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Abstract

This paper focuses on the last two stages of genome assembly, namely
scaffolding and gap-filling, and shows that they can be solved as part of a
single optimization problem. Our approach is based on modeling genome
assembly as a problem of finding a simple path in a specific graph that
satisfies as many as possible of the distance-constraints encoding the insert-
size information. We formulate it as a mixed-integer linear programming
problem and apply an optimization solver to find the exact solutions on
a benchmark of chloroplasts. We show that the presence of repetitions in
the set of unitigs is the main reason for the existence of multiple equivalent
solutions that are associated to alternative subpaths. We also describe two
sufficient conditions and we design efficient algorithms for identifying these
subpaths. Comparisons of the results achieved by our tool with the ones
obtained with recent assemblers are presented.

keywords: de novo genome assembly, unitig, contig, scaffolding, gap-
filling, weighted simple path problem, linear integer programming.

1 Introduction

Genome assembly is a challenging computational task, consisting in recon-
structing the full genome from billions of short DNA sequences, called reads,
that are generated by the modern Next-Generation Sequencing (NGS) tech-
niques. This is a complex procedure, usually consisting of three main steps:
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(1) generation of contigs and/or unitigs, that are long contiguous DNA se-
quences issued from the overlapping of the reads; 2) constructing scaffolds–
set of ordered and oriented contigs/unitigs along the genome interspaced
with gaps; (3) gap-filling (also called finishing), that aims to complete the
assembly by inserting DNA text in the gaps between the scaffolds. Most
current genome assembly approaches consider the above mentioned steps
as independent consecutive tasks and therefore do not propose an optimal
global strategy.

The ”easily assembled regions” of the genome are usually treated in
the first step by methods using a particular data structure called de-Bruijn
graph [21]. In our approach, we expect this step to output unitigs –a special
kind of high-confidence contigs that represent longest non branching paths
in the de-Bruijn graphs[15]. In spite of the progress done in this task, in
the presence of repeats longer than the size of the reads, long regions of the
genome fail to be assembled in a unique way.

As a result of the contig/unitig assembly done in the first step, the
input for the second (scaffolding) step is of moderate size with respect to
the number of unitigs. However, while algorithms of linear complexity exist
for the first step [4], the second step needs to solve an NP-hard problem
that asks for ordering and orientating the contigs for connecting them into
scaffolds[12]. The novelty here consists in taking advantage of the ability of
the sequencing technology to provide couples of reads (paired-end or mate-
pair) that are separated by a known distance (called insert size) [25, 18].
This distance information is not used in the first assembly stage, but is
essential for the second one. Consequently, longer genome subsequences are
assembled here.

The scaffolding phase rarely generates the entire genome, but instead
usually produces multiple scaffolds. In addition, these scaffolds may contain
regions that have not been completely assembled. Two additional steps,
gap-filling (filling the discontinuity between consecutive scaffolds using the
gap length–also NP-hard in general [24] ) and scaffold extension (elongating
the scaffolds) are often needed to complete the genome.

The strategy we propose diverges from the ones usually described in the
literature. While the latter tackle the different assembly stages one after
another separately, our methodology consists in developing a global opti-
mization approach where the scaffolding, gap-filling, and scaffold extension
steps are simultaneously solved in the framework of a common objective
function. We reduce these three steps to finding a long simple path1 in a
specific graph that satisfies as many as possible of the additional constraints
encoding the insert-size information. Our approach is repeat-aware [16, 7]–
the potential unitig repeats are taken into account by adding as many copies
of repeated unitigs as needed. This requires the development of new tech-

1a path in which no vertex appears more than once
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niques for searching of a simple path where the distances between some
of the nodes are known. Furthermore, we propose a Mixed-Integer Linear
Programming (MILP) formulation for the related optimization problem and
solve it using a suitable solver.

We are not aware of previous approaches for genome assembly based on
a similar formulation. Most previous work on scaffolding is heuristics based,
e.g., SSPACE [2], GRASS [8], BESST [22] and SPAdes [1]. Such tools may
find in some cases good solutions, but their accuracies cannot be guaranteed
or predicted. Note that SPAdes uses an advanced abstraction of NGS
data where the genome assembly is seen as the problem of reconstructing
a string from a set of pairs of k -mers (also called k-bimers). A k-bimers
is a triple (a|b, d) consisting of k -mers a and b together with an integer d
(estimated distance between particular instances of a and b in a genome).
Moreover, SPAdes uses A-Bruijn graphs [20] where the operations are based
on graph topology, coverage, and sequence lengths, but not on the sequences
themselves. These concepts resemble to the main hypotheses in our model
except that nodes denote for us unitigs, while edges stand for the overlaps
between them. Furthermore, the formal language and the techniques we use
(MILP) differ significantly from the ones in [1].

MILP approaches have already been used for targeting the scaffolding
problem [19, 17, 23, 16]. These optimization approaches use various objec-
tive functions for maximizing the number/weight of links that are consistent
with the paired-end/mate-pair reads. However, as far as we know, in con-
trast to our approach, none of them manages distances between unitigs,
neither proposes sub-tour elimination strategies for searching a simple path
in a graph.

Completely different direction of research is presented in [27, 26]. Fo-
cusing on the scaffolding problem, and towards the goal of designing exact
algorithms for solving it, the authors study the structural properties of the
contig graph that would make the corresponding problem of polynomial
complexity.

Our paper focuses on circular genomes and, in particular, on chloro-
plasts. The reasons for this choice are as follows. Chloroplasts possess
circular and relatively small genomes. The particularity of these genomes is
the presence of numerous repetitions, which pose the main computational
challenges for the modern genome assembly techniques. On the other hand,
the size of the chloroplast genome permits assembling them rapidly (each
one of the instances from the considered benchmark except one, Euglena-
Gracilis genome, has been solved for less that 3 sec.) and so we were able
to refine our strategy and to focus entirely on the quality of the obtained
results.

The contributions of this study are as follows:
• We reduce the unitigs assembly to a problem of finding longest paths in

specific graphs with an additional set of distance constraints between

3



some couples of vertices along these paths. We also propose a Mixed-
Integer Linear Programming (MILP) formulation for this problem.

• Using the specificities of the circular genomes case we simplify signifi-
cantly the sophisticated MILP model described in our previous paper
[6].

