
for some χ ∈ [0,1),

‖ f ‖L2(Ω)d ≤ χ
ν2

d
1
2 CICaCtCΩ

, (9.18)
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with CI , Ca, Ct and CΩ as in (8.25), (8.31), (9.11) and (9.17), respectively.
Let (u, p) ∈ U × P and (uh, ph) ∈ Uk

h,0 × Pk
h
solve problems (9.3) and (9.9),

respectively. Assume, moreover, the additional regularity u ∈ Hr+2(Th)d and
p ∈ H1(Ω) ∩ Hr+1(Th) for some r ∈ {0, . . . , k}. Then,

ν‖uh − Ikhu‖1,h + ‖ph − π0,k
h

p‖L2(Ω)

. hr+1
(
ν |u |Hr+2(Th )d + ‖u‖W 1,4(Ω)d |u |W r+1,4(Th )d + |p|Hr+1(Th )

)
, (9.19)

where the norm ‖·‖1,h is defined by (8.24) and (8.15), and the hidden constant
is independent of h and ν, but possibly depends on d, Ω, k, %, χ, CI , Ca, Ct
and CΩ.

Remark 9.11 (Regularity for the velocity). Since d ≤ 3 and each T ∈ Th is polytopal,
the Sobolev embeddings used in each element show that Hr+2(Th) ⊂ Wr+1,4(Th).
The embedding constant of this inclusion is however not independent of h, which is
why the Wr+1,4(Th)-norm is explicitly used in (9.19).

Notice also that, since the exact velocity is in U = H1
0 (Ω)d , both its jumps

across interfaces and its trace on boundary faces vanish. Hence, the regularity u ∈
W1,4(Th)d implies u ∈ W1,4(Ω)d owing to Lemma 1.21 with p = 4.

Remark 9.12 (Convergence rate for highReynolds number).The error estimate (9.19)
is valid only for small data, which correspond to small Reynolds numbers. In passing,
the scaling in ν2 in the smallness condition on f also appears when establishing
error estimates for Finite Element approximations of the Navier–Stokes equations,
see [268, Chapter 2, Eq. (3.72)].

In order to get an idea of the convergence rate for high Reynolds numbers, one
can consider the linearised version corresponding to the Oseen problem. It has been
shown in [9] that, in this case, a similar behaviour as the one outlined in Theorem
3.32 is to be expected: mesh elements T ∈ Th for which diffusion dominates con-
tribute with a term in hk+1

T , whereas mesh elements for which convection dominates

contribute with a term in h
k+ 1

2
T .

Proof (Theorem 9.10). Let, for the sake of brevity,

ûh B Ikhu, p̂h B π0,k
h

p, eh B uh − ûh, εh B ph − p̂h . (9.20)

The proof proceeds in three steps: in the first step, we identify the consistency error
and derive a lower bound in terms of ‖eh ‖1,h using the data smallness assumption;
in the second step, we estimate the error on the velocity; in the third step, we estimate
the error on the pressure.

(i) Consistency error and lower bound. Even though the problem is nonlinear and
the results of Appendix A cannot be directly applied, the general principles can
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be adapted, as we did in Chapter 6 for the p-Laplace equation. For starter, the
consistency error is designed to be the right-hand side of an error equation on the
difference between the approximate solution and the interpolate of the exact solution
(see (A.7) in the linear setting). Here, a first error equation is readily inferred from
the discrete momentum equation (9.9a): For all vh ∈ Uk

h,0,

νah(eh, vh) + th(uh, uh, vh) − th(ûh, ûh, vh) + bh(vh, εh) = Eh((u, p); vh), (9.21)

with consistency error E
h
((u, p); ·) : Uk

h,0 → R such that, for all vh ∈ Uk
h,0,

Eh((u, p); vh) B
∫
Ω

f ·vh − νah(ûh, vh) − th(ûh, ûh, vh) − bh(vh, p̂h).

The second error equation is: For all qh ∈ Pk(Th),

bh(eh,qh) = bh(uh,qh) − bh(ûh,qh) = 0, (9.22)

which follows from the discrete mass conservation (9.9b) together with the consis-
tency property (8.35) of the pressure–velocity coupling bilinear form and the contin-
uous mass balance equation (9.3b), that allow us to write bh(ûh,qh) = b(u,qh) = 0.
Make vh = eh in (9.21) and qh = εh in (9.22). Observing that th(uh, uh, eh) =
th(uh, ûh, eh), owing to the linearity of th in its second argument along with the
non-dissipativity property (9.10), we infer

Eh((u, p); eh) = ν‖eh ‖2a,h + th(eh, ûh, eh)
≥ νC−1

a ‖eh ‖21,h − Ct‖ ûh ‖1,h ‖eh ‖21,h
≥

(
νC−1

a − d
1
2 CtCICΩν−1‖ f ‖L2(Ω)d

)
‖eh ‖21,h

≥ (1 − χ)C−1
a ν‖eh ‖21,h,

(9.23)

where we have used the coercivity of ah expressed by the first inequality in (8.31)
together with the boundedness (9.11) of th to pass to the second line, and invoked
the boundedness (8.25) of Ikh together with the definition of the H1-seminorm
(corresponding to (1.16) with X = Ω, s = 1, and p = 2) and the standard a priori
estimate ‖∇u‖L2(Ω)d×d ≤ CΩν−1‖ f ‖L2(Ω)d on the exact velocity to infer

‖ ûh ‖1,h ≤ CI |u |H1(Ω)d ≤ d
1
2 CI ‖∇u‖L2(Ω)d×d ≤ d

1
2 CICΩν−1‖ f ‖L2(Ω)d (9.24)

and pass to the third line; the proof of (9.23) was concluded using the data smallness
assumption (9.18).

(ii) Estimate on the velocity. Observing that f = −ν∆u + (u·∇)u + ∇p almost
everywhere in Ω (cf. (9.1a)), it holds, for all vh ∈ Uk

h,0,
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Eh((u, p); vh) = −ν
(∫
Ω

(∆u)·vh + ah(ûh, vh)
)

︸                                ︷︷                                ︸
T1

+

∫
Ω

(u·∇)u·vh − th(ûh, ûh, vh)︸                                 ︷︷                                 ︸
T2

+

∫
Ω

∇p·vh − bh(vh, p̂h).︸                        ︷︷                        ︸
T3

Using the consistency property (8.32) of the viscous bilinear form ah , we infer for
the first term

|T1 | . hr+1ν |u |Hr+2(Th )d ‖vh ‖1,h .
Assumption (9.12) on the discrete convective trilinear form gives for the second term

|T2 | . hr+1‖u‖W 1,4(Ω)d |u |W r+1,4(Th )d ‖vh ‖1,h .

Finally, the consistency property (8.37) of the pressure–velocity coupling bilinear
form bh yields

|T3 | . hr+1 |p|Hr+1(Th )‖vh ‖1,h .
Collecting the above bounds, we get

S B sup
vh ∈Uk

h ,0 , ‖vh ‖1,h=1
|Eh((u, p); vh)|

. hr+1
(
ν |u |Hr+2(Th )d + ‖u‖W 1,4(Ω)d |u |W r+1,4(Th )d + |p|Hr+1(Th )

)
,

(9.25)

so that, in particular,

Eh((u, p); eh) ≤ S‖eh ‖1,h
. hr+1

(
ν |u |Hr+2(Th )d + ‖u‖W 1,4(Ω)d |u |W r+1,4(Th )d + |p|Hr+1(Th )

)
‖eh ‖1,h . (9.26)

Combining (9.23) with (9.26), the estimate on the velocity in (9.19) follows.

(iii) Estimate on the pressure. Let us now estimate the error on the pressure. We have
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‖εh ‖L2(Ω) . sup
vh ∈Uk

h ,0 , ‖vh ‖1,h=1
bh(vh, εh)

= sup
vh ∈Uk

h ,0 , ‖vh ‖1,h=1

(
Eh((u, p); vh) − νah(eh, vh) − th(uh, uh, vh)

+ th(ûh, ûh, vh)
)

= sup
vh ∈Uk

h ,0 , ‖vh ‖1,h=1

(
Eh((u, p); vh) − νah(eh, vh) − th(eh, uh, vh)

− th(ûh, eh, vh)
)

. S + (
ν + ‖uh ‖1,h + ‖ ûh ‖1,h

) ‖eh ‖1,h
. S +

(
ν + ν−1‖ f ‖L2(Ω)d

)
‖eh ‖1,h

. S + ν‖eh ‖1,h . (9.27)

In (9.27), we have used the inf–sup inequality (8.36) on bh in the first line and the
error equation (9.21) to pass to the second line; to pass to the third line, we have
inserted ±th(ûh, uh, vh), used the linearity of th in its first and second arguments,
and recalled the definition (9.20) of eh; to pass to the fourth line, we have used the
boundedness properties (8.31) of ah and (9.11) of th; to pass to the fifth line, we have
used the a priori bounds (9.13) on ‖uh ‖1,h and (9.24) on ‖ ûh ‖1,h; the data smallness
assumption (9.18) gives the conclusion. The estimate on the pressure then follows
using (9.25) and the estimate on the velocity established in Point (ii) to further bound
the addends in the right-hand side of (9.27). ut

As usual, from the discrete error estimate (9.19) we can derive an error estimate
based on the global velocity reconstruction rk+1

h
: Uk

h → Pk+1(Th)d defined by
(8.70), that is, for all vh ∈ Uk

h ,

(rk+1
h vh) |T B rk+1

T vT ∀T ∈ Th . (9.28)

Corollary 9.13 (Energy error estimate for small data). Under the assumptions
and notations of Theorem 9.10, and denoting by ∇h the broken gradient operator
acting on vector fields and defined as in (1.21), it holds

ν
(
‖∇hrk+1

h uh − ∇u‖L2(Ω)d×d + |uh |s,h
)
+ ‖ph − p‖L2(Ω) .

hr+1
(
ν |u |Hr+2(Th )d + ‖u‖W 1,4(Ω)d |u |W r+1,4(Th )d + |p|Hr+1(Th )

)
, (9.29)

where we have defined the stabilisation seminorm such that, for all vh ∈ Uk
h ,
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|vh |s,h B
( ∑
T ∈Th

sT (vT , vT )
) 1

2

. (9.30)

Proof. The estimate on the bracketed term in the left-hand side of (9.29) is done ex-
actly as in the proof ofTheorem2.28: insert±∇hrk+1

h
ûh into ‖∇hrk+1

h
uh − ∇u‖L2(Ω)d×d

and ±ûh into |uh |s,h , apply a triangle inequality, then use (9.19) together with the
norm equivalence (8.31) to estimate ‖∇hrk+1

h
(uh − ûh)‖L2(Ω)d×d + |uh − ûh |s,h , and

bound the remaining term ‖∇hrk+1
h

ûh −∇u‖L2(Ω)d×d + | ûh |s,h as T2 in the proof of
Theorem 2.28.

To estimate ‖ph − p‖L2(Ω), insert ±π0,k
h

p into the norm, use a triangle inequality,
and recall (9.19) and the approximation property (1.74) with Lebesgue exponent
p = 2, l = k, s = r + 1, and m = 0:

‖ph − p‖L2(Ω) ≤ ‖ph − π0,k
h

p‖L2(Ω) + ‖π0,k
h

p − p‖L2(Ω)

. hr+1
(
ν |u |Hr+2(Th )d + ‖u‖W 1,4(Ω)d |u |W r+1,4(Th )d + |p|Hr+1(Th )

)
+ hr+1 |p|Hr+1(Ω).ut

9.4 Convective stabilisation

When dealing with high-Reynolds flows, it is sometimes desirable to strengthen
stability by penalising the difference between face and element unknowns. Fix ρ :
R → [0,∞) a Lipschitz-continuous function and wh ∈ Uk

h a vector of discrete
unknowns, and define the convective stabilisation bilinear form jh(wh; ·, ·) : Uk

h ×
Uk

h → R such that, for all vh, zh ∈ Uk
h ,

jh(wh; vh, zh) B
∑
T ∈Th

∑
F ∈FT

∫
F

ν

hF
ρ(PeTF (wF ))(vF − vT )·(zF − zT ). (9.31)

Here, for all T ∈ Th and all F ∈ FT , the local (oriented) Péclet number PeTF :
Pk(F)d → R is such that, for all w ∈ Pk(F)d ,

PeTF (w) B hF
w·nTF

ν
.

As already pointed out in [49, 103, 144], using the generic function ρ in the definition
of the convective stabilisation terms enables a unified treatment of several classical
discretisations (in the notations of [49], A(s) = ρ(s) + 1

2 s and B(s) = −ρ(s) + 1
2 s;

in the notations of [144], ρ = 1
2 |A|). Specifically, the HHO version of classical

convective stabilisations is obtained with the following choices of ρ:

• Centred scheme: ρ = 0.
• Upwind scheme: ρ(s) = 1

2 |s |. In this case, the definition (9.31) of jh(wh; ·, ·)
simplifies to (compare with (3.73))
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jh(wh; vh, zh) B
∑
T ∈Th

∑
F ∈FT

∫
F

|wF ·nTF |
2

(vF − vT )·(zF − zT ).

• Locally upwinded θ-scheme: ρ(s) = 1
2 (1 − θ(s))|s |, where θ ∈ C1

c(−1,1), 0 ≤
θ ≤ 1 and θ ≡ 1 on [− 1

2 ,
1
2 ]. This choice in (9.31) corresponds to the centred

scheme if |Pe(wF )| ≤ 1
2 (dominating viscosity) and to the upwind scheme if

|Pe(wF )| ≥ 1 (dominating advection).
• Scharfetter–Gummel scheme [257]: ρ(s) = s

2 coth( s2 ) − 1.

The advantage of the locally upwinded θ-scheme and the Scharfetter–Gummel
scheme over the upwind scheme is that they behave as the centred scheme, and
thus introduce less numerical diffusion, when |Pe(wF )| is not too large (dominating
viscosity). See, e.g., the discussion in [171, Section 4.1] for the Scharfetter–Gummel
scheme.

The HHO scheme with convective stabilisation reads: Find (uh, ph) ∈ Uk
h,0 × Pk

h

such that, for all (vh,qh) ∈ Uk
h,0 × Pk(Th),

νah(uh, vh) + th(uh, uh, vh) + jh(uh; uh, vh) + bh(vh, ph) =
∫
Ω

f ·vh, (9.32a)

−bh(uh,qh) = 0. (9.32b)

Both the error estimate of Theorem 9.10 and the convergence analysis of Theorem
9.32 below can be adapted to incorporate the convective stabilisation terms. These
developments are not further pursued here for the sake of conciseness; the interested
reader can consult [68].

9.5 Examples of discrete convective trilinear forms

We present here two examples of discrete convective trilinear forms that match the
design properties in Assumption 9.2. A gradient reconstruction Gl

T , which gener-
alises (4.37) to polynomial degrees different from k, is first introduced and analysed.
It is then used to construct a discrete version of (9.8), which leads to the first example
of a convective trilinear form. The second example consists in discretising the form
(9.7) based on Temam’s device, using for the divergence the trace ofG2k

T and for w·∇
a directional derivative inspired by the one introduced for scalar advection–diffusion–
reaction models (see (3.64)). The major difference between the two examples of th
we construct here is that, contrary to the first one, the second one enables us to write
a flux formulation of the scheme (9.9); see Remark 9.28.



9.5 Examples of discrete convective trilinear forms 401

9.5.1 A local gradient reconstruction

Let l ≥ 0 be an integer. We define here a generalisation of the gradient used in
Section 4.2 and Chapter 6, consisting in a tensorial gradient reconstruction in a local
polynomial space of degree l instead of k. Precisely, given a mesh element T ∈ Th
and following (4.37), we define the gradient operator Gl

T : Uk
T → Pl(T)d×d such

that, for all vT ∈ Uk
T ,∫

T

Gl
T vT :τ = −

∫
T

vT ·(∇·τ) +
∑
F ∈FT

∫
F

vF ·(τnTF ) ∀τ ∈ Pl(T)d×d . (9.33)

By the Riesz representation theorem in Pl(T)d×d endowed with the L2(T)d×d-inner
product, Gl

T vT is uniquely defined. Integrating by parts the first term in the right-
hand side of (9.33), we obtain the following characterisation of Gl

T : For all vT ∈ Uk
T

and all τ ∈ Pl(T)d×d ,∫
T

Gl
T vT :τ =

∫
T

∇vT :τ +
∑
F ∈FT

∫
F

(vF − vT )·(τnTF ). (9.34)

Taking two polynomial degrees l,m ≥ 0 and applying the definitions (9.33) of Gl
T

and Gm
T to τ ∈ Pmin(l,m)(T)d×d , the two right-hand sides are identical and thus, for

all vT ∈ Uk
T , ∫

T

Gl
T vT : τ =

∫
T

Gm
T vT : τ ∀τ ∈ Pmin(l,m)(T)d×d . (9.35)

In other words,
π0,min(l,m)
T (Gl

T vT ) = π0,min(l,m)
T (Gm

T vT ). (9.36)

The other properties of this gradient reconstruction relevant to our analysis are
summarised in the following proposition.

Proposition 9.14 (Properties of the local gradient reconstruction). For any T ∈
Th and any l ≥ 0, the gradient reconstruction defined by (9.33) satisfies the following
properties:

(i) Boundedness. For all vT ∈ Uk
T , it holds with local seminorm ‖·‖1,T defined by

(8.15):
‖Gl

T vT ‖L2(T )d×d . ‖vT ‖1,T . (9.37)

(ii) Consistency. For any r ∈ {0, . . . , l + 1} if l ≤ k, r ∈ {0, . . . , k} if l > k, it holds
that

‖Gl
T I

k
T v − ∇v‖L2(T )d×d . hrT |v |Hr+1(T )d ∀v ∈ Hr+1(T)d . (9.38a)

Moreover, if r ≥ 1,
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‖Gl
T I

k
T v − ∇v‖L2(∂T )d×d . h

r− 1
2

T |v |Hr+1(T )d ∀v ∈ Hr+1(T)d . (9.38b)

Above, the hidden constants are independent of both h and T , but possibly depend
on d, %, k, and l.

Proof. (i) Boundedness. Making τ = Gl
T vT in (9.34), using a Cauchy–Schwarz

inequality for the volumetric term, a generalised Hölder inequality with exponents
(2,2,∞) together with ‖nTF ‖L∞(F)d = 1, and the discrete trace inequality (1.55) with
p = 2 for the boundary terms yields the conclusion, in a similar way as in (6.23).

(ii)Consistency. Let v ∈ Hr+1(T)d . If l ≤ k, applying (9.36) to m = k and vT = IkT v,
and recalling that Gk

T I
k
T v = π

0,k
T (∇v) (see (4.40)), we have Gl

T I
k
T v = π

0,l
T (∇v). The

estimates (9.38) then immediately follow from the approximation properties of the
L2-orthogonal projector; see Theorem 1.45.

