N
N

N

HAL

open science

A second order analysis of McKean-Vlasov semigroups
M Arnaudon, P del Moral

» To cite this version:

M Arnaudon, P del Moral. A second order analysis of McKean-Vlasov semigroups. 2019. hal-

02151808v1

HAL Id: hal-02151808
https://hal.science/hal-02151808v1

Preprint submitted on 10 Jun 2019 (v1), last revised 29 Dec 2019 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02151808v1
https://hal.archives-ouvertes.fr

A second order analysis of McKean-Vlasov semigroups
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Abstract

We propose a second order differential calculus to analyze the regularity and the stabil-
ity properties of the distribution semigroup associated with McKean-Vlasov diffusions. This
methodology provides second order Taylor type expansions with remainder for both the evolu-
tion semigroup as well as the stochastic flow associated with this class of nonlinear diffusions.
Bismut-Elworthy-Li formulae for the gradient and the Hessian of the integro-differential opera-
tors associated with these expansions are also presented.

The article also provides explicit Dyson-Phillips expansions and a refined analysis of the
norm of these integro-differential operators. Under some natural and easily verifiable regularity
conditions we derive a series of exponential decays inequalities with respect to the time horizon.
We illustrate the impact of these results with a second order extension of the Alekseev-Grébner
lemma to nonlinear measure valued semigroups and interacting diffusion flows. This second
order perturbation analysis provides direct proofs of several uniform propagation of chaos prop-
erties w.r.t. the time parameter, including bias, fluctuation error estimate as well as exponential
concentration inequalities.

Keywords : Nonlinear diffusions, mean field particle systems, variational equations, logarith-
mic norms, gradient flows, Taylor expansions, contraction inequalities, Wasserstein distance,
Bismut-Elworthy-Li formulae.
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1 Introduction

1.1 Description of the models

For any n > 1 we let P,(R?%) be the convex set of probability measures 7, x on R? with absolute
n-th moment and equipped with the Wasserstein distance of order n denoted by W, (1, 1). Also let
bi(21,2) be some Lipschitz function from R?? into R? and let W; be an d-dimensional Brownian
motion defined on some filtered probability space (€2, (Ft)¢=0,P). We also consider the Hilbert space
H; (RY) := La((92, Fy, P),RY) equipped with the Lo inner product (., .>Ht(Rd). Up to a probability
space enlargement there is no loss of generality to assume that H;(R?) contains square integrable

R?-valued variables independent of the Brownian motion.
For any p € P»(R?) and any time horizon s > 0 we denote by X 4() be the stochastic flow
defined for any t € [s,0[ and any starting point z € R? by the McKean-Vlasov diffusion

dX% (x) = by (XE,(2), ds(p)) dt +dW;  with by (z, ) :=f p(dy) be(x,y)



In the above display, ¢, stands for the evolution semigroup on P,(R?) defined by the formulae

bus (1) (dy) = pP(dy) = f u(dz) Py, dy) with Pz, dy) = P(X" (x) € dy)

The existence of the stochastic flow X ;f () is ensured by the Lipschitz property of the drift
function see for instance [36, [42]. To analyze the smoothness of the semigroup ¢s; we need to
strengthen this condition.

We shall assume that the function bs(z1, 22) is differentiable at any order with uniformly bounded
derivatives. In addition, the partial differential matrices w.r.t. the first and the second coordinate
are uniformly bounded; that is for any i = 1,2 we have

o)y == sup sup [l )]s < o with b= Vb (1.2)
t=0  yeR2d

In the above display, | A]2 := Amnaz(AA’)Y/2 stands for the spectral norm of some matrix A, where
A’ stands for the transpose of A, \pqz(.) and Apin(.) the maximal and minimal eigenvalue. In the
further development of the article, we shall also denote by Agym = (A + A’)/2 the symmetric part
of a matrix A. In the further development of the article we represent the gradient of a real valued
function as a column vector, or equivalently as the transpose of the differential-Jacobian operator
which is, as any cotangent vector, represented by a row vector. The gradient and the Hessian of a
column vector valued function as tensors of type (1,1) and (2, 1), see for instance (3.1).

The mean field particle interpretation of the nonlinear diffusion is described by a system
of N-interacting diffusions & = (£})1<i<n defined by the stochastic differential equations

A A . 1
dgi = bi(&, m(&)) dt +dW] with 1<i<N and m(&) = D G (1.3)

1<j<N

In the above display, §8 stands for N independent random variables {é with common distribution
o, and W} are N independent copie of the Brownian motion W;.

McKean-Vlasov diffusions and their mean field type particle interpretations arise in a variety of
application domains, including in porous media and granular flows |7 [§, [17), [60], fluid mechanics [51],
52, (54, 61], data assimilation [10, 24) [32], and more recently in mean field game theory [9, 13} 12,
141, 15, [16], 411, 38|, and many others.

The origins of this subject certainly go back to the beginning of the 1950s with the article by
Harris and Kahn [40] using mean field type splitting techniques for estimating particle transmission
energies. We also refer to the pioneering article by Kac [45] [46] on particle interpretations of
Boltzmann and Vlasov equations, and the seminal articles by McKean [51],[52] on mean field particle
interpretations of nonlinear parabolic equations arising in fluid mechanics. Since this period, the
analysis of this class of mean field type nonlinear diffusions and their discrete time versions have
been developed in various directions. For a survey on these developments we refer to [14, 24 58],
and the references therein.

The McKean-Vlasov diffusions discussed in this article belong to the class of nonlinear Markov
processes. One of the most important and difficult research questions concerns the regularity analysis
and more particularly the stability and the long time behavior of these stochastic models.

In contrast with conventional Markov processes, one of the main difficulty of these Markov
processes comes from the fact that the evolution semigroup ¢s.(x) is nonlinear w.r.t. the initial
condition g of the system. The additional complexity in the analysis of these models comes from
the fact that their state space is the convex set of probability measures, thus conventional functional
analysis and differential calculus on Banach space cannot be directly applied.



The main contribution of this article is the development of a second order differential calculus
to analyze the regularity and the stability properties of the distribution semigroup associated with
McKean-Vlasov diffusions. This methodology provides second order Taylor type expansions with
remainder for both the evolution semigroup as well as the stochastic flow associated with this class
of nonlinear diffusions. We also provide a refined analysis of the norm of these integro-differential
operators with a series of exponential decays inequalities with respect to the time horizon.

The article is organized as follows:

The main contributions of this article are briefly discussed in section The main theorems
are stated in some detailed in section [2] Section [3] provides some pivotal results on tensor integral
operators and on integro-differential operators associated with the second order Taylor expansions
of the semigroup ¢s.(1). Section [4]is dedicated to the analysis of the tangent process associated
with the nonlinear diffusion flow. We presents explicit Dyson-Phillips expansions as well as some
spectral estimates. The last section, section [] is mainly concerned with the proofs of the first and
second order Taylor expansions. The proof of some technical results are collected in the appendix.
Detailed comparisons with existing literature on this subject are also provided in section [2.5

1.2 Statement of some main results

One of the main contribution of the present article is the derivation of a second order Taylor
expansion with remainder of the semigroup ¢,; on probability spaces. For any pair of measures
o, 11 € Po(RY), these expansions take basically the following form:

Gs,t(p1) = G5t (10) + (11 — 110) Dy bst + (11 — 10)®2 Dl st (1.4)

In the above display, Dﬁo ¢s,t stands some first and second order operators, with £ = 1,2. A more
precise description of these expansions are the remainder terms is provided in section [2.2]

Section [2.3.1] also provides an almost sure second order Taylor expansions with remainder of
the random state X éf ,(x) of the McKean diffusion w.r.t. the initial distribution p. These almost
sure expansions take basically the following form

1

XL () = X220 = [(n = no)dy) Do X22Gw) + 5 [ (= o) () DE, X4 w,2) (19

for some random functions ijong from RATF) into RY, with k = 1,2. A more precise description
of these almost sure expansions is provided in sectionm (see for instance and theorem [2.6)).

Given some random variable Y € Hg(R?) with distribution u € P»(R?), observe that the stochas-
tic flow 15 +(Y) := X{,(Y) satisfies the H; (R%)-valued stochastic differential equation

dps ¢ (Y) 1= By(¢s4(Y)) dt + dWy (1.6)
In the above display, B; stands for the drift function from Hy;(R?) into itself defined by the formula

In the above display, X stands for an independent copy of X. The above Hilbert space valued
representation of the McKean-Vlasov diffusion (1.1)) readily implies that for any Y7, Yy € H,(R9) we
have the exponential contraction inequality

|5 (Y1) = st (Yo) | ey < €M7 Y1 — Yol ey



for some A > 0, as soon as the following condition is satisfied
(X1 — Xo, Bi(X1) — Bt(XO)>Ht(]Rd) < 27 [ X - Xoﬁﬂt(md) (1.7)

for any ¢ > 0 and any X1, X € H;(R?). In addition, in this framework the first order differential
01s+(Y') of the stochastic flow coincides with the conventional Fréchet derivative of functions from
an Hilbert space into another. In addition, we shall see that the gradient of first order operator
D, ¢s; coincides with the dual of the tangent process associated with the Hilbert space-valued
representation of the McKean-Vlasov diffusion ; that is, for any smooth function f we
have that the dual tangent formula

OYsp(Y)" - V(s (Y)) = VDpgs o (f)(Y) (1.8)

A more precise description of the Fréchet differential 01, ¢(Y") and the dual operator is provided in
section and section [d] A proof of the above formula is provided in theorem [£.8]

The Taylor expansions discussed above are valid under fairly general and easily verifiable condi-
tions on the drift function. For instance, the regularity condition is clearly satisfied for linear
drift functions. As it is well known, dynamical systems and hence stochastic models involving drift
functions with quadratic growth require additional regularity conditions to ensure non explosion of
the solution in finite time.

Of course the expansions and will be of rather poor practical interest without a
better understanding of the differential operators and the remainder terms. To get some useful
approximations, we need to quantify with some precision the norm of these operators. A important
part of the article is concerned with developing a series of quantitative estimates of the differential
operators Dﬁoqbs,t and the remainder term; see for instance theorem and theorem

To avoid estimates that grow exponentially fast with respect to the time horizon, we need to
estimate with some precision the operator norms of the differential operators in . To this end,
we shall consider an additional regularity condition:

(H) : There exists some A\g > 0 and \; > [bl2]|y such that for any (z1,72) € R* and any time
horizon t = 0 we have

At(xl,xg)sym <—-XM I and bgl](l’l,xg)sym <-M 1 (19)

In the above display, I stands for the identity matrix and Az the matriz-valued function defined by

—
—_—

(1] [2
A(z1, 29) 1= by (T1,@2) b (o, 71) and we set A9 = A — [b1]|5 (1.10)
(2] [ :
b (1, x) by (22, 21)

More detailed comments on the above regularity conditions, including illustrations for linear
drift and gradient flow models, as well as comparisons with related conditions used in the literature
on this subject are also provided in section [2.4

Under the above condition, we shall develop several exponential decays inequalities for the norm
of the differential operators Dﬁo ¢s,¢ as well as for the remainder terms in the Taylor expansions. The
first order estimates are given in , the ones on the Bismut-Elworthy-Li gradient and Hessian
extension formulae are provided in and . Second and third order estimates can also be
found in and .

The second order differential calculus discussed above provides a natural theoretical basis to
analyze the stability properties of the semigroup ¢, ; and the one of the mean field particle system

discussed in (|1.3)).



For instance, a first order Taylor expansion of the form already indicates that the sensi-
tivity properties of the semigroup w.r.t. the initial condition p are encapsulated in the first order
differential operator D, ¢, ;. Roughly speaking, whenever (H) is satisfied, we show that there exists
some parameter A > 0 such that

Viz12lI Dfy dsll = e 7 and therefore ¢4 (p1) = Gt (pio)|| = e (1.11)

for some operator norms |||.||. For a more precise statement we refer to theorem and the
discussion following the theorem.

The second order expansion also provides a natural basis to quantify the propagation of
chaos properties of the mean field particle model . Combining these Taylor expansions with a
backward semigroup analysis we derive a a variety of uniform mean error estimates w.r.t. the time
horizon. This backward second order analysis can be seen a second order extension of the Alekseev-
Grobner lemma [I] 37] to nonlinear measure valued and stochastic semigroups. For a more precise
statement we refer to theorem As in , one of the main feature of the expansion is
that it allows to enter the stability properties of the limiting semigroup ¢, ; into the analysis of the
flow of empirical measures m(&;).

Roughly speaking, this backward perturbation analysis can be interpreted as a second order
variation-of-constants technique applied to nonlinear equations in distribution spaces. As in the
Ito’s lemma, the second order term is essential to capture the quadratic variation of the processes,
see for instance the recent article [43] in the context of conventional stochastic differential equation,
as well as in 28] [4] in the context of interacting jump models. The discrete time version of this
backward perturbation semigroup methodology can also be found in chapter 7 in [23], a well as in
the articles [25], 26, 27] .

As initiated-readers will have noticed, the first order operator D, ¢s; reflects the fluctuation
errors of the particle measures, while the second order term encapsulates their bias. In other words,
estimating the norm of second order operator Diqb&t allows to quantify the bias induced by the
interaction function, while the estimation of first order term is used to derive central limit theorems
as well as LL,-mean error estimates.

As in , these estimates take basically the following form. For n > 1 and any sufficiently
regular function f we have

1Dy @s.4lll = €207 — [E[m(&)(f) = o, (mE) (N | < en/VN (1.12)

In addition, we have the uniform bias estimate w.r.t. the time horizon

I1D5 s 4lll = €27 — [E [m(&)(f) = do.4(m(&0) ()] | < ¢/N (1.13)

In the above display, [|. || stands for some operator norm, and (c, ¢;,) stands for some finite constants
whose values doesn’t depend on the time horizon. We emphasize that the above results are direct
consequence of a second order extension of the Alekseev-Grobner type lemma for particle density
profiles. For more precise statements we refer to theorem [2.7] and the discussion following the
theorem.