• We deeply analyze the reasons for the existence of multiple optimal
solutions. It is well known that this is mainly due to he presence of
repeated unitigs. Our contribution here is to formulate two sufficient
conditions for the existence of alternative subpaths that yield equiva-
lent solutions. Furthermore, we design efficient (linear) algorithms for
detecting these conditions. We thus provide formal foundations and
improve the heuristics strategy described in our conference paper [5].

• Once these subpaths detected, our strategy consists in performing cuts
at their endpoints. The remaining subpaths are considered as un-
ambiguous portions of the genome (contigs). We call these contigs
distance-based contigs (db-contigs) since our splits are safe (do not
decrease the number of satisfied distances).

• We tested this strategy on a set of 33 chloroplast genomes and com-
pared the results with three recent assemblers (SPAdes [1], SSPACE [2]
and BESST [22]).

• Using the QUality ASsessment Tool (QUAST) [9] for quality assess-
ment, we demonstrate that our approach produces assemblies of higher
quality than the above heuristics.

• Moreover, we study the robustness of the approach in respect to the
depth of sequencing coverage (read coverage). We show that our tool
is able to find an acceptable assembly even for a small read coverage
of 30X by choosing a suitable k -mer size. However, the results are
significantly better for a read coverage above 70X.

2 Methodology

This section is organized as follows. First we give some basic definitions.
Then, in subsection 2.2, we describe the graph modeling, i.e., transforming
the input genomic data to a graph and reducing the assembly problem to a
path search in this graph. In subsection 2.3, we present the mathematical
programming formulation, which includes enhancements of the model that
take into account the specifics of the circular genomes. While such enhance-
ments make the model less general than the one in [6], they significantly
increase its efficiency.
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2.1 Definitions and notations

A compacted de Bruijn graph (CDBG) is a representation of a de Bruijn
graph in which each non-branching path is merged into a single node. The
sequence of each node in a CDBG is called an unitig [15]. It is easily seen
that the following properties hold: i) two distinct unitigs do not share a
k -mer; ii) any k -mer of a unitig is unique (not duplicated in the unitig).

In our approach, the unitigs are represented by nodes that keep track
only of the length of the associated sequence, but not of the sequence itself.
Moreover, any unitig is affiliated with its copy-count, defined as the number
of times the unitig (or its reverse-complement) is repeated along the genome.

2.2 Modeling the assembly problem as a path search in a
graph

The input data consists of the following types:

• A set U of unitigs characterized by their lengths and copy-counts. Only
unitigs whose length is larger than a predefined threshold (cf section
4.1 ) are considered. Let us denote by wu(resp. ku) the length(resp.
the copy-count) of the unitig u. The ku values are computed during
the unitig generation phase as explained in section 4.1.

• A list O of oriented pairs of unitigs, which we call overlaps. Two
unitigs u and v overlap if a suffix of u is equal to a prefix of v. For
each (u, v) ∈ O, the length of the overlap between them is encoded as
a weight l(u,v) and is such that l(u,v) < 0 and |l(u,v)| < min(wu, wv).

• A list L of oriented pairs of unitigs, which we call links. Links are
determined from the paired-end or mate-pairs information and en-
code distance information. Due to fluctuation and inaccuracy in the
insert-size information, an interval [d(u,v), d(u,v)] is associated with each
(u, v) ∈ L, rather than a single number, and it means that a solution
candidate will be rewarded if the distance between u and v is contained
in this interval. Hence, we say that the link (u, v) is satisfied, if the
distance in the solution between u and v is a number in [d(u,v), d(u,v)].

An instance of such input data is given in Figure 1. Based on this input,
we construct a directed graph G = (V,E) called a unitig graph, where both
the set V of vertices and the set E of edges are weighted. We generate the
set V according to the following rules:

1. Each unitig i is represented by at least two vertices vi and v′i, where
v′i denotes the reverse-complement counterpart of vi.

2. If unitig i is repeated ki times, it generates a set of 2ki vertices
vi1, . . . , vik, v

′
i1, . . . , v

′
ik.

5



Unitig and its copy-count
==================

3 len 19212 1
5 len 7596 2
4 len 88398 1
2 len 18914 2

Overlaps
===================

2 len 18914 R 3 len 19212 R -124
2 len 18914 R 3 len 19212 F -124
2 len 18914 F 5 len 7596 R -124
3 len 19212 R 2 len 18914 F -124
3 len 19212 F 2 len 18914 F -124
4 len 88398 F 5 len 7596 F -124
4 len 88398 R 5 len 7596 F -124
5 len 7596 R 4 len 88398 F -124
5 len 7596 R 4 len 88398 R -124
5 len 7596 F 2 len 18914 R -124

Distances
=======================

2 len 18914 F 5 len 7596 R 0 89
2 len 18914 R 3 len 19212 F 0 40
2 len 18914 R 3 len 19212 R 0 61
2 len 18914 F 4 len 88398 R 7267 7323
3 len 19212 R 2 len 18914 F 0 162
3 len 19212 F 2 len 18914 F 0 58
4 len 88398 F 5 len 7596 F 0 93
4 len 88398 R 5 len 7596 F 0 71
5 len 7596 R 4 len 88398 R 0 70
5 len 7596 F 2 len 18914 R 0 158
5 len 7596 R 4 len 88398 F 0 51

Figure 1: Input data for Liriodendron Tulipifera chloroplast. It contains
three type of data : i) Set of unitigs with their copy-count number. The
unitig i with length wi is represented here as [ i len w i ]. ; ii) List of
overlaps between unitigs. The first two terms here correspond to a couple
of unitigs, while the last one is the associated overlap. The orientation of
a unitig (forward/ reverse-complement) is denoted by (F, R) respectively,
and corresponds to the last character of these terms.; iii) List of distances
between unitigs (also called links). As before, the first two terms correspond
to a given couple of unitigs, while the last two data represent the lower and
upper bound of the distance between them.

Denote W =
∑

i∈V wi and N =
∑

i∈U ki; hence |V | = 2N .
By construction, there are two kinds of edges: edges corresponding to

the overlaps between unitigs and denoted by O, and edges corresponding to
the distances and denoted by L. Hence E = O ∪ L.

Moreover, for any edge in G, its forward/reverse-complement is also in
G, i.e., if eij is an edge joining vertices vi and vj , then its reverse-complement
counterpart ej′ i′ is also in G.

In our approach, a genome assembly corresponds to a simple path in G
that satisfies the maximum number of distances and is of maximum length.
The graph and the solution associated with the input from Figure 1 are
given in Figure 2.