Consider now l > k.We start by noticing the following estimate, which is deduced
from a triangle inequality and (3.92) with w = components of v:

‖π0,k
F v − v‖L2(F)d ≤ ‖π0,k

F v − π0,k
T v‖L2(F)d + ‖π0,k

T v − v‖L2(F)d

. h
r+ 1

2
T |v |Hr+1(T )d .

(9.39)

For all τ ∈ Pl(T)d×d , plugging the definition (8.14) of IkT v into (9.33) and subtracting∫
T
∇v:τ = −

∫
T
v·(∇·τ) +∑

F ∈FT
∫
F
v·(τnTF ),we get∫

T

(Gl
T I

k
T v − ∇v):τ = −

∫
T

(π0,k
T v − v)·(∇·τ) +

∑
F ∈FT

∫
F

(π0,k
F v − v)·(τnTF ).

Make τ = Gl
T I

k
T v − π0,l

T (∇v) and notice that, by orthogonality property of π0,l
T ,

the term ∇v in the left-hand side can be replaced with π0,l
T (∇v). Using a Cauchy–

Schwarz inequality for the volumetric term and generalised Hölder inequalities with
exponents (2,2,∞) together with ‖nTF ‖L∞(F)d = 1 for the boundary terms, we obtain

‖Gl
T I

k
T v−π0,l

T (∇v)‖2L2(T )d×d ≤ ‖π
0,k
T v−v‖L2(T )d ‖∇·

(
Gl

T I
k
T v − π0,l

T (∇v)
)
‖L2(T )d

+
∑
F ∈FT

‖π0,k
F v − v‖L2(F)d ‖Gl

T I
k
T v − π0,l

T (∇v)‖L2(F)d×d .

Invoking the discrete inverse (1.46) and trace (1.55) inequalities (both with p = 2 and
v = components of Gl

T I
k
T v − π0,l

T (∇v)), together with the approximation property
(1.74) of π0,k

T (with s = r + 1) and (9.39), we infer

‖Gl
T I

k
T v − π0,l

T (∇v)‖L2(T )d×d . hrT |v |Hr+1(T )d . (9.40)

Hence, using the triangle inequality and the approximation properties (1.74) of π0,l
T ,

we obtain
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‖Gl
T I

k
T v − ∇v‖L2(T )d×d ≤ ‖Gl

T I
k
T v − π0,l

T (∇v)‖L2(T )d×d + ‖π0,l
T (∇v) − ∇v‖L2(T )d×d

. hrT |v |Hr+1(T )d ,

and (9.38a) follows. To prove (9.38b), we observe that it holds

‖Gl
T I

k
T v − ∇v‖L2(∂T )d×d

≤ ‖Gl
T I

k
T v − π0,l

T (∇v)‖L2(∂T )d×d + ‖π0,l
T (∇v) − ∇v‖L2(∂T )d×d

. h
− 1

2
T ‖Gl

T I
k
T v − π0,l

T (∇v)‖L2(T )d×d + h
r− 1

2
T |v |Hr+1(T )d ,

where we have inserted ±π0,l
T (∇v) inside the norm and used the triangle inequality

in the first bound, followed by the discrete trace inequality (1.55) with p = 2 together
with the approximation properties (1.75) of π0,l

T in the second. Using (9.40) to
estimate the first term in the right-hand side of the above inequality, (9.38b) is
proved. ut

9.5.2 A skew-symmetric trilinear form using a gradient-based
approximation of the convective derivative

The first discrete trilinear form that we consider, originally introduced in [157], is
inspired by the skew-symmetric formulation (9.8) of the continuous trilinear form.
The key idea consists in replacing the gradient operator by the discrete counterpart
G2k

T , which amounts to using a gradient-based approximation of the convective
derivative.

9.5.2.1 A gradient-based discrete directional derivative

We preliminarily study a gradient-based discrete directional derivative. Specifically,
for w = (wi)1≤i≤d ∈ L2(T)d , we define w·G2k

T : Uk
T → L2(T)d by

(w·G2k
T )vT B

©«
d∑
j=1

wj(G2k
T vT )i j

ª®¬1≤i≤d
∀vT ∈ Uk

T . (9.41)

Recalling that (G2k
T vT )i j approximates the partial derivative with respect to the jth

space variable of the ith component of the function represented by vT , w·G2k
T can

be regarded as a discrete version of w·∇.
Lemma 9.15 below states the properties of the operator (9.41) that are relevant

to our analysis. The proof of this lemma hinges on the following discrete Sobolev
embedding, obtained by applying Theorem 6.40, with p = 2 and q = 4, to vh =

components of vh:
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‖vh ‖L4(Ω)d . ‖vh ‖1,h ∀vh ∈ Uk
h,0, (9.42)

where the hidden multiplicative constant depends on Ω, d, %, and k. We note, in
passing, that the continuous Sobolev embeddings are essential, in the theoretical
analysis of Navier–Stokes equations, to deal with the nonlinear term. It is therefore
no surprise if a discrete version thereof is required for the numerical analysis of these
equations.

Lemma 9.15 (Properties of the gradient-based discrete directional derivative).
The operator defined by (9.41) satisfies the following properties:

(i) Boundedness. For all wh, vh, zh ∈ Uk
h,0, it holds����� ∑

T ∈Th

∫
T

(wT ·G2k
T )vT ·zT

����� . ‖wh ‖1,h ‖vh ‖1,h ‖ zh ‖1,h, (9.43)

with hidden constant independent of h, wh , vh and z
h
.

(ii) Consistency. If r ∈ {0, . . . , k} and w ∈ H1
0 (Ω)d ∩ Wr+1,4(Th)d then, setting

ŵh B Ikhw, it holds�����∫Ω(w·∇)w·zh − ∑
T ∈Th

∫
T

(ŵT ·G2k
T )ŵT ·zT

�����
. hr+1 |w |W r+1,4(Th )d |w |W 1,4(Ω)d ‖ zh ‖L4(Ω)d ∀zh ∈ Pk(Th)d, (9.44)

where zT = (zh) |T for all T ∈ Th , and the hidden constant is independent of h,
w, and zh .

Proof. (i) Boundedness. We have����� ∑
T ∈Th

∫
T

(wT ·G2k
T )vT ·zT

����� ≤ ∑
T ∈Th

‖wT ‖L4(T )d ‖G2k
T vT ‖L2(T )d×d ‖ zT ‖L4(T )d

.
∑
T ∈Th

‖wT ‖L4(T )d ‖vT ‖1,T ‖ zT ‖L4(T )d

≤ ‖wh ‖L4(Ω)‖vh ‖1,h ‖ zh ‖L4(Ω)d

. ‖wh ‖1,h ‖vh ‖1,h ‖ zh ‖1,h,

where we have used generalised Hölder inequalities with exponents (4,2,4) on the
integrals in the first inequality, the boundedness property (9.37) of the local gradient
reconstruction in the second inequality, generalised Hölder inequalities with expo-
nents (4,2,4) on the sum over T ∈ Th in the third inequality, and the discrete Sobolev
embedding (9.42) to conclude.

(ii) Consistency. Inserting ±(w·G2k
T )ŵT into the integrals, we have
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Ω

(w·∇)w·zh −
∑
T ∈Th

∫
T

(ŵT ·G2k
T )ŵT ·zT

=
∑
T ∈Th

∫
T

[(w·∇)w − (w·G2k
T )ŵT

] ·zT + ∑
T ∈Th

∫
T

[(w − ŵT )·G2k
T

]
ŵT ·zT

C T1 + T2. (9.45)

For the first term, we start by noticing the following relation, obtained applying
(9.35) to (l,m) = (2k, k) and vT = ŵT , and recalling that Gk

T ŵT = π
0,k
T (∇w) (see

(4.40)): ∫
T

(G2k
T ŵT − ∇w):τ = 0 ∀τ ∈ Pk(T)d×d . (9.46)

Recalling the definition (7.2) of the Frobenius product and using (9.46) with τ =
zT ⊗ π0,0

T w ∈ Pk(T)d×d , we infer

T1 =
∑
T ∈Th

∫
T

(∇w −G2k
T ŵT ):

(
zT ⊗ w

)
=

∑
T ∈Th

∫
T

(∇w −G2k
T ŵT ):

(
zT ⊗ (w − π0,0

T w)) .
Hence, using generalised Hölder inequalities with exponents (2,4,4), we obtain

|T1 | ≤
∑
T ∈Th

‖∇w −G2k
T ŵT ‖L2(T )d×d ‖ zT ‖L4(T )d ‖w − π0,0

T w‖L4(T )d

.
∑
T ∈Th

hr+1
T |w |Hr+1(T )d ‖ zT ‖L4(T )d |w |W 1,4(T )d

. hr+1 |w |Hr+1(Th )d ‖ zh ‖L4(Ω)d |w |W 1,4(Ω)d ,

where we have used the consistency property (9.38a) of the discrete gradient re-
construction with l = 2k together with the approximation properties (1.74) of the
L2-orthogonal projector π0,0

T (with X = T , p = 4, s = 1 and m = 0) to pass to the
second line, and a generalised Hölder inequality with exponents (2,4,4) on the sum
over T ∈ Th to pass to the third line.

For the second term, we can write

|T2 | ≤
∑
T ∈Th

‖w − ŵT ‖L4(T )d ‖G2k
T ŵT ‖L2(T )d×d ‖ zT ‖L4(T )d

.
∑
T ∈Th

hr+1
T |w |W r+1,4(T )d ‖ŵT ‖1,T ‖ zT ‖L4(T )d

. hr+1 |w |W r+1,4(Th )d |w |H1(Ω)d ‖ zh ‖L4(Ω)d ,

where we have used generalised Hölder inequalities with exponents (4,2,4) in the
first line, the approximation properties (1.74) of the L2-orthogonal projector with



406 9 Navier–Stokes

X = T , l = k, p = 4, s = r + 1, and m = 0 together with the boundedness (9.37)
of the local gradient reconstruction to pass to the second line, and a generalised
Hölder inequality with exponents (4,2,4) on the sum over T ∈ Th together with the
boundedness property (8.25) of the global interpolator to conclude.

Estimate (9.44) follows by gathering the above bounds on T1 and T2 in (9.45),
and by noticing that |w |H1(Ω)d . |w |W 1,4(Ω)d and |w |Hr+1(Th )d . |w |W r+1,4(Th )d . ut

9.5.2.2 Discrete trilinear form

We define tss
h

: Uk
h × Uk

h × Uk
h → R such that, for all wh, vh, zh ∈ Uk

h ,

tss
h (wh, vh, zh) B

1
2

∑
T ∈Th

[∫
T

(wT ·G2k
T )vT ·zT −

∫
T

(wT ·G2k
T )zT ·vT

]
. (9.47)

Remark 9.16 (Implementation of the trilinear form (9.47)). In the practical imple-
mentation, one does not need to actually compute G2k

T to evaluate tss
h
. Instead, the

following expression can be used, obtained applying (9.33) twice to expand the terms
involving G2k

T :

tss
h (wh, vh, zh) =

1
2

∑
T ∈Th

∫
T

[(wT ·∇)vT ·zT − vT ·(wT ·∇)zT ]

+
1
2

∑
T ∈Th

∑
F ∈FT

∫
F

(wT ·nTF )(vF ·zT − vT ·zF ).
(9.48)

Proposition 9.17 (Properties of the convective trilinear form (9.47)). The convec-
tive trilinear form tss

h
defined by (9.47) satisfies Assumption 9.2.

Proof. (T1) Non-dissipativity. This property is straightforward from the inherently
skew-symmetric definition of tss

h
.

(T2) Boundedness. Apply (9.43) twice, swapping vh and z
h
the second time.

(T3)Consistency. For the sake of brevity, set ŵh B Ikhw. Integrating by parts element
by element, recalling that ∇·w = 0, and using the single-valuedness of (w·nF )w at
interfaces together with the fact that zF = 0 on boundary faces to insert zF into the
third term, we have∫

Ω

(w·∇)w·zh = 1
2

∑
T ∈Th

(∫
T

(w·∇)w·zT −
∫
T

(w·∇)zT ·w
)

− 1
2

∑
T ∈Th

∑
F ∈FT

∫
F

(w·nTF )(zF − zT )·w.
(9.49)

On the other hand, starting from the definition (9.47) of tss
h
and using inside each

element T ∈ Th the characterisation (9.34) of G2k
T with vT = z

T
and τ = ŵT ⊗ ŵT ,
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we have

tss
h (ŵh, ŵh, zh) =

1
2

∑
T ∈Th

(∫
T

(ŵT ·G2k
T )ŵT ·zT −

∫
T

(ŵT ·∇)zT ·ŵT

)
− 1

2

∑
T ∈Th

∑
F ∈FT

∫
F

(ŵT ·nTF )(zF − zT )·ŵT .

(9.50)

Subtracting (9.50) from (9.49) and inserting into the right-hand side of the resulting
expression the quantity

±1
2

∑
T ∈Th

(∫
T

(ŵT ·∇)zT ·w +
∑
F ∈FT

∫
F

(w·nTF )(zF − zT )·ŵT

)
,

we arrive at∫
Ω

(w·∇)w·zh − tss
h (ŵh, ŵh, zh)

=
1
2

[ ∑
T ∈Th

∫
T

(w·∇)w·zT −
∫
T

(ŵT ·G2k
T )ŵT ·zT

]
︸                                                       ︷︷                                                       ︸

T1

+
1
2

∑
T ∈Th

∫
T

(ŵT ·∇)zT ·(ŵT − w)︸                                  ︷︷                                  ︸
T2

+
1
2

∑
T ∈Th

∫
T

((ŵT − w)·∇)
zT ·w︸                                 ︷︷                                 ︸

T3

+
1
2

∑
T ∈Th

∑
F ∈FT

∫
F

((ŵT − w)·nTF )(zF − zT )·ŵT︸                                                       ︷︷                                                       ︸
T4

+
1
2

∑
T ∈Th

∑
F ∈FT

∫
F

(w·nTF )(zF − zT )·(ŵT − w)︸                                                     ︷︷                                                     ︸
T5

. (9.51)

The first term is estimated using (9.44) together with the discrete Sobolev embedding
(9.42) to bound ‖ zh ‖L4(Ω):

|T1 | . hr+1 |w |W r+1,4(Th )d |w |W 1,4(Ω)d ‖ zh ‖1,h . (9.52)

Proceeding similarly as for the estimate of T2 in the proof of Lemma 9.15, after
applying Hölder inequalities with exponents (4,2,4) and invoking the approximation
properties of the L2-orthogonal projector, we have for the second and third terms
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|T2 | + |T3 | . hr+1
(
‖ŵh ‖L4(Ω)d + ‖w‖L4(Ω)d

)
|w |W r+1,4(Th )d ‖∇h zh ‖L2(Ω)d×d

. hr+1
(
‖ŵh ‖1,h + ‖w‖H1(Ω)d

)
|w |W r+1,4(Th )d ‖ zh ‖1,h

. hr+1‖w‖H1(Ω)d |w |W r+1,4(Th )d ‖ zh ‖1,h, (9.53)

where we have used discrete (9.42) and continuous Sobolev embeddings to bound
the terms in parentheses together with the definitions (8.24) and (8.15) of the ‖·‖1,h-
and ‖·‖1,T -seminorms to bound the third factor when passing to the second line, and
the boundedness (8.25) of Ikh to further write ‖ŵh ‖1,h . |w |H1(Ω)d and conclude.

Finally, for the fourth and fifth terms in (9.51), using generalised Hölder in-
equalities with exponents (4,∞,2,4) together with ‖nTF ‖L∞(F)d = 1 and the trace
approximation properties (1.75) of the L2-orthogonal projector (with l = k, p = 4,
s = r + 1, and m = 0), we obtain

|T4 | + |T5 |
.

∑
T ∈Th

∑
F ∈FT

hr+1− 1
4 |w |W r+1,4(T )d

(
‖ŵT ‖L4(F)d + ‖w‖L4(F)d

)
‖ zF − zT ‖L2(F)d

. hr+1 |w |W r+1,4(Th )d

[ ∑
T ∈Th

hT
(
‖ŵT ‖4L4(∂T )d + ‖w‖4L4(∂T )d

)] 1
4
( ∑
T ∈Th

|z
T
|21,∂T

) 1
2

. hr+1 |w |W r+1,4(Th )d ‖w‖W 1,4(Ω)d ‖ zh ‖1,h, (9.54)

where, to pass to the second line, we have used a generalised Hölder inequality on the
sums with exponents (4,4,2) and distributed h

− 1
4

T as h
1
4
T on (‖ŵT ‖L4(F)d + ‖w‖L4(F)d )

and h
− 1

2
T on ‖ zF − zT ‖L2(F)d ; to pass to the last line, we have used the continuous

(1.51) and discrete (1.55) trace inequalities with p = 4 and the L4-boundedness of
π0,k
T (see (1.77)) for the second factor, whilst the definitions (8.24) and (8.15) of

the ‖·‖1,h- and ‖·‖1,T -seminorms have been used to bound the third factor. Taking
absolute values in (9.51), and using (9.52)–(9.54) to bound the right-hand side, (9.12)
follows after observing that ‖w‖H1(Ω)d . ‖w‖W 1,4(Ω)d . ut

9.5.3 A trilinear form incorporating Temam’s device for stability

The second trilinear form discussed here, originally introduced in [68], is inspired
by Temam’s formulation (9.7), where the operator (w·∇) and the divergence are
replaced, respectively, by a discrete reconstruction of the directional derivative and
by the trace of the gradient G2k

T defined by (9.33).
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9.5.3.1 Discrete directional derivative

GivenwT ∈ Uk
T , the directional derivative reconstructionG

k
T (wT ; ·) : Uk

T → Pk(T)d
is such that, for all vT ∈ Uk

T ,∫
T

Gk
T (wT ; vT )·z

=

∫
T

(wT ·∇)vT ·z +
∑
F ∈FT

∫
F

(wF ·nTF )(vF − vT )·z ∀z ∈ Pk(T)d . (9.55)

This expression mimics (3.65) with the role of the advective velocity inside the
element and on its faces played by wT and (wF )F ∈FT , respectively. For all z ∈
Pk(T)d , writing (9.34) for l = 2k and τ = z ⊗ wT , recalling the notation (9.41) for
(wT ·G2k

T )vT and comparing with (9.55), one can see that it holds∫
T

Gk
T (wT ; vT )·z =

∫
T

(wT ·G2k
T )vT ·z

+
∑
F ∈FT

∫
F

(wF − wT )·nTF (vF − vT )·z ∀z ∈ Pk(T)d .
(9.56)

This shows that Gk
T (wT ; vT ) differs from (wT ·G2k

T )vT in that wF replaces wT in the
boundary term. The properties of the discrete directional derivative relevant to the
analysis are summarised in the following proposition.

Proposition 9.18 (Properties of the discrete directional derivative). The discrete
directional derivative defined by (9.55) satisfies the following properties:

(i) Boundedness. For all wh, vh, zh ∈ Uk
h,0, it holds����� ∑

T ∈Th

∫
T

Gk
T (wT ; vT )·zT

����� . ‖wh ‖1,h ‖vh ‖1,h ‖ zh ‖1,h, (9.57)

with hidden constant independent of h, wh , vh , and z
h
.