1.3 Some basic notation

Let Lin(Bj, B2) be the set of bounded linear operators from a normed space B into a possibly

different normed space B equipped with the operator norm || .||z, 5, When By = By we write
Lin(B;) instead of Lin(By, By).



With a slight abuse of notation, we denote by I the identity (d x d)-matrix, for any d > 1, as
well as the identity operator in Lin(By, B1). We also denote by |.| any (equivalent) norm on some
finite dimensional vector space over R.

We let Vf(z) = [0z, f(7)]i<;<q4 Pe the gradient column vector associated with some smooth
function f(x) from R? into R. Given some smooth function h(x) from R? into R? we denote by
Vh = [Vhl, ey Vhd] the gradient matrix associated with the column vector function h = (h%)1<i<q.
We also let (V ® V) be the second order differential operator defined for any twice differentiable
function g(x1,z2) on R?¢ by the Hessian-type formula

(Ve v)g)z’,j = (Vo ® vxz)(g)id = (Ve ® vm)(g)j,i = axllarﬂzg (1.14)

We consider the space C"(R?) of n-differentiable functions and we denote by C”, (R?) the subspace
of functions f such that

sup |VFf(2)| < ¢ wp(z) with the weight function wy,(z) = (1 + |z])™ for some m > 0.
o<k<n

We equip C7 (RY) with the norm

Ifleg@ey == >3 IV /wmle with [V*f/wmle = sup [V*f(2)/wm(@)]

0<k<n zeR4

When there are no confusions, we drop to lower symbol | .||, and we write | f|| instead of | f]s the
supremum norm of some real valued function. We let e(x) := x be the identify function on R¢ and
for any pu € P,(R?) and n > 1 we set

el i~ | [ 1el u(d@]”"

For any p1, pu2 € P,(RY), we also denote by py (1, p12) some polynomial function of [e|,,, ,, with
i =1,2. When u; = ug we write py,(u1) instead of py, (11, p1).

Under our regularity conditions on the drift function, using elementary stochastic calculus for
any n = 2 and pu € P,(R?) we check the following estimates

n\1l/n . . . ny1l/n
E (| X4 (2)]") " < enlt) (o] + eluz) which implies that ¢ () (e|)" < en(t) e]un (1.15)

In the above display and throughout the rest of the article, we write c(t), cc(t), cn(t), cne(t), cen(t)
and ¢, »(t) with m,n > 0 and € € [0, 1] some collection of non decreasing and non negative functions
of the time parameter t whose values may vary from line to line, but which only depend on the
parameters m, n, €, as well as on the drift function b;. Importantly these contants do not depend on
the probability measures u. We also write ¢, ce, ¢, cn e, and ¢, When the constant do not depend
on the time horizon.

2 Statement of the main theorems

2.1 First variational equation on Hilbert spaces

As expected, the Fréchet differential dis:(Y') of the stochastic flow 1,4(Y) associated with the
stochastic differential equation (1.6]) satisfies an Hilbert space-valued linear equation (cf. (4.1)).
The drift-matrix of this evolution equation is given by the Fréchet differential 0B (1)5+(Y")) of the



drift function B; evaluated along the solution of the flow. Mimicking the exponential notation of
the solution of conventional homogeneous linear systems, the semigroup associated with the first
variational equation is written as follows

ey (V) = s OBul¥sn())du ¢ Lin (1 (RY), H,(RY))

The above exponential is understood as an operator valued Peano-Baker series [57]. A more detailed
presentation of these models is provided in section
The H;(R?%)-log-norm of an operator T; € Lin(H;(R?), H;(R%)) is defined by

Y(T) = sup  Z,(Ti +T)/2 Z)w,mae

HZHHt(Rd)Zl

Our first main result is an extension of an inequality of Coppel [20] to tangent processes associ-
ated with Hilbert-space valued stochastic flows.

Theorem 2.1. For any time horizon t > s and any Y € Hy(R?) we have the log-norm estimate

t 1 " t
_j Y (_aBu(ws,u(Y))) du < E log |||e§é aBU(wS’U(Y))du|||Ht(]Rd)—>Ht(Rd) < J Y (aBu(ws,u(Y))) du

’ ’ (2.1)

In addition, we have
1 ¢ ”
(H) = 0By(X)oym < —do T = S log [l P 0at Nty o< =X (22)

The proof of the above theorem in provided in section
Let Y, Y € Hy(R?) be a pair of random variables with distributions (uo,u1) € Po(R%)2. Also
let pe be the probability distribution of the random variable

Yei= (1—€) Yo+ € Vi = by (Vo) = el PPulbsndu (v, _yp) (2.3)

This observation combined with the above theorem yields an alternative and more direct proof of an
exponential Wasserstein contraction estimate obtained in [5]. Namely, using (2.2)) we readily check
the Wy-exponential contraction inequality

aBt(X)Sym < _)‘0 I S W2(¢s,t(ﬂ1)7 ¢s,t(ﬂ0)) < 6_)‘0@_3) WQ(M(],MI) (2.4)

For any function f € C'(R?) with bounded derivative we also quote the first order expansion

1
[@s.t(111) = D5, (p0)] (f) = L Os i (Ye)" - V(s (Ye), (Y1 = Y0) ), (ray de

In the above display, (., .>Ht(Rd) stands for the conventional inner product on Lo((Q,Fy, P), R%).
The above assertion is a direct consequence of theorem [£.8]
2.2 Taylor expansions with remainder

The first expansion presented in this section is a first order linearization of the measure valued
mapping ¢, in terms of a semigroup of linear integro-differential operators.



Theorem 2.2. For anym,n = 1 and po, 1 € vag(Rd), there exists a semigroup of linear operators
Doy o ®Pst from C(R?) into itself such that

bs,i(p1) = bse(po) + (11 — 10) Dy o Ps t (2.5)

In addition, when (H) is satisfied we have the gradient estimate
IV Dy o5 (1) < ¢ XD for some X >0 (2.6)

The proof of the above theorem with a more explicit description of the first order operators
D, uo®s, are provided in section In we can choose A = A1 2, with the parameter Ao
introduced in (|1.10). The semigroup property is a consequence of theorem and the gradient
estimates is a reformulation of the operator norm estimate discussed in .

We also provide Bismut-Elworthy-Li-type formulae that allow to extend the gradient and Hessian
operators VkDmmqﬁs,t with & = 1,2 to measurable and bounded functions. When the condition
(H) is satisfied we show the following exponential estimates

IV Dy o s(F) < ¢ (Lv1/v/E—s) e 9 || for some A > 0 (2.7)

In addition, we have the Hessian estimate
IV2 Dy o @5t () < e (Lv 1/(t=s5)) e 79 | f]| for some A >0 (2.8)

The proof of the first assertion can be found in remark on page The proof of the Hessian
estimates is a consequence of the decomposition of VQDMO,,M ¢t discussed in (5.1) and the Hessian

estimates (3.16) and (3.31)).

It is worth mentioning that the semigroup property is equivalent to the chain rule formula

Dﬂl:ﬂ0¢57t = DN17N0¢5:U © D¢s,u(#1)7¢s,u(ﬂo)¢u:t (29)

which is valid for any s < v < ¢t. Without further work, theorem also yields the exponential
Wi-contraction inequality

Wi(¢s (1), bst(110)) < € e =) Wy (g, p11) (2.10)

with the same parameter A a in (2.6). In the same vein, the estimate ([2.7)) yields the total variation
estimate

|5, (1) — bt (o) |ew < ¢ (1 v 1/vVE—5) e ) g — paa o

with the same parameter A a in (2.7). In all the inequalities discussed above we can choose any
parameter A > 0 such that A < Aq2, with the parameter \; o introduced in (1.10). In the W;-
contraction inequality (2.10) we can choose A = Aj2. A more refined estimate is provided in
section 2.4

Next theorem provides a first order Taylor expansion with remainder.

Theorem 2.3. For any m,n =0 and pg, i1 € Pry2(R?), there exists a linear operators Dihuo%»t
from C2(R?) into C o (R??) such that

1
Gs1(11) = Ds,1(pt0) + (1 = 110) Do st + 5 (11 = 10) P Dy 1y Dt (2.11)

with the first order operator D, s := Dy 0 ®s,t introduced in theorem . In addition, when (H)
is satisfied we also have the estimate

(Ve V)D;

i @st ()l < c e A=) 'siulp2 IVif|  for some A >0 (2.12)



The proof of the above theorem in provided in section [5.2] A more precise description of the
second order operator D% ¢, is provided in (5.9) and (5.13).

H1,140

Theorem 2.4. For any m,n =1 and po, pi1 € Prya(R?), there exists a linear operators D21,yo¢8»t
from CT3(RY) into C 4 (R3?) such that

Gs,t(p1) — Ps,e(10)
. (2.13)
= (1 = 10) DyuoPs + 5 (11 = 10)®2 D% bt + (11 — p10) D} st

with the second order operator Dioqﬁsyt = Diomqﬁ&t introduced in theorem . In addition, when
(H) is satisfied we have the third order estimate

(1 — 10)®2 D3 st ()]

—A(t—s)

(2.14)

ViFl) Walpo, m)®  for some A> 0

Sce (Vie1,23

The proof of the first part of the above theorem in provided in section [5.3] We can choose in
(2.14) any parameter A > 0 such that A < A\; 2, with the parameter \; 2 introduced in ([1.10)). The
proof of the third order estimate (2.14]) is rather technical, thus it is provided in the appendix, on

page [35]

2.3 Illustrations

The first part of this section states with more details the almost sure expansions discussed in ([1.5).
Up to some differential calculus technicalities, this result is a more or less direct consequence of
the Taylor expansions with remainder presented in theorem and theorem combining with a
backward formula presented in [5].

The second part of this section is concerned with a second order extension of the Alekseev-
Grébner lemma to nonlinear measure valued semigroups and interacting diffusion flows. This second
order stochastic perturbation analysis is also mainly based on the second order Taylor expansion
with remainder presented in theorem .

In the further development of this section without further mention we shall assume that condition
(H) is satisfied.

2.3.1 Almost sure expansions
We recall the backward formula

Xt (o) = X22w) = [ [ VAL | QO [Bein) — b)) (X4 (0). ) i (215)

S

The above formula combined with (2.4) and the tangent process estimates presented in section
yields the uniform almost sure estimates

| XE(2) — XL ()] < e o M=) Wy (g, puy) (2.16)

The above estimate is a consequence of (2.4) and conventional exponential estimates of the tangent
process VX ;” , (cf. for instance ) A detailed proof of this claim and the backward formula

(2.15)) can be found in [5].



We extend the operators Dﬁgbs,t introduced in theoremto tensor valued functions f = (f;)ic[n]
with i = (i1,...,in) € [n] := {1,...,d}" by considering the same type tensor function with entries

Dyose(f)i = Dyose(fi) and weset dy,(2,y) := Dudss(be(x,.))(y) (2.17)

for any (z,y) € R2?. A brief review on tensor spaces is provided in section We also consider

the function .

DX (x,y) :=f

s

| T2 0| (X (@) (X2 (), y) du
Combining the first order formulae stated in theorem [2.3] with conventional Taylor expansions we
check the following theorem.

Theorem 2.5. For any x € R%, pg, i1 € Po(RY) and s < t we have the almost sure expansion
2 I’ k)
X¢i (@) = Xgi (@) = f (11 = po)(dy) Dy X2 () + AT () (2.18)

with the second order remainder function Af}’“o"“ such that

)

HAE}W’M | < ce ) Wy (g, u1)?  for some A > 0

The detailed proof of the above theorem is provided in the appendix, on page [39}
Second order expansions are expressed in terms of the functions defined for any (x,%y) € R?? and
for any z € R?¢ by the formulae

A (@) = Duder (0@, ))(y) and dlP (@, 2) 1= D26sabi(a, ))(2)
We associate with these objects the function DﬁoX f ¢ defined by

t
Dixt(e) = | [V o) [ Oes ). 2) + DXL (0.2)] du

¢
—i—J [VZXiSt’“(“)] (Xg‘u(x))’ Dl[f’l]Xéfu(x, z) du

In the above display, D[ Ux £, stands for the functions given by
DIMIXE, (0, 2) 1= Al (X2 (), 22) DX (w,21) + d 1 (X2 (@), 20) D XUy (a,20) |

m S, S,u

DX (2, 2) = [Du XLy (w,21) dit (X (2), 22) + DXLy (w0, 20) dbf (XL (), 21)]

We are now in position to state the main result of this section.

