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DRAFT
ON THE BOLTZMANN GAS MIXTURE EQUATION: LINKING THE

KINETIC AND FLUID REGIMES

CARLO BIANCA AND CHRISTIAN DOGBE

Abstract. This paper aims at developing a new connection between the Boltzmann
equation and the Navier-Stokes equation. Specifically the paper deals with the derivation
of the macroscopic equations from asymptotic limits of the Boltzmann equation for a
binary gas mixture of hard-sphere gases. By extending the methodology of the single-
component gases case and by employing different time and space scalings, we show that
it is possible to recover, under suitable technical assumptions, various fluid dynamics
equations like the incompressible linearized and nonlinear Navier-Stokes equations, the
incompressible linearized and nonlinear Euler equations. The novelty of this paper is the
method that we propose, which differs from the Hilbert and Chapman-Enskog expansions.
Future research directions are also discussed in the last section of the paper with special
attention at the different scalings that can be employed in order to obtain equations
presenting a ghost effect.

Keywords: Kinetic theory of gases; Boltzmann equation; gas mixtures; rarefied gas
dynamics., hydrodynamics limits.
AMS Subject Classification (2010): 82C40, 76P05, 35Q35

1. Introduction

The statistical description of a rarefied gas, but in general of a thermodynamic system
not in thermodynamic equilibrium, dates back to Ludwig Boltzmann when in 1872 proposed
his celebrated equation. Since the derivation of the classical Boltzmann equation various
issues have remained elusive but a very substantial progress has been made in the study of
kinetic models for a gas composed of a very large number of identical particles, moving in
a three-dimensional space. In this context the interest in the statistical description of a gas
mixture has gained much attention and the theory for a simple gas has been generalized for
gas mixtures, see the paper of Sirovich and Thurber [29].

A gas mixture is a physical system more complex than a single fluid, even if one considers
non-reactive (inert) mixtures. To the best of our knowledge, the first investigation on the
dynamics of a gas mixture goes back to Fick [20] in 1855. Subsequently the derivation of the
Boltzmann equation for binary gas mixtures has been devised, see [15]. Recently, Kosuge et
al. [28] have investigated the case of a binary mixture of hard-sphere gases confined between
two parallel plates for a large difference of temperature. The interested reader in a more
deeper understanding of this topic is referred to, among others, papers [1], [2], [16].

The present paper deals with the mathematical derivation of incompressible fluid mechan-
ics equations, such as the Navier-Stokes (or Euler) equations, from the Boltzmann equation
for binary inert gas mixture. The paper thus aims at developing a new connection between
the Boltzmann equation and the Navier-Stokes equation. Specifically the paper deals with
the derivation of the macroscopic equations for a binary gas mixture of hard-sphere gases
from asymptotic limits of the Boltzmann equation. By extending the methodology of the
single-component gases case proposed in [17] and by employing different time and space
scalings, we show that it is possible to recover, under suitable technical assumptions, vari-
ous fluid dynamics equations like the incompressible linearized and nonlinear Navier-Stokes



DRAFT
2 C. BIANCA AND C. DOGBE

equations, the incompressible linearized and nonlinear Euler equations. It is also worth men-
tioning the papers [3, 4, 18] where a general class of kinetic models with collisional integral
having the classical collision invariants is considered and whose asymptotic limit leads to
the classical equations of the incompressible fluid mechanics.

Differently from the single-component gases case, the pertinent literature for the gaseous
mixtures case is more limited. In [32, 36] the condensation-vaporization problem for the
mixture of vapors of different species has been considered. The derivation of incompressible
Navier-Stokes equations from Boltzmann equations that model the dynamics of gases whose
particles may undergo nonelastic collisions has been proposed in [9]. In [11], starting from a
kinetic model for a chemical reaction, the authors have derived multi-temperature reactive
Euler equations. In [23, 25, 37] the authors have considered the Vlasov-Boltzmann system
for a fluid of two species of interacting particles and have performed diffusive expansions,
in terms of Knudsen numbers, for the solutions of the rescaled system around Maxwellians
of equal weights for the two species. The formal passage from a kinetic model to the
incompressible Navier-Stokes equations for a mixture of monoatomic gases with different
masses has been performed in [10]. In [34] the authors deals with an interesting proof
of an almost exponential decay rate of solutions near the Maxwellian equilibrium. It is
worth stressing that in the multispecies Boltzmann equation, each species does not conserve
the momentum and energy, although these quantities are conserved for the entire systems,
making difficult the hydrodynamic limit when, for example, the characteristic microscopic
time is of the order of the relaxation time of the temperature among the species [26].