(ii) Consistency. If r ∈ {0, . . . , k} and w ∈ H1
0 (Ω)d ∩Wr+1,4(Th)d , then, setting

ŵh B Ikhw, it holds����� ∑
T ∈Th

∫
T

[(w·∇)w −Gk
T (ŵT ; ŵT )

] ·zT �����
. hr+1 |w |W r+1,4(Th )d |w |W 1,4(Ω)d ‖ zh ‖L4(Ω)d ∀zh ∈ Pk(Th)d, (9.58)

where zT = (zh) |T for all T ∈ Th , and the hidden constant is independent of h,
w and zh .

Proof. (i) Boundedness. Using (9.56), we can write
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T ∈Th

∫
T

Gk
T (wT ; vT )·zT

�����
≤

����� ∑
T ∈Th

∫
T

(wT ·G2k
T )vT ·zT

����� +
����� ∑
T ∈Th

∑
F ∈FT

∫
F

(wF − wT )·nTF (vF − vT )·zT
�����︸                                                     ︷︷                                                     ︸

T1

.

. ‖wh ‖1,h ‖vh ‖1,h ‖ zh ‖1,h + T1, (9.59)

where we have used (9.43) to pass to the second line. To estimate T1, we write

T1 ≤
∑
T ∈Th

∑
F ∈FT

‖wF − wT ‖L4(F)d ‖vF − vT ‖L2(F)d ‖ zT ‖L4(F)d

. ‖ zh ‖L4(Ω)d
∑
T ∈Th

∑
F ∈FT

h
− 1

4
F ‖wF − wT ‖L4(F)d ‖vF − vT ‖L2(F)d

. ‖ zh ‖L4(Ω)d
∑
T ∈Th

∑
F ∈FT

h
− 1

4
F |F |

− 1
4

d−1‖wF − wT ‖L2(F)d ‖vF − vT ‖L2(F)d

. ‖ zh ‖L4(Ω)d
∑
T ∈Th

∑
F ∈FT

h
− 1

2
F ‖wF − wT ‖L2(F)d h

− 1
2

F ‖vF − vT ‖L2(F)d

. ‖ z
h
‖1,h ‖wh ‖1,h ‖vh ‖1,h, (9.60)

where we have used a generalised Hölder inequality with exponents (4,∞,2,4)
together with ‖nTF ‖L∞(F)d = 1 in the first line, the discrete trace inequality (1.55)
with p = 4 followed by ‖ zT ‖L4(T )d ≤ ‖ zh ‖L4(Ω)d for all T ∈ Th in the second
line, the inverse Lebesgue embedding (1.35) with X = F (this choice is possible in
view of Remark 1.27), q = 4, and m = 2 in the third line, the bound h

− 1
4

F |F |
− 1

4
d−1 .

h
− 1

4− d−1
4

F . h−1
F = h

− 1
2

F h
− 1

2
F (valid since d ≤ 3) in the fourth line, and the discrete

Sobolev embedding (9.42) together with a discrete Cauchy–Schwarz inequality on
the sums over T ∈ Th and F ∈ FT , and the definitions (8.24) and (8.15) of ‖·‖1,h and
‖·‖1,T to conclude. Plugging the bound (9.60) into (9.59) yields the estimate (9.57).

(ii) Consistency.Writing (9.56) for wT = vT = ŵT , we get∑
T ∈Th

∫
T

[(w·∇)w −Gk
T (ŵT ; ŵT )

] ·zT = ∑
T ∈Th

∫
T

[(w·∇)w − (ŵT ·G2k
T )ŵT

] ·zT︸                                            ︷︷                                            ︸
T1

−
∑
T ∈Th

∑
F ∈FT

∫
F

(ŵF − ŵT )·nTF (ŵF − ŵT )·zT︸                                                     ︷︷                                                     ︸
T2

. (9.61)

The first term is estimated using (9.44):
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|T1 | . hr+1 |w |W r+1,4(Th )d |w |W 1,4(Ω)d ‖ zh ‖L4(Ω)d . (9.62)

For the second term, we first observe that, owing to the linearity, idempotency, and
boundedness of π0,k

F (see Lemma 1.44), it holds, for α ∈ {2,4},

‖ŵF − ŵT ‖Lα (F)d = ‖π0,k
F (w − π0,k

T w)‖Lα (F)d . ‖w − π0,k
T w‖Lα (F)d . (9.63)

Hence, generalisedHölder inequalitieswith exponents (2,∞,4,4) alongwith ‖nTF ‖L∞(F)d =
1 give

|T2 | .
∑
T ∈Th

∑
F ∈FT

‖w − π0,k
T w‖L2(F)d ‖w − π0,k

T w‖L4(F)d ‖ zT ‖L4(F)d

. hr+1 |w |Hr+1(Th )d |w |W 1,4(Ω)d ‖ zh ‖L4(Ω)d , (9.64)

where we have used the trace approximation properties (1.75) of the L2-orthogonal
projector with l = k and, respectively, (p, s,m) = (2,r + 1,0) and (p, s,m) = (4,1,0)
to bound the first two factors inside the summation, the discrete trace inequality
(1.55) with p = 4 to bound the third one, and another generalised Hölder inequality
with exponents (2,4,4) on the sums to conclude.

Combining (9.61), (9.62) and (9.64) yields (9.58). ut

9.5.3.2 Discrete divergence and integration by parts formula

Given a mesh element T ∈ Th and a polynomial degree l ≥ 0, we next define the
generalised discrete divergence such that, for all vT ∈ Uk

T ,

Dl
T vT B tr(Gl

T vT ) =
d∑
i=1
(Gl

T vT )ii = Gl
T vT : Id, (9.65)

where Id denotes the identity matrix ofRd×d . For future use, we record the following
characterisation of Dl

T , obtained from (9.34) with τ = qId: For all vT ∈ Uk
T ,∫

T

Dl
T vT q =

∫
T

(∇·vT ) q +
∑
F ∈FT

∫
F

(vF − vT )·nTFq ∀q ∈ Pl(T). (9.66)

This formula shows that, for l = k, we indeed recover the discrete divergence used
in Chapter 8 (see (8.20)). With this definition, we can prove a discrete integration by
parts formula which plays the role of (9.5) at the discrete level.

Proposition 9.19 (Discrete integration by parts formula). For all wh, vh, zh ∈ Uk
h

it holds
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T ∈Th

∫
T

(
Gk

T (wT ; vT )·zT + vT ·Gk
T (wT ; z

T
) + D2k

T wT (vT ·zT )
)

= −
∑
T ∈Th

∑
F ∈FT

∫
F

(wF ·nTF )(vF − vT )·(zF − zT )

+
∑
F ∈Fb

h

∫
F

(wF ·nF )(vF ·zF ).

(9.67)

Remark 9.20 (Comparison with (9.5)). Compared with its continuous counterpart
(9.5), formula (9.67) contains one additional term in the right-hand side where the
differences between face and element unknowns in vh and z

h
appear. This term

reflects the non-conformity of the HHO space.

Proof (Proposition 9.19). Let an element T ∈ Th be fixed. Expanding first
Gk

T (wT ; vT ) according to its definition (9.55) with z = zT , then integrating by
parts the volumetric term, we obtain∫

T

Gk
T (wT ; vT )·zT

=

∫
T

(wT ·∇)vT ·zT +
∑
F ∈FT

∫
F

(wF ·nTF )(vF − vT )·zT

= −
∫
T

vT ·(wT ·∇)zT −
∫
T

(∇·wT )(vT ·zT )

+
∑
F ∈FT

∫
F

[(wF ·nTF )(vF ·zT ) − (wF ·nTF )(vT ·zT ) + (wT ·nTF )(vT ·zT )]

C T1 + T2 + T3. (9.68)

Using again (9.55), this time with vT = z
T
and z = vT , we obtain for the first term

T1 = −
∫
T

vT ·Gk
T (wT ; z

T
) +

∑
F ∈FT

∫
F

(wF ·nTF ) vT ·(zF − zT ). (9.69)

Invoking the characterisation (9.66) of the discrete divergence reconstruction with
l = 2k and q = vT ·zT , we get for the second term

T2 = −
∫
T

D2k
T wT (vT ·zT ) +

∑
F ∈FT

∫
F

(wF − wT )·nTF (vT ·zT ). (9.70)

Plugging (9.69)–(9.70) into (9.68) and rearranging, we obtain
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T

(
Gk

T (wT ; vT )·zT + vT ·Gk
T (wT ; z

T
) + D2k

T wT (vT ·zT )
)

=
∑
F ∈FT

∫
F

(wF ·nTF )(vT ·zF − vT ·zT + vF ·zT ).

Summing the above equality over T ∈ Th and adding the quantity

−
∑
T ∈Th

∑
F ∈FT

∫
F

(wF ·nTF )(vF ·zF ) +
∑
F ∈Fb

h

∫
F

(wF ·nF )(vF ·zF ) = 0, (9.71)

the conclusion follows after observing that vT ·zF − vT ·zT + vF ·zT − vF ·zF =
−(vF − vT )·(zF − zT ). Formula (9.71) is justified observing that, for any internal
face F ∈ F i

h
such that F ∈ FT1 ∩ FT2 for distinct mesh elements T1,T2 ∈ Th , it holds

that (wF ·nT1F )(vF ·zF ) + (wF ·nT2F )(vF ·zF ) = 0 owing to the single-valuedness of
wF , vF and zF . ut

9.5.3.3 Discrete trilinear form

We can now define the discrete convective trilinear form ttm
h

: Uk
h × Uk

h × Uk
h → R

inspired by (9.7): For all wh, vh, zh ∈ Uk
h ,

ttmh (wh, vh, zh) B
∑
T ∈Th

∫
T

Gk
T (wT ; vT )·zT

+
1
2

∑
T ∈Th

(∫
T

D2k
T wT (vT ·zT ) +

∑
F ∈FT

∫
F

(wF ·nTF )(vF − vT )·(zF − zT )
)
, (9.72)

where the terms in the second line embody Temam’s device for stability.

Remark 9.21 (Discrete incompressibility constraint and Temam’s device). Equation
(9.9b) is equivalent toDk

T uT = 0 for allT ∈ Th , and expresses at the discrete level the
fact that the HHO velocity field solution to (9.9) is incompressible. Notice, however,
that the fact that Dk

T uT = 0 for allT ∈ Th does not imply, in general, that D2k
T uT = 0,

which justifies the introduction of the second term in (9.72).

Remark 9.22 (Implementation of the trilinear form (9.72) and link with (9.47)).
Expanding the discrete directional derivatives appearing in (9.75) below according
to their definition (9.55), we arrive at the following reformulation of ttm

h
, which shows

that, in the computer implementation, one does not actually need to computeGk
T (· ; ·)

nor D2k
T : For any wh, vh, zh ∈ Uk

h ,
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ttmh (wh, vh, zh) =
1
2

∑
T ∈Th

∫
T

[(wT ·∇)vT ·zT − vT ·(wT ·∇)zT ]

+
1
2

∑
T ∈Th

∑
F ∈FT

∫
F

(wF ·nTF )(vF ·zT − vT ·zF ).
(9.73)

Comparing with (9.48), it can be seen that the only difference is that wF replaces
wT in the boundary term, and that the following relation holds:

ttmh (wh, vh, zh) = tss
h (wh, vh, zh)

+
1
2

∑
T ∈Th

∑
F ∈FT

∫
F

(wF − wT )·nTF (vF ·zT − vT ·zF ). (9.74)

Proposition 9.23 (Properties of the convective trilinear form (9.72)). The convec-
tive trilinear form ttm

h
defined by (9.72) satisfies Assumption 9.2.

Proof. (T1)Non-dissipativity.Using the discrete integration by parts formula (9.67),
we can write, for any wh, vh ∈ Uk

h,0,

1
2

∑
T ∈Th

(∫
T

D2k
T wT (vT ·zT ) +

∑
F ∈FT

∫
F

(wF ·nTF )(vF − vT )·(zF − zT )
)

= −1
2

∑
T ∈Th

∫
T

(
Gk

T (wT ; vT )·zT + vT ·Gk
T (wT ; z

T
)
)
.

Plugging this equation into the definition (9.72) of ttm
h
, we arrive at the following

reformulation, which makes the skew-symmetry of ttm
h

evident:

ttmh (wh, vh, zh) =
1
2

∑
T ∈Th

∫
T

(
Gk

T (wT ; vT )·zT − vT ·Gk
T (wT ; z

T
)
)
. (9.75)

The conclusion then follows letting z
h
= vh .

(T2) Boundedness. Accounting for (9.75), the boundedness follows applying (9.57)
twice, with vh and z

h
swapped the second time.

(T3) Consistency. Set, for the sake of brevity, ŵh B Ikhw. Recalling the definition
(9.72) of ttm

h
, we decompose the argument of the supremum in (9.12) into the sum

of the following terms:
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T1 B
∑
T ∈Th

∫
T

[(w·∇)w −Gk
T (ŵT ; ŵT )

] ·zT ,
T2 B −1

2

∑
T ∈Th

∫
T

D2k
T ŵT (ŵT ·zT )

T3 B −1
2

∑
T ∈Th

∑
F ∈FT

∫
F

(ŵF ·nTF )(ŵF − ŵT )·(zF − zT ).

Using the approximation properties (9.58) of the discrete directional derivative
followed by the discrete Sobolev embedding (9.42), it is inferred for the first term:

|T1 | . hr+1 |w |W r+1,4(Th )d |w |W 1,4(Ω)d ‖ zh ‖1,h . (9.76)

After observing that D2k
T ŵT is L2-orthogonal to functions in Pk(T) as a consequence

of ∇·w = 0 together with (9.46) written for τ = qId with q spanning Pk(T), and that
π0,0
T w·zT ∈ Pk(T), we can write

|T2 | = 1
2

����� ∑
T ∈Th

∫
T

(∇·w − D2k
T ŵT )(ŵT − π0,0

T w)·zT
�����

.
∑
T ∈Th

‖∇·w − D2k
T ŵT ‖L2(T )‖ŵT − π0,0

T w‖L4(T )d ‖ zT ‖L4(T )d

. hr+1 |w |Hr+1(Th )d |w |W 1,4(Ω)d ‖ zh ‖1,h . (9.77)

To pass from the second to the third line, we have used: the approximation properties
of the divergence reconstruction resulting from (9.38a) with l = 2k to bound the
first factor; the linearity, idempotency, and L4-boundedness of π0,k

T followed by the
approximation properties (1.74) of the L2-orthogonal projector with l = 0, p = 4,
m = 0, and s = 1 to estimate the second factor as follows:

‖ŵT − π0,0
T w‖L4(T )d = ‖π0,k

T (w − π0,0
T w)‖L4(T )d

. ‖w − π0,0
T w‖L4(T )d . hT |w |W 1,4(T )d ;

a generalised Hölder inequality on the sum over T ∈ Th with exponents (2,4,4), and
the discrete Sobolev embedding (9.42) on z

h
to conclude.

To estimate the third term, using a generalised Hölder inequality with exponents
(4,∞,4,2) we obtain, after accounting for ‖nTF ‖L∞(F)d = 1,

|T3 | ≤ 1
2

∑
T ∈Th

∑
F ∈FT

‖ŵF ‖L4(F)d ‖ŵF − ŵT ‖L4(F)d ‖ zF − zT ‖L2(F)d .

For the first factor inside the summations, we use the L4-boundedness of π0,k
F

followed by the local trace inequality (1.51) with p = 4 and the fact that hT ≤
diam(Ω) . 1 to write
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‖ŵF ‖L4(F)d . ‖w‖L4(F)d . h
− 1

4
T

(
‖w‖L4(T )d + hT ‖∇w‖L4(T )d×d

)
. h

− 1
4

T ‖w‖W 1,4(T )d .

For the second factor, using (9.63) with α = 4 followed by the optimal approximation
properties of π0,k

T we obtain

‖ŵF − ŵT ‖L4(F)d . ‖w − π0,k
T w‖L4(F)d . h

r+ 3
4

T |w |W r+1,4(T )d .

Collecting the above estimates, we can go on writing

|T3 | .
∑
T ∈Th

∑
F ∈FT

h
− 1

4
T ‖w‖W 1,4(T )d h

r+ 3
4

T |w |W r+1,4(T )d ‖ zF − zT ‖L2(F)d

. hr+1‖w‖W 1,4(Ω)d |w |W r+1,4(Th )d

( ∑
T ∈Th

|z
T
|21,∂T

) 1
2

. hr+1‖w‖W 1,4(Ω)d |w |W r+1,4(Th )d ‖ zh ‖1,h, (9.78)

where we have used generalised Hölder inequalities with exponents (4,4,2) on the
sums over T ∈ Th and F ∈ FT together with hF ≤ hT ≤ h to pass to the second line,
and the definitions (8.24) of ‖·‖1,h and (8.15) of ‖·‖1,T to conclude.

Collecting the bounds (9.76), (9.77), and (9.78), and observing that |w |Hr+1(Th )d .
|w |W r+1,4(Th )d , the conclusion follows. ut

Remark 9.24 (Comparison with Hybridisable Discontinuous Galerkin methods). Let
k ≥ 0 and define the enriched space of unknowns

Uk+1,k
h

B
{
vh = ((vT )T ∈Th , (vF )F ∈Fh ) :

vT ∈ Pk+1(T)d ∀T ∈ Th and vF ∈ Pk(F)d ∀F ∈ Fh
}
,

where the difference with respect to (8.22) is that element-based unknowns are
polynomials of degree (k + 1) instead of k. The reformulation (9.73) enables a
comparison with the Hybridisable Discontinuous Galerkin (HDG) trilinear form
tHDG
h

: Uk+1,k
h
×Uk+1,k

h
×Uk+1,k

h
→ R, originally proposed in [253] (cf., in particular,

Definition 3.3 therein and also [101]):

tHDG
h (wh, vh, zh) B

1
2

∑
T ∈Th

∫
T

[(wT ·∇)vT ·zT − vT ·(wT ·∇)zT ]

+
1
2

∑
T ∈Th

∑
F ∈FT

∫
F

(wF ·nTF )(vF ·zT − zF ·vT )

+
η

2

∑
T ∈Th

∑
F ∈FT

∫
F

|wF ·nTF |(vF − vT )·(zF − zT ).
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There are two main differences with respect to the HHO method discussed in this
section. The first one is that, in the HDG method, the element-based unknowns
are polynomials of degree (k + 1) instead of k. Correspondingly, the viscous term
is discretised as in [228, 249] in order to improve the convergence rates to match
the ones of HHO methods; see [117] for further details, in particular Remark 2.2
therein. This variation corresponds to the HHO method with enriched element un-
knowns discussed in Section 5.1. The second difference is the presence of an upwind
convective stabilisation term; see the discussion in Section 9.4 on this point.