In the next section, we give a Mixed Integer Linear Programming for-
mulation for the above graph optimization problem.
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Figure 2: The unitig graph for Liriodendron Tulipifera chloroplast generated
from the input data given in Fig. 1. Left: Since the initial set is composed
of four vertices, and two of them have copy number two, the graph con-
tains 12 vertices totally, according to the above explained formula. The
forward (resp. reverse-complement) of the ith occurrence of the vertex v
is denoted by (v i F) (resp. (v i R)). The directed edges visualize the
overlaps. Right: The same graph where the set of links(distances to be
satisfied) are represented by dashed directed edges.

2.3 A Mixed Integer Linear Programming Formulation

In order to define a path in a graph in an optimization problem, one needs
typically to designate a start and end vertices for the path by appropriate
variables. However, in our case, the beginning and the end of the path
are unknown. Using extra decision variables in order to resolve this issue
leads to the sophisticated model described in [6]. Here we are making use
of the following facts/assumptions for chloroplast genomes that allows us to
simplify the above general approach:

1. Chloroplast genomes are circular, implying that the beginning and the
end of the path should coincide;

2. The largest unitig is part of the genome;

3. The entire genome is sufficiently covered (no gaps in its sequence).

Consistent with (1) and (2), we choose the largest unitig (say x) to play
the role of the beginning and the end of the genome. Consequently, for the
unitig graph, we introduce new vertices s and t to replace x, where s gets
all outgoing edges of x and t gets all incoming edges from x. Specifically, we
replace each edge (x, v) by an edge (s, v), each edge (v, x) by an edge (v, t)
and define δ+(t) = δ−(s) = ∅, where δ+(v) ⊂ E (resp. δ−(v) ⊂ E) denote
the sets of edges outgoing from (resp. incoming to) v, while ∅ denotes the
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empty set. Vertices s and t will be used as the source (start) and the sink
(end), respectively, of the path we are looking for.

Furthermore, we associate a variable iv with any vertex v ∈ V \ {s, t}
such that

0 ≤ iv ≤ 1 (1)

encoding whether v is or isn’t in the solution path. Moreover, for each vertex
v, we cannot visit both v and its reverse-complement counterpart v′, which
we encode as

∀v : iv + iv′ ≤ 1. (2)

We also associate a binary variable with each edge of the graph, i.e.,

∀e ∈ O : xe ∈ {0, 1} and ∀e ∈ L : ge ∈ {0, 1}. (3)

If a vertex v not in {s, t} is an intermediate vertex in the path, then there
should be exactly one edge from δ+(v) and one edge from δ−(v) in the path,
and if v is not in the path, then there will be no edges from δ+(v) and no
edges from δ−(v) in the path. This is enforced by the following constraints

iv =
∑

e∈δ+(v)

xe =
∑

e∈δ−(v)

xe. (4)

It is then obvious that although the variables iv, ∀v ∈ V are defined in
(1) as reals, they take binary values in each feasible solution.

The constraints so far help us to define a subgraph of G of degree two
for all its vertices except s and t, which have degree one. But in order to be
a path, such subgraph should also be connected. For that end, we model a
flow in the graph and introduce a continuous variable fe ∈ R+ to express the
quantity of the flow circulating along the edge e ∈ O. Without this variable,
the solution may contain some loops and hence may not be a simple path.
We put a requirement that no flow can use an edge e when xe = 0, which
can be encoded as

∀e ∈ O : 0 ≤ fe ≤Wxe, (5)

where W is as defined above (W =
∑

v∈V wv).
We require that, when passing through a vertex v or an edge e of the

path, the flow is reduced by wv or fe, respectively. Hence, the flow fe should
satisfy the following constraints: for any intermediate vertex we have

∀v ∈ V \ {s, t} :
∑

e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = iv(wv +
∑

e∈δ−(v)

lexe), (6)

while for the source vertex s we require∑
e∈δ+(s)

fe = W. (7)
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We furthermore observe that the constraint (6) can be simplified. Us-
ing (4), the constraint (6) can be transformed into the equivalent simpler
constraint

∀v ∈ V \ {s, t} :
∑

e∈δ−(v)

fe −
∑

e∈δ+(v)

fe = ivwv +
∑

e∈δ−(v)

lexe. (8)

More importantly, the constraint (8) is linear, unlike (6) which contains
quadratic terms.

The model so far (constraints (1)–(8)) defines a path from s to t. But
we also want such path to satisfy as many distance constraints as possible.
Hence, we need also to add to the model information related to the links
distances. For this end, we define a binary variable ge for each edge e of
G. For each (u, v) ∈ L, the value of g(u,v) should be 1 if and only if both
vertices u and v belong to the selected path and the length dist(u,v) of the

considered path between them is in the given interval [d(u,v), d(u,v)]. This is
accomplished by the following constraints:

g(u,v) ≤ iu and g(u,v) ≤ iv (9)

∀(u, v) ∈ L :
∑

e∈δ+(u)

fe−
∑

e∈δ−(v)

fe +
∑

e∈δ−(v)

lexe ≥ d(u,v)g(u,v)−M(1− g(u,v)), (10)

∀(u, v) ∈ L :
∑

e∈δ+(u)

fe−
∑

e∈δ−(v)

fe +
∑

e∈δ−(v)

lexe ≤ d(u,v)g(u,v) +M(1− g(u,v)), (11)

where M is some big constant (in our case we set M = 100W ).
Our objective for the assembly problem is to find a long path in G such

that as many as possible link distances are satisfied. The number of the
satisfied link distances is

∑
e∈L ge. Hence, the objective function of the

optimization problem becomes

maximize

(∑
e∈O

xele +
∑
v∈V

wviv + p
∑
e∈L

ge

)
, (12)

where p is a parameter to be chosen as appropriate (we use p = W ).

3 Dealing with multiple optimal solutions

The information contained in the overlaps and the given set of distances
is not always sufficient for identifying a unique assembly. The reasons for
that are multiple–the unitig graph G is symmetric by construction, e.g.,
if there is an edge (v, w) between vertices v and w, then there is an edge
(w′, v′) between their reverse-complements w′ and v′. Such symmetry usu-
ally allows multiple optimal solutions. Moreover, the data contains repeated
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identical unitigs, which are modeled by different vertices of G. As a conse-
quence, for each optimal solution (path) p∗ found by our algorithm, there
are typically multiple (exponential in the worst case) number of equivalent
solutions (paths). Such paths are different from p∗ as sequences of vertices of
G, but correspond to the same set of unitigs (and their reverse-complement
copies) and satisfy the same number of links, and hence, are equally ”op-
timal” from the point of view of the optimization problem (1)–(12). This
issue is especially pronounced for chloroplasts due to their high number of
repeated/symmetrical regions.