Theorem 2.6. For any x € R¢ , 10, [41 € Pg(Rd) and s <t we have the almost sure expansion
XGi(x) — XGi(x)

(2.19)

_ f (41 — p0)(dy) Dyg XP2 (2, y) f i1 — o) (dz) D2, XP0(x, 2) + AlbHom (1)

S,

1
2
with a third order remainder function Asg’”l’”o such that

HAE}#@M | <ec o A(t—s) WZ(MOaMl)g for some A > 0

The proof of the above theorem is provided in the appendix, on page In the remainder term
estimates presented in the above theorems, we can choose any parameter A > 0 such that A < Aq 2,
with the parameter \; o introduced in (1.10).
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2.3.2 Interacting diffusions

For any N > 2, the N-mean field particle interpretation of associated with a collection of generators
Li, is defined by the Markov process & = (§§)1 <i<n € (RHN with generators A; given for any

sufficiently smooth function F and any = = (2%);<;<ny € (RN by

MEF) @) = D) Ly (F-) (@) with Foi(y) = F (2.2 g2 2N) (2.20)

1<i<N
We extend Ly, to symmetric function F(x1,22) = F(x2,21) on R?? by setting
LEN(F) (@t 2%) o= Lop(F (o', ))(@) + Lou(F(., %)) (2h)
In this notation, we readily check that

Flz) = m)(f) = M(F)@) = m(@)Lym@)(f)

) (2.21)
Fl@) = m@f(F) = MEF)@) = m@)®LY), (F) +  m(@) [D(F)]

with the function I'(F) on R defined by

D(F)@) = T ([VOVIF) (@) = 3, (02 F) (@.2)

1<i<d

—T(f®g) () = Y| 0 f(@) duglx) = Tr (Vf(2)Vg(x))

1<k<d

Applying Ito’s formula, for any smooth function g : ¢t € [0, 0[— g, € Cg(Rd) we prove that

my = m(&) = dmi(g) = [me (0ege) + meLem, (9¢)] dt + \/1N dM(g)

In the above display, g — M;(g) stands for a martingale random field with angle bracket

M), Mg = i (TS @9) — M(g)s = | mu(da) [Vg(o)]?
We fix a final time horizon ¢ > 0 and we denote by
s €[0,t] = My (D, ¢.4(f))
the martingale associated with the predictable function

s€[0,t] — gs = D, ps+(f)

Combining the It6 formula with the tensor product formula (2.21)) and the semigroup backward
formula (4.9) we obtain the following theorem.

Theorem 2.7. For any time horizon t > 0, the interpolating semigroup s € [0,t] — ¢s(ms)
satisfies for any f € C2(R?) with SUPg_12 IVEf|l < 1 the evolution equation

A0u(m)(f) = 57 ms [F (DR, 0u(D)] ds+ — dML(Dy6.(D) (222

11



The above theorem can be seen as a second order extension of the Alekseev-Grobner lemma |1, [37]
to nonlinear measure valued and stochastic semigroups. This result also extends the perturbation
theorem obtained in [4] (cf. theorem 3.6) in the context of interacting jumps processes to McKean-
Vlasov diffusions. The discrete time version of the backward perturbation analysis described above
can also be found in [25] 26, 27] in the context of Feynman-Kac particle models (see also [23] 24]).

We end this section with some direct consequences of the above theorem. Firstly, using
and we have the almost sure estimates

|88<M-,t (Dm. ¢,t(f>)>5|
and  ||lm [T (D2, ¢s:(f))] |

el A

c e M%) gup |[Vif| for some A >0
i=1,2

NN

Without further work, the above inequality yields the uniform bias estimate stated in the r.h.s. of
, for any twice differentiable function f with bounded derivatives. Using well known martingale
concentration inequalities (cf. for instance lemma 3.2 in [53]), there exists some finite parameter ¢
such that for any ¢t > 0 and any § > 1 the probability of the following event

1 t ) 5
—gn | e (D (Dhoai(f)] del < e/

|mi(f) — do,t(mo)(f) N

is greater than 1 — e~%. In addition, using the Burkholder-Davis-Gundy inequality, for any n > 1
we obtain the time uniform estimates stated in the r.h.s. of (1.12]). On the other hand, using ([2.6)
we have the almost sure exponential contraction inequality

Wi (¢o.6(mo), ¢o.t(10)) < ¢ e Wi(mg, o) for some A > 0

This yields the bias estimates

C1 C2 )\t

|E [m(f) — do.t(p0) ()] | < ~ i/ ©

for any twice differentiable function f with bounded derivatives. The r.h.s. estimate comes from
well known estimates of the average of the Wassertein distance for occupation measures, see for
instance [33] and the more recent studies [35] [49]. The above inequality yields the following uniform
bias estimate

sup  |E[me(f) — do.t(10)(f)] ] < %

t?% log N

2.4 Comments on the regularity conditions

We discuss in this section the regularity condition (H) introduced in . We illustrate these
spectral conditions for linear-drift and gradient flow models. Comparisons with related conditions
presented in other works are also provided.

Firstly, we mention that the condition stated in has been introduced in the article [5] to
derive several Wasserstein exponential contraction inequalities as well as uniform propagation of
chaos estimates w.r.t. the time horizon.

Using the log-norm triangle inequality and recalling that the log-norm is dominated by the
spectral norm we check that

Amaz(At(21, 72) sym) < Amaz (O (21, 22)sym) + 271 [ (22, 1) + 02 (21, 22|12

12



Choosing Ag and A; as the supremum of the maximal eigenvalue functional of the matrices

Ai(x1, 22)sym and bgl] (21, 2)sym, the Cauchy interlacing theorem (see for instance [48] on page

294) yields A\ = Ao = Aq 2.
For linear drift functions
bt(l'l, 1'2) = Bix1 + Byxy (2.23)

the matrix A;(x1,x2) sym reduces to the two-by-two block partitioned matrix

(Bl)sym (B2)sym

At($1,x2)sym = [ (BQ)sym (Bl)sym

]:»Aom:—xmm((&)sym) and 021, = | Bal

(2.24)
In this situation the diffusion flow X 5 .(z) € R? is given by the formula

t
Xly(x) = eI (@ — p(e)) + e ITBR y(e) + f B gy

s

In the one dimensional case we have

Bi<0<B = 31=*A1<31+BQZ*>\172=*)\0

Nonlinear Langevin diffusions are associated with the drift function

b(zy,x2) := =VU(x1) — VV (21 — 22)

— bl (2, 20) = =V2U (1) — V2V (21 —22) and  b2l(2y,20) = V2V (2) — x0)

some confinement type potential function U (a.k.a. the exterior potential) and some interaction
potential function V. In this context we have

- V2U(l’ ) 0
_At(x1,33'2)sym = [ 0 ' V2U<372) ]

4 { VQV(a?l — wg) —(V2V(x2 - x1> + V2V(x1 — x2>)/2 ]
*(VQV(.TQ — 1’1) + VQV(.Tl — LL'Q))/Q VQV(I‘Q — fL‘l)

When the potential function V' is even and convex we have

VZU(ZL'l) 0
0 V2U (2) ]

At(w17$2)sym < — |:

In the reverse angle, when the function V' is odd we have the formula

2 2 _
At(-rlaxZ)sym = - [ VAU (1) + V7V (21 — 22) 0 ]

0 V2U(1’2) + VZV(.Z'Q — 1‘1)

In both situations, condition (H) is satisfied when the strength of the confinement type potential
dominates the one of the interaction potential; that is when we have that

VU (x1) + V2V (x2) = A\ > V2V |2

The decay rate A\g in the Wy-contraction inequality (2.4]) is larger than the decay rate A; 2 in
the Wi-contraction inequality (2.10). In addition, the Wi-exponential stability requires that Ag
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dominates the spectral norm of the matrix bl2l. Next we provide a more refined analysis based on
the proof of the Wo-contraction inequality presented in [5]. Using the interpolating paths (Ye, p.)

introduced in (2.3) we set

Xgp = XU (Yo) and Y;t = YSE(YE) (2.25)

In the above display (Ygft(x), Y ) stands for an independent copy of (X1 (z),Y:). Arguing as in [5]
we have

GE(10XE 1) = E [0 7 (X 1y BIXE 1 XL )OXE ) + (X, B (XS 1, X )0XED ) |
We consider the symmetric and anti-symmetric matrices
(b?] (w1, 22) + b (22, wl),>

<b£2] (21, 9) — b (22, 551),)

b (T1,72)sym =

N — DN

2
bg ](:Ela x2)a5ym
and we set

0e X, 0e X5,

V12X (10X

By symmetry arguments and using some elementary manipulations we check the formula

-2 (5 ) o ()
+ (\/m a \/m> <Vst7 St’yz,t)sym {Gft>

(10Xl = 10X5el) (Vo 0N X s Vit ) )

(Uﬁ,tﬁi,t) =

4 VT 0 XS, 0Xg,
an yVigt) =
W [6Xe ] Jocxe,]

This shows that R
E([0eX5, 1) < =12 E([10:X5.[)

with the parameter 3\172 given by

A2 i= D | Aman (Ar(@r, 22)) + [0 (21, 2)spm |2 + [0 @1, 22)asyml2 | < =Nz

1,22

We conclude that the Wi-contraction inequality 1) is met with A = Xl,g.
In a more recent article [62] the author presents some Wasserstein contraction inequalities of the
same form as in (2.4) with Ao replaced by some parameter Ay = (K1 — K2), under the assumption

(1 = y1, be(z1, 1) — be(yr, o)) < —hk1 21 — ya]® + k2 Walpr, po)?  for some k1 > ko

Taking Dirac measures 1 = 05, and 2 = J,, we check that the above condition is equivalent to
the fact that

(r1 — Y1, be(21, 72) — be(y1,92)) < —r1 |21 — 11 |* + K2 |22 — ya?

14



By symmetry arguments this implies that

(x1—y1, b (w1, 22) —be(y1, y2) )+ T2 — Y2, b (w2, 1) —be(y2, 1)) < =Ny [|@1—v1 >+ |w2—v2*] (2.26)

For the linear drift model discussed in (2.24)) the above condition reads

(Bl)sym (BZ)sym :| < — . .. . _
< =), I which is implies that Ao = A
[ (B2)sym  (B1)sym 0 P 0= 70

We also have (2.26) —> with A = Ay

2.5 Comparisons with existing literature

The perturbation analysis developed in the article differs from the Otto differential calculus on
(Py(R?), W5) introduced in [54] and further developed by Ambrosio and his co-authors [2] B3]
and Otto and Villani in [55]. These sophisticated gradient flow techniques in Wasserstein metric
spaces are based on optimal transport theory. The central idea is to interpret Pg(]Rd) as an infi-
nite dimensional Riemannian manifold. In this context, the Benamou-Brenier formulation of the
Wasserstein distance provides a natural way to define geodesics, gradients and Hessians w.r.t. the
Wasserstein distance. The details of these gradient flow techniques are beyond the scope of the
semigroup perturbation analysis considered herein. This methodology is mainly used to quantify
the entropy dissipation of Langevin-type nonlinear diffusions. Thus, it cannot be used to derive any
Taylor expansion of the form nor to analyze the stability properties of more general classes of
McKean-Vlasov diffusions.

Besides some interesting contact points, the methodology developed in the present article doesn’t
rely on the more recent differential calculus on (P»(R?), W3) developed by P.L. Lions and his co-
authors in the seminal works on mean field game theory [I3], [38]. In this context, the first order
Lions differential of a smooth function from P»(R?) into R is defined as the conventional derivative
of lifted real valued function acting on the Hilbert space of square integrable random variables. In
this interpretation, for a given test function, say f the gradient VD, ¢s.(f)(Y) of the first order
differential in can be seen as the Lions derivative (dus¢/0p)(Y) of the lifted scalar function
Y > usy(Y) := E(f(XL,(Y))), for some random variable Y with distribution p. In the recent
book [14], to distinguished these two notions, the authors called the random variable D, ¢, (f)(Y")
the linear functional derivative. For a more thorough discussion on the origins and the recent
developments in mean field game theory, we refer to the book [I4] as well as the more recent
articles [12] I8, 21] and the references therein.

Besides the elegance and the powerful properties of this differential calculus in mean field game
theory, it should be clear from the previous discussion that it cannot be used to analyze the differen-
tial properties of composition of functions. As a result, this calculus cannot be used to describe nor
to analyze the tangent process of the diffusion . In the same vein, these lifted derivatives don’t
provide informations on the regularity and the stability properties of the measure valued semi-group
operators @ ;.

To the best of our knowledge, most of the literature on Lions’ derivatives is concerned with
existence theorems without a refined analysis of the exponential decays of these differentials w.r.t.
the time parameter. Last but not least, from the practical point of view all differential estimates we
found in the literature are quite deceiving since after carefully checking, they growth exponentially
fast with respect to the time horizon (cf. for instance [12] 18] [19] 21]).

Taylor expansions of the form have already been discussed in the book [24] for discrete
time nonlinear measure valued semigroups (cf. for instance chapters 3 and 10). We also refer to the
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more recent article [4] in the context of continuous time Feynman-Kac semigroups. In this context,
we emphasize that the semigroup ¢s.(p) is explicitly given by a normalization of a linear semigroup
of positive operators. Thus, a fairly simple Taylor expansion yields the second order formula .
In contrast with Feynman-Kac models, McKean-Vlasov semigroups don’t have any explicit form
nor an analytical description. As a result, none of above methodologies cannot be used to analyze
nonlinear diffusions.

The second order perturbation analysis discussed in this article has been used with success
in [25] 26, 27] to analyze the stability properties of Feynman-Kac type particle models, as well as
the fluctuations and the exponential concentration of this class of interacting jump processes; see
also [31], a well as chapter 7 in [23] and [4, 28] for continuous time models. These perturbation
techniques have also been extended to general nonlinear Markov processes in the book [47]. Never-
theless none of these studies apply to derive Taylor expansion for McKean-Vlasov diffusions
nor to estimate the stability properties of the associated semigroups.

The idea of considering the flow of empirical measures m(&;) of a mean field particle model as a
stochastic perturbation of the limiting flow ¢ ¢(po) certainly goes back to the work by Dawson [22],
itself based on the martingale approach developed by Papanicolaou, Stroock and Varadhan in [56],
published in the end of the 1970’s. These two works are mainly centered on fluctuation type limit
theorems. They don’t discuss any Taylor expansion on the limiting semigroup ¢, ; nor any question
related to the stability properties of the underlying processes.