9.5.3.4 Flux formulation

RecallingRemark 9.1, local balance relationswith continuous fluxes can be identified
for the Navier–Stokes problem in a similar way as we did for the Stokes problem in
Section 8.4. Specifically, denoting by (u, p) ∈ U ×P a solution to (9.3) and assuming
sufficient regularity for the boundary integrals to be well-defined, it holds: For all
T ∈ Th and all (vT ,qT ) ∈ Pk(T)d × Pk(T),∫

T

ν∇u:∇vT −
∫
T

(u·∇)vT ·u −
∫
T

p (∇·vT )

+
∑
F ∈FT

∫
F

(−ν∇u + u ⊗ u + pId) |T nTF ·vT =
∫
T

f ·vT , (9.79a)∫
T

u·∇qT −
∫
T

(u |T ·nTF ) qT = 0. (9.79b)

Compared to (8.50a), the balance relation (9.79a) contains two additional terms
accounting for the nonlinear convection: the volumetric term −

∫
T
(u·∇)vT ·u, and

the contribution (u⊗ u) |T nTF to the momentum flux (−ν∇u + u ⊗ u + pId) |T nTF .
Also in this case, the normal traces of the fluxes are continuous across interfaces,
i.e., for all F ∈ F i

h
such that F ⊂ ∂T1 ∩ ∂T2 with distinct mesh elements T1,T2 ∈ Th ,

it holds that

(−ν∇u + u ⊗ u + pId) |T1 nT1F + (−ν∇u + u ⊗ u + pId) |T2 nT2F = 0, (9.80a)
u |T1 ·nT1F + u |T2 ·nT2F = 0. (9.80b)

The interest of the trilinear form (9.72) built on Temam’s device over the trilinear
formdefined by (9.47) is that the former enables a flux formulation that reproduces the
relations (9.79) and (9.80) at the discrete level. This can be essential for discretisations
of coupled systems involving the Navier–Stokes equations and advection processes.

Lemma 9.25 (Flux formulation). Let Mh denote a polytopal mesh in the
sense of Definition 1.4. Let the viscous bilinear form ah be given by (8.27),
with local stabilisation bilinear forms in (8.28)matching Assumption 8.10. Let
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the pressure–velocity coupling bilinear form bh be given by (8.34), and the
trilinear form ttm

h
be given by (9.72).

Let (uh, ph) ∈ Uk
h,0 × Pk

h
and, for all T ∈ Th and all F ∈ FT , define the

numerical normal traces Φvisc
TF (uT ) ∈ Pk(F)d and Φconv

TF (uT ) ∈ Pk(F)d of the
viscous and convective momentum fluxes as follows:

Φvisc
TF (uT ) B ν

(
−∇rk+1

T uT nTF + Rk
TFuT

)
,

Φconv
TF (uT ) B π0,k

F

( uF + uT
2

⊗ uF

)
nTF = π

0,k
F

[
(uF ·nTF ) uF + uT

2

]
,

with Rk
TF defined by (8.52).

Then, (uh, ph) solves (9.9) if and only if the following two properties hold:
(i) Local momentum and mass balance. For all T ∈ Th and all (vT ,qT ) ∈

Pk(T)d × Pk(T),∫
T

ν∇rk+1
T uT :∇vT −

∫
T

(uT ·∇)vT ·uT

−
∫
T

pT (∇·vT ) − 1
2

∫
T

D2k
T uT (uT ·vT )

+
∑
F ∈FT

∫
F

(
Φvisc

TF (uT ) +Φconv
TF (uT ) + pT nTF

)
·vT =

∫
T

f ·vT , (9.81a)∫
T

uT ·∇qT −
∑
F ∈FT

∫
F

(uF ·nTF )qT = 0. (9.81b)

(ii) Continuity of the numerical normal traces of the momentum and mass
fluxes. For any interface F ∈ F i

h
such that F ⊂ ∂T1 ∩ ∂T2 for distinct mesh

elements T1,T2 ∈ Th , it holds(
Φvisc

T1F
(uT1
) +Φconv

T1F
(uT1
) + pT1nT1F

)
+

(
Φvisc

T2F
(uT2
) +Φconv

T2F
(uT2
) + pT2nT2F

)
= 0, (9.82a)

uF ·nT1F + uF ·nT2F = 0. (9.82b)

Before proving this lemma, some remarks are in order.

Remark 9.26 (Extension to convective stabilisation). This lemma is also valid if a
convective stabilisation term is added to the scheme, that is, for the HHO scheme
(9.32). In this case, an additional term −π0,k

F

[
ν
hF
ρ(Pe(uF ))(uF − uT )

]
must be

added to Φconv
TF (uT ), see [68, Proposition 16].

Remark 9.27 (Finite Volume momentum balance). In (9.81a), an additional term∫
T

D2k
T uT (uT ·vT ) is present with respect to the continuous momentum balance
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(9.79a). This term, however, does not appear in the lowest-order version of the
discrete momentum balance obtained taking vT ∈ P0(T)d since, using (9.35)
with (l,m) = (2k, k) and recalling that Dl

T = tr(Gl
T ), we have in this case∫

T
D2k
T uT (uT ·vT ) =

∫
T

Dk
T uT (uT ·vT ) = 0, where the conclusion follows using

(9.9b). Hence, the HHO scheme (9.9) with convective trilinear form ttm
h

given by
(9.72) satisfies the following Finite Volume-like local momentum andmass balances:
For all T ∈ Th , ∑

F ∈FT

∫
F

(
Φvisc

TF (uT ) +Φconv
TF (uT ) + pT nTF

)
=

∫
T

f , (9.83a)∑
F ∈FT

∫
F

(uF ·nTF ) = 0, (9.83b)

as can be checked taking vT in (9.81a) successively equal to the vectors of the
canonical basis of Rd and qT in (9.81b) equal to 1.

Proof (Lemma 9.25). The proof follows that of Lemma 8.17, after assessing what
additional terms the trilinear form ttm

h
(uh, uh, vh) brings to (8.53a) and (8.54a).

Using the discrete integration by parts formula (9.67), for any vh ∈ Uk
h,0 we have

ttmh (uh, uh, vh) = −
∑
T ∈Th

[ ∫
T

uT ·Gk
T (uT ; vT ) +

1
2

∫
T

D2k
T uT (uT ·vT )

+
1
2

∑
F ∈FT

∫
F

(uF ·nTF )(uF − uT )·(vF − vT )
]
.

Hence, expanding each Gk
T (uT ; vT ) according to its definition (9.55) with wT = uT

and z = uT and rearranging the terms, we obtain

ttmh (uh, uh, vh) = −
∑
T ∈Th

[ ∫
T

(uT ·∇)vT ·uT + 1
2

∫
T

D2k
T uT (uT ·vT )

+
∑
F ∈FT

∫
F

Φ
conv
TF (uT )·(vF − vT )

]
,

(9.84)

where we have further observed that (vF − vT |F ) ∈ Pk(F)d to insert π0,k
F into the

expression of the convective flux. We then easily realise that, using element basis
functions (resp. face basis functions) for vT , ttm

h
(uh, uh, vh) is responsible for the

terms −
∫
T
(uT ·∇)vT ·uT − 1

2

∫
T

D2k
T uT (uT ·vT ) and Φconv

TF (uT )·vT in (9.81a) (resp.
the terms Φconv

T1F
(uT1
) and Φconv

T2F
(uT2
) in (9.82a)). ut

Remark 9.28 (Lack of a flux formulation for the skew-symmetric trilinear form
(9.47)). Recalling (9.74), the relation (9.84) gives the following expression for tss

h
:
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tss
h (uh, uh, vh) = −

∑
T ∈Th

[ ∫
T

(uT ·∇)vT ·uT + 1
2

∫
T

D2k
T uT (uT ·vT )

+
∑
F ∈FT

∫
F

Φ
conv
TF (uT )·(vF − vT )

− 1
2

∑
F ∈FT

∫
F

(uF − uT )·nTF (uF ·vT − uT ·vF )
]
.

To identify continuous fluxes (that is, fluxes satisfying (9.82a)) for the gradient-based
scheme using tss

h
, one has to gather the terms in the scheme that multiply the face

test function vF . This would lead here to setting, as fluxes for the gradient-based
scheme,

Φconv,ss
TF (uT ) = Φconv

TF (uT ) +
1
2
(uF − uT )·nTFuT .

The balance relation for these fluxes would then be obtained by considering the
terms in the scheme involving the element test function vT . Here, these terms can be
written∫

T

ν∇rk+1
T uT :∇vT −

∫
T

(uT ·∇)vT ·uT −
∫
T

pT (∇·vT )

− 1
2

∫
T

D2k
T uT (uT ·vT ) −

1
2

∑
F ∈FT

∫
F

(uF − uT )·nTF (uF − uT )·vT

+
∑
F ∈FT

∫
F

(
Φvisc

TF (uT ) +Φconv,ss
TF (uT ) + pT nTF

)
·vT =

∫
T

f ·vT .

(9.85)

As seen for example in Lemmas 2.25, 3.17 and 3.30, the balance equations for flux
formulations of HHOmethods are expected to contain a volumetric contribution that
vanishes when vT is constant inside T , and face contributions solely involving the
fluxes. The boxed term in (9.85) does not fall into any of these two categories. On
the one hand, it cannot be incorporated as a volumetric contribution into the local
balance equation as it does not necessarily vanish for vT ∈ P0(T)d . On the other
hand, if we incorporated it into the fluxes, the latter would no longer be continuous.
This shows that the gradient-based scheme using tss

h
does not admit, contrary to the

scheme using ttm
h
, a flux formulation.

9.6 Convergence for general data

The error estimate of Theorem 9.10 is valid only under the data smallness assumption
(9.18). In this section, we prove convergence for general data using compactness
techniques which, as discussed in Chapter 6, do not require additional regularity
on the exact solution or the data, at the expense of not delivering estimates on
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the convergence rate. For the sake of simplicity, we focus on the skew-symmetric
discrete trilinear form tss

h
defined by (9.47), and leave as an exercise to the reader the

adaptation of the proofs to the trilinear form ttm
h

defined by (9.72).

9.6.1 Discrete compactness and strong convergence of the
interpolates

In this section we establish two important preliminary results, namely a compact-
ness property for sequences of vectors of discrete unknowns uniformly bounded
in the ‖·‖1,h-seminorm, and the convergence of gradient reconstructions applied to
interpolates of sufficiently smooth functions.

To state these results, we need the global velocity reconstruction rk+1
h

: Uk
h →

Pk+1(Th)d defined by (9.28) and, for a given integer l ≥ 0, the global gradient
reconstruction Gl

h : Uk
h → Pl(Th)d×d such that, for all vh ∈ Uk

h ,

(Gl
hvh) |T B Gl

T vT ∀T ∈ Th .

The following lemma is the equivalent of Theorem 6.41 with p = 2 and Gl
T instead

of Gk
T .

Theorem 9.29 (Discrete compactness). Let k ≥ 0 be a polynomial degree
and (Mh)h∈H be a regular mesh sequence in the sense of Definition 1.9. Let
(vh)h∈H ∈ (Uk

h,0)h∈H , and assume the existence of a real number C > 0 such
that ‖vh ‖1,h ≤ C for all h ∈ H . Then, there exists v ∈ H1

0 (Ω)d such that, up
to a subsequence as h→ 0,

(i) vh → v strongly in Lq(Ω)d for all q ∈ [1,∞) if d = 2, and all q ∈ [1,6)
if d = 3;

(ii) Gl
hvh ⇀ ∇v weakly in L2(Ω)d×d for any integer l ≥ 0;

(iii) ∇hrk+1
h

vh ⇀ ∇v weakly in L2(Ω)d×d .

Remark 9.30 (Extension to the non-Hilbertian setting). It is possible to extend this
compactness result to the non-Hilbertian setting considered in Theorem 6.41. The
details are left to the reader as this extension will not be needed in the following
discussion.

Proof (Theorem 9.29). Applying Theorem 6.41 with p = 2 to the components of
vh , we obtain the existence of v ∈ H1

0 (Ω)d such that, up to a subsequence, for q
as in Point (i) of the statement it holds vh → v and rk+1

h
vh → v in Lq(Ω)d , and

Gk
hvh ⇀ ∇v weakly in L2(Ω)d×d .



422 9 Navier–Stokes

It remains to prove the convergence ofGl
hvh , for a generic l ≥ 0, and of∇hrk+1

h
vh .

The norm equivalence (8.31), the boundedness of ‖vh ‖1,h , and the estimate (9.37)
show that both (∇hrk+1

h
vh)h∈H and (Gl

hvh)h∈H are bounded in L2(Ω)d×d , and thus
converge up to a subsequence weakly in this space to τ and ξ , respectively. The
proof is complete if we show that τ = ξ = ∇v.

Let us first identify ξ . For all Φ ∈ C∞c (Ω)d×d , setting n B min(l, k), we have∫
Ω

Gl
hvh:Φ =

∫
Ω

Gl
hvh:π0,n

h
Φ +

∫
Ω

Gl
hvh:

(
Φ − π0,n

h
Φ

)
︸                        ︷︷                        ︸

T1,h

=

∫
Ω

Gk
hvh:π0,n

h
Φ + T1,h, (9.86)

where we have inserted ±π0,n
h
Φ in the first line, and used the property (9.35) with

m = k in the second line. By regularity ofΦ and Theorem 1.45, it holds π0,n
h
Φ→ Φ

in L2(Ω)d×d as h→ 0. The boundedness of (Gl
hvh)h∈H in L2(Ω)d×d and a Cauchy–

Schwarz inequality then show thatT1,h → 0 as h→ 0. Taking the limit in h of (9.86)
and recalling that Gk

hvh ⇀ ∇v weakly in L2(Ω)d×d thus yields
∫
Ω
ξ :Φ =

∫
Ω
∇v:Φ,

which proves that ξ = ∇v as required.
We now turn to τ. Let T ∈ Th . Recalling Remark 4.9, we see that ∇rk+1

T vT is the
L2-orthogonal projection of Gk

T vT on ∇Pk+1(T)d . Projecting further on P0(T)d×d =
∇P1(T)d ⊂ ∇Pk+1(T)d , we obtain π0,0

T (∇rk+1
T vT ) = π0,0

T (Gk
T vT ). Patching these

relations yields π0,0
h
(∇rk+1

h
vh) = π0,0

h
(Gk

hvh). We can then follow the reasoning
above, applying (9.86) with n = 0 and ∇rk+1

h
vh instead of Gl

hvh , to deduce that
τ = ∇v. ut

The second preliminary result, the strong convergence of the discrete gradients
for interpolates of smooth functions, is stated in the following proposition.

Proposition 9.31 (Strong convergence of the interpolates). Let (Mh)h∈H be a
regular mesh sequence in the sense of Definition 1.9 and let the global interpolator
Ikh be defined by (8.23). Let l ∈ N be such that

l = 0 if k = 0, l ≥ 0 if k ≥ 1. (9.87)

Then, for all v ∈ H1(Ω)d ,

Gl
hI

k
hv → ∇v strongly in L2(Ω)d×d as h→ 0 (9.88)

and
∇hrk+1

h
Ikhv → ∇v strongly in L2(Ω)d×d as h→ 0. (9.89)

Moreover, denoting by (sT )T ∈Th a family of stabilisation bilinear forms matching
Assumption 8.10, for all v ∈ H2(Ω)d it holds that

|Ikhv |s,h → 0 as h→ 0, (9.90)
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with seminorm |·|s,h defined by (9.30).

Proof. Throughout the proof, hidden constants are independent of both h and v.

(i) Proof of (9.88) and (9.89). We reason by density. Specifically, we let (vε )ε>0
denote a sequence in H2(Ω)d that converges to v in H1(Ω)d as ε → 0 and we write,
inserting ±(Gl

hI
k
hvε − ∇vε ) into the norm and using the triangle inequality,

‖Gl
hI

k
hv − ∇v‖L2(Ω)d×d

≤ ‖Gl
hI

k
h(v − vε )‖L2(Ω)d×d + ‖Gl

hI
k
hvε − ∇vε ‖L2(Ω)d×d + ‖∇(vε − v)‖L2(Ω)d×d

. |v − vε |H1(Ω)d + ‖Gl
hI

k
hvε − ∇vε ‖L2(Ω)d×d , (9.91)

where we have used the boundedness (9.37) of the gradient reconstruction and (8.25)
of the global interpolator to write ‖Gl

hI
k
h(v − vε )‖L2(Ω)d×d . ‖Ikh(v − vε )‖1,h .

|v − vε |H1(Ω)d . Using, for all T ∈ Th , the consistency properties (9.38a) of the
gradient reconstruction with r = 1 (this choice is possible under assumption (9.87)),
we get for the second term

‖Gl
hI

k
hvε − ∇vε ‖L2(Ω)d×d . h|vε |H2(Ω)d ,

which shows that this term tends to zero as h → 0. Taking, in this order, the
supremum limit of (9.91) as h → 0, then the limit of the resulting inequality as
ε → 0 concludes the proof of (9.88).

The proof of (9.89) is obtained in a similar way, with the norm equivalence (8.31)
replacing (9.37) in the estimate of the first term in the second line of (9.91) and the
approximation properties (1.78) of the elliptic projector (together with rk+1

h
◦ Ikh =

π1,k+1
h

, see (2.14) for the scalar case) replacing (9.38a) in the estimate of the second
term in the third line of (9.91).

(ii) Proof of (9.90). Proceeding as in the proof of Proposition 2.14 (where the scalar
case is considered), one gets, for all T ∈ Th , sT (Ikhv, Ikhv) . h2

T |v |2H2(T )d , where
the hidden constant is additionally independent of T . Summing these bounds over
T ∈ Th , taking the square root, and letting h → 0 yields |Ikhv |s,h → 0, thus proving
(9.90). ut

9.6.2 Convergence by compactness

Weare now ready to prove the convergence of theHHO scheme for theNavier–Stokes
equations with general data.

Theorem 9.32 (Convergence for general data). Let (Mh)h∈H denote a reg-
ular mesh sequence in the sense of Definition 1.9, let k ≥ 0 be a polynomial



424 9 Navier–Stokes

degree, and let ((uh, ph))h∈H be such that, for all h ∈ H , (uh, ph) ∈ Uk
h,0×Pk

h
solves (9.9). Then, up to a subsequence as h→ 0, it holds

(i) uh → u strongly in Lq(Ω)d for all q ∈ [1,∞) if d = 2 and q ∈ [1,6) if
d = 3,

(ii) ∇hrk+1
h

uh → ∇u strongly in L2(Ω)d×d ,
(iii) |uh |s,h → 0,
(iv) ph → p strongly in L2(Ω),
where (u, p) ∈ U × P is a solution to the continuous problem (9.3). If, in
addition, the solution to (9.3) is unique (which is the case, e.g., if the smallness
condition detailed in [199, Eq. (2.12), Chapter IV] holds for f ), convergence
extends to the whole sequence.

Proof. The proof proceeds in four steps: (1) we start by proving the existence of a
limit for the sequence of discrete solutions; (2) we next show that this limit is indeed
a solution of the continuous problem (9.3); (3) we then prove the strong convergence
of the velocity gradient and of the jumps; (4) we conclude by proving the strong
convergence of the pressure.