Choosing just any arbitrary path from the set of equivalent optimal ones
can give an assembly different from the genome that serves as a reference for
evaluating the accuracy of the obtained result. Our strategy to tackle this is-
sue is as follows: i) find an optimal solution(path) p∗; ii) identify in p∗ sources
of multiple solutions (i.e. portions for which multiple equivalent subpaths ex-
ist), which we call ambiguous subpaths; iii) cut any of these ambiguous sub-
paths at the two interior edges adjacent to their endpoints (see formal defi-
nition below). The pieces remaining from the optimal path after such splits
represent the contigs output by the algorithm. Their quality was assessed
using QUAST [9] based on the following key metrics proposed by this tool
(see QUAST 5.0.2 manuel http://quast.bioinf.spbau.ru/manual.html
for more details) :

• # contigs – the total number of contigs in the assembly;

• Genome fraction (%) – the percentage of aligned bases in the ref-
erence genome. A base in the reference genome is aligned if there is
at least one contig with at least one alignment to this base. Contigs
from repetitive regions may map to multiple places, and thus may be
counted multiple times;

• #misassemblies – the number of positions in the contigs (break-
points) that satisfy one of the following criteria: i) the left flanking
sequence aligns over 1 kbp away from the right flanking sequence on
the reference; ii) flanking sequences overlap on more than 1 kbp;

• #local misassemblies – the number of positions in the contigs (break-
points) that satisfy the following conditions: i) The gap or overlap be-
tween left and right flanking sequences is less than 1 kbp, and larger
than the maximum indel length (85 bp); ii) The left and right flanking
sequences both are on the same strand of the same chromosome of the
reference genome.

• Largest contig – the length of the longest contig in the assembly.

• Total length – the total number of bases in the assembly.

• Reference length – the total number of bases in the reference genome.
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QUAST requires as input a set of unitigs/contigs without indication for their
repetition and orientation and maps any of them to the reference genome in
order to assess its quality.

There are two main challenges in implementing the above strategy: i)
how to detect splits; and ii) how to split the optimal path into subpaths
without degrading its optimality (the number of satisfied distances). Details
of our approach are presented below. Since we split safely in the sense
that the number of satisfied distances in the set of remaining disconnected
subpaths equals the number of satisfied distances in the original/optimal
path, we call the contigs obtained in this way distance-based contigs (db-
contigs).

Formally, we call two paths p1 = (v1, . . . , vk) and p2 = (w1, . . . , wk) of
G equivalent, if they satisfy the same number of links and their vertices
are permutations of the same set of unitigs (and their reverse-complement
counterparts). Obviously, if p1 and p2 are equivalent, then length(p1) =
length(p2).

Given an optimal path p∗, we search in this section to detect pairs of
vertices (v, w) ∈ p∗ that represent endpoints of ambiguous subpaths. More
formally, denote by p1 the subpath ∈ p∗ between v and w. We call the couple
(v, w) split of p∗, if there exists an equivalent path to p1 (say p2) such that
the path (v, p2, w) is also optimal subpath of p∗.

Next, we describe two methods for identifying such splits. Note that
both are related to repeated unitigs.

3.1 Link-closed reversible subpaths

We call a path p link-closed, if for any link that has as an endpoint a vertex
of p, its other endpoint is also in p. Consider an unitig vs with copy-count at
least two. Amongst the link-closed paths, we are interested in those having
as one endpoint such a unitig vs and as another an occurrence of its reverse-
complement v′s. We show below that if such a link-closed path p is part of
the optimal solution p∗, then the couple (vs, v

′
s) is a split of p∗. We will call

then p link-closed reversible subpath.
Indeed, according to the graph-generation rules, at least four vertices

are associated with vs : two (vs0 and vs1) in the forward orientation, and
two others (v′s0 and v′s1) in the reverse-complement orientation. Denote now
by p = (vk, vk+1, . . . , vr−1, vr) the link-closed subpath where vk = vs0 and
vr = v′s1. We then show that its reverse-complement subpath p′ = inv(p) =
(v′r, v

′
r−1, . . . , v

′
k) is also part of an optimal solution (see for illustration on

Figure 3 where the upper (lower) path corresponds respectively to p (p′).)
Obviously, length(p) = length(p′). Since v′r = vs1 = vs0 and v′k = v′s0 =

v′s1, the paths p and p′ have identical vertices/unitigs as their endpoints.
Furthermore, for each link (g, h) in p, its reverse-complement counterpart
(h′, g′) is in p′ and both links simultaneously satisfy (or do not satisfy) the
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associated distance since the subpaths between g and h (respectively h′ and
g′) contain the same vertices (or their reverse-complements). Hence, both
paths satisfy the same number of links. The subsequences p and p′ are then
two alternative subpaths in the optimal solution, while the vertices vs0 and
v
′
s1 represent splits in the optimal path. Cutting it in these points (i.e.

eliminating the edges connecting these vertices with the subpaths p and p′)
does not modify the number of satisfied distances since p and p′ are link-
closed subpaths. It turns out that such type of optimal subpaths are quite
common.

vs0 vi vt vk v
′
s1

vs1 v
′
k v

′
t v

′
i v

′
s0

u w

Figure 3: The copy-count number of vs0 equals 2. The upper subpath
p = (vs0, vi, . . . , v

′
s1) contains two links visualized with dashed lines. The

lower path p′ = inv(p) = (vs1, v
′
k, . . . , v

′
s0) is its reversible path. vs0 is

identical to vs1, while v
′
s0 is identical to v

′
s1. These two alternative subpaths

are of the same length, satisfy the same number of links, and thus are equally
optimal. The vertices vs0 and v

′
s1 limit this ambiguity zone. To manage such

case, we split the optimal path at any of the interior edges adjacent to these
endpoints (visualized by vertical dashed lines) and concatenate the unitigs
(vi, vt, vk) in one single contig. This new contig is a db-contig as it satisfies
the link (vi, vk) while its reverse-complement satisfies the link (v

′
k, v

′
i). The

position of this contig in the assembly is fixed (between vs0 and v
′
s1), but

the given distances do not allow to determine its orientation in a unique
way. Trying to fix it may result in an elimination of some eligible optimal
solution.