3 Some preliminary results

The first part of this section provides a review of tensor product theory and Fréchet differential on
Hilbert spaces. Section [3.1]is concerned with conventional tensor products and Fréchet derivatives.
Section [3.2] provides a short introduction to tensor integral operators.

In the second part of this section we review some basic tools of the theory of stochastic variational
equations, including some differential properties of Markov semigroups. Section [3:3]is dedicated to
variational equations. Section[3.5]discusses Bismut-Elworthy-Li extension formulae. We also provide
some exponential inequalities for the gradient and the Hessian operators on bounded measurable
functions.

The differential operator arising in the Taylor expansions are defined in terms of tensor
integral operators that depend on the gradient of the drift function b;(x1,x2) of the nonlinear diffu-
sion. These integro-differential operators are described in section The last section, section
provides some differential formulae as well as some exponential decays estimates of the norm of
these operators w.r.t. the time horizon.

3.1 Fréchet differential

We let [n] stands for the set of n multiple indexes i = (i1,...,4,) € Z" over some finite set Z.
Notice that [n1] x [n2] = [n1 4+ n2]. We denote by T, 4(Z) the space of (p,q)-tensor X with real
entries (X ;)@ j)e[p]x[q]- Given a (p1,q1)-tensor X and a (p2, g2)-tensor Y we denote by (X ® V')
the ((p1 + q1), (p2 + ¢2))-tensor defined by
(X ®Y) (i), (k) = Xik Y
For a given (p1, ¢)-tensor X and a given (po,q) tensor Y, XY" is a (p1, p2)-tensor with entries

V(i,j) € [m] x [p2]  (XY")ij:= Z XixYy; with Yy, =Y
kelq]
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We equip 7, 4(Z) with the Frobenius inner product
(X)) :=Tr(XY') := Z (XY");; and the norm || X prep := +/Tr(X X’)
i€[p]
Identifying (1,0)-tensors 71 0(Z) = RZ with column vectors (X;)iez € R? the above quantities
coincide with the conventional Euclidian inner product and norm on the product space RZ. When

T = {1,...,d} we simplify notation and we set R? instead of R{l . For any tensors X and Y
with appropriate dimensions, using Cauchy-Schwartz inequality we check that

X, Y>2 <X rrob 1Y Frop  and [ XY | probp < [ X[ #rob Y[ Frob

Let H(7,,4(Z)) := La((Q2,F,P), T, 4(Z)) be the Hilbert space of T, 4(Z)-valued random variables
defined on some probability space (€2, F,P), equipped with the inner product

XY w7, @) = E(CXY)) and the norm | X |u(r,,,(2)) == X, X)iir, o)

induced by the inner product (X,Y) on 7,4(Z). We denote by E(X) E(Xij)@,5)ep]x[q the
entry-wise expected value of a (p, ¢)-tensor.
When Z = {1,...,d} and (p,q) = (1,0) the space H(7,4(Z)) coincides with be the Hilbert space
H(RY) = Lo((Q,F,P), R%) of square integrable R%-valued and F-measurable random variables.
We denote by
Hn(Tp.q(1)) := La((2, F, P), Tpq (1))

the non decreasing sequence of Hilbert spaces associated with some increasing filtration F,, ¢ F,, 1.
In Landau notation, we recall that a function

F: X el(Tpq(2) — F(X)€Hy(Tp,4,(T))
is said to be Fréchet differentiable at X if there exists a continuous map
X € Hi(Tpq(T)) = OF(X) € Lin(H1(Tp 45 (Z))s Ha(Tps,00(T)))
such that
FIX+Y)=F(X)+dF(X)-Y+o(Y)
3.2 Tensor integral operators

Let B(E, Tp,4(Z)) be the set of bounded measurable functions from a measurable space E into some
tensor space T, 4(Z). Signed measures p on E act on bounded measurable functions g from E into R.
We extend these integral operators to tensor valued functions g = (gi.5) i j)e[p]x[q]) € B(E; Tp.e(Z))

by setting for any (i,7) € [p] x [¢]
H(@)i = ilgis) i= | nlde) gigla) and weset p(g) i= | n(d) g(a)

Let (E,€&) and (F, F) be some pair of measurable spaces. A (p, ¢)-tensor integral operator
Q : geB(F,Tyr(Z)) — Qlg) € B(E, Tpr(Z))

)

is defined for r > 0 and g € B(F,7T,,-(Z)) by the tensor valued and measurable function Q(g) with
entries given x € E and (4, 7) € ([p] x [r]) by the integral formula

x) = Q; k(x,dT) gi ;(T)
kez[q] JF k 9k,j
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for some collection of integral operators Q; r(x1,dz2) from B(E,R) into B(F,R). We also consider
the operator norm

Q|| := sup |Q(g)|| for some tensor norm |.|
lgl<1

The tensor product (Q! ® 92) of a couple of (p;, g;)-tensor integral operators
Q' : g€ B(F;, T (T)) = Qg) € B(Ei, Ty, (T)) with i =1,2
is a (p, q)-tensor integral operator
Q'®Q* : heB(F Tr(T)) = Qg) € B(E, Tp4(2))
with the product spaces
(B, F) = (E1 x Ey, Fy x Fy) and  (p,q,7) = (p1 + P2, q1 + 2,71 + 72)

The entries of (Q' ® Q?)(h) are given for any x = (21, z2) and any pair of multi-indices i = (i1,i2) €
([p1]  [p2]), 7 = (41,72) € ([r1] x [r2]) by the integral formula

(Q'® Q)(h);(x) = f (Q'® )i k(. dy) his(v)
F1 x F>

ke([ x[g2])

with the tensor product measures defined for any k = (k1, k2) € ([q1] % [¢2]) and any y = (y1,y2) by
(Q'® Q2)(i1,i2)a(k11k2)((l'1v1'2)’d(ylvyZ)) = Q%hkl (w1,dy1) Qi,kz (w2, dy2)

3.3 Variational equations

The gradient and the Hessian of a multivariate smooth function h(x) = (hi())[p) i3 defined by
the (1,p) and (2,p) tensors Vh(z) and V2h(z) with entries given for any 1 < k,I < d and i € [p]
by the formula

Vh(2)ki = Oghi(x) and  V2h(x)(1),; = Oay O hi(2) (3.1)

We consider the tensor valued functions bgkl’kQ] and bgkl’k%k?’] defined for any ki, ko, k3 = 1,2 by
kel = (V,, @V, )b and bFrRksl.— (v, @V, @V )b

with the (2,1) and (3, 1)-tensor valued functions

(bgkl’kﬂ) =040 o2 b' and (bEkl’kQ’k‘“’]) =0 i1 0_ir 0 i3 bi
(i1532),J Loy

(il,i27i3):j wk‘ ka xkd

Assume that (H) is satisfied. In this situation, the gradient VX', (x) of the diffusion flow X{, ()
satifies the (d x d)-matrix valued stochastic diffusion equation

& VX! (x) = VX (2) B (XE (@), dop()) = [VXE (2)]2 < e (3.2)
We have the matrix diffusion equation
5t V2th (.Z')
= VX (2) (X, (@), 6s0(1) + [VXE, (2) @ VXL, ()] B (XE, (), (1))
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This implies that

VXL () [ Fpop < — 201 [VEXE (@) o, + 2008 mro VXL (@) Frop IV2XE ()] Frob
from which we check that

VXL () [ prob < — M1 [ V2XE, (@) rob + B

‘Frob ”vX:t (l‘) H%’Tob

Using ([3.2)), this yields the estimate

t
IV2XE (@) | prop < 1 e X1 0) f M) [TXH (2)|%0 du < cp e MED (3.3)

S

More generally, for any n > 1 we have the uniform estimate

”VnXﬁt@)HFrob S Cn e M=) (3.4)

3.4 Differential of Markov semigroups

We have the commutation formula
VoPl, =P oV (3.5)

with the (1, 1)-tensor integral operator 7357 , defined for any x € R? and any differentiable function
f on R? by the formula

Po(V (@) := B [VXL(2) VF(XE(2)] (3.6)

The tensor product of 735’ . 1s also given by the (2, 2)-tensor integral operator
(PL)T (W) (@1, w2) == E[[VXLy(21) © VXY (2)] b (XL (1), X (a2)) ]

In the above display, Ygt(w) stands for an independent copy of X} (x) and h = (V ® V)g stands
for the matrix valued function defined in ([1.14). We also have the commutation formula

(’Pﬁ,t)®2 o(VV)=(V®V)o (P;fg)®2

In the same vein, we have the second order differential formula
VEPL(f) = PV ) + P (VR (3.7)
with the (2,1) and (2, 2)-tensor integral operators
PEMH V@) = E[VPXL(@) VXL @))]
PEANVE (@) = E[(VXE(@) @ VXL (1) V2F(XL ()] (3.8)

Iterating the above procedure, we define the n-th differential of Ps‘f .(f) at any order n > 1. For
instance, we have the third order differential formula

ViPL,(Vf) = PEIH (v ) + PEAR (V2 p) 4+ PEA (vt ) (3.9)

S
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with the (2, ) and (2, 2)-tensor integral operators
(v
73[ (V2
PEH (8

= E[V’X[(z) Vf(XL(2))]
= E[(V’X!,(2) ® VXY, (2)) V2F(XE ()]
(z) = E[(VX(2) @ VXY, (2) @ VXL, (2)) V(XL (x))] (3.10)

—~
8 8
~— ~—

)-
)
)
f)

)
with the ®-tensor product of type (3,2) given for any i = (iy,42,43) and I = (I1,l2) by

(V2Xéft($) @ VXg,t(x))Z’l = (VQXZt(x) ® VXZt($))((i1,i2),i3),l

+ (VXL (1) @ VXL, (2)) + (V2XL () @ VXL ()

((i2,i3),51),l ((i3,21),82),l

The above formulae remains valid for any column vector multivariate function f = (f;)1<i<q. Using
(3.2) and (3.3) for any € €]0, 1| we also check the uniform estimates

sup [|PIH)| < ¢ e M) (3.11)

1<k<n

Using the moment estimates ) for any p e Py(RY), m,n > 0, and any s < t, we also check the
rather crude estimate

1L M gty ity ¥ NP sy oy < Emn(®) [1+ 2™
3.5 Bismut-Elworthy-Li extension formulae
We have the Bismut-Elworthy-Li formula
VP (f)(z) = E(f(XE () 71 (x))  with 727 f Ouws,t(u) VX (x) dW,  (3.12)

The above formula is valid for any function ws; : u € [s,t] — ws(u) € R of the following form

L o ((u—9)/t - 5)) (3.13)

t—s
for some non decreasing differentiable function ¢ on [0, 1] with bounded continuous derivatives and
such that

ws,t(u) = ¢ ((u—15)/(t =5)) = duws(u) =

(©(0), (1)) = (0,1) = ws(t) —wse(s) =1

In the same vein, for any s < u < t we have

V2P (@) = B (F(XU () [720(@) + VXL (@) i (XE @) ie@)]) (319

with the stochastic process
¢
Ts[?t]’”’w(z:) = J Ouws (1) VQXéfu(x) awy,
S

Besides the fact that X[';(z) is a nonlinear diffusion, the proof of the above formula follows the
same proof as the one provided in [6] [1T], 34, 50, 59| in the context of diffusions on differentiable
manifolds, thus it is skipped. Using (3.12)), for any f s.t. |f| < 1 we check that

IVPLNIP < E (I (@)])

t 1
= f IO ot ) du = [P (Gp(w)? do
s - 0
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Let . with € €]0,1[ be some differentiable function on [0,1] null on [0,1 — €] and such that
|0pe(u)| < ¢/e and (p(1 —€),p(1)) = (0,1), for instance we can choose

0 if wel0,1—¢€]
_ 1
() 1+cos<<1+ u) g) if uell—el]

€

In this situation, we find the rather crude uniform estimate

L n0-90-9  (3.15)
t—s

c\2 1 ! — —s)v
IwPLIE < () 725 | e ao— VR <

Ao

In the same vein, using the estimate (3.3 for any € €]0,1[ and w €]s, t[ we also check the rather
crude uniform estimate

1 1
IV2PL(D] < S ——— e M9 1 & e M) N1

u—s €./t —u)(u—s)

Choosing v = s + (1 — €)(t — s) in the above display we readily check that

IV2PL (D] <

Ao

L oneae9 |0t 1 o na-ais (3.16)
t—s € Vt—s5

3.6 Integro-differential operators

Let B'g’t(.ro,.%l) be the matrix-valued function defined for any (zg,z1) € R?, u € P,(R?) and any
s < t by the formulae

BY (w0, 21) 1= Vbl (w0, 21)  with 05, (z0,21) := E [b¢ (xl,Xéft(azo))] (3.17)
For instance, for the linear model discussed in we have
Bg}t(:vo,xl)’ = Byelt=9)B1  and b’;}t(xo,:cl) = Bix1+ B> [e(t_s)Bl (o — pu(e)) + e(t=9)[B1+Ba] ,u(e)]
We also consider the collection Weyl chambers [s,t],, defined for any n > 1 by
[s,t]n, = {u=(u1,...,un)€[s,t]" : s<u; <...<u, <t} andset du:=duy...duy,
We consider the space-time Weyl chambers

b, owith AL, = [s,t], x R™ (3.18)

As,t = Un?lA&

The coordinates of a generic point (u,y) € AY, for some n > 1 are denoted by

w=(uy,...,up)€[s,t], and y=(y1,...,y,) € R™

We also use the convention uy = s and u,4+1 = t. We consider the measures ®,, (1) on A, given
on every set Af, and any n > 1 by

q)s,u(:u)(d(u7 3/)) = (bs,u (:u) (dy) du

with the tensor product measures
Gsu(p)(dy) = Gsuy (1)(dy1) - - - Ps,u, (1) (dyn)
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Definition 3.1. Let bs ,(x,y) be the function defined for any p € P2(R?), x € RY, and any (u,y) €
Ay and n =1 by the formula

bs,uy (
b’;,u(x,y)': 5u1 .CL‘ yl H Buk,ui+1 yk’)yk‘-i-l) (319)
1<k<n

In the above display the product of matrices is understood as a directed product from k£ =1 to
k= (n—1). For any z € R% and any (u,y) € A%, and n > 1 we also set

BY M (y,2) = B Wy, 2) and Pl (V1) (y) = PE (V) (yn) (3.20)

Un,t Un,t

Definition 3.2. For any pg,pu1 € Py(R?) and s < t we let Q’;i’“o be the operator defined on
differentiable functions f on R% by

o (f) = Q0 (V) (3.21)

»HO

with the (0,1)-tensor integral operator Q5y"° defined by the integral formula

QL (T f) () = L Do) (d(u,y)) (2. 9) PL (V1))

Using the estimates and . for any m,n = 0, pg, 1 € Ppy2(R?) we have
1Q%" ler, (ray—cn ey < Cmn(t) pmv2(po, p1) (3.22)

Definition 3.3. Let p’“’“o be the function defined for any s <t and z,z € R? by the formula
peyt (@, 2) = by(x,z) + L () (d(u, ) B9, (2,9) B (y,2)  (3.23)
s,t

In this notation, we readily check the following proposition.