Step 1. Existence of a limit. Since, for all h ∈ H , (uh, ph) ∈ Uk
h,0 × Pk

h
solves (9.9),

combining the a priori bounds (9.13) and Theorem 9.29 we infer that there exists
(u, p) ∈ U × P such that, up to a subsequence as h→ 0:

(a) uh → u strongly in Lq(Ω)d for all q ∈ [1,∞) if d = 2 and q ∈ [1,6) if d = 3;
(b) Gl

huh ⇀ ∇u weakly in L2(Ω)d×d for all l ≥ 0;
(c) ∇hrk+1

h
uh ⇀ ∇u weakly in L2(Ω)d×d;

(d) ph ⇀ p weakly in L2(Ω).

Step 2. Identification of the limit. We next prove that (u, p) ∈ U × P is a solution to
(9.3). To do so, we examine the convergence of each term in the discrete problem
(9.9) when the test function is the interpolate of a smooth function, then conclude
by a density argument.

Let φ ∈ C∞c (Ω)d and consider the discrete momentum equation (9.9a) with
vh = Ikhφ. For the viscous term, we have

ah(uh, I
k
hφ) =

∫
Ω

∇hrk+1
h uh:∇hrk+1

h Ikhφ +
∑
T ∈Th

sT (uT , IkTφ |T ) C T1 + T2.

For the first term, a weak-strong convergence argument (recall Point (c) in Step
1 for the first factor and (9.89) for the second) readily gives T1 →

∫
Ω
∇u:∇φ.

For the second term, we can write, using a Cauchy–Schwarz inequality together
with the definition (9.30) of the |·|s,h-seminorm and the norm equivalence (8.31),
|T2 | ≤ |uh |s,h |Ikhφ |s,h . ‖uh ‖1,h |Ikhφ |s,h . Combined with the uniform a priori
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bound (9.13) on the first factor and the strong convergence (9.90) of the second
factor, this shows that |T2 | → 0 as h→ 0. In conclusion, we have

ah(uh, I
k
hφ) →

∫
Ω

∇u:∇φ = a(u,φ). (9.92)

For the convective term, recalling the definition (9.47) of tss
h
and (7.1) of the tensor

product, we have

tss
h (uh, uh, I

k
hφ) =

1
2

∫
Ω

G2k
h uh:π0,k

h
φ ⊗ uh − 1

2

∫
Ω

G2k
h Ikhφ:uh ⊗ uh C T3 + T4.

Since uh → u and π0,k
h
φ → φ strongly in L4(Ω)d , π0,k

h
φ ⊗ uh → φ ⊗ u strongly

in L2(Ω)d×d . Hence, recalling that G2k
h uh ⇀ ∇u weakly in L2(Ω)d×d owing to

Point (b) in Step 1, we infer that T3 → 1
2

∫
Ω
∇u:φ ⊗ u = 1

2

∫
Ω
(u·∇)u·φ. For the

second term, observing that uh ⊗ uh → u ⊗ u strongly in L2(Ω)d×d (since uh → u
strongly in L4(Ω)d) and G2k

h Ikhφ → ∇φ strongly in L2(Ω)d×d (see (9.88)), we get
T4 → − 1

2

∫
Ω
∇φ:u ⊗ u = − 1

2

∫
Ω
(u·∇)φ·u. In conclusion, recalling the definition

(9.8) of the continuous skew-symmetric trilinear form t̃, we have

tss
h (uh, uh, I

k
hφ) →

1
2

∫
Ω

(u·∇)u·φ − 1
2

∫
Ω

(u·∇)φ·u = t̃(u, u,φ). (9.93)

For the pressure–velocity coupling term in the momentum equation, recalling the
definition (8.34) of bh and using a weak-strong convergence argument, it is readily
inferred that

bh(Ikhφ, ph) = −
∫
Ω

Gk
hI

k
hφ:phId → −

∫
Ω

∇φ:pId = −
∫
Ω

(∇·φ) p = b(φ, p),
(9.94)

where we have additionally used the fact that, by definition (9.65), Dk
T vT = Gk

T vT :Id
for all T ∈ Th and all vT ∈ Uk

T .
Collecting (9.92), (9.93) and (9.94), and observing that

∫
Ω
f ·π0,k

h
φ →

∫
Ω
f ·φ

since π0,k
h
φ → φ strongly in L2(Ω)d , we conclude that (u, p) satisfies

νa(u,φ) + t̃(u, u,φ) + b(φ, p) =
∫
Ω

f ·φ ∀φ ∈ C∞c (Ω)d . (9.95)

Moving now to the mass balance equation, we observe that it holds, for all
ψ ∈ C∞c (Ω),

−bh(uh, π
0,k
h
ψ) =

∫
Ω

Gk
huh:π0,k

h
ψId →

∫
Ω

∇u:ψId =
∫
Ω

(∇·u) ψ = −b(u,ψ),

where we have used the weak convergence in L2(Ω)d×d of the first factor to ∇u,
resulting from Point (b) in Step 1, together with the strong convergence π0,k

h
ψ → ψ

in L2(Ω). Hence, the limit u satisfies
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− b(u,ψ) = 0 ∀ψ ∈ C∞c (Ω). (9.96)

Combining (9.95) and (9.96), and using the density ofC∞c (Ω)d inU and ofC∞c (Ω)
in L2(Ω), we conclude that (u, p) ∈ U × P is a solution to (9.3).

Step 3. Strong convergence of the velocity gradient and of the jumps. Making vh =
uh in (9.9a) and observing that tss

h
(uh, uh, uh) = 0 owing to the non-dissipativity

property (9.10), and that bh(uh, ph) = 0 owing to (9.9b) with qh = ph , we have

ν‖∇hrk+1
h uh ‖2L2(Ω)d×d + ν |uh |2s,h = νah(uh, uh) =

∫
Ω

f ·uh .

Since uh converges to u strongly in L2(Ω)d and u is a solution to (9.3), we have

ν lim sup
h→0

(
‖∇hrk+1

h uh ‖2L2(Ω)d×d + |uh |2s,h
)
= lim sup

h→0

∫
Ω

f ·uh

=

∫
Ω

f ·u = ν‖∇u‖2
L2(Ω)d×d . (9.97)

This implies, in particular,

lim sup
h→0

‖∇hrk+1
h uh ‖2L2(Ω)d×d ≤ ‖∇u‖2L2(Ω)d×d . (9.98)

Combined with the weak convergence∇hrk+1
h

uh ⇀ ∇u in L2(Ω)d×d , this inequality
establishes the strong convergence ∇hrk+1

h
uh → ∇u of the velocity gradient in

L2(Ω)d×d . Hence, the inequality in (9.98) is an equality which, plugged back into
(9.97), gives

|uh |2s,h → 0. (9.99)

Step 4. Strong convergence of the pressure. Observing that ph ∈ P, from Lemma
8.3 we infer the existence of vph ∈ U such that

∇·vph = ph and ‖vph ‖H1(Ω)d . ‖ph ‖L2(Ω), (9.100)

with hidden constant depending only onΩ. Let us study the properties of the sequence
(Ikhvph )h∈H . For all h ∈ H , it holds

‖Ikhvph ‖1,h . |vph |H1(Ω)d . ‖ph ‖L2(Ω) . ‖ f ‖L2(Ω)d + ν
−2‖ f ‖2

L2(Ω)d , (9.101)

where we have used the boundedness (8.25) of Ikh in the first inequality, (9.100) in the
second, and the a priori bound (9.13) on the pressure to conclude. Then, by Theorem
9.29 applied to vh = Ikhvph , there exists vp ∈ U such that, up to a subsequence,
π0,k
h

vph → vp strongly in Lq(Ω)d for all q ∈ [1,4], G2k
h Ikhvph ⇀ ∇vp weakly in

L2(Ω)d×d , and∇hrk+1
h

Ikhvph ⇀ ∇vp weakly in L2(Ω)d×d . Moreover, by uniqueness
of the limit in the distributional sense, it holds that
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∇·vp = p. (9.102)

We can now write

‖ph ‖2L2(Ω) = −b(vph , ph)
= −bh(Ikhvph , ph)

= νah(uh, I
k
hvph ) + tss

h (uh, uh, I
k
hvph ) −

∫
Ω

f ·π0,k
h

vph , (9.103)

where we have used the consistency property (8.35) of bh to pass to the sec-
ond line and the discrete momentum balance equation (9.9a) with vh = Ikhvph
to conclude. We study the limit of the three terms on the right of (9.103) us-
ing the convergence properties for the discrete solution proved in the previous
steps. Combining the strong converge of ∇hrk+1

h
uh with the weak convergence

of ∇hrk+1
h

Ikhvph gives
∫
Ω
∇rk+1

h
uh:∇rk+1

h
Ikhvph →

∫
Ω
∇u:∇vp . Moreover, the

convergence (9.99) of the jumps of uh and the uniform bound (9.101) imply
|sh(uh, I

k
hvph )| ≤ |uh |s,h |Ikhvph |s,h → 0, so that, in conclusion, we have for the

viscous term
ah(uh, I

k
hvph ) → a(u, vp).

Observing that the convergence properties of the sequences (uh)h∈H and
(Ikhvph )h∈H are sufficient to mimic the reasoning for the convective term in Step 2
of this proof, we deduce that

tss
h (uh, uh, I

k
hvph ) → t(u, u, vp).

Finally, by the strong convergence π0,k
h

vph → vp in L2(Ω)d , we readily infer for the
source term ∫

Ω

f ·π0,k
h

vph →
∫
Ω

f ·vp .

Collecting the above convergence results in (9.103) and using themomentum balance
equation (9.3a) together with (9.102) leads to

lim sup
h→0

‖ph ‖2L2(Ω) ≤ νa(u, vp) + t(u, u, vp) −
∫
Ω

f ·vp = −b(vp, p) = ‖p‖2L2(Ω),

and the strong convergence ph → p in L2(Ω) classically follows. ut

Remark 9.33 (Existence of a solution to the continuous problem). A by-product of
Theorem 9.32 is the existence of a solution to the continuous problem (9.3).
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9.7 Numerical examples

In this section we showcase the performance of the method on classical benchmark
problems. The numerical results are taken from [68] and are obtained using the
discrete trilinear form (9.72) incorporating Temam’s device for stability. Numerical
examples for the skew-symmetric trilinear form (9.47) can be found in [157, 158].

9.7.1 Kovasznay flow

We start by assessing the convergence properties of the method using Kovasznay’s
analytical solution; see [220]. Specifically, in dimension d = 2 we solve on the
square domain Ω B (−0.5,1.5) × (0,2) the Dirichlet problem corresponding to the
exact solution (u, p) such that, introducing the Reynolds number Re B 1

2ν and letting

λ B Re − (
Re2 + 4π2) 1

2 , the velocity components are given by

u1(x) = 1 − exp(λx1) cos(2πx2), u2(x) = λ

2π
exp(λx1) sin(2πx2),

while the pressure is given by

p(x) = −1
2

exp(2λx1) + λ2 (exp(4λ) − 1) .

We take here ν = 0.025, corresponding to Re = 20, and consider polynomial
degrees k ∈ {0, . . . ,5} over a sequence of uniformly h-refined Cartesian grids with
2i , i ∈ {2,3, . . . ,7}, elements in each direction. We report in Table 9.1 the results
for the method (9.32) with upwind convective stabilisation; see Section 9.4. The
following quantities are monitored: Ndof,h , the number of degrees of freedom after
static condensation (see Remark 9.3); Nnz,h , the number of non-zero entries of the
matrix to be inverted at each nonlinear iteration; ‖uh − Ikhu‖ν,h B ν

1
2 ‖uh − Ikhu‖a,h ,

the energy norm of the error on the velocity (combining the norm equivalence
(8.31) with the error estimate (9.19), we readily infer an estimate in hk+1 for this
norm under the assumptions of Theorem 9.10); ‖uh − π0,k

h
u‖L2(Ω)d , the L2-error

on the velocity; and ‖ph − π0,k
h

p‖L2(Ω), the L2-error on the pressure. Denoting by
ei and hi , respectively, the error in a given norm and the meshsize corresponding
to a refinement iteration i, the estimated order of convergence (EOC) is obtained
according to the following formula:

EOC =
log ei − log ei+1
log hi − log hi+1

.

The numerical results essentially confirm the theoretical estimate of Theorem
9.10, and a convergence in hk+2 is additionally observed for the L2-norm of the
velocity. It can be numerically checked that the slightly suboptimal order of con-
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Table 9.1: Convergence results for the Kovasznay problem at Re = 20 with upwind
stabilisation.

Ndof ,h Nnz,h ‖uh − I khu ‖ν,h EOC ‖uh − π0,k
h

u ‖L2(Ω)d EOC ‖ph − π0,k
h

p ‖L2(Ω) EOC

k = 0

65 736 9.37e-01 – 1.40e-01 – 6.84e-01 –
289 3808 1.13e+00 -0.27 5.50e-01 -1.98 1.96e-01 1.80
1217 17056 9.14e-01 0.31 2.26e-01 1.28 1.02e-01 0.94
4993 71968 6.26e-01 0.55 7.89e-02 1.52 3.52e-02 1.54
20225 295456 3.87e-01 0.70 2.47e-02 1.68 9.78e-03 1.85
81409 1197088 2.47e-01 0.65 8.06e-03 1.61 3.09e-03 1.66

k = 1

113 2464 7.31e-01 – 5.37e-01 – 2.49e-01 –
513 13056 3.83e-01 0.93 1.54e-01 1.80 4.29e-02 2.54
2177 59008 1.02e-01 1.90 2.13e-02 2.85 3.98e-03 3.43
8961 249984 2.93e-02 1.80 2.97e-03 2.84 6.54e-04 2.61
36353 1028224 8.23e-03 1.83 3.99e-04 2.90 1.28e-04 2.35
146433 4169856 2.26e-03 1.86 5.21e-05 2.94 2.65e-05 2.27

k = 2

161 5216 3.50e-01 – 2.09e-01 – 6.42e-02 –
737 27872 3.76e-02 3.22 1.34e-02 3.96 2.07e-03 4.95
3137 126368 6.96e-03 2.43 1.31e-03 3.36 1.48e-04 3.80
12929 536096 1.06e-03 2.72 9.48e-05 3.79 1.77e-05 3.07
52481 2206496 1.55e-04 2.77 6.36e-06 3.90 2.27e-06 2.96
211457 8951072 2.21e-05 2.81 4.13e-07 3.95 2.72e-07 3.06

k = 3

209 8992 7.93e-02 – 4.41e-02 – 7.58e-03 –
961 48256 6.23e-03 3.67 1.98e-03 4.48 2.97e-04 4.67
4097 219136 4.16e-04 3.90 6.43e-05 4.95 1.32e-05 4.49
16897 930304 3.09e-05 3.75 2.20e-06 4.87 8.19e-07 4.01
68609 3830272 2.28e-06 3.76 7.40e-08 4.89 5.12e-08 4.00
276481 15540736 1.63e-07 3.81 2.42e-09 4.93 3.14e-09 4.03

k = 4

257 13792 1.42e-02 – 7.89e-03 – 1.83e-03 –
1185 74208 4.24e-04 5.07 1.14e-04 6.11 2.05e-05 6.48
5057 337312 1.81e-05 4.55 2.57e-06 5.48 6.39e-07 5.00
20865 1432608 6.90e-07 4.71 4.55e-08 5.82 2.28e-08 4.81
84737 5899552 2.59e-08 4.74 7.59e-10 5.91 7.64e-10 4.90
341505 23938848 9.53e-10 4.76 1.23e-11 5.95 2.42e-11 4.98

k = 5

305 19616 2.28e-03 – 1.05e-03 – 1.70e-04 –
1409 105728 4.01e-05 5.83 1.05e-05 6.65 2.05e-06 6.37
6017 480896 7.21e-07 5.80 8.98e-08 6.87 3.21e-08 6.00
24833 2043008 1.37e-08 5.72 7.89e-10 6.83 5.43e-10 5.88
100865 8414336 2.56e-10 5.74 6.72e-12 6.88 9.14e-12 5.89
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vergence observed for the velocity, in particular for k = 0, is to be ascribed to the
upwind stabilisation (which, in turn, facilitates convergence on the coarser meshes).
Indeed, the highest jumps between element and faces unknowns are observed for
under-resolved low degree computations.

9.7.2 Lid-driven cavity flow

We next consider the lid-driven cavity flow, one of the most extensively studied
problems in fluid mechanics. The computational domain is the unit square Ω =
(0,1)2. Homogeneous (wall) boundary conditions are enforced at all but the top
horizontal wall (at x2 = 1), where we enforce a unit tangential velocity, that is,
u = (1,0). We note that this boundary condition is incompatible with the formulation
(9.3), even modified to account for non-homogeneous boundary conditions, since
the corresponding exact solution does not belong to H1(Ω)2. This is however, as
mentioned, a very classical and well-understood test that informs on the quality of
the numerical scheme.

Fig. 9.1: Lid-driven cavity flow, velocity magnitude contours (10 equispaced values
in the range [0,1]) for k = 7. Computations at Re = 1 000 (left: 16×16 grid) and
Re = 20 000 (right: 128×128 grid).

In Figs. 9.2, 9.3, 9.4, and 9.5 we report the horizontal component u1 of the
velocity along the vertical centreline x1 =

1
2 and the vertical component u2 of the

velocity along the horizontal centreline x2 =
1
2 for the two dimensional flow at

Reynolds numbers Re B 1
ν respectively equal to 1 000, 5 000, 10 000, and 20 000.

The reference computation is carried out on a 128× 128 Cartesian mesh with k = 1.
For the sake of comparison, we also include very high-order computations with
k = 7 on progressively finer Cartesian grids: 16 × 16 for Re = 1 000, 32 × 32 for
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Re = 5 000, 64×64 for Re = 10 000, and 128×128 for Re = 20 000. The high-order
solutions corresponding to Re = 1 000 and Re = 20 000 are displayed in Fig. 9.1.
When available, reference solutions from the literature [185, 197] are also plotted
for the sake of comparison.

We remark that the solid blue and red lines outlining, respectively, the behavior
of low-order (k = 1) and high-order (k = 7) velocity approximations are perfectly
superimposed at low Reynolds numbers, while significant differences are present
starting from Re = 10 000. In particular, at Re = 20 000, computations with k = 1
are in better agreement with reference solutions by Erturk et al [185]. Nevertheless,
since high-polynomial degrees over coarse meshes provide accurate results at low
Reynolds numbers, we are led to think that the HHO computations with k = 1
are over-dissipative at high Reynolds numbers. Indeed, strong velocity gradients
observed close to cavity walls and multiple counter-rotating vortices developing at
the bottom corners are known to be very demanding, both from the stability and
the accuracy viewpoints. Note that the thin jet originating at the top-right corner is
contained in exactly one mesh element, both on the 16 × 16 grid for Re = 1 000 and
on the 128 × 128 grid for Re = 20 000, see Fig. 9.1.
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Fig. 9.2: Lid-driven cavity flow, horizontal component u1 of the velocity along the
vertical centreline x1 =

1
2 and vertical component u2 of the velocity along the

horizontal centreline x2 =
1
2 for Re = 1 000.
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Fig. 9.3: Lid-driven cavity flow, horizontal component u1 of the velocity along the
vertical centreline x1 =

1
2 and vertical component u2 of the velocity along the

horizontal centreline x2 =
1
2 for Re = 5 000.
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Fig. 9.4: Lid-driven cavity flow, horizontal component u1 of the velocity along the
vertical centreline x1 =

1
2 and vertical component u2 of the velocity along the

horizontal centreline x2 =
1
2 for Re = 10 000.
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Fig. 9.5: Lid-driven cavity flow, horizontal component u1 of the velocity along the
vertical centreline x1 =

1
2 and vertical component u2 of the velocity along the

horizontal centreline x2 =
1
2 for Re = 20 000.
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Appendix A
Error analysis setting for schemes in fully
discrete formulation

We recall here the basic setting and results from the theory presented in [143].