Implementation details: Given an optimal path p∗, let us denote L∗ =
{(u,w) ∈ L : g(u,w) = 1} (i.e. only the distances satisfied in p∗ are con-
sidered). We say that a vertex v ∈ p∗ is covered if there exists a couple
(u,w) ∈ L∗ such that v is an intermediate vertex in the subpath between u
and w (i.e. v 6= u and v 6= w). Otherwise, v is considered uncovered. Fur-
thermore, let pos(v) be the position in p∗ of the vertex v. This position can
be assigned to any v ∈ p∗ simply by traversing linearly p∗ once the optimal
path has been found (i.e. in O(|V |) time).
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Let us denote by R̃v the set of all reversed-complements of all occur-
rences of v belonging to p∗ and by LC the set of endpoints of all link-closed
reversible subpaths. The set LC can be generated by the following simple
algorithm.

Algorithm 1 Link-closed reversible subpaths generation

1: LC = ∅
2: To any vertex v ∈ p∗ associate its position pos(v) in p∗

3: Compute the set of all uncovered vertices in p∗ .
4: for all v ∈ p∗ in increasing order of pos(v) do
5: if v is uncovered and is a repeated vertex then
6: for all uncovered u ∈ R̃v s.t. pos(u) > pos(v) do
7: add (v, u) to LC;
8: end for
9: end if

10: end for

The most costly operation in the above algorithm is line 3 (computing
the set of uncovered vertices in p∗). In order to implement that efficiently,
we sort the set L∗ in increasing order of the position in p∗ of the beginning
of the links (which can be done in O(|L∗| log |L∗|)).

We then traverse in increasing order of the vertices positions the path
p∗, as well as the sorted list L∗. Comparing the position of any vertex v ∈ p∗
with the beginning and the end of the closest link we detect if v is covered
or uncovered. This algorithm can be done in linear time O(|V |+ |L∗|). The
total complexity of algorithm 1 is then O(|V |+ |L| log |L|).

3.2 Reversible symmetry splits

Consider vertex v ∈ p∗ and denote by prev(v) (resp. next(v)) its previous
(resp. next) neighbor on the path p∗. We call v reversible if (prev(v), v

′
) ∈ O

and (v
′
, next(v)) ∈ O.

Let us denote

Γ−v = {u ∈ p∗ : g(u, v) = 1} and Γ+
v = {w ∈ p∗ : g(v, w) = 1}. (13)

We call v ∈ p∗ symmetrical reversible if the following conditions are
satisfied: i) v is reversible; ii) |Γ−v | = |Γ+

v |, and, the sets Γ−v and Γ+
v are

composed of occurrences of vertices with repetitions (i.e. with copy-counts
at least 2), and such that for any u ∈ Γ−v , (resp. Γ+

v ) ∃w ∈ Γ+
v (resp.

Γ−v ) such that w ∈ R̃v and dist(u, v) = dist(v, w). It is easy to see then
that the vertices v and v

′
are interchangeable (i.e. they are two alternative

subpaths in the optimal path p∗). The vertices prev(v) and next(v) are
the associated splits, while the vertex v will be disconnected from them and
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will be considered as a separate contig in our approach (see Figure 4 for an
illustration).

u10 u11 u2

v

v
′

u3 u
′
11 u

′
10

Figure 4: In this example Γ−v = Γ−v′ = {u10, u11}, Γ+
v = Γ+

v′ = {u′10, u′11}.
Moreover, dist(u10, v) = dist(v, u′10) and dist(u11, v) = dist(v, u′11). The
vertex v is then symmetrical reversible and the vertices v and v′ are two
alternative subpaths in the optimal solution. The position of the vertex v
in the computed assembly is fixed (between the vertices u2 and u3), but its
orientation cannot be determined in a unique way. Both orientations of this
vertex are equally optimal. To manage this situation we cut the path at the
edges adjacent to v and v′.

The algorithm for generating the list of reversible symmetry splits simply
consists in verifying the above conditions for any reversible link endpoint
v ∈ p∗. This reduces to a search operation in the sets Γ−v ,Γ

+
v , which can be

done in O(|L| log |L|) time complexity.
Both above splitting conditions are illustrated on Figure 5 for the case of

Liriodendron Tulipifera chloroplast. Note that the partition obtained here
by our approach corroborates with the common knowledge that many chloro-
plast DNAs contain two inverted repeats (here contigs 2 0 R and 2 1 F ),
that separate a long single copy section (LSC) (here 5 1 R → 4 0 F →
5 0 F ) from a short single copy section (SSC) (here 3 0 F ) [13].

In the next section we report some experimental results comparing our
tool with some of the best existing scaffolding tools. All the results have
been obtained by applying the two above described splitting criteria.

4 Numerical Results

4.1 Data Generation

Using 33 chloroplast reference genomes (see the first three columns in tables
1 and 2) obtained from the NCBI website (https://www.ncbi.nlm.nih.gov/genome),
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5_0_F

2_0_R

5_1_R

4_0_F

3_0_R

2_1_F

Figure 5: Left: The optimal solution found by the model for Liriodendron
Tulipifera chloroplast (see the input data in Fig. 1) in which 7 (out of 28)
distances are satisfied. They are visualized here by dashed edges, while
normal directed edges represent overlaps. We observe that, for this partic-
ular instance, both splitting conditions are applicable. More precisely : on
one hand, we detect that 2 1 F → 5 1 R → 4 0 F → 5 0 F → 2 0 R is a
link-closed reversible subpath. Hence, we concatenate these five unitigs in a
new db-contig and cut it from the path. On the other hand, we notice that
the unitig 3 0 R is symmetrical reversible and can be chopped off. These
splits coincide with the previously detected link-closed reversible subpath
splits. Right: The two contigs of the final assembly. QUAST completely
approves the result. The excerpt of its assessment states : Genome size
159886; Genome fraction (%) 100 ; # misassemblies 0; # local misassemblies
0; # contigs 2; N50 140922.
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we have generated synthetic sequencing reads using ART simulator Illumina
[11]. In order to evaluate the paired-end and the mate-pair technology be-
havior, two data sets have been produced respectively for each chloroplast.
The coverage has been set to 100X, the read size to 250bp and the insert
size to 600bp (paired-end) and 8Kbp (mate-pair). For each genome, the
following three tasks have been performed: (1) generation of unitigs; (2)
overlap computation; (3) link computation.

Unitigs generation

The set of unitigs was generated with the Minia assembler [4], while the best
k-mer size was chosen based on the tool KmerGenie [3]. An estimation of the
copy-count of each unitig is also returned by Minia following the strategy
described next.