Proposition 3.4. The (0,1)-tensor integral operator Q’“’“O can be rewritten as follows:

QUL (V) () = Ll Dyl (@, y)) it (2,9) Poz ) (V1)()

s,t

For instance, for the linear model discussed in (2.23) the function p{}*°(x, 2) defined in (3.23)
reduces to

pglt7H0( 2) =By z+ By e(t=s)(Bi+B2) ..

" . (3.24)
B, U (BB B ow-)(BitB2) () +J olt=0)(B1+B2) g o(u=s)(Bi+B2) uo(e)}

We check this claim using the rather well known exponential formula
¢
(=) (Bi4Bs) _ (t-5)B +J =B g =) (Bi+B2) gy,

S
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3.7 Some differential formulae

The matrix Vb5, (yo, y1) defined in (3.17) can alternatively be written as follows

Vbl (o, ) = Plty (7 (w1, ) (o) = B [V X2 (o) 07 (91, XL (00)]
We also have the (2,1) and (3, 1)-tensor formulae
V20, ooy) = PEHOP (g1, ) 0) + PEH 0P (41, ) (w0)
Vi ou) = PEIOP w1 ) o) + PE O w1, ) (o) + PO () (o)

Yo ~s,t
For any (u,y) € AY; with n > 1 and for any k > 1 we have the (k, 1)-tensor formulae

¢9 u
VZO bs u(y07 y) = lefu’“(ym y) : vlgjo bs K75 (yO yl) H ]Buk ,Uljcs#l) (yk7 ykJrl) (325>

1<k<n

We consider the (n,1)-tensor valued function

btz ) = BUMO(a,2) 4 L (1) (d(u, y)) BULHO (2,) B0 (y, 2)
s,t

and we use the convention
0 9. 0 9 b} 9
IB%EE Ho(x,2) = bgf;(ac, z)  so that qgt] HOEO (2 2) = p“% Ko (g, 2)
For instance, for the linear model discussed in (2.23]) and (3.24) the above objects reduce to

qgt]m,uo(x?y)/ — ByeB1+B2)(=9)  and yn > q[ ],m,uo( y) = 0

In this notation, we have the following proposition.

Proposition 3.5. For anyn = 0 the n-th differential of the operator Q’”’”O 1s given by the formula

vrQuo(f) = Qb p)

with the (n, 1)-tensor integral operator given by

QUM (Vf)(w) = Ll Do) (d(u,)) a1 () PLYUVF)(y) (3.26)

s,t
In addition, when condition (H) is satisfied for any n = 1 we have the exponential estimates
|||Q:t RO < e e M9 for some A > 0 (3.27)

Proof. The proof of the first assertion follows from (3.23)). When condition (H) is satisfied, for any
z e R and (u,y) € A7, we have

IBS (v, y1)l2 < [Nz €207 and B, (2, y) ]2 < [o2T)5 e (=) (3.28)

Using (3.4)) we also check the uniform estimate

gl (2, )| < e e M2(2) (3.29)
The end of the proof is now a consequence of ((3.2)). ]
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Proposition 3.6. For anyn = 0 any bounded function f on R and for any function w of the form
we have the Bismut-Elworthy-Li formula

Ve (f) = J (1) (d(u,y)) gl (2, y) E (F(XIS()) e () (3.30)

1
As,t

u,t

In the above display, 717 (y) stands for the stochastic process defined in . In addition, when
condition (H) is satisfied we have the exponential estimates

IV QU (N < en e X f] for some X >0 (3:31)
Proof. The proof of the first assertion is a direct application of the Bismut-Elworthy-Li formula

(3.12)). We check (3.31]) combining (3.15)) with (3.29)). This ends the proof of the proposition. [

When n = 1 we drop the upper index and we write (Bf.q, g5 °) instead of (IB%E!L”“ , qgt]’” L 0).

The operators discussed above are indexed by a pair of measures (pg, p£1). To simplify notation,

M Q[n] M [n] M

when p1 = g = p we suppress one of the indices and we write (Q%,, Qy¢"") and (pl;, ¢, ") instead

of ( ;sttu’ Qg,lt]’#’#) and (p;;’,tu’ qg;],mu)'

4 Tangent processes

The tangent process associated with the diffusion flow v, (Y") introduced in (1.6)) is given for any
U e H,(R?) by the evolution equation

0t(0s,4(Y) - U) = 0B1(1h5,4(Y)) - (0¢s4(Y) - U) (4.1)

In the above display, 0B;(X) € Lin(H;(R%), H;(R?)) stands for the Fréchet differential of the drift
function B; defined for any Z € H;(R%) by

0BU(X) - Z =K (Vy (X, X) Z + Vi, by(X,X) Z | Fy)
where (X, Z) stands for an independent copy of (X, Z).

4.1 Spectral estimate

This section is mainly concerned with the proof of theorem 2.1}
For any pair of random variables Z1, Z, € H;(R%) we have the duality formula

<Z1, aBt(X) . Z2>Ht(Rd) - <0Bt(X)* . Z17 Z2>Ht(Rd)
with the dual operator 0B;(X)* defined by the formula

OBy(X)* - Z, = E (bE” (X, X) Z, + b (X, x) Z, | Ft)

In the above display, (X, Z1) stands for an independent copy of (X, Z1). The symmetric part of
0B(X) is given by the formula

OBy(X)sym 1= 7 [0B(X) + 0B(X)*]

1
2
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We are now in position to prove theorem [2.1]
The first assertion is a direct consequence of the evolution equation

2_1at Haws t( ) UHHt Rd) T <(8¢$7t(Y) ’ U), aBt(wS,t(Y))sym ’ (aws,t(y) ’ U)>Ht(]Rd)

Whenever (H) is met we have 0B (X)sym < —Ao I for some \g > 0. In this situation, the r.h.s.
estimate in is a direct consequence of (2.1 . Given an independent copy (X, Zs) of (X, Z2) w

have
. Z 7Z
242, 0B\(X)" - Zo)p,ra) = E(<{ Zi } A X, X)[ ZZ ]>>
= 2{0BuX) - Z1, Z2) m,(ra)
This yields the log-norm estimate
A(X, X oy < ~Mo T = OBY(X )y < —2o I

The proof of theorem [2.1] is now completed. ]

4.2 Dyson-Phillips expansions

In the further development of this section we shall denote by

x-n

(@s,tvﬁayg,tﬁ?) and (@ZtaU thnaY )n?O

a collection of independent copies of the stochastic flows (ts+, X ) and some given U, Y € H(R?).
To simplify notation, we also set

Xt = s(Y) YS,t = Es,t(?) and Y:,t = W;t(?n)
We are now in position to state and prove the main result of this section.

Theorem 4.1. The tangent process sy is given for any U € Hy(R?) and any Y € Hy(R?) with
distribution ju € Po(R?) by the Dyson-Phillips series

s (Y)-U = VX'(Y) U

+Zj[s,t]n (VX;?;’%( >)( sytin) ([ 1 Bﬁi“f,ulk (X];uil,X];uJ],Uuﬁ‘un) du

n=1 1<k<n
(4.2)

with the boundary conventions

-0

— n
ug = $ say = Xsuy and X, =Xy, foranyn=1

Proof. For any s <u <t and = € R? we have

o VX () = = b (XE (), Gs(n) VX ()7

and

VXL (@) = VX (2) (VX050 (X (@)
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In addition, for any s < u < t and zg, z1 € R we have
Vaobelwr, Xi7 " @0)) = VXL (@) o7 (o, X071 (o)
This implies that

o (VX)) (V) 1))

= (VXL E (T (V). KL0) (F) (VES(F)™Y (05,(7)-T) | Fy)
Equivalently, we have

(VXéL,t(Y)_l)/ (OYs(Y) - U)

=U+ ft (VX)) E (Vbu (Wsu(YV), X5, () (V) (VXL (V)Y (80,,(Y) - T) | Fu) du

S

and therefore

eal0) U = (Tt ) U [ (i) ()

% E (Vb (100(Y), Xh(4)) (V) (VXL (V)7 (00,,(7) - T) | F) du

Now, the end of the proof of (4.3]) follows a simple induction, thus it is skipped. |

Corollary 4.2. For any V € Hy(R?) and for any Y € H,(RY) with distribution u € Po(R?) we have

s (Y) -V =E (VX;ft(Y)v | Fs)

+ZL¢]” ]E<

n=1

bsup_1 (W) (k-1 <=k
H Buk,f,ui (Xs,ukfl’Xs,uk)

1<k<n

with the boundary conditions

up=s and Y(s)’ul =Y, (V) and X,, = Xsu

4.3 Gradient semigroup analysis
This section is concerned with a gradient semigroup description of the dual of the tangent process.

Definition 4.3. For any po, 1 € Po(RY) and s < t we let D, po®s,t be the operator defined on
differentiable functions f on R% by
Dy o ®s,t = Pﬁ? + QLM (4.4)

s,t

In the above display, ’;}’“0 stands for the operator defined in .
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Rewritten in terms of expectation operators we have

Dy o d)S,t(f) (z)

—E[(fo X!)(x Zf Do) (d(u, ) B [0 (,9) V(0 X)) (ya) |

n=1
Arguing as in the proof of (3.22) - for any m,n > 1, pg, jt1 € Pry2(R?) we have

1Dy 0 @, e (ray—cn (re) < Cmn(t) pmv2(tio, 1) (4.5)

In the same vein, we check that

” (Du17uo¢s,t)®2 |‘C?n+1(R2d)—>C:;LH(R2d) < Cm,n(t) va2(,u0’,ul) (4‘6)

The proof of the above estimate is rather technical, thus it is housed in the appendix on page [32]

Remark 4.4. Using the Bismut-Elworthy-Li formula , we extend the operators D, ,Ps¢
with s <t to non necessarily differentiable and bounded functions.

We also extend the operator Dy, ,¢s to tensor functions f = (fi)ie[n) by considering the tensor
function with entries

Dy o @s,(f)i = Dpuy yuo @5, (i) (4.7)
In this situation, the function p“ VRO introduced in takes the form
Pei" (@, 2) = Dyuy o @s,t (b (2, ) ()

We denote by Ly 4., () the generator of the stochastic flow X7 (z). We also let Gy, be the
collection of intregro-differential operator indexed by u1 € Po(R%) defined by

G () (12) = f i1(dar) by(er, 22) V(1)
We also set
Ht#Oylll = Lt,uo =+ Gt#“ and HEMO = Ltwo + Gmm

Theorem 4.5. For any m,n > 1 and any g, 1 € Ppnyo(R?) the operator D,y po®s,t coincides
the evolution semigroup of the integro-differential operator Hy 4 ( that is, we have the
forward evolution equation

atDuLquS&t = D;u,,uo(z)s,t o Ht,qbs,t(uo),%,t(ul) on C;Ln\&(Rd) (4‘8>

In addition, for any s < u <t we have the backward evolution equation

140),0s,t (1) 7

n d
6uD¢s,u(ﬂl)y¢s,u(HO)¢u7t = _Hu7¢s,u(ﬂo),¢s,u(ﬂl) © D¢s,u(ﬂl),¢s,u(#0)¢uvt on Cm(R ) (49)

Proof. The proof of the forward equation ( is a direct consequence of the forward equation
associated with the Markov semigroup P! thus it is skipped. Combining the semigroup property

s,t

(2.9) with the forward equation (4.8]) we check that

D/J,lﬂu,oqbs,u © auD¢s,u(N1)7¢5,u(HO)¢uvt = _Dﬂlzﬂ0¢syu © H ¢s u(H/O) ¢5 u(/lzl) © D¢5 u(/lzl) ¢5 u ,UO ¢Ut

This implies that
[a“D¢s,u(M1)7¢s,u(ll40)gbuvt]u:S = _H53H07N1D/‘17N0¢U7t
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from which we conclude that

[0uDeg, o (1) o (10) Pt ],

= [0uDg, (60,0 (11 B0 (B (10) Pt )y g = ~Hos (1060, 1) Db (1) 80,010 Dot
This yields the backward evolution equation (4.9)). This ends the proof of the theorem. (]

Proposition 4.6. We have the commutation formula

Vo Dy puog®sit = Duypo@sit 0V (4.10)
with the (1, 1)-tensor integral operator given by the column vector function
Dissast( V@) = PN + | | ulin) o) alt (o) P (TN)) - (@11
s,t

In addition, when condition (H) is satisfied we have
Do bll < ¢ €9 for some A > 0 (1.12)
Remark 4.7. Following remark using the Bismut-FElworthy-Li formula , we extend the

gradient operators VD, ,,,¢st with s <t to measurable and bounded functions. The exponential
estimate stated in are a direct consequence of the estimates presented in .