A.1 General case

A.1.1 Setting

We consider a setting where the continuous and discrete problems are both written
in classical variational formulations. For the continuous problem, we choose:

• a Hilbert space U;
• a continuous bilinear form a : U × U→ R;
• a continuous linear form l : U→ R.

The problem we aim at approximating, and whose unique solution is assumed to
exist, is

Find u ∈ U such that a(u, v) = l(v) ∀v ∈ U. (A.1)

This problem is referred to as continuous problem, since U is usually infinite-
dimensional.

The approximation iswritten in fully discrete formulation, using an approximation
space that is not necessarily a space of functions – it is not necessarily embedded in
any natural space in which U is also embedded. We consider thus:

• a space Uh , with norm ‖·‖Uh ;
• an interpolator Ih : U→ Uh;
• a bilinear form ah : Uh × Uh → R;
• a linear form lh : Uh → R.

Note that Ih is not required to be linear or even continuous. Likewise, the continuity
of ah or lh is not directly used, but is always verified in practice, and of course
usually required to ensure the existence of a solution. The index h represents a

439



440 A Error analysis setting for schemes in fully discrete formulation

discretisation parameter (e.g., the meshsize) which characterises the space Uh , and
such that convergence of the method (in a sense to be made precise) is expected
when h→ 0.

The approximation of (A.1) is

Find uh ∈ Uh such that ah(uh, vh) = lh(vh) ∀vh ∈ Uh . (A.2)

In what follows, (A.2) will be referred to as the discrete problem, since the space Uh
is usually finite dimensional.

We intend to compare the solutions to (A.1) and (A.2) by estimating uh − Ihu,
where u is the solution to (A.1).

A.1.2 Third Strang Lemma

We now describe a notion of stability of ah that yields a bound on the solutions to
(A.2)

Definition A.1 (Inf–sup stability). The bilinear form ah is inf–sup stable for ‖·‖Uh
if

∃γ > 0 such that sup
vh ∈Uh\{0}

ah(uh, vh)
‖vh ‖Uh

≥ γ‖uh ‖Uh ∀uh ∈ Uh . (A.3)

Remark A.2 (Uniform inf–sup stability). In practice, one typically requires the real
number γ independent of discretisation parameters such as the meshsize, so that the
condition (A.3) is verified uniformly. This is needed to have optimal error estimates.

Remark A.3 (Coercivity). The inf–sup stability is of course satisfied if ah is coercive
in the sense that ah(vh, vh) ≥ γ‖vh ‖2Uh for all vh ∈ Uh , where γ does not depend on
vh . To check it, it suffices to write, for any uh ∈ Uh ,

γ‖uh ‖2Uh ≤ ah(uh,uh) ≤
(

sup
vh ∈Uh\{0}

ah(uh, vh)
‖vh ‖Uh

)
‖uh ‖Uh .

If Z is a Banach space with norm ‖·‖Z , the dual norm of a linear form µ : Z → R
is classically defined by

‖µ‖Z? = sup
z∈Z\{0}

|µ(z)|
‖z‖Z . (A.4)

Proposition A.4 (Stability of (A.2)). If ah is inf–sup stable in the sense of Definition
A.1, mh : Uh → R is linear and wh satisfies

ah(wh, vh) = mh(vh) ∀vh ∈ Uh,

then,
‖wh ‖Uh ≤ γ−1‖mh ‖U?

h
.
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Proof. Take vh ∈ Uh\{0} and write, by definition of ‖·‖U?
h
,

ah(wh, vh)
‖vh ‖Uh

=
mh(vh)
‖vh ‖Uh

≤ ‖mh ‖U?
h
.

The proof is completed by taking the supremum over such vh and using (A.3). ut
The next notion of consistency enables us, in combination with the inf–sup

stability, to prove an estimate on the error uh − Ihu in the Uh norm.

Definition A.5 (Consistency error and consistency). Let u be the solution to the
continuous problem (A.1). The consistency error is the linear form E

h
(u; ·) : Uh → R

such that, for any vh ∈ Uh ,

Eh(u; vh) B lh(vh) − ah(Ihu, vh). (A.5)

Let now a family (Uh,ah,lh)h→0 of spaces and forms be given, and consider the
corresponding family of discrete problems (A.2). We say that consistency holds if

‖Eh(u; ·)‖U?
h
→ 0 as h→ 0.

Remark A.6 (Choice of Ih). No particular property is required here on Ihu; it could
actually be any element ofUh . However, for the estimates that follow to bemeaningful,
it is expected that Ihu is computed from u, not necessarily in a linear way, so that it
encodes properties of u itself. In particular, Ihu should draw some information from
the fact that u solves (A.1), to ensure a certain smallness of the consistency error.
See, for example, the proof of Point (ii) in Lemma 2.18 in Chapter 2.

The following lemma establishes estimates on uh − Ihu, and is at the core of the
proofs of Theorems 2.27, 3.18, 3.32, 3.38, 4.16, 7.33 and 7.45. The name “Strang
3” refers to the fact that, while this result is obtained in a similar spirit of the first
two Strang lemmas [263, 264], it covers the more general case of schemes written
in fully discrete formulation.

Lemma A.7 (Strang 3). Assume that ah is inf–sup stable in the sense of Definition
A.1. Let u be a solution to (A.1), and recall the definition (A.5) of the consistency
error E

h
(u; ·). If uh is a solution to (A.2), then

‖uh − Ihu‖Uh ≤ γ−1‖Eh(u; ·)‖U?
h
. (A.6)

As a consequence, letting a family (Uh,ah,lh)h→0 of spaces and forms be given, if
consistency holds, then we have convergence in the following sense:

‖uh − Ihu‖Uh → 0 as h→ 0.

Proof. For any vh ∈ Uh , the scheme (A.2) yields

ah(uh − Ihu, vh) = ah(uh, vh) − ah(Ihu, vh) = lh(vh) − ah(Ihu, vh).
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Recalling the definition of the consistency error, we infer that the error uh − Ihu is
a solution to the following problem

ah(uh − Ihu, vh) = Eh(u; vh) ∀vh ∈ Uh, (A.7)

which is therefore referred to as the error equation. The proof is completed by
applying Proposition A.4 to mh = Eh(u; ·) and wh = uh − Ihu. ut

Remark A.8 (Quasi-optimality of the error estimate). Let

‖ah ‖Uh×Uh B sup
wh ,vh ∈Uh\{0}

|ah(wh, vh)|
‖wh ‖Uh ‖vh ‖Uh

(A.8)

be the standard norm of the bilinear form ah . The error equation (A.7) shows that

‖Eh(u; ·)‖U?
h
≤ ‖ah ‖Uh×Uh ‖uh − Ihu‖Uh .

Hence, if ‖ah ‖Uh×Uh (and γ, see Remark A.2) remains bounded with respect to h as
h → 0, which is always the case in practice, the estimate (A.6) is quasi-optimal in
the sense that, for some C > 0 not depending on h,

C−1‖Eh(u; ·)‖U?
h
≤ ‖uh − Ihu‖Uh ≤ C‖Eh(u; ·)‖U?

h
.

A.1.3 Aubin–Nitsche trick

Assume now that U is continuously embedded in a Banach space L, with norm
denoted by ‖·‖L, and that there exists a linear reconstruction operator

rh : Uh → L. (A.9)

If rh is continuous with continuity constant C, then (A.6) readily gives

‖rh(uh − Ihu)‖L ≤ Cγ−1‖Eh(u; ·)‖U?
h
.

Our aim here is to improve this estimate by using an Aubin–Nitsche trick. To this
purpose, we assume that, for all g ∈ L? (space of linear forms L→ R), there exists
a solution to the continuous dual problem: Find zg ∈ U such that

a(w, zg) = g(w) ∀w ∈ U. (A.10)

Definition A.9 (Dual consistency error). Under Assumption (A.9), let g ∈ L? and
zg be a solution to the dual problem (A.10). The dual consistency error of zg is the
linear form Ed

h
(zg; ·) : Uh → R such that, for all vh ∈ Uh ,

Ed
h(zg; vh) B g(rh(vh)) − ah(vh,Ihzg).
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The improved estimate in the weaker norm is stated in the following lemma.
Examples of usage of this lemma can be found in the proofs of Lemma 2.33 and
Theorems 3.42, 4.21, and 7.37.

Lemma A.10 (Aubin–Nitsche). Assume (A.9) and that the dual problem (A.10) has
a solution zg for any g ∈ L?. Let BL? = {g ∈ L? : ‖g‖L? ≤ 1} be the unit ball in L?.
Let u and uh be solutions to (A.1) and (A.2), respectively. Then,

‖rh(uh − Ihu)‖L ≤ ‖uh − Ihu‖Uh sup
g∈BL?

‖Ed
h(zg; ·)‖U?h + sup

g∈BL?
Eh(u; Ihzg). (A.11)

Proof. Let g ∈ BL? . We have, by definition of Ed
h
(zg; ·) and for wh ∈ Uh ,

g(rh(wh)) = Ed
h(zg;wh) + ah(wh,Ihzg).

Applied to wh = uh − Ihu and recalling the error equation (A.7), this gives

g(rh(uh − Ihu)) = Ed
h(zg; uh − Ihu) + Eh(u; Ihzg).

Taking the supremum over g ∈ BL? and recalling that supg∈BL? g(w) = ‖w‖L for all
w ∈ L, we infer

‖rh(uh − Ihu)‖L ≤ sup
g∈BL?

Ed
h(zg; uh − Ihu) + sup

g∈BL?
Eh(u; Ihzg). (A.12)

The proof is completed recalling the definition (A.4) of the dual norm to write

Ed
h(zg; uh − Ihu) ≤ ‖uh − Ihu‖Uh ‖Ed

h(zg; ·)‖U?h . ut

A.2 Saddle-point problems

A.2.1 Setting

We now consider a special situation where the continuous and discrete problems
are saddle-point equations, typically resulting from the formulation of constrained
minimisation problems using Lagrange multipliers. For the continuous problem,
consider:

• two Hilbert spaces U and P, respectively continuously embedded in Banach
spaces L and L′;

• two continuous bilinear forms a : U × U→ R and b : U × P→ R;
• two continuous linear forms l : L→ R and m : L′→ R.

We then write: Find (u, p) ∈ U × P such that
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a(u, v) + b(v, p) = l(v) ∀v ∈ U, (A.13a)
−b(u,q) = m(q) ∀q ∈ P. (A.13b)

Reminiscent of the application to the Stokes problem treated in Chapter 8, we will
refer to u and p as velocity and pressure. Problem (A.13) can be recast into the
variational form (A.1) defining the Cartesian product space X B U×P and the global
bilinear form A : X × X→ R such that, for all (u, p), (v,q) ∈ X,

A((u, p), (v,q)) B a(u, v) + b(v, p) − b(u,q),

and writing: Find (u, p) ∈ X such that

A((u, p), (v,q)) = l(v) + m(q) ∀(v,q) ∈ X. (A.14)

The approximation is based on the following spaces and forms:

• two spaces Uh and Ph , with respective norms ‖·‖Uh and ‖·‖Ph ;
• two interpolation operators Ih : U→ Uh and Jh : P→ Ph;
• two continuous bilinear forms ah : Uh × Uh → R and bh : Uh × Ph → R;
• two linear forms lh : Uh → R and mh : Ph → R.

The dual norms ‖·‖Uh ,? and ‖·‖Ph ,? are defined on the dual spaces of Uh and Ph ,
respectively, in a similar way as (A.4).

The approximation of (A.13) reads: Find (uh, ph) ∈ Uh × Ph such that

ah(uh, vh) + bh(vh, ph) = lh(vh) ∀vh ∈ Uh, (A.15a)
−bh(uh,qh) = mh(qh) ∀qh ∈ Ph . (A.15b)

As for the continuous problem, we can recast (A.15) into the variational form
(A.2) introducing the global space Xh B Uh × Ph and the global bilinear form
Ah : Xh × Xh → R such that, for all (uh, ph), (vh,qh) ∈ Xh ,

Ah((uh, ph), (vh,qh)) B ah(uh, vh) + bh(vh, ph) − bh(uh,qh), (A.16)

and writing: Find (uh, ph) ∈ Xh such that

Ah((uh, ph), (vh,qh)) = lh(vh) + mh(qh) ∀(vh,qh) ∈ Xh . (A.17)

A.2.2 Stability and energy error estimate

For saddle-point problems, it is usually easier to check the stability of the discrete
bilinear forms ah and bh separately. Equip Xh with the norm such that, for all
(vh,qh) ∈ Xh ,

‖(vh,qh)‖Xh B
(
‖vh ‖2Uh + ‖qh ‖2Ph

) 1
2
. (A.18)
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The following result identifies sufficient conditions on ah and bh under which the
inf–sup stability in the sense of Definition A.1 holds for Ah .

Lemma A.11 (Saddle-point stability). Assume that ah is coercive and bh is inf–sup
stable, that is,

∃α > 0 such that ah(vh, vh) ≥ α‖vh ‖2Uh ∀vh ∈ Uh , (A.19)

∃β > 0 such that sup
vh ∈Uh\{0}

bh(vh,qh)
‖vh ‖Uh

≥ β‖qh ‖Ph ∀qh ∈ Ph . (A.20)

Then, recalling the definition (A.8) of the norm of ah and setting

γ B

[
α−2

(
1 + 2β−2‖ah ‖2Uh×Uh

)2
+ 4β−2

]− 1
2

, (A.21)

it holds that

sup
(vh ,qh )∈Xh\{0}

Ah((uh, ph), (vh,qh))
‖(vh,qh)‖Xh

≥ γ‖(uh, ph)‖Xh ∀(uh, ph) ∈ Xh . (A.22)

Remark A.12 (Inf-sup stable ah). A more general set of conditions is obtained re-
placing (A.19) with the inf–sup stability of ah in the kernel of the operator on Uh
associated to bh; see, e.g., [57].

Proof. Denote by S the supremum in the left-hand side of (A.22). Using the coer-
civity (A.19) of ah together with the definition (A.16) of Ah followed by a passage
to the supremum, it is inferred that

‖uh ‖2Uh ≤ α−1ah(uh,uh) = α−1Ah((uh, ph), (uh, ph)) ≤ α−1S‖(uh, ph)‖Xh . (A.23)

On the other hand, using the inf–sup condition (A.20) on bh followed by the definition
(A.16) of Ah and the continuity of ah , we can write

‖ph ‖Ph ≤ β−1 sup
vh ∈Uh\{0}

bh(vh, ph)
‖vh ‖Uh

= β−1 sup
vh ∈Uh\{0}

Ah((uh, ph), (vh,0)) − ah(uh, vh)
‖vh ‖Uh

≤ β−1 (S + ‖ah ‖Uh×Uh ‖uh ‖Uh ) .
Squaring the above inequality, adding it to (A.23), using the inequality (a + b)2 ≤
2(a2 + b2) with a = S and b = ‖ah ‖Uh×Uh ‖uh ‖Uh , and recalling (A.18), we have that

‖(uh, ph)‖2Xh ≤ α−1S‖(uh, ph)‖Xh + 2β−2S2 + 2β−2‖ah ‖2Uh×Uh ‖uh ‖2Uh
≤ α−1S‖(uh, ph)‖Xh + 2β−2S2 + 2β−2α−1‖ah ‖2Uh×UhS‖(uh, ph)‖Xh
= α−1

(
1 + 2β−2‖ah ‖2Uh×Uh

)
S‖(uh, ph)‖Xh + 2β−2S2,
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where we have used (A.23) to pass to the second line and rearranged the terms to
pass to the third. Using the Young inequality on the first term in the right-hand side
and rearranging, we finally arrive at

‖(uh, ph)‖2Xh ≤
[
α−2

(
1 + 2β−2‖ah ‖2Uh×Uh

)2
+ 4β−2

]
︸                                          ︷︷                                          ︸

γ−2

S2.

Taking the square root yields (A.22). ut

The energy error estimate for the approximation of the saddle point problem is
stated in the following corollary, used in the proof of Theorem 8.18.

Corollary A.13 (Abstract error estimate and convergence in energy norm for
saddle point problems). Let the assumptions and notations of Lemma A.11 hold.
Let (u, p) be a solution to (A.13) (or, equivalently, (A.14)), and define the consistency
error linear form E

h
((u, p); ·) : Xh → R such that, for all (vh,qh) ∈ Xh ,

Eh((u, p); (vh,qh)) = lh(vh) − ah(Ihu, vh) − bh(vh,Jhp)
+ mh(qh) + bh(Ihu,qh)

(A.24)

or, equivalently,

Eh((u, p); (vh,qh)) = lh(vh) + mh(qh) − Ah((Ihu,Jhp), (vh,qh)). (A.25)

Then, if (uh, ph) ∈ Xh is a solution to problem (A.15) (or, equivalently, (A.17)), we
have that

‖(uh − Ihu, p − Jhp)‖Xh ≤ γ−1‖Eh((u, p); ·)‖X?h (A.26)

with γ given by (A.21). As a consequence, letting a family (Uh,Ph,ah,bh,lh,mh)h→0
of spaces and forms be given, if consistency holds, then we have convergence in the
following sense:

‖(uh − Ihu, p − Jhp)‖Xh → 0 as h→ 0.

Proof. Combine Lemmas A.11 and A.7. ut

A.2.3 Improved error estimate in a weaker norm

We derive in this section an improved L-norm error estimate for the velocity. Assume
that there exists a linear velocity reconstruction operator

rh : Uh → L. (A.27)

We moreover assume that, for all g ∈ L?, there exists a solution to the continuous
dual problem: Find (zg, sg) ∈ X such that
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A((w,r), (zg, sg)) = g(w) ∀(w,r) ∈ X. (A.28)

We define the dual consistency error linear form Ed
h
((zg, sg); ·) : Xh → R such that,

for all (vh,qh) ∈ Xh ,

Ed
h((zg, sg); (vh,qh)) B g(rh(vh)) − Ah((vh,qh), (Ihzg,Jhsg)). (A.29)

The improved estimate in a weaker norm for the velocity unknown is stated in the
following lemma. Lemma 8.21 gives an example of an application of this result.

Lemma A.14 (Improved velocity estimate in the L-norm). Assume (A.27) and
that the dual problem (A.28) has a solution (zg, sg) ∈ X for any g ∈ L?. Let BL? ={
g ∈ L? : ‖g‖L? ≤ 1

}
be the unit ball in L?. Let (u, p) ∈ X and (uh, ph) ∈ Xh be

solutions to (A.14) and (A.17), respectively. Then,

‖rh(uh − Ihu)‖L ≤ ‖(uh − Ihu, ph − Jhp)‖Xh sup
g∈BL?