The copy-count of a k-mer is defined as the number of times the k-mer (or
its reverse-complement) is repeated along the genome, while the abundance
of a k-mer is defined as the number of times it (or its reverse-complement)
appears in the multiset of k-mers [3]. The abundance of any k-mer is directly
counted by Minia. Since, by definition, any k-mer is uniquely associated
with a unitig, the copy-count (resp. the abundance) of any unitig equals
the copy-count (resp. the abundance) of any of its k-mers. However, this is
the ideal case. Since in practice the reads are not uniformly distributed, we
compute the abundance of a unitig as the average of the abundances of all
k-mers associated with it.

On the other hand, the abundance of a non-repeated unitig is theoret-
ically equal to the average depth of sequencing coverage (dsc) which, by
definition, equals lr×nr

gl , where lr is the read length, nr is the number of
reads, and gl is the genome length. A unitig that is repeated M times along
the genome (which is it copy-count value) has an abundance of M×dsc.
Here, we assume the longest unitig is not duplicated, and its abundance
should be then equal to the dsc. Based on this assumption, Minia com-
putes the copy-count of each unitig as its abundance divided by the longest
unitig’s abundance, rounded to the nearest upper integer value.

This strategy provides an estimation of the copy-count, but its accuracy
strongly depends of the length of the unitigs. The longer the unitigs, the
better the estimation is. Actually, for very short unitigs, we can only provide
an upper bound for the copy-count value.

Overlap computation

Let (u, v) ∈ V ×V \{u} be a couple of unitigs. We say that u and v overlap,
if a suffix of u is equal to a prefix of v. More formally, denote by length(u)
the length of u. For a given integer k ≥ 2 (which corresponds to the k-mer
size), we search for the biggest integer ov ≥ 1 such that:
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• bk/2c ≤ ov ≤ k − 1

• ∀i = 0, . . . , ov, u[length(u) − ov + i] = v[i] (the last ov characters of
the sequence u are identical to the first ov character of the sequence
v)

If such an integer exists, we consider there exists an overlap between u and
v of length ov .

Link computation

Each mate-pair or paired-end read is individually mapped to the unitigs with
the Minimap mapper tool [14]. Reads that map ambiguously to several
locations are discarded. To minimize false positives, only links that are
validated by at least 5 pairs are kept. The link size is estimated with the
given inserts size value, and averaged over all pairs that confirm the link.

The first six columns of tables 1 and 2 summarize the set of chloroplasts
used here together with their associated features corresponding to the mate-
pair case. Figure 1 is an example of input data (unitigs, overlaps, links)
generated from the Liriodendron Tulipifera chloroplast in the mate-pair.

4.2 Comparison with other tools

The optimization model has been implemented using the AMPL (A Mod-
eling Language for Mathematical Programming) language and the Gurobi
solver (version 7.0) [10]. The computational results were obtained on a Lap-
top Intel(R) Core(TM) i7-6700HQ (2.6 GHz, 16 GB RAM) running Linux
Mint. 18.3.

This section compares the results of the tool we have developed (de-
noted here by GAT: GenScale Assembly Tool) with state-of-the-art assembly
tools: Spades[1], SSPACE [2], BESST [22]. The assemblies were evaluated
by QUAST by comparison with the reference genome that was used for
the simulation. We used here the following four major metrics proposed
by QUAST : # contigs, genome fraction (%) , #misassemblies and
#local misassemblies.

Figures 6 and 7 synthesize the first two metrics in the case of mate-pair
and paired-end evaluation respectively. On the left side on these figures
the average values of the assembled contigs are plotted. The lower this
number, the better the assembly. On the right side the average fractions of
the genome left out (i.e. 100-genome fraction % ) are reported. Again, the
lower the fraction, the better the assembly. In both cases (mate-pair and
paired-end), GAT clearly provides the best results in respect to these two
measures.

Tables 3 and 4 give the exact values for any of the mate pairs and
paired-end instance. In the case of mate pairs comparison, we observe that
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Figure 6: Mate-pair data: Left: Average number of contigs comparison.
Right: Average fraction of genome left-out comparison.
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Figure 7: paired-end data: Left: Average number of contigs comparison.
Right: Average fraction of genome left out comparison.
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GAT ensures, with one exception, the ideal coverage of the reference genome
(second column in GAT results). The unique exception here concerns the
Euglena Gracilis instance (No. 21). This appears to be the most difficult
instance in the benchmark–its input data contains one big unitig that covers
82% of the genome, and 64 small unitigs with a lot of repetitions. Note that
BESST was unable to solve it.

Similar is the situation with the number of contigs, where GAT obtains,
with one exception, the smallest number of contigs. This exception concerns
the Atropa genome, where SPAdes obtains 3 contigs (versus 5 obtained by
GAT). However, we observed that the N50 value2 obtained by SPAdes for
this instance is worser than the one given by GAT. In total, SSPACE failed
to assemble 3 genomes out of 33 (see the corresponding #misassemblies
column–the last one in Table 3), BESST–one genome (the above mentioned
Euglena Gracilis instance). SPAdes and GAT assembled all 33 instances,
but SPAdes performed two #local misassemblies errors, while GAT is
the only tool without any kind if misassemblies (cf. Table 3).

The paired-end comparison is equally in favor of our tool. The obtained
results for all benchmark instances are reported in table 4.

4.3 Robustness

The method described in this paper specifically targets circular genomes
and requires that all the regions of the genome are covered by unitigs. Oth-
erwise, the corresponding graph is decomposed into connected components
and obviously a circular path does not exist. If this is the case, the model
described in [6] should be used.

The number of non-covered regions is directly linked to the sequencing
depth (read coverage). The lower the read coverage is, the bigger the number
of non-covered regions is. Usually, a coverage of at least 30X is required to
expect a ”good assembly” (without non-covered regions).

On the other hand, low coverage can be compensated by reducing the
k -mer length. Finding the best k -mer length is not an easy task. Tools like
KmerGenie aim to analyze the sequencing data and to estimate the “best”
k -mer size [3]. In the experiments reported in the table below, we used
KmerGenie in order to find the right k -mer length as a function of the read
coverage value.