The novelty of this paper is the method that we propose for deriving the hydrodynamic
equations from the Boltzmann equation, which differs from the Hilbert and Chapman-Enskog
expansions. Specifically the method consists in passing to the limit as the Knudsen number
vanishes in the local conservation laws of mass, momentum and energy that are satisfied by
“well-behaved” solutions of the Boltzmann gas mixture equations system.

It is worth stressing that a general strategy for deriving global hydrodynamic limits lead-
ing to incompressible models was proposed by Bardos, Golse and Levermore [4, 5, 3] who
have considered the hydrodynamic limit problems related to single species cases by consid-
ering as underlying framework the Chapman and Enskog framework [15] with more general
collision kernels. In particular in [4, 5, 3] the authors have shown that the compressible
Navier-Stokes equations is the governing hydrodynamic equations if the first order approxi-
mation is included when the Mach number is a constant and the Knudsen number goes to
zero, and the hydrodynamic equation is the incompressible Navier-Stokes equations when
the Mach number goes to zero with the same rate as the Knudsen number. A different ap-
proach has been recently proposed for the asymptotic limit of generalized Boltzmann-type
equations in which the action of a thermostat has been taken into account, see [7], [8].

The contents of this paper are organized as follows. After this introduction, Section
2 deals with the underlying framework, which is the binary gaseous mixture Boltzmann
equation, and we collect some basic ingredients and known results that we will use later
into the paper. In Section 3 we consider various scalings which lead to the derivation of the
hydrodynamic models by introducing the dimensionless parameter in the problem: the scaled
interaction mean-free path ε. The scalings that are of interest are the hyperbolic scaling and
the parabolic scaling. The proof of the main result is given in Section 4. Finally Section 5 is
concerned with further research directions on the possibility to derive macroscopic equations
by employing generalized scaling with the aim to obtain the limiting ghost effect system.

2. The Binary Gaseous Mixture Boltzmann Equation

This section is concerned with the presentation of the underlying framework that will
be subjected to the asymptotic analysis. Specifically we consider the evolution of a binary
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gaseous mixture, e.g. the mixture of the L-component and the H-component. In what
follows, the Greek letters α, ` are symbolically used to represent the two species having
masses mα and m`, that is say {α, `} ∈ {L,H}.

Let Fα = Fα(t, x, v) be the distribution function of the α-component that is solution of
the following binary gaseous mixture Boltzmann equations system (see Kogan [27], Chapman
and Cowling [15], Ferziger and Kaper [19], Hirschfelder et al. [24]):

∂tF
L + v ·∇xF L = 2√

π

1
Kn

(
Q(F L, F L) +Q(F L, F H)

)
(2.1a)

∂tF
H + v ·∇xF H = 2√

π

1
Kn

(
Q(F H, F L) +Q(F H, F H)

)
(2.1b)

where Kn is the Knudsen number and Q(Fα, F `) = Q(Fα, F `)(t, x, v) is the Boltzmann
collision operator:

Q(Fα, F `) =
∫

S+×R3

[Fα(v′∗)F `(v′)− Fα(v∗)F `(v)]B`α (|v∗ − v|, ω) dωdv∗, (2.2a)

F (v′∗) = F (t, x, v′∗), F (v′) = F (t, x, v′), F (v∗) = F (t, x, v∗), F (v) = F (t, x, v), (2.2b)

where S+ is the half-sphere defined by (v − v∗) ·ω, with ω an unit vector, v := v∗ − v is
the relative velocity, dω is the solid angle element in the direction of ω, B`α(= Bα`) is
a nonnegative function, whose functional form is determined by the intermolecular force
between species ` and α. In particular B`α is the collision kernel that corresponds to the
hard-sphere gas case (cross-section). The integration in Eq. (2.2) is carried out over the
whole space of v∗ and the whole direction of