‖Ed
h((zg, sg); ·)‖X?h

+ sup
g∈BL?

Eh((u, p); (Ihzg,Jhsg)).
(A.30)

Proof. The proof closely resembles that of LemmaA.10. Using the definition (A.29)
of the dual error with (vh,qh) = (uh − Ihu, ph − Jhp), we have that

g(rh(uh − Ihu))
= Ed

h((zg, sg); (vh,qh)) + Ah((uh − Ihu, ph − Jhp), (Ihzg,Jhsg))
= Ed

h((zg, sg); (vh,qh)) + Ah((uh, ph), (Ihzg,Jhsg)) − Ah((Ihu,Jhp), (Ihzg,Jhsg))
= Ed

h((zg, sg); (vh,qh)) + l(Ihzg) + m(Jhsg) − Ah((Ihu,Jhp), (Ihzg,Jhsg))
= Ed

h((zg, sg); (vh,qh)) + Eh((u, p); (Ihzg,Jhsg)),

where we have used the linearity of Ah in its first argument to pass to the second
line, the problem (A.17) to pass to the third line, and the definition (A.25) of the
consistency error with (vh,qh) = (Ihzg,Jhsg) in the last line. The conclusion follows
proceeding as in the proof of Lemma A.10. ut





Appendix B
Implementation

In this appendix we discuss some practical aspects concerning the implementation
of the Hybrid High-Order scheme (2.88) for the Poisson problem (2.85) with mixed
boundary conditions; see Section 2.4 for further details. The material is organised
as follows: in Section B.1 we introduce polynomial bases and degrees of freedom;
Section B.2 addresses the local construction; in Section B.3 we discuss the assembly
and efficient numerical resolution of the discrete problem.

B.1 Polynomial bases and degrees of freedom

For any mesh element T ∈ Th and any integer l ≥ 0, we fix a basis for Pl(T) denoted
by

Φ
l
T B {ϕTi }1≤i≤N l

d
,

where we recall that N l
d
defined by (1.30) is such that

N l
d =

(
l + d

d

)
.

We assume, for the sake of simplicity, that the basis is hierarchical so that, in
particular

Φ
m−1
T ⊂ Φm

T ∀m ∈ {1, . . . , l}.
This assumption could be removed, but we keep it here on the one hand because it
simplifies the discussion, on the other hand because it potentially leads to more effi-
cient implementations: since the basis Φk

T for the element-based discrete unknowns
(that is, vT for vT = (vT , (vF )F ∈FT ) ∈ Uk

T ) is a subset of the basis Φk+1
T used to

express the potential reconstruction pk+1
T vT , it suffices to construct and evaluate the

latter basis at quadrature nodes to perform the local construction.
For any face F ∈ Fh , we fix a basis for Pk(F) denoted by

449
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Φ
k
F B {ϕFi }1≤i≤N k

d−1
.

In this case, we do not require that Φk
F is hierarchical.

A basis for the global HHO space Uk
h
is obtained taking the Cartesian product of

the bases for the local polynomial spaces:

Φ
k
h B

(?
T ∈Th

Φ
k
T

)
× ©«

?
F ∈Fh

Φ
k
F
ª®¬ .

We next fix the degrees of freedom, i.e., a set of linear functionals that form a
basis for the dual space of Uk

h
. While other choices are possible, in what follows we

take them equal to the functionals that map a given vector of discrete unknowns in
Uk

h
to the coefficients of its expansion in the selected basis. Specifically, the degrees

of freedom applied to a given

vh = ((vT )T ∈Th , (vF )F ∈Fh ) ∈ Uk
h

return the real numbers

VT
i with 1 ≤ i ≤ Nk

d and T ∈ Th,
VF
i with 1 ≤ i ≤ Nk

d−1 and F ∈ Fh
(B.1)

such that

vT =

N k
d∑

i=1
VT
i ϕ

T
i for all T ∈ Th and vF =

N k
d−1∑
i=1

VF
i ϕ

F
i for all F ∈ Fh . (B.2)

For the sake of brevity, with a little abuse in terminology, we henceforth refer to the
real numbers (B.1) as the degrees of freedom of vh .

B.1.1 Choice of basis functions

HHOmethods are geared towards meshes containing polytopal elements of arbitrary
shape so that, in general, the notion of reference element cannot be used to generate
the basis Φl

T . We next discuss a few options to generate hierarchical bases directly
on the physical element. The design of face basis functions Φk

F is not explicitly
discussed here, as these functions can be obtained exactly as the element basis
functions, provided that we consider a local set of coordinates on the hyperplane in
which the face is contained.

Let a mesh element T ∈ Th be fixed, as well as a point xT ∈ T . A basis for the
polynomial space Pl(T) can be obtained setting
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Φ
l
T B

{
d∏
i=1

ξαi

T ,i : α ∈ Al
d and ξT ,i(x) B

xi − xT ,i
hT

for all x ∈ T and all 1 ≤ i ≤ d

}
,

(B.3)

where we recall that the set of multi-indices Al
d defined by (1.15) is such that

Al
d =

{
α ∈ Nd : ‖α‖1 ≤ l

}
.

The basis Φl
T constructed above is composed of monomial functions in the locally

translated and scaled coordinates (ξT ,i)1≤i≤d . This choice ensures that the basis
is invariant with respect to translations of the element T , but not with respect to
rotations. This is perfectly acceptable when working with isotropic meshes or low
degrees, but can lead to badly conditioned systems when stretched elements are
present or higher degrees are required.

The situation can be improved in this case by rotating the local reference frame
so that it is aligned with the principal axes of inertia of the element, and scaling
with different local length scales in each direction. A further improvement consists
in orthonormalising the resulting basis by a Gram–Schmidt algorithm, as originally
proposed in [36] in the context of Discontinuous Galerkin methods. It should be
noted that an implementation using orthonormal basis functions comes with a higher
computational cost, as each evaluation of a basis function requiresmore floating point
operations; the usage of an orthonormal basis is, however, sometimes necessary to
preserve numerical convergence.

The issue of badly conditioned systems when using monomial basis functions
is illustrated in Fig. B.1. Therein, the results obtained with two implementations of
the HHO scheme (2.48) with k = 3 for the Poisson problem are presented; the first
implementation is based on the monomial basis functions (B.3), whilst the second
relies on the basis functions obtained by a Gram–Schmidt orthonormalisation of
these monomial basis functions (we did not apply here any rotation of the reference
frame). The meshes used for this test are the distorted “Kershaw” meshes from
[207] (see Fig. 4.6, right). As can be seen in Fig. B.1, when using monomial basis
functions, the severe anisotropy of the mesh leads to round-off errors propagation
that quickly results in stagnant errors. On the contrary, the usage of orthonormalised
basis functions preserves the convergence rates.

B.2 Local construction

We describe here the practical implementation of the local construction discussed
in Section 2.1. We assume that the integrals that appear in what follows can be
computed numerically up to rounding errors if the integrand is a polynomial, or
suitably approximated if this is not the case. Numerical integration on polyhedra can
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Monomial basis functions Orthonormal basis functions
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k = 3.

10−1.2 10−1 10−0.8 10−0.6

10−9

10−8

10−7

10−6

1

5

(b) ‖π0,k
h

u − uh ‖ vs. h, Kershaw meshes,
k = 3.

Fig. B.1: Error vs. h for the HHO scheme (2.48), comparison between monomial
basis functions (B.3) and orthonormal basis functions. The reference slope indicates
the expected order of convergence.

be performed, e.g., by considering a submesh composed of standard elements for
which quadrature rules are available. For homogeneous polynomial functions, one
can also resort to the techniques of [110] based on a repeated use of Stokes formula
to compute the integrals as combinations of vertex values. Throughout this section,
we work on a fixed mesh element T ∈ Th .

B.2.1 Local potential reconstruction operator

In what follows, we adopt the convention that vectors in Rm (m ≥ 1) are denoted
in sans-serif font and matrix in boldface sans-serif font. The starting point is the
computation of the potential reconstruction operator pk+1

T . Let vT ∈ Uk
T be given,

and denote by VT the corresponding vector of degrees of freedom partitioned as
follows:

VT =


VT

VF1
...

VFN∂,T


∈ RNdof ,T

with subvectors

VT = [VT
i ]1≤i≤N k

d
∈ RN k

d , VF = [VF
i ]1≤i≤N k

d−1
∈ RN k

d−1 ∀F ∈ FT ,

where, setting N∂,T B card(FT ), we have defined the integer
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Ndof,T B dim(Uk
T ) = Nk

d + N∂,T Nk
d−1

representing the number of local degrees of freedom associated with T and its faces,
and we have introduced a numbering of the faces of T from 1 to N∂,T .

We collect the coefficients of the expansion of pk+1
T vT on the basis Φk+1

T in the
vector PT = (PT

i )1≤i≤N k+1
d

, so that

pk+1
T vT =

N k+1
d∑
i=1

PT
i ϕ

T
i . (B.4)

Recall the characterisation (2.13) of pk+1
T vT , for a fixed non-zero number λT . Setting

µT B λT /|T |d , we have λT π0,0
T w = µT (w,1)T , and (2.13) therefore reads: For all

w ∈ Pk+1(T),

(∇pk+1
T vT ,∇w)T + µT (pk+1

T vT ,1)T (w,1)T
= (∇vT ,∇w)T +

∑
F ∈FT
(vF − vT ,∇w·nTF )F + µT (vT ,1)T (w,1)T . (B.5)

Plugging the decompositions (B.2) and (B.4) of vT , (vF )F ∈FT , and pk+1
T vT into (B.5)

applied to all w ∈ Φk+1
T , we obtain the algebraic realisation(

ST + µTLk+1
T (Lk+1

T )ᵀ
)

PT =
(
BP,T + µTLk+1

T (LkT )ᵀ
)

VT +
∑
F ∈FT

BP,FVF , (B.6)

where

ST B
[(∇ϕTi ,∇ϕTj )T ]

1≤i, j≤N k+1
d

,

BP,T B

[
(∇ϕTi ,∇ϕTj )T −

∑
F ∈FT
(∇ϕTi ·nTF , ϕ

T
j )F

]
1≤i≤N k+1

d
,1≤ j≤N k

d

,

BP,F B
[(∇ϕTi ·nTF , ϕ

F
j )F

]
1≤i≤N k+1

d
,1≤ j≤N k

d−1

and, for l ≥ 0 a polynomial degree, LlT is the column vector

LlT B
[(ϕTi ,1)T ]

1≤i≤N l
d

and (LlT )ᵀ is its transposed vector.
Being a linear operator, pk+1

T can be represented by a matrix PT of size Nk+1
d
×

Ndof,T once we have fixed a basis for Uk
T and one for Pk+1(T). This matrix can be

computed repeatedly solving (B.6) for VT = ej , 1 ≤ j ≤ Ndof,T , with ej denoting
the jth vector of the canonical basis of RNdof ,T . In other words, the matrix PT is the
solution of the linear system
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ST + µTLk+1

T (Lk+1
T )ᵀ

)
PT =

[
BP,T + µTLk+1

T (LkT )ᵀ BP,F1 · · · BP,FN∂,T

]
.

(B.7)

Remark B.1 (Choice of µT ). The matrix ST is singular, and has as kernel the vectors
corresponding to constant polynomials in the cell. The component µTLk+1

T (Lk+1
T )ᵀ

is therefore essential for (B.7) to be well-posed. To ensure a proper conditioning of
this system, µT should be chosen such that this component has a similar magnitude
as ST . For example,

µT =
‖ST ‖

‖Lk+1
T (Lk+1

T )ᵀ ‖
,

or, since ST is symmetric positive semidefinite,

µT =
tr(ST )
‖Lk+1

T ‖2 .

Remark B.2 (Alternative approach). If Φk+1
T is hierarchical, then ϕT1 is a constant

function, and {∇ϕi}2≤i≤N k+1
d

is a basis of ∇Pk+1(T). In this case,

∇pk+1
T vT =

N k+1
d∑
i=2

PT
i ∇ϕTi

is entirely determined by the equation (2.12), whose algebraic realisation is

S̃T P̂T = B̂P,TVT +
∑
F ∈FT

B̂P,FVF ,

with S̃T denoting the (Nk+1
d
− 1) × (Nk+1

d
− 1) matrix obtained removing the first

row and column of ST , P̂T is the (Nk+1
d
− 1) × 1 vector obtained removing the first

component (row) of PT , and B̂P,∗ (for ∗ = T or F) is the matrix obtained removing
the first row of BP,∗. Making VT a generic vector then leads, in a similar way as
(B.7), to

S̃T P̂T =
[
B̂P,T B̂P,F1 · · · B̂P,FN∂,T

]
.

The matrix P̂T corresponds to PT with the first row removed, and the vector P̂TVT

gives the coefficients {PT
i }2≤i≤N k+1

d
of pk+1

T vT on {ϕTi }2≤i≤N k+1
d

. The coefficient PT
1

on ϕT1 can then be inferred by imposing the closure condition (2.11b):

PT
1 (ϕT1 ,1)T =

N k
d∑

i=1
VT
i (ϕTi ,1)T −

N k+1
d∑
i=2

PT
i (ϕTi ,1)T .

Note however that, when implementing the HHO scheme with original stabilisa-
tion (2.22), the potential reconstruction pk+1

T vT only needs to be known up to an
additive constant (such an additive constant disappears in the consistent component
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(∇pk+1
T uT ,∇pk+1

T vT )T in (2.15), and also in the contributions (δkTF − δkT )vT appear-
ing in the stabilisation term). In this case, the knowledge of P̂T alone is sufficient to
implement the scheme.

B.2.2 Difference operators

We next discuss the computation of the difference operators defined by (2.19), that
is: For all vT ∈ Uk

T ,

δkT vT B π0,k
T (pk+1

T vT − vT ), δkTFvT B π0,k
F (pk+1

T vT − vF ) ∀F ∈ FT . (B.8)

These operators are a key ingredient to devising high-order stabilisation terms. For
integers l,m ≥ 0, we define the local element mass matrix

Ml,m
TT B

[(ϕTi , ϕTj )T ]
1≤i≤N l

d
,1≤ j≤Nm

d

.

The element difference operator δkT : Uk
T → Pk(T) is represented by the matrix

DT ∈ RN k
d
×Ndof ,T such that

DT B (Mk ,k
TT )−1Mk ,k+1

TT PT −
[
IN k

d
0 · · · 0

]
,

where the zero blocks in the rightmost term fill the columns of face unknowns.
Remark B.3 (Hierarchical matrices).Having chosen hierarchical basis functions, we
notice that the element mass matrices are also hierarchical: Mk ,k

TT is a sub-matrix of
Mk ,k+1
TT , and thus only the latter needs to be computed.
Let a face F ∈ FT be fixed and, for given integers l,m ≥ 0, define the face-element

and face-face mass matrices

Ml,m
FT B

[(ϕFi , ϕTj )F ]
1≤i≤N l

d−1 ,1≤ j≤Nm
d

, Ml,m
FF B

[(ϕFi , ϕFj )F ]
1≤i≤N l

d−1 ,1≤ j≤Nm
d−1

.

The face difference operator δkTF : Uk
T → Pk(F) is represented by the matrix

DTF ∈ RN k
d−1×Ndof ,T such that

DTF B (Mk ,k
FF )−1Mk ,k+1

FT PT −
[
0 0 · · · IN k

d−1
· · · 0

]
,

where the identity matrix fills the column block corresponding to the unknowns
attached to the considered face F.
Remark B.4 (Interpretation of the mass matrices). The combinations of mass matri-
ces that appear in the formulas above have the following interpretations:
(i) (Mk ,k

TT )−1Mk ,k+1
TT is the matrix, in the bases Φk+1

T and Φk
T , of the linear operator

(π0,k
T ) |Pk+1(T ) : Pk+1(T) → Pk(T).
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(ii) (Mk ,k
FF )−1Mk ,k+1

FT is the matrix, in the bases Φk+1
T and Φk

F , of the linear operator
π0,k
F ◦ γk+1

TF : Pk+1(T) → Pk(F), where γk+1
TF : Pk+1(T) → Pk+1(F) is the

restriction operator.

B.2.3 Local contribution

Recall the definition (2.15) of the local bilinear form:

aT (uT , vT ) B (∇pk+1
T uT ,∇pk+1

T vT )T + sT (uT , vT ).

This form is associatedwith a symmetric positive semidefinite localmatrixAT , which
represents the contribution of elementT to the systemmatrix (see the definition (2.39)
of ah). This local contribution can be decomposed into its consistency and stability
terms as

AT = Acons
T + Astab

T ∈ RNdof ,T×Ndof ,T . (B.9)

The consistency contribution reads

Acons
T = PᵀTSTPT .

Several choices are possible for stabilisations that satisfy Assumption 2.4. The fol-
lowing expression for Astab

T corresponds to the one discussed in Example 2.7:

Astab
T =

∑
F ∈FT

h−1
F (DTF − (Mk ,k

FF )−1Mk ,k
FTDT )ᵀMk ,k

FF (DTF − (Mk ,k
FF )−1Mk ,k

FTDT ), (B.10)

whereas the one of Example 2.8 reads

Astab
T = h−2

T DᵀTMk ,k
TT DT +

∑
F ∈FT

h−1
F DᵀTFMk ,k

FFDTF .

Remark B.5. In a similar way as in Remark B.4, we notice that the matrix
(Mk ,k

FF )−1Mk ,k
FT represents, in the basesΦk

T andΦk
F , the restrictionmap γkTF : Pk(T) →

Pk(F).
The local contribution, from the element T , to the source term is

BT =

[
BT
T
0

]
∈ RNdof ,T , BT

T B
[( f , ϕTi )T ]

1≤i≤N k
d

,

where the 0 block fills the rows corresponding to all face unknowns.
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B.3 Discrete problem

In this section, we discuss the assembly and efficient numerical resolution of the
discrete problem.

B.3.1 Assembly and enforcement of boundary conditions

The following global matrix and vector are assembled element-wise, relying on the
usual technique based on a global table of degrees of freedom to ensure that interface
unknowns match from one element to the adjacent one:

Ãh =
∑
T ∈Th

AT B̃h =
∑
T ∈Th

BT . (B.11)

We assume the following ordering for the degrees of freedom: first those attached
to mesh elements, then those attached to interfaces and Neumann boundary faces,
finally those attached to Dirichlet boundary faces. Recalling the definition (2.87)
of the set F 6D

h
collecting interfaces and non-Dirichlet boundary faces, this ordering

induces the following block structure on Ãh and B̃h:

Ãh =


AThTh ATh F 6Dh

ATh FD
h

AF 6D
h
Th AF 6D

h
F 6D
h

AF 6D
h
FD
h

AFD
h
Th AFD

h
F 6D
h

AFD
h
FD
h

 , B̃h =


BTh
0
0

 .
Denote by Uh,D the vector of degrees of freedom corresponding to uh,D defined

by (2.86), partitioned as follows:

Uh,D =


0
0

UFD
h

 ,
where the zero subvectors correspond to the degrees of freedom attached to ele-
ment and non-Dirichlet faces. Define the following vector accounting for the non-
homogeneous Neumann boundary condition:

Bh,N =
[
BF ,N

]
F ∈F 6D

h

with BF ,N B


0 if F ∈ F i

h
,[

(gN, ϕ
F
i )F

]
1≤i≤N k

d−1

if F ∈ F N
h
.