Table 5 illustrates how finding a convenient k -mer length allows the
model to find a solution even in the case of low read coverage. The best
k -mer length is proportional to the value of the read coverage: the smaller
the read coverage value is, the smaller the best k -mer length should be. As
we observe on the table, when the read coverage is too small (10X), the
conditions for the validity of the model are not satisfied, and GAT does not

2another QUAST metric
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No. Genomes Size |V | |O| |L| nsl Running time

1
Acorus
Calamus

153821 8 16 16 3 1.406s

2
AdiantumCapillus
Veneris

150568 20 24 24 5 1.138s

3
Agrostis
Stolonifera

136584 20 52 24 6 1.284s

4
Angiopteris
Evecta

153901 34 78 70 12 2.538s

5
Anthoceros
Formosae

161162 16 32 24 5 1.209s

6
Arabidopsis
Thaliana

161162 20 40 32 7 1.187s

7 Arabishirsuta 153689 12 24 24 5 1.163s

8 Atropa 156687 46 90 34 9 1.272s

9
Capsella Bursa
Pastoris

154490 12 24 24 5 1.193s

10
Chaetosphaeridium
Globosum

131183 8 16 16 3 1.257s

11
Chara
Vulgaris

184933 24 56 24 7 1.297s

12
Chlorella
Vulgaris

150613 52 50 50 24 1.274s

13
Chlorokybus
Atmophyticus

152229 10 18 18 4 1.262s

14
Citrus
Sinensis

160129 12 24 32 8 1.274s

15
Cyanidioschyzon
Merolae

149067 72 82 46 22 1.209s

16
Cyanidium
Caldarium

164921 38 36 32 15 1.232s

Table 1: The benchmark containing 33 chloroplast genomes whose names
are given in the first column. The second column contains their lengths. We
observed this value equals the value given by the first term of the objective
function (12). The next three columns describe the input graph for the mate-
pairs case. The third and fourth columns give the number of vertices and
edges of the graph, respectively, while |L| indicates the number of the links.
The last two columns are relevant to the solution found by our tool. nsl
stands here for number of satisfied links, while Running time (in seconds)
indicates the execution time.
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No. Genomes Size |V | |O| |L| nsl Running time

17
Daucus
Carota

155911 8 16 16 3 1.165s

18
Draba
Nemorosa

153289 12 24 24 5 1.220s

19
Eimeria
Tenella

160604 10 18 18 4 1.178s

20
Epifagus
Virginiana

70028 12 24 24 5 1.177s

21
Euglena
Gracilis

143171 146 554 30 11 17.932s

22
Gossypium
Barbadense

160317 12 24 24 5 1.175s

23
Gossypium
Hirsutum

160301 14 28 24 5 1.199s

24
Gracilaria
Tenuistipitata

183883 54 54 44 21 1.210s

25
Guillardia
Theta

121524 44 88 24 5 1.242s

26
Helianthus
Annuus

151104 10 18 18 4 1.270s

27
Huperzia
Lucidula

154259 20 48 20 5 1.294s

28
Lactuca
Sativa

152765 8 16 16 3 1.223s

29
Lepidium
Virginicum

154743 24 48 48 11 1.167s

30
Liriodendron
Tulipifera

159886 8 16 16 3 1.203s

31
Lobularia
Maritima

152659 16 32 32 7 1.216s

32
Lotus
Corniculatus

150519 20 80 32 7 1.329s

33 Pinus 116864 58 128 12 6 1.156s

Table 2: The last 17 chloroplasts of our benchmark. Euglena Gracilis (No.
21) is the most difficult instance of this set–its input data contains one big
unitig, and a huge number of small and highly repetitive unitigs.
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GAT BESST SPAdes SSPACE

1 2 100 0 0 3 83,2 0 0 3 83 0 0 2 100 0 0
2 2 100 0 0 3 100 0 0 3 100 0 0 3 100 0 0
3 2 100 0 0 3 100 2 0 4 99,5 0 0 6 84,6 0 0
4 3 100 0 0 7 100 2 0 6 99,3 0 0 7 100 0 0
5 2 100 0 0 4 100 2 0 3 100 0 0 7 90,4 0 1
6 2 100 0 0 4 100 2 0 3 100 0 0 5 100 0 0
7 2 100 0 0 3 100 0 0 3 100 0 0 3 82,9 0 0
8 5 100 0 0 9 100 4 0 3 100 0 0 18 100 0 0
9 2 100 0 0 4 100 0 0 3 100 0 0 4 100 0 0
10 2 100 0 0 3 100 0 0 3 100 0 0 2 90,6 0 0
11 3 100 0 0 4 100 2 0 5 100 0 0 6 94,2 0 0
12 1 100 0 0 8 100 6 0 1 100 1 0 34 100 0 0
13 2 100 0 0 3 100 0 0 3 100 0 0 1 100 0 1
14 2 100 0 0 2 100 2 0 3 100 0 0 3 100 0 0
15 2 100 0 0 2 100 2 0 2 100 0 0 5 100 0 0
16 1 100 0 0 7 100 8 0 1 99,7 0 0 40 100 0 0
17 2 100 0 0 3 100 0 0 3 100 0 0 3 100 0 0
18 2 100 0 0 3 100 0 0 3 100 0 0 3 100 0 0
19 2 100 0 0 3 100 0 0 3 100 0 0 2 83,6 0 1
20 2 100 0 0 4 100 0 0 3 100 0 0 8 100 0 0
21 16 99,6 0 0 - - - - 9 92,8 0 0 30 100 0 1
22 2 100 0 0 3 100 0 0 3 100 0 0 6 84,4 0 0
23 1 100 0 0 10 100 7 0 1 100 1 0 51 100 0 0
24 1 100 0 0 13 100 0 0 3 100 0 0 14 100 0 0
25 2 100 0 0 4 100 0 0 3 100 0 0 5 100 0 0
26 2 100 0 0 6 100 0 0 4 100 0 0 6 90,5 0 0
27 2 100 0 0 8 100 6 0 4 82,4 0 0 24 100 0 0
28 2 100 0 0 2 100 0 0 3 100 0 0 6 90,4 0 0
29 2 100 0 0 4 100 0 0 3 100 0 0 5 83,5 0 0
30 2 100 0 0 2 100 2 0 3 100 0 0 4 100 0 1
31 2 100 0 0 2 100 2 0 3 100 0 0 2 82,9 0 0
32 2 100 0 0 8 100 0 0 5 100 0 0 9 86,3 0 0
33 1 100 0 0 3 100 4 0 2 99,8 0 0 6 100 1 0