By the commutation formula s also satisfied for multivariate column functions f.
In this situation Dy, ,,¢0s¢(V ) is a (d x d)-matriz valued function.

The proof of theorem s now a consequence of the estimate and the fact that

Ot [¢s,t(ﬂ1) - ¢s,t(ﬂ0)] = [(Z)s,t(Nl) - (Z)S,t(NO)] © Ht,¢s,t(ﬂ0)7¢s,t(ﬂl)

The operators discussed above are indexed by a pair of measures (pg, i£1). To simplify notation,
when f11 = po = p we suppress one of the parameter and we write (D¢, D,s¢) instead of

(D,u ,ud)s ty Du M¢5 t)

Theorem 4.8. For any m,n > 1, any function f € C%(RY) and any Y € H,(RY) with distribution
p e Py(RY) we have the gradient formula

6¢s,t(y>* ' Vf(%,t(Y)) = VDu(bs,t(f)(Y) = Du¢s,t<vf)(y)

Proof. Given a smooth function f on R? we have

(Vs t(Y), 005(Y) - U, ray = Ot (Y)" - VF(s6(Y)), U, (mey
Using corollary we check that

05t (Y)" - V[ (¢hs4(Y))

= VDuoss(f)(Y) =E(V (f o XL,) (V) | V)

+Zf ([ [T Bl (% (suk,X’;Z,iH)]V(fon:;z"W) (Kon) yy) du

n=1 0<k<n

This ends the proof of the theorem |
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5 Taylor expansions

This section is mainly concerned with the proof of the first and second order Taylor expansions
stated in theorem 2.3 and theorem [2.3]. Section [5.1] presents some preliminary differential formulae
used in the proof of the theorems.

5.1 Some differential formulae

Combining (3.7)) with (4.10) and proposition we check that the first and second order differential
formula
VDu¢s,t(f) = Du¢s,t(vf)
VEDu6sa(f) = Dudli V) + PEI (V) with Dol = PRI+ ol (5.)

Similar formulae for VD, ¢s¢ and VZDy, @5 can easily be found. In the same vein, using
(3.9) we check the third order differential formula

V3D,ua(f)
‘ (5.2)
= Dudi (V) + P2 ) + PGP VRS) with Duogyh = P 4 QO
In addition, when condition (H) is satisfied we have the exponential estimates
I1Dudsall v 1Dug 3 v D5l < ¢ e for some A >0 (5.3)

Definition 5.1. We let Sﬁt be the operator defined for any differentiable function f on RY by
Sei(f) = Seu (V)
with the (0, 1)-tensor integral operator Sﬁt defined by the formula
SE(V) (w1, 22) = bs(x1,22) Dutsi(Vf) (1) + bs(a, 1) Dyds (V) (2) (5.4)
Using (4.5) for any m,n > 0 and pu € P,,,2(R?%) we check that
||Sg,tHc;ln“([@d)_,cglﬂ(wd) < Cmn(t) pmv2(p) (5.5)
We also have the differential formula
(VOV) (Sh(h) = S (V) + 85 (02 (5.6)
with the matrix valued functions

ST ) (@1, 20) = 0 (@1, 0) Dt (V) (1) + 05 (@, 21) Dot (V) (22)

)

0 (2, 21) Do (V) w2) + Dudl 3 (V1) (1) (a1, )
SeM (V2 )@ 2) i= W (o wa) P (V2P ) + PV ) ) 07, )
When condition (H) is satisfied we also have the exponential estimates

ISZ ) v ISEP )| < e e for some A > 0 (5.7)

In addition, using the Bismut-Elworthy-Li extension formulae and the estimates (2.7) and (2.8)), or
any bounded measurable function f on R¢ we check that

(VO V) (Sh(f) I <e (v 1/(t—s) e |f] for some A >0
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5.2 A first order expansion
This section is mainly concerned with the proof of theorem [2:3] The next technical lemma is pivotal.

Lemma 5.2. For any m =1 for any o, pt1 € Pny1(R?) we have the second order expansion

¢s,t(/~‘1) - ¢s,t(,uf[))
L 2 q®sulko) 1(mpd (58)
= (1 — p0)Dpyy b5t + B J [fsu(pn) — ¢S,U(NO)]® © Su;u "0 du on CZ:_ (RY)
Proof. Using backward evolution equation (4.9 we check that
Ou {[gbs,u(ﬂl) - QZ)s,u(,UJO)] o Dq{),s’u(uo)(bu,t}

= [¢S,U(M1) - ¢3,u(:u0)] o [GU7¢s,u(Ml) - Gu7¢s,u(l/40):| © D¢5,u(,ua)¢u:t

This yields the formula

[fs,6(11) = Ps,t(10) = (11 = p0) Dy bs,t] (f)
5| [ 1o = )P 22

[bu(z1,22)" VDg, (o) Put (F)(1) + bul22, 1) VD, (uo)Put(f)(x2)] du

The end of the lemma is now completed. |

Combining the above lemma with |b and |b we check 1} with the operator DZ Lo Psit
defined for any m,n > 0 and pg, jt1 € Pri2(R?) by

t

Dot = | (D o 5274 due Lin (2R, Chp(®)  (59)

s

Remark 5.3. The second order term in can alternatively be expressed in terms of the Hessian
of the semigroup Dihuogi)s,t; that is, we have that

(11 — p0)®2D2 o &se(f)

— (5.10)
_ j[ e E (VO VD2, dsi(f)] (Yer), (Y1 — Yo) ® (Y1 — Y))) de de

with the interpolating path
Yee:= (Yo+e(Y1 —Y0), Yo +€(Y1—Y))

In the above display, (Y1,Y ) stands for an independent copy of a pair of random variables (Yy, Y1)
with distribution (po, p1). Also observe that

—2
(1 — HO)®2DZ1,uo¢s,t = (m — /‘0)®2Du1,uo¢svt
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with the centered second order operator

2

Eyl,uoqbs,t(f)('xlu 582)

= [(6zy — o) ® (95 — 10)] Dio¢37t(f)
— f[o . E([(VQV)D. . st()] Yez(1,22)), (21 — Yo) ® (w2 — Yo))) de de

In the above display, Yee(x1,22) stands for the interpolating path
Yez(x1,22) := (Yo + e(z1 — Yp), Yo + €(z2 — YY)
Proposition 5.4. We have commutation formula
(V®V) 0 (Dyy pios.) % = (Dpy o b5.) 52 0 (VR V) (5.11)
In addition, we have the estimate
Il (Dm,uoqbs,t)(m Il <ce 9 for some A >0 (5.12)

Proof. The proof of the first assertion is a consequence of the commutation formula (4.10). Letting
h =(V®YV)g we have

(Dpryuos.) 2 (W) (21, 22) = (PE9) P (h) (21, 22)

# ]| Bl y) a ey (Pl @PE ) ()

+ Ll Do) (A, y) g (1) (PL @PLS) () (9, 22)

s,t

T j Dy (1) (1)) Dao(j21)(d(v, 2)
Al XA;,t

< ot () @ gl (w2, 2)] (P @ P ) (), 2)

The proof of ([5.12)) now follows the same arguments as the ones we used in the proof of (4.12)), thus
it is skipped. This ends the proof of the proposition. (]

Combining (j5.6) with the commutation formula (5.11)), for any twice differentiable function f
and any s < t and po, p1 € P2(R%) we check that

t

(V& V)DEualF) = | (Do) (81900 (9 1) + SEP00(92) - (5,13

S

with the operators S giscussed in 1' The proof of (2.12)) is a direct consequence of |D

s,t

and (5.12). The proof of theorem is now completed.
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5.3 Second order analysis
This short section is mainly concerned with the proof of the first part of theorem [2.4]

Lemma 5.5. For any m > 1 and g, pt1 € Ppy3(R?) and s < t we have the tensor product formula

(qbs,t(:ul) - ¢s,t(:u0)) @2

= (11 — 110)® (Dpug®s,0) % + (11 — 110)®* Ry o st o CuT2(R?)

for some third order linear operator R, .,¢st such that

HR (de)ﬁczws(RSd) < Cm,n(t) Pm+2(/~‘07/~‘1)

The proof of the above lemma is rather technical, thus it is housed in the appendix, on page
Combining the above lemma with | we readily check the second order decomposition (2.13])

with a the remainder linear operator D#0 mﬁbs,t such that
3
HDMCMNI ¢s,t”cgﬂ+3(Rd)_,ch+4(R3d) < Cm,n(t> Pm+3(/ﬁ07 Ml)

This ends the proof of the first part of theorem [2:4] The proof of the second part of the theorem is
provided in the appendix, on page

Appendix
Proof of (4.6

We have the tensor product formula
2 ®2 , ) )
(Dul,uo¢s,t)® .= (P:?) + ( M1 uo) Qul Mo ® Psu? + P'LL? ® #1 o

We also have

Q" ®PLY) (9)(z,7)

= [ ealm) Vo) (P © PL) (V219) (000
Asyt

Using the estimates (1.15)) and (3.4)), for any m > 0 we check that
Q5" ® Pslf?Hcﬁl(RM)Hc;H(Rw) < emn(t) pmva(pos f11)
In the same vein, we have the tensor product formula

Q1) (g)(z,m) = (Q4")®* (V@ V)g) (2, T)

- L o [n) @ )] (@(0,0). 7))
bl ((2,7), (1,7)) PLav™ (V@ V)g)(y.7)

with
b o(@,2), (1,9)) = bl(a,y) @@, 7) and Py = ) @ ply )
Using the estimates (L.15) and (3.4) for any m > 0 we check that

; ®2
[(Q5")™ llez, (r2e) g w2y < eman(t) prmv2(po, 1)
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Proof of lemma [5.5
Using the decomposition

¢s,u(#1) - d)s,u(MO)
= Z [¢8,u1 (M)®...® Gsui_s (Nl)] ® [¢s,ul (p1) — s,y (10)] ® [¢s,ul+1 (o) ®...® Ds,un (Mo)]

1<l<n
which is valid for any pg, 1 € Po(R?) and any u = (u1, ..., u,) € [s,t], with n > 1, for any function
(u,y) € Agy > hy(y) €R
we check that

L [@5(411) — B (p0)] (1, ) hu<y>=Ll (@ (p11) — Ban(pi0)] (d(v, 2)) n(z)  (5.14)

s,t

with the function

o(2) 1= ho(2) + L &, (1) (d(u, 1)) hu,v<y,z>+fA Dy (B0(110)) (A1) (2, 9)

F (e 0), ) B (0:2.7)
As,o XAyt

In the above display, T4 " stands for the tensor product measures

Yo (v, 2), d((w, ), (@,79))) = Psu(pi)(d(u, y)) Poa (¢s,0(p0)) (d(@, 7))

We also have the tensor product formula

(D/u,uo ¢S,t)®2 - (Duo Qbs,t)@z

_ ( M1t7ﬂ0)®2 _ ( #(;)®2 4 (Q“i’“o _ )@P“g + Pﬂg @( HLHO M%)
s, s, s, s s,
This yields the decomposition
([Q" — Q6] ® P) (9)(x, )

[ ] 1nt) = o)) (09 222 (9) 7. 2)

with the integral operator

I (9)(x, 7, )

=0 2) (P @ P (Va0) (. 7)
f @) (At ) VS, ,2) (PS54 @ L) (Ver)(3,7)
F] e ol () 28, B0 (PE O @ P (Tang)0:7)

T“l’”"((v, 2),d((u,y), (@, 7))) b’;‘; va(®s Y, z,y) (ngi,ﬂ(ﬂo) ® Péff) (Va,9) (Y, T)

stAvt
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Arguing as above, we check that

HIE,?;’,? ‘|cgl+1([[g2d)_>cgl+2(R3d) < Cm,n(t) pmv2(fo, 1)

In the same vein, we have

[ (@)™ = (Q4)%*| ()@, )

- L [©s.u(11) = Psu(o)] (d(u,y)) [0 + 005 ] (9)(2. T, y) dv
with
O T ) = [ Bl 4 3) B al(.7), 7)) PLE (T © V) 0.7)
and |
O’ (9) (2,7, y) := L , By (110) (AT 7)) B (2,), @, 9)) P54 (V@ V)g) (@, y)

This yields the formula

(@) = (@)% (9)(@, )

~ [ 1uai) = b)) 48) T ) 7.5 o

s

with the integral operator
Tt (9)(,7,7)
=[O0 + O] (9)(x, 7, 2)
] ety (o Bl (0)(w 5 08)

+ L Do (B5.0(10)) (A, ) |O8119) , + O | (9@, (3,w)
v,t

+ T (0, 2), (s 9), () [0+ 8L ] ()07, (1, 2,7)
JANSI AN ’ s,(u,0,u),t s(uv,),

Arguing as above, we check that
‘|j£2:f1 HC?,I(]RZd)HCgL(R?’d) < Cm,n(t) Pmv2(Ho, 1)

Combining the above decompositions we find that

| (Do) = (D16 | (9)(2. )

t
=f [Bo0(a1) — buo(h0)] (A7) KL (g) (2,7, 8) dv with  KPOHT i= 2 THOMT 4 ghota

s
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For any n > 2 and m > 0 we have

IS et @aay—en ,@sty < mn(t) pmva(po, i)

We conclude that

(¢s,t(ﬂ1) - ¢s,t(ﬂ0))®2 = (,ul - M0)®2 (Duo¢s,t)®2 + (Nl - U0)®3Rul7ﬂo¢s,t

with the operator

R/.Ll,u0¢s,t (g> (33'7 f: ﬁj\)

g

In the above display, £4%,}", stands for the integral operator operator

fPMO B,dz) KM (g) (2,7, 2) + L By lja1) (A, y)) B9, (@,y) L2992, T, y) | do

crom (g) (@, my) = Pl (Ve Ko (g) (2,7, ) (y)

We also check that

HRm,uoﬁbs,tHc;ln+2(R2d)_>cgn+3(R3d) < Cm,n(t) Pm+2(ﬂ1a MQ)

This ends the proof of the lemma. |

Proof of the estimate ([2.14))

For any x = (21, 22) € R* we set o(x1,22) := o(x9,21). In this notation, for any matrix valued
function h(x) = (hi;())1<i,j<a We have the tensor product formula

(Duwo ¢s,t)®2 (h)(z)

= (PL)%” (h)(2) + L ©s0 (i) (d(w, ) (LG (R)(2,y) + 115, (h) (o (2), )]

O ) ) B0, 2)) T () :2)
AgtXAs ¢

with the matrix valued functions 1.7 ,(h) and J.7%, , (k) given for any (u,y) € A%, and (v, 2) € A,
by the formula

L (W) (y) = Bi(any) (Pl @PLY) () (yn,22)
Jsuvt( Nz, y,2) = [BNO (21, )®Buo (22, )] <P¢s ;un (10) ®7;5’;:)m(#0)) (1) (Y, 2m)

Using (3.7) we check the formula

v <P¢S un (uo) ® P¢a vm (UO)) (h)(yn’ zm)

Ut

Un Un,,t Un,,t Um,,t

= [P[2’}t]7¢51un(u0) ®7p¢s on (#0)] (h) (Y, 2m) + [73[272]¢s,u(#0) ® 73¢s om (MO)] (Vo) (Yn, Zm)
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By symmetry arguments, we also have

v. (77¢S o (10) g s Um(uo)> (R) (Yns Zm)

Ut

Ut Un,t Ut

_ |:P[271],¢s,vm (,U'O) ® P¢s,un (MO):| (h)(zm, yn) + |:P[272],¢s,vm (UO) ® ij:l;’lgn (MO):| (vxl h)(zm’ yn)

Using (3.11)) for any differentiable matrix valued function h(xi,z2) such that ||kl v [V h| <1 we
have the uniform estimate

”vyn <'P¢s,;‘n(ﬂ0) ®P¢s vm(/'LO)) (h)<yn7zm)” < c1 67A1[(t7un)+(t7vm)]

Un, Ut

In the same vein, for any 1 < k < n we have
|V, B, (21, 9)| < ca [pP]5 e 2ulen =)

Combining the above estimates with (3.28]) we check that
Hvyn S,U t(h)(wa y)”

<es |22 [em(uws) e Ml(t—un) +(t=9)] | o=Ai[(un—s)] ew[(mnmtfs)]]

< oy [p]g &)

In addition, for any 1 < k < n we have
Hvyk S,U, t(h‘) (:Ua y) ”
<cs ”b[Q]HgL e—Al(un—s) e—Al[(t—un)—i-(t—s)] <cs Hb[Q]HSL 6—2>\1(t—s)

We conclude that
sup |V, 11, (h) (2, )] < c [pl]5 e72M () (5.15)

Yk =s,u,t
1<k<n

Arguing as above, for any 1 < k < n we have

Hvyk s uv t(h’)(m)y7 Z)”

<c Hb[?]”;n-&-n e—)\l(un—s) e—)\l(vm—s) e—)\1[(t—un)+(t—vm)] < ¢y ’|b[2]H72n+n 6—2)\1(t—s)
In addition, for £ = n we have
”Vyn suvt(h‘)(x7yaz)”

< c3 | Vapb| 7" [ “M(Un—8) =M1 (vm—s) ,=Ai[(t—un)+(t—vm)]

+6_A1(Un_5) e_Al(U"L_S) e_Al[(t_un)‘i‘(t_’Um)]]
This implies that

sup [Vy, JE () (@, y, 2)| < c [ em2h(=e) (5.16)

1<k<n
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On the other hand, we have the decomposition

(o601 = (Pre) ] (1)@ = [ i) = )} () KL ()02

with the matrix valued function

K&t () (@, y) == 135 () (2, y) + L Cs 0 ()(d(v, 2)) T30 () (2,9, 2)

+ f (o) (d(v, 2)) TLS (B (x, 2,9)
At

Using the estimates (5.15) and (5.16)), for any (u,y) € A, we check that
sup [V, KI5y (h)(z,y)|

1<k<n
<y [p)n e M9 [efxl(tfs) + (e”bm la(t—s) _ 1) efxl(tfs)] (5.17)

< ¢ Hb[2]H72’L e—>\1(t—s) e_>‘1,2(t—8)

Using the decomposition (5.14]) we also check that

t
[(Pu 90 = (D)™ (1)) = | [unli1) = o)) (d2) KLY (). 2) o

s

with the matrix valued function

KHoH (h)(x1,x2,x3)

s,0,t

= Kot (h) (a1, w2, 23) + L Oy (1) (d(u, y)) KE0u (R) (21, 22, (y, 23))

" L Dy (Do (10)) (dlt 1)) KLU () (1, 2, 75, )
v,t

+L R Y5 (v, 2), d((w, y), (0,9) K5 (h) (21, 22, (y, 23, 9))
s, v XAyt

Using (5.17) we find the uniform estimates

Ve K0 (R) (w1, 22, 23)

s,v,t
(5.18)
< [6—2,\1,2(::—3) + (eHb[?]Hz(t—s) _ 1) oM (t=s) e—/\l,z(t—s)] < oy e 2M2(79)

On the other hand, using (4.4) and (2.5) we have
[fs.¢(11) = Dst(p0)] (f) = (n1 — po) PEF(f) + (1 — o) Q4™ (V )
Thus, recalling that

QL (V)(2) == L By (1) (A1, 9)) 0, (2,9) Pls (T F) ()
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we check that

(i o020 = o) ()(2) = | (= po)(d) | P2 (L (W, ) () o

s

f i1 — o) (d2) j f B () () B2, (2, ) PL5H (T RO () (i, ) (y) o

This implies that
(V®V)D; L bsi(f)(x1,29) — (V@ V)D3 54 (f) (21, 22)

t
= [ =o)L (2009 ) 4 S0 (2 1)) (24,22, 0) d

s

with the tensor integral operator

t
LLYHO(h) (21, 2, 23) = J Pro (K () (1, 22, .)) (23) dv

s

t
+f f Do (1) (A, ) B0, (3, ) P (T, KO (1) (21, 2, ) (y) o

On the other hand, using (/5.10))
(11 = 10)®? D}, o st (f) — (1 — p0)®* D3 ds i (f)

J 017 f (¢TagLo (B0 (v p) 4 SEPO G2 1)) (30, (01 = 20)®) du de

with the interpolating path
—1
€ = (€1,€2,€3) > Ve 1= (Yo + el(Y YO) Yo + 62(Y Yo) Yo + 63(Y Yo))

and
1 1 2 52 -3 52
M — y0)®3 =Y, -Y)®Y] -Yy® (Y, —Yy)
In the above display, (711,?6)1‘:1,2,3 stands for independent copies of a pair of random variables

(Yo, Y1) with distribution (o, 1)
Using the commutation formula (3.5) we check that

t
vstg’?uo (h) (w1, w2, 23) := J 'PQ% (VISKS&?I (h) (21, 2, )) (z3) dv

S

F ] Bt ) B ) P (VR (), ) (0) do
Asy

Using (5.18)) for any differentiable matrix valued function h(x1, z2) such that |h| v Vg k| < 1 and
for any € €]0, 1] we check that

Vs LEYHO (h) (21, 22, 23)

t t
< e 2M1,2(t—s) [J e MW=9) gy 4 f (6”5[2]\\2(@75) _ 1) oM (v—s) dv] < ¢ o—2M1,2(t—)
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On the other hand, we have

Vo [SE 1) + Vo, SE(V20) | (@1,2)

s,t s

= bl (@1, 20) VDyudsr(f)(a1) + 022 (w2, 21) VD i(f)(22)

+ V3D ()(w1) B (w1, w0) + b (w2, 1) V2Duobss(f)(w2) + V2D s(F)(@1) » 52 (21, 29)

with the *-tensor product

(V20,6001 @) # 11901, 2)]

k7i7j

= 3 [V Dubea N @ra A (w0 + 0 (1, 22y T2 Do () (1) |

1<i<d

Using (j5.3]) we check that

Ve, [V + Ve SE 92| < e sup [947] - for some A > 0

We conclude that for any function f € C3(RY) s.t. supy_y 05| V*f] <1

(1 = 10)®2 D}, 1y b () = (11 = 10)®* Dit b5, (£)] < ¢ €279 Wa(pug, p11)®  for some A > 0

The last assertion comes from the formula

1 1
5 (11— 110)®2 D, o st = 5(#1 — 110)®2 D2 bsp + (1 — p0)®P D3 L bss

Proof of theorem 2.6

We extend the operators Dﬁlm ¢s, introduced in theorem to tensor functions f = (fi)ie[n) by
considering the tensor function with entries

Dis, o ®s.t(F)i = Dip, g @s.6(:) (5.19)
By theorem [2.4] we have
[@s,u(p1) = Ps,ulo)] (bu(XES (%), -))

)

- f (1 — pio) (dy) dlTr0 (X0 (2), )

1

~ [ G = o)) Ao e @) ) + 5 [ (= ) () ) (5 )
1

— [ o = o)) dilo (2@ ) + 5 [ = o)) Ao (X o). 2)



with the functions

LTI (XI (), ) = Dy o @sa(b(XE (), ) (y)
PR (X (), (21, 20) = D2 s s (bi(XP(2), ) (21, 22)
PR (X1 (1), (21, 20,23)) = D3, 0 sn(be(X(2), ) (21, 22, 23)

We also write d:g’“ instead of ds’ft]’“’“. Using ([2.12)) and (4.12)) we check that

[V, dU 0 (X0 (), )| < eq e M)

as well as
[(V2y ® V) dE2IHIH0 (XE9(2), 21, 20) | < c2 e A7) for some A > 0

Using ([2.14) we also have
\f (1 — p10)®3(d2) dj;’“l’“o(Xﬁg(:r),z)] < ez e M) Wy (ug, pur)® for some A > 0
On the other hand, we have the second order expansions

| w0y )| (X)) — [V ] (xth ()

= f |20 00| (X2 () + (XL (y) = X29(2)))" (X2 () — XL ()] de
0

= [ VX0 | (Xt @) (XL () - XL ()]

+ f:u — o) [ VR | (ki () + (X2 () — X2 (@) [XEL(2) — X (2)]%2 de

In the same vein, we have

bu(Xéf%L(x)v y) - bu(XS‘Lt%('r)a y)

o (1= €) BN (X2 (1) + e(XPL () — X29(@)),y) (X (@) — XE0(2)]2 de

This implies that

X¢i (@) — X{5 ()

s,t

t
= [ 7] (@) [Benlir) — buaao)) (X2 ), ) du 3 B (o)
s k=23

40
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with the second order remainder term

R (@)

= j | 72X 050 | (X (@) (X2 () = X (0] [Douliir) = Gsia(p0)] (bu (XL (@), ) du

| [ @) Beaim) — unlio)) (ICXEL @), ) X8 0) — X2 )] du

S

and the third order remainder term

R (x)
=[] [ | ey s - X
[Bs.0(111) = Do) (B (XEQ(@) + e(XLL (@) — X24(a), )" ) [X2h() — XL(a)] de du

[aa [ oxs o] oy

0 s

[Bs.a(i11) = Boapto)] (BT (X24 () + (X 24 (@) = XEu(2)), )" ) [ XL (@) = XL,(@)]®2 du de

[0 [ [ (i + i) - X))

0

(X2 (2) = XES(2)]®2 [fs,u(pin) = @s,u(0)] (u(XLL(2),.)) du de

Combining (3.4) with (2.4) and (2.16|) for any & = 1,2 we check the uniform estimate

\|R£]ft]’“°’”1 (2)]| < ¢ e %) Wy (uo, p11)*  for some A >0 (5.23)

We check ([2.18]) using (5.21]) and (5.20)).
Using @D we also have the estimate

IVy Dyuo X292, y)| < c3 e for some A > 0
Observe that

[¢s,u(ﬂ1) - ¢s,u(ﬂ0)] (bul] (Xéf%(:r), )/) = f (:ul - MO)(dy) dgﬁlLMLMO (Xéf%(.%’), y)

= [ o = ) di (@), 0) + 5 [ (= o) (dz) e (2 ), )

with the matrix valued functions

dU IR (X9 () y) = Dy s (B (XP(2), ) (y)
dZ RO (X000 () 21 20) = D2 e (BN (X (@), .)) (21, 20)



We also write dglgl]’“ instead of dglgl]’“’“. Observe that

) i

R 2], 110,111 (l‘)

st

t
—5 | — ) | [Vt ey DRI ) du

2 s Ho
1 t .
+3 f (11— o) (dy) J [V | (s () DEEIXES (2, 2) du+ REH0 ()
with
REf]v#OMl (.’E)
1 ¢ /
=5 | ) [ [V 0] (X2 ) Dy X o) dZ X 0), ()

o [ s [

S

[V (Xt ()" 2100 (X2 (), (32, ) Do XL (1)

+f | 72X 00| (X @) REP (@) [dou(1) = Goaii0)] (bu(XL4 (2), ) du

s

t
| [ ] 0@ i) = o)) (AIOXE 2, ) REP (@) d

s

Observe that
HREE]’“O’M ()] < ¢ e %) Wy(ug, p1)®  for some A > 0 (5.24)

This yields the second order decompositionn (2.19)) with the remainder term

REL () 1= RBL#o- (z) + RIB:2hpom ()

s,t s,t

o[ G- [

S

|70 00| (Xt () Ao (X128, (), 2) du

S,U

The end of the proof of is now a consequence of the estimates (5.22)), (5.23)) and ([5.24]). The proof
of the theorem is completed. (]

References

[1] V.M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equa-
tions. I, Vestnik Moskov. Univ. Ser. I Mat. Mech, vol. 3 | pp. 3-10 (1961).

[2] L. Ambrosio, N. Gigli, Construction of parallel transport in the Wasserstein space, Methods
and Applications of Analysis, no. 15, vol.1, pp. 1-30 (2008).

[3] L. Ambrosio, N. Gigli, and G. Savare, Gradient flows in metric spaces and in spaces of proba-
bility measures, Birkduser, 2005.

42



[4]

5]

[6]

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

M. Arnaudon, P. Del Moral. A duality formula and a particle Gibbs sampler for continuous
time Feynman-Kac measures on path spaces. ArXiv:1805.05044 (2018).

M. Arnaudon, P. Del Moral. A variational approach to mnonlinear and interact-
ing diffusions. ArXiv:1812.04269 (2018). Stochastic Analysis and Applications DOI:
10.1080/07362994.2019.1609985 (2019).

M. Arnaudon, H. Plank, A. Thalmaier. A Bismut type formula for the Hessian of heat semi-
groups. C. R. Math. Acad. Sci. Paris, vol. 336, no. 8, pp. 661-666 (2003).

D. Benedetto, E. Caglioti, M. Pulvirenti. A kinetic equation for granular media. RATRO Modél.
Math. Anal. Numér. vol. 31, no. 5, pp. 615-641 (1997).

D. Benedetto, E. Caglioti, E., Carrillo, M. Pulvirenti. A non-Maxwellian steady distribution
for one-dimensional granular media. J. Statist. Phys.vol. 91, pp. 979-990 (1998).

A. Bensoussan, J. Frehse, P. Yam. The Master Equation in Mean Field Theory.
http://arxiv.org/abs/1404.4150 (2014).

A.N. Bishop and P. Del Moral. On the Stability of Kalman-Bucy Diffusion Processes. STAM
Journal on Control and Optimization. vol. 55, no. 6. pp 4015-4047 (2017); arxiv e-print
arXiv:1610.04686 updated.

J.M. Bismut. Large deviations and the Malliavin calculus. Birkhauser Prog. Math. 45 (1984).

R. Buckdahn, J. Li, S. Peng, C. Rainer. Mean-field stochastic differential equations and asso-
ciated PDEs. Ann. Probab., vol. 45 | no. 2, pp. 824-878 (2017).

P. Cardaliaguet, F. Delarue, J.M. Lasry, P.L. Lions. (2015). The master equation and the con-
vergence problem in mean field games. ArXiv preprint arXiv:1509.02505. Princeton University
Press (2019).

R. Carmona, F. Delarue. Probabilistic Theory of Mean Field Games with Applications I-II.
Springer Nature (2018).

R. Carmona and F. Delarue. Mean-field forward-backward stochastic differential equations.
Electron. Commun. Probab., vol. 18, no. 68, pp. 1-15 (2013).

R. Carmona and F. Delarue. Probabilistic analysis of mean field games. STAM J. Control
Optim. vol. 51, pp. 2705-2734. (2013).

P. Cattiaux, A. Guillin, and F. Malrieu. Probabilistic approach for granular media equations
in the non uniformly convex case. Prob. Theor. Rel. Fields, vol. 140, no. 1-2, pp. 19-40 (2008).

J.F. Chassagneux, D. Crisan, F. Delarue. A probabilistic approach to classical solutions of the
master equation for large population equilibria. ArXiv preprint arXiv:1411.3009 (2014).

P.E. Chaudru de Raynal, N. Frikha. Well-posedness for some non-linear diffusion processes and
related PDE on the Wasserstein space. ArXiv preprint arXiv:1811.06904 (2018).

W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath, Boston,
Mass. (1965).

43


https://arxiv.org/abs/1805.05044
https://arxiv.org/abs/1812.04269
https://arxiv.org/abs/1610.04686

[21] D. Crisan, E. McMurray. Smoothing properties of Mckean-Vlasov sdes. Probability Theory and
Related Fields vol. 171, no. 1-2, pp. 97-148 (2018).

[22] D.A. Dawson. Critical dynamics and fluctuations for a mean-field model of cooperative behav-
ior. Journal of Statistical Physics, vol. 31, no. 1, pp. 29-85 (1983).

[23] P. Del Moral. Feynman-Kac formulae. Genealogical and interacting particle systems with
applications. Probability and its Applications (New York). (573p.) Springer-Verlag, New York
(2004).

[24] P. Del Moral. Mean field simulation for Monte Carlo integration. Chapman & Hall.
Monographs on Statistics & Applied Probability (2013).

[25] P. Del Moral, A. Guionnet. On the stability of measure valued processes with applications to
filtering. Comptes Rendus de I’Académie des Sciences-Series I-Mathematics, vol. 329, no. 5, pp.
429-434 (1999).

[26] P. Del Moral and A. Guionnet. On the stability of interacting processes with applications to
filtering and genetic algorithms. Ann. Inst. Henri Poincaré, vol. 37, no. 2, pp. 155-194 (2001).

[27] P. Del Moral and L. Miclo. Branching and interacting particle systems approximations of
Feynman-Kac formulae with applications to non-linear filtering. In Séminaire de Probabilités,
XXXIV, volume 1729, Lecture Notes in Math., pages 1-145. Springer, Berlin (2000).

[28] P. Del Moral and L. Miclo. Particle approximations of Lyapunov exponents connected to
Schrédinger operators and Feynman-Kac semigroups. ESAIM: Probability and Statistics),
vol. 7, 171-208 (2003).

[29] P. Del Moral, F. Patras, S. Rubenthaler. Convergence of U-statistics for interacting particle
systems. Journal of Theoretical Probability vol. 24, no. .4, p. 1002 (2011).

[30] P. Del Moral, F. Patras, S. Rubenthaler. Coalescent tree based functional representations for
some Feynman-Kac particle models. Annals of Applied Probability, Vol. 19, No. 2, pages 1-50
(2009)

[31] P. Del Moral, E. Rio. Concentration inequalities for mean field particle models. HAL INRIA
RR-6901 (2009). The Annals of Applied Probability. vol. 21, no. 3, pp. 1017-1052 (2011).

[32] P. Del Moral and J. Tugaut. On the stability and the uniform propagation of chaos properties
of ensemble Kalman-Bucy filters. Annals of Applied Probability. vol. 28, no. 2. pp 790-850
(2018).

[33] R.M. Dudley, The speed of mean Glivenko-Cantelli convergence, The Annals of Mathematical
Statistics vol. 40, no. 1, pp. 40-50 (1969).

[34] K.D. Elworthy, X.M. Li. Formulae for the Derivative of Heat Eemigroups. Journal of Functional
Analysis 125, pp. 252-286 (1994).

[35] N. Fournier, A. Guillin. On the rate of convergence in Wasserstein distance of the empirical
measure Probab. Theory Relat. Fields, vol. 162, pp. 707-738 (2015).

[36] C. Graham. McKean-Vlasov, Ito-Skorohod equations and nonlinear diffusions with discrete
jumps. Stochastic Processes and their Applications. vol. 40, pp. 69-82 (1992).

44


http://www.math.u-bordeaux1.fr/~delmoral/gips.html
http://www.math.u-bordeaux1.fr/~pdelmora/Intro+Refs-Mean-Field-Simulation.pdf
http://www.crcpress.com/product/isbn/9781466504059
http://www.crcpress.com/product/isbn/9781466504059
https://www.esaim-ps.org/articles/ps/pdf/2003/01/ps104.pdf
https://hal.inria.fr/file/index/docid/378753/filename/RR-6901.pdf
https://hal.inria.fr/file/index/docid/378753/filename/RR-6901.pdf

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

[53]

W. Grobner, Die Lie-Reihen und ihre Anwendungen, VEB Deutscher Verlag der Wis-
senschaften, Berlin, (1967).

O. Guéant, J.M. Lasry, and P.L. Lions. Mean field games and applications. In R. Carmona
et al., editor, Paris Princeton Lectures in Mathematical Finance IV, volume 2003 of Lecture
Notes in Mathematics. Springer Verlag (2010).

E. Hairer, S. Norsett, and G. Wanner. Solving Ordinary Differential Equations I. Nonstiff
Problems. Springer-Verlag, Berlin, second edition (1993).

T.E. Harris, H. Kahn. Estimation of particle transmission by random sampling. Natl.Bur.
Stand., Appli. Math.Ser., vol.12, pp. pp. 27-30 (1951)

M. Huang, P.E. Caines, and R.P. Malhamé, Large population stochastic dynamic games: closed
loop McKean-Vlasov systems and the Nash certainty equivalence principle. Communications
in Information and Systems, vol. 6, pp. 221-252 (2006).

X. Huang, M. Rockner, F.Y. Wang. Nonlinear Fokker-Planck equations for probability measures
on path space and path-distribution dependent SDEs. arXiv preprint arXiv:1709.00556 (2017).

A. Hudde, M. Hutzenthaler, A. Jentzen, S. Mazzonetto. On the It6-Alekseev-Grébner formula
for stochastic differential equations. ArXiv preprint arXiv:1812.09857 (2018).

R. Jordan, D. Kinderlehrer, and F. Otto. The variational formulation of the Fokker-Planck
equation. STAM Journal on Mathematical Analysis, vol.29, no. 1, pp. 1-17 (1998).

M. Kac. Foundations of kinetic theory. In Proceedings of the 3rd Berkeley Symposium on
Mathematical Statistics and Probability, volume 3, 171-197 (1956).

M. Kac. Probability and Related Topics in the Physical Sciences. Interscience Publishers, New
York (1958).

V.N. Kolokoltsov. Nonlinear Markov processes and kinetic equations (Vol. 182). Cambridge
University Press (2010).

P. Lancaster and M. Tismenetsky, The Theory of Matrices, 2nd ed., Academic Press, New York
(1985).

J. Lei. Convergence and concentration of empirical measures under Wasserstein distance in
unbounded functional spaces. arXiv preprint arXiv:1804.10556 (2018).

X.M. Li. Doubly Damped Stochastic Parallel Translations and Hessian Formulas. International
Conference on Stochastic Partial Differential Equations and Related Fields. Springer, Cham
(2016).

H. P. McKean. A class of Markov processes associated with nonlinear parabolic equations.
Proc. Nat. Acad. Sci. U.S.A., vol. 56, pp. 1907-1911 (1966).

H. P. McKean. Propagation of chaos for a class of non-linear parabolic equations. In Stochas-
tic Differential Equations, Lecture Series in Differential Equations, Session 7, Catholic Univ.
(1967), pp. 41-57. Air Force Office Sci. Res., Arlington, Va., (1967).

Y. Nishiyama. Some central limit theorems for £%*-valued semimartingales and their applica-
tions. Probability Theory and Related Fields, vol. 108, pp. 459-494 (1997).

45



[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

F. Otto. The geometry of dissipative evolution equations: the porous medium equation. Comm.
Partial Differential Equations, vol. 26, pp. 101-174 (2001).

F. Otto, V. Villani. Generalization of an inequality by Talagrand, and links with the logarithmic
Sobolev inequality. J. Funct. Anal. vol. 173, pp. 361-400 (2000).

G.C. Papanicolaou, D. Stroock, S.R.S. Varadhan. Martingale approach to some limit theorems.
Statistical Mechanics, Dynamical Systems. Duke Turbulence Conference. D. Ruelle editor; Duke
univ. series, vol.3 (1977)

G. Peano. Intégration par séries des équations différentielles linéaires. Mathematische Annalen.
vol. 32, no. 3. pp. 450-456 (1888).

Alain-Sol Sznitman. Topics in propagation of chaos. In Ecole d’Eté de Probabilités de Saint-
Flour XIX-1989, volume 1464 of Lecture Notes in Math., pages 165-251. Springer, Berlin
(1991).

J. Thompson. Derivatives of Feynman-Kac semigroups. Journal of Theoretical Probability, vol.
32, no. 2, pp. 950-973 (2019).

G. Toscani. One-dimensional kinetic models of granular flows. RAIRO Modél. Math. Anal.
Numér. no. 34, no. 6, pp. 1277-1291 (2000).

C. Villani. A survey of mathematical topics in the collisional kinetic theory of gases. Handbook
of mathematical fluid dynamics, vol. 1, no 71-305, p. 3-8 (2002).

F.Y. Wang. Diffusions and PDEs on Wasserstein space ArXiv:1903.02148 (2019).

46


https://arxiv.org/pdf/1903.02148.pdf

	Introduction
	Description of the models
	Statement of some main results
	Some basic notation

	Statement of the main theorems
	First variational equation on Hilbert spaces
	Taylor expansions with remainder
	Illustrations
	Almost sure expansions
	Interacting diffusions

	Comments on the regularity conditions
	Comparisons with existing literature

	Some preliminary results
	Fréchet differential
	Tensor integral operators
	Variational equations
	Differential of Markov semigroups
	Bismut-Elworthy-Li extension formulae
	Integro-differential operators
	Some differential formulae

	Tangent processes
	Spectral estimate
	Dyson-Phillips expansions
	Gradient semigroup analysis

	Taylor expansions
	Some differential formulae
	A first order expansion
	Second order analysis