Denoting by
Ndof,h B card(Th)Nk

d + card(F 6D
h
)Nk

d−1

the global number of degrees of freedom, the algebraic realisation of the discrete
problem (2.88) reads: Find Uh,0 ∈ RNdof ,h such that
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AThTh ATh F 6Dh
AF 6D

h
Th AF 6D

h
F 6D
h

] [
UTh ,0
UF 6D

h
,0

]
=

[
BTh
Bh,N

]
−

[
ATh FD

h

AF 6D
h
FD
h

]
UFD

h
C

[
CTh
CF 6D

h

]
. (B.12)

B.3.2 Static condensation

The submatrix AThTh is block-diagonal (with each block corresponding to one mesh
element) and symmetric positive definite, and is therefore inexpensive to invert. The
block-diagonal structure is a consequence of the fact that, for a fixed mesh element
T ∈ Th , the discrete unknown uT attached to T interacts with the other discrete
unknowns only through the face unknowns uF , F ∈ FT . The fact that AThTh is
positive definite, on the other hand, follows from (2.16) after observing that, for any
vT ∈ Pk(T),

aT ((vT ,0), (vT ,0)) & ‖(vT ,0)‖21,T = ‖∇vT ‖2T +
∑
F ∈FT

h−1
F ‖vT ‖2F ,

and the quantity in the right-hand side is a norm on Pk(T). Here, the hidden constant
is independent of both h and T .

This remark suggests to solve the linear system (B.12) in two steps:

(i) First, element-based degrees of freedom in UTh ,0 are expressed in terms of CTh
and UF 6D

h
,0 by the inexpensive solution of the first block equation:

UTh ,0 = A−1
ThTh

(
CTh − ATh F 6Dh

UF 6D
h
,0

)
. (B.13a)

This step is referred to as static condensation in the Finite Element literature;
(ii) Second, face-based coefficients in UF 6D

h
,0 are obtained solving the following

global problem involving quantities attached to the mesh skeleton:(
AF 6D

h
F 6D
h
− AF 6D

h
Th A−1

ThTh ATh F 6Dh

)
︸                                  ︷︷                                  ︸

CAsc
h

UF 6D
h
,0 = CF 6D

h
− AF 6D

h
Th A−1

ThTh CTh . (B.13b)

This computationally more intensive step requires to invert the symmetric
positive definite matrix Asc

h
, which has size

Nsc
dof,h B card(F 6D

h
)Nk

d−1. (B.13c)

The fact that Asc
h
is positive definite can be deduced observing that it is in fact

the Schur complement of AThTh in

Ah B

[
AThTh ATh F 6Dh
AF 6D

h
Th AF 6D

h
F 6D
h

]
.
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Since Ah is symmetric and both Ah and AThTh are positive definite, a classical
result in linear algebra yields that Asc

h
is also positive definite (see, e.g., [212]).

Remark B.6 (Stencil of the system). The local matrices AT couple the unknowns in
the element T and on its faces F ∈ FT . After element-wise assembly (B.11) and
accounting for the boundary conditions, the stencil of each unknown on a face F ∈ Fh
in the matrix of (B.12) is made of the unknowns associated with the elements on
each side of F, as well as all their non-Dirichlet faces. This stencil is not increased
after static condensation, since this condensation is performed element-wise. Hence,
in the final system (B.13b), each unknown on a face F is only coupled with the
unknowns on the faces that share an element with F.

Remark B.7 (Solution of the linear system).As for standard Finite Element Methods,
the condition number of the matrix in the left-hand side of (B.13b) grows with both h
and k; see Fig. B.2 for an example. This typically requires the development of ad hoc
solution strategies when large problems are considered. For the numerical tests in
this book, direct solvers were used whenever possible in two space dimensions while,
for the three-dimensional tests, a variety of (direct or iterative) solution strategies
were used depending on the features of the problem at hand.

Generally speaking, the development of efficient algorithms for the resolution of
the linear systems resulting from high-order skeletal polytopal methods (i.e., meth-
ods such as HHO or Virtual Elements, for which the globally coupled unknowns
are attached to the mesh skeleton) remains an open field of research. Very recent
works on p-multilevel solution strategies for HHO, albeit in their infancy, seem ex-
tremely promising; see, e.g., [37], where the Poisson and Stokes problems in two and
three space dimensions are considered. On the other hand, geometric h-multigrid
resolution strategies seem less obvious than, say, for Discontinuous Galerkin meth-
ods, owing to the need to coarsen the space of skeletal unknowns. Important efforts
are currently being undertaken to tackle this problem; we cite, in particular, the
fast4hho project (Agence Nationale de la Recherche grant ANR-17-CE23-0019),
involving both academic and industrial partners.
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Fig. B.2: Condition number in the 1-norm vs. h for the matrix in the left-hand side
of (B.13b) corresponding to the polygonal mesh of Fig. 1.1c.
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A

Abstract models
coercive problem, 59
discrete dual saddle point

problem, 447
discrete saddle point problem, 444
discrete variational problem, 440
dual variational problem, 442
equivalent discrete saddle point

problem, 444
equivalent saddle point problem,

444
saddle point problem, 443
variational problem, 439

D

Diffusion–advection–reaction
discrete problem, 108
dual problem, 119
strong formulation, 77
weak formulation, 97

L

Leray–Lions
discrete problem, 259
strong formulation, 250
weak formulation, 251

Linear elasticity
discrete problem for k = 0, 338
discrete problem for k ≥ 1, 324
strong formulation, 301
strong formulation with mixed

boundary conditions, 333
weak formulation, 302

Locally vanishing diffusion, 117
Locally variable diffusion

discrete problem, 158
strong formulation, 150
weak formulation, 151

N

Navier–Stokes
discrete problem, 389
discrete problem with convective

stabilisation, 400
strong formulation, 386
weak formulation, 387

P

Poisson
discrete problem, 59
dual problem, 67
mixed weak formulation, 202
strong formulation with mixed

boundary conditions, 72
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strong mixed formulation, 201
strong primal formulation, 43
weak primal formulation, 43

S

Stokes
discrete problem, 363
dual problem, 370
equivalent discrete problem, 364

equivalent weak formulation, 352
strong formulation, 350
weak formulation, 351

V

Variable diffusion
discrete problem, 93
strong formulation, 78
weak formulation, 78
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Rd×dsym , 77, 299
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⊗, 299
γh , 253
Πh , 286
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Anisotropy ratio
αT , 79
α, 91

Anisotropy-heterogeneity ratio
αT , 153

Approximation properties
(Gk

β,T ◦ IkT ), 99
L2-orthogonal projector, 34
Conforming Virtual Elements

projector, 225
elliptic projector, 35
modified elliptic projector, 174
oblique elliptic projector in

diffusion-weighted seminorms,
81

oblique elliptic projector in
Sobolev seminorms, 83

strain projector, 307

B

Bilinear forms
A, 444
Ah , 444
a, 59, 364, 439, 443
ah , 439, 444
b, 364, 443
bh , 444
aT , 214
acvem
T , 228
avem
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ah , 215
sT , 214
scvem
T , 228
svem
T , 217

Bilinear forms for
diffusion–advection–reaction

aK ,β,µ,h , 108
aβ,µ,T , 101
aβ,µ,h , 102
sβ,T , 101, 102
aK ,β,µ, 97

Bilinear forms for elasticity
aT , 313
ah , 322
alo
h
, 335

jh , 335
sT , 314
a, 302
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Bilinear forms for locally variable
diffusion

aK ,T , 154
aK ,h , 154
sK ,T , 154
a, 151

Bilinear forms for Navier–Stokes
jh , 399
a, 387
b, 387

Bilinear forms for Poisson
aT , 48
ah , 57
sT , 49
sT (depleted/enriched element

unknowns), 177
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sh , 57
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Bilinear forms for Poisson (mixed
formulation)

b̌h , 206
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bT , 204
bh , 205
mT , 204
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b, 202
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Bilinear forms for Stokes
A, 352
Ah , 364
aT , 359
ah , 359
bh , 360
sT , 359
a, 351
b, 351

Bilinear forms for variable diffusion
aK ,T , 85
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sK ,T , 85
aK , 78

Boundary difference operator, 62, 94
Boundedness
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IkT (H1-setting), 46
IkT (W1,p-setting), 266
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aT (Stokes), 359
ah (Poisson), 57
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alo
h
, 336

aK ,h (variable diffusion), 91
tss
h
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ttm
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th , 390
Gl
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T , 404
I`T , 221

Broken divergence, 15
Broken function spaces

W s,p(Th), 14
Pl(Th), 19
W p(div;Th), 15

Broken gradient operator, 15
Broken Sobolev spaces, 14

C

Carathéodory function, 250
Cauchy–Schwarz inequality, 12
Centred scheme, 399
Closed Range Theorem, 354
Commutation property
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T (Mixed High-Order), 203

Dk
T (Stokes), 357
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T (elasticity), 311
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T (locally variable diffusion),
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T (elasticity), 311

Gk
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Connected by star-shaped sets, 31
Consistency, 441
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T , 404

`h , 377
ah (elasticity), 322
th , 390
Sh (Leray–Lions), 267
ah (Poisson), 57
ah (Stokes), 360
alo
h
, 336

aK ,h (locally variable diffusion),
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aK ,h (variable diffusion), 91
aβ,µ,h , 104
bh , 360, 361
sT (elasticity), 315
sK ,T (variable diffusion), 86
tss
h
, 406

ttm
h
, 414

Gl
T , 401

Consistency error
abstract variational problem, 441
diffusion–advection–reaction, 111
elasticity, 322
Leray–Lions, 265
locally variable diffusion, 155
Navier–Stokes, 396
Poisson, 57
Stokes, 369
variable diffusion, 91

D

Diameter, 4
Difference operators
elasticity, 315
HHO(k,`), 178
Poisson, 50
Stokes, 359
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piecewise constant, 78
piecewise continuous, 153

Discrete compactness, 255, 421
Discrete integration by parts formula

for diffusion–advection–reaction,
100

Navier–Stokes, 411
Dual consistency, 442

E

Elliptic regularity
diffusion–advection–reaction, 119
elasticity, 328
locally variable diffusion, 163
Poisson, 67
Stokes, 370

Error estimators
εnc,T , 144
εres,T , 144
εsta,T , 144

Existence of a solution
discrete Navier–Stokes problem,

391
Leray–Lions problem, 259

F

Flux
mass (Stokes), 365
momentum (Stokes), 365
numerical, see Numerical normal

trace of the flux
Poisson, 43

Flux function (p-Laplace), 251
continuity, 270
strong monotonicity, 268

Frobenius product, 299
Function spaces

H(div;Ω), 14
Pln, 18
W p(div;Ω), 14

Functions for Leray–Lions
A [Eq. (6.7)], 251
ST , 259
Ah , 259

G

Gradient operator, 14, 300
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Hölder inequality, 12
generalised, 12
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Uk ,`
T , 170

Uk
h
, 54, 90
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h,0, 55, 90
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h , 286
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h,D, 73
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T , 202
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h , 205

Uk
T , 309, 355

Uk
h , 318, 358

Uk
h,0, 318, 358, 389

HHO(k, `) method, 180
Hilbert spaces, 14
scalar product, 14

I

Inequalities
continuous Korn, 302
continuous local trace, 25
continuous Poincaré, 394
discrete global trace, 254
discrete inverse, 23
discrete local trace, 27
discrete Poincaré, 55
discrete

Sobolev–Poincaré–Wirtinger,
253

Friedrichs, 137
global Poincaré on convex

domains, 120
local Poincaré–Wirtinger, 35, 137
uniform local Korn, 305

inf–sup stability, 440

Stokes (continuous), 353
Stokes (discrete), 361

Inradius, 4
Interpolators

IkΣ,T , 202
IkT , 46, 85
I0,−1
T , 171

Ik ,`T , 171
Ik
h
, 55

Ik ,`
h

, 179
IkT , 309, 355
Ikh , 318, 358
I`T , 220
I`
h
, 229

Inverse Sobolev embeddings, 24

J

Jump, 15

L

Lamé coefficients, 301
constant normalised, 327
piecewise constant, 301

Lax–Milgram Lemma, 59
Lebesgue embeddings, 20
Lebesgue spaces, 12
Leray–Lions flux function, 250

p-Laplace, 251
Linear forms
l, 439, 443
lh , 439, 444
m, 443
mh , 444

Linear forms for Stokes
`h , 377

Local Péclet number, 399
Local stabilisation bilinear form

elasticity, 314
Poisson, 49
Poisson (HHO(k,`)), 177
Stokes, 359

Locally upwinded θ-scheme, 400
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Locally vanishing diffusion, 117

M

Matching simplicial submesh, 7
Measure
|X |n, 9

Mesh
N∂, 9
boundary-datum compliant, 72
matching simplicial, 7
meshsize, 4
polytopal, 4
regularity parameter, 7

Mesh element, 4
FT , 5
FN,T , 142
TN,T , 142
hT , 4

Mesh face, 5
TF , 5
nF , 15
boundary face, 5
diameter, 5
interface, 5

Mesh sequence
compliant, 304
regular, 7
regular with star-shaped elements,

305

N

Nodal interpolator, 139
Non-dissipativity, 390

tss
h
, 406

ttm
h
, 414

Nonconforming P1 Finite Element
scheme, 194

Nonconformity estimator, 138
Norms
‖·‖Lp (X), 12
‖·‖W s ,p (X), 13
‖·‖W s ,p (Th ), 14
‖·‖X , 12

‖·‖Σ,T , 203
‖·‖, 12

Norms for Conforming Virtual
Elements

‖·‖cvem,2,h , 228
‖·‖cvem,a,h , 229
‖·‖cvem,p,T , 220

Norms for
diffusion–advection–reaction

‖·‖1,K ,T , 85
‖·‖1,K ,h , 91
‖·‖[,h , 103
‖·‖a,K ,h , 91
‖·‖],h , 113
‖·‖β,µ,T , 101
‖·‖β,µ,h , 103

Norms for elasticity
‖·‖a,h , 326
‖·‖ε,T , 309
‖·‖ε,j,h , 320
‖·‖ε,h , 318
‖·‖ε , 303
|||·|||ε,h , 334

Norms for Leray–Lions
‖·‖1,p,T , 253
‖·‖1,p,U,h , 288
‖·‖1,p,h , 253
‖·‖∇r,p,T , 256
‖·‖∇r,p,h , 256
‖·‖G,p,T , 255
‖·‖G,p,h , 255
|||·|||1,p,h , 286
equivalence, 256

Norms for locally variable diffusion
‖·‖1,K ,T , 154
‖·‖1,K ,h , 154
|||·|||a,K ,h , 154

Norms for Poisson
‖·‖1,T , 46
‖·‖1,h , 55
‖·‖a,h , 57
‖·‖cvem,a,h , 229
‖·‖cvem,p,h , 228

Norms for Stokes
‖·‖1,T , 355
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‖·‖1,h , 358
‖·‖X ,h , 368
‖·‖a,h , 360

Norms for variable diffusion
‖·‖1,K ,T , 85
‖·‖1,K ,h , 91
‖·‖a,K ,h , 91

Numerical normal trace of the flux
advection, 109
Elasticity, 325
Leray–Lions problem, 261
locally variable diffusion, 159
mass (Stokes), 366
momentum (Stokes), 366
Navier–Stokes, 418
Poisson, 63
variable diffusion, 94

P

Péclet number
PeT , 103
PeTF , 399

Polynomial consistency
(Fk

T ◦ IkΣ,T ), 204
(ςk

T
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sT (Poisson), 49
sT (Poisson, k , `), 177
sT (Stokes), 359
sT (elasticity), 314
sK ,T (variable diffusion), 86
sΣ,T , 205
difference operators (Poisson), 50

Polynomial spaces
P`(∂T), 218
Pl(X), 19
Pl(Th), 19
broken, 19
local, 19

Polytopal set, 4
Potential
Poisson, 43

Potential-to-flux operator, 207
Projectors

L2-orthogonal (π0,l
X ), 28

Lp-boundedness of L2-orthogonal
projectors, 33

characterisation, 28
conforming VEM (π1,`

T ,cvem), 223
definition, 28
elliptic (π1,l

X ), 29
global L2-orthogonal (π0,l

h
), 29

modified L2-orthogonal (Π`−2
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220
modified elliptic (π̃1,l

T ), 173
oblique elliptic (π1,l

K ,T ), 80
strain (πε,lT ), 305

R

Raviart–Thomas–Nédélec
global space, 379
local space, 379

Reconstructions for
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Gk
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β,T , 98

Reconstructions for elasticity
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T , 311

Gk
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pk+1
T , 311

p1
h
, 334

Reconstructions for Leray–Lions
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Reconstructions for locally varying
diffusion
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Reconstructions for Poisson (mixed

formulation)
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Reconstructions for variable
diffusion
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, 95
Reference quantities

KTF , 80
τ̂T , 103
KT , KT , 80
β̂T , 98

Residual estimator, 138
Ribid-body motions, 300

S

Scharfetter–Gummel scheme, 400
Seminorms
|·|W s ,p (X), 13
|·|W s ,p (Th ), 14

Seminorms for elasticity
|·|1,∂T , 309
|·|s,h , 318

Seminorms for Leray–Lions
‖·‖cvem,p,T , 220
|·|δ,p,T , 256
|·|δ,p,h , 264

Seminorms for Navier–Stokes
|·|s,h , 399

Seminorms for Poisson
|·|1,∂T , 46

Seminorms for Stokes
|·|1,∂T , 355

Seminorms for variable diffusion
|vh |s,K ,h , 95

Semiorms for locally variable
diffusion

|·|s,K ,h , 162
Simplex, 4
Skew-symmetric gradient

operator, 300

Small data assumption, 393, 394
Sobolev spaces, 13
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? , 251

Stabilisation estimator, 138
Stability

aT (Stokes), 359
ah (Poisson), 57
ah (Stokes), 360
ah (elasticity), 322
alo
h
, 336

aK ,h (variable diffusion), 91
aβ,µ,h , 104
bh , 361
mT , 205

Star-shaped set, 30
Static condensation, 390
Strain tensor, 301
strain-stress law, 301
Symmetric gradient operator, 300

T

Topological degree, 391
Trace operator (discrete), 253
Trilinear forms for Navier–Stokes

ttm
h
, 413

tss
h
, 406

th , 389
t̃, 388
t, 387

U

Uniqueness
Leray–Lions, 260
Navier–Stokes, 393

Upwind scheme, 399
Upwind stabilisation, 101

V

Vector product, 299
Velocity invariance, 377
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W

Well-posedness
abstract saddle point problem, 364
discrete elasticity problem, 324

discrete Poisson problem, 59
discrete Stokes problem, 364
discrete variable diffusion

problem, 93
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