Table 3: Detailed results concerning any of the 33 mate pair instances. Four
columns are associated to any of the four tools subject of comparison (GAT,
BESST, SPAdes, SSPACE). The first coluln corresponds to the #contigs
metric, the second one–to the Genome fraction (%), the third one–to
the #local misassemblies, while the fourth one–to the #misassemblies
metric.
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GAT BESST SPAdes SSPACE

1 2 100 0 0 3 83,2 0 0 10 84,2 0 0 3 83,1 0 0
2 2 100 0 0 4 100 0 0 3 100 0 0 4 100 0 1
3 5 98,5 0 0 5 98,4 0 0 8 98,5 0 0 6 84,4 0 0
4 8 100 0 0 11 100 0 0 16 89 0 0 11 99,5 0 0
5 4 100 0 0 6 100 0 0 4 100 0 0 6 93,9 0 0
6 4 100 0 0 7 100 0 0 3 100 0 0 5 100 0 0
7 2 100 0 0 4 100 0 0 3 100 0 0 5 100 0 0
8 14 99,9 0 0 14 100 0 0 3 100 0 0 19 100 0 0
9 2 100 0 0 4 100 0 0 3 100 0 0 3 83 0 0
10 2 100 0 0 3 100 0 0 5 100 0 0 3 100 0 0
11 8 100 0 0 8 100 0 0 23 100 0 0 9 94,1 0 1
12 1 100 0 0 25 100 0 0 19 100 0 0 57 100 0 0
13 3 100 0 0 4 100 0 0 3 100 0 0 3 95,1 0 0
14 2 100 0 0 4 100 0 0 3 100 0 0 2 83,3 0 0
15 3 99,4 0 0 29 100 2 0 6 100 0 0 80 100 0 0
16 1 100 0 0 18 100 0 0 1 100 0 0 55 100 0 0
17 2 100 0 0 3 100 0 0 3 100 0 0 3 100 0 0
18 2 100 0 0 4 100 0 0 3 100 0 0 3 82,9 0 1
19 2 100 0 0 4 100 0 0 4 100 0 0 4 83,5 0 0
20 2 100 0 0 4 100 0 0 3 100 0 0 2 68 0 0
21 29 100 0 0 32 100 0 0 13 98,3 0 0 40 95,8 0 0
22 2 100 0 0 4 100 0 0 3 100 0 0 4 100 0 0
23 2 100 0 0 4 100 0 0 4 100 0 0 5 100 0 0
24 2 100 0 0 24 100 0 0 1 100 0 0 72 100 0 0
25 15 100 0 0 14 100 0 0 8 100 0 0 16 98,2 0 0
26 2 100 0 0 4 100 0 0 3 100 0 0 4 83,8 0 1
27 2 100 0 0 7 100 0 0 18 100 0 0 10 94,9 0 0
28 2 100 0 0 3 100 0 0 3 83,7 0 0 3 100 0 0
29 2 100 0 0 7 100 0 0 3 100 0 0 4 100 0 1
30 2 100 0 0 3 100 0 0 3 100 0 0 7 100 0 0
31 2 100 0 0 5 100 0 0 3 100 0 0 6 83 0 0
32 2 100 0 0 6 100 0 0 3 100 0 0 4 86,3 0 0
33 12 100 0 0 12 100 0 0 8 100 0 0 17 100 0 0

Table 4: Detailed results concerning any of the 33 paired-end instances. Four
columns are associated to any of the four tools subject of comparison (GAT,
BESST, SPAdes, SSPACE). The first column corresponds to the #contigs
metric, the second one–to the Genome fraction (%), the third one–to
the #local misassemblies, while the fourth one–to the #misassemblies
metric.
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Reads
Coverage

K-mer
Size

#Unitigs
MINIA

#Contigs
GAT

genome
fraction
MINIA

genome
fraction

GAT

Misassemblies
GAT

10X 31 160 NAN 98 NAN NAN
30X 47 86 37 100 100 0
50X 121 36 10 100 100 0
70X 121 18 4 100 100 0
90X 121 23 4 100 100 0
100X 121 23 4 100 100 0

Table 5: Acorus Calamus genome: Illustration of the robustness of our
approach as a function of the reads coverage (sequencing depth) given in the
first column. The second column contains the value of the k -mers used by
MINIA for unitigs generation. The number of the unitigs is given in the third
column, while the fourth column contains the number of contigs assembled
by GAT. The fifth(resp. sixth) column reports the genome fraction covered
by the unitigs(resp. contigs) generated by MINIA(resp. GAT). The last
column gives the number of misassembled contigs generated by GAT. When
the read coverage is insufficient (less than 30X), GAT does not find any
solution (indicated by NAN in the table). Otherwise, no misassemblies in the
produced contigs are observed.

return a result. For slightly bigger value of the read coverage (30X), GAT
succeeds in finding an assembly by choosing a k -mer of size 47. However,
the solution is relatively fragmented–37 contigs. The results improve more
and more above 50X sequencing depth, and attend the best assembly of 4
contigs above 70X.

5 Conclusion

It is commonly accepted that the last two stages in genome assembly are
scaffolding and gap filling. Since both problems have been proven to be NP-
hard, people usually propose heuristics as their solution. While we com-
pletely support this attitude in the case of huge genome instances, since
mostly exact approaches do not scale well, we believe that the bioinfor-
matics community should not neglect the design of exact techniques for
tackling computationally hard problems. In case of manageable data size
instances, the exact approaches normally produce better quality results than
the competing heuristics and thus provide a precious information for the as-
sociated genomes. The advantages of exactly solving the gap-filling problem
by dynamic programming on a bacterial data sets of moderate size has been
recently shown in [24].

Here we continue in the same direction of research and propose an exact
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approach for solving the scaffolding and gap filling phases in the particular
case of circular genomes. We merge both theses tasks and model them
as a graph optimization problem asking for the longest path in a graph
with additional distance constraints encoding the insert-size information. It
works both in case of mate-pairs and paired-ends distances. Furthermore,
we propose a Mixed Integer Linear Programming formulation for the above
graph problem and use the AMPL language to code it and to solve it by an
optimization solver.

On a benchmark of 33 chloroplast genomes our tool significantly out-
performs three recent heuristics with respect to the quality of the results.
Moreover, our running times are acceptable–the longest instance took less
than 18 seconds (see tables 1 and 2 ). These results fully justify the efforts
for designing exact approaches for genome assembly. Extending the method
to much bigger genomes is very challenging and a topic of ongoing research.
We are currently implementing advanced combinatorial optimization tech-
niques to increase the scalability of the approach without sacrificing the
accuracy of the results.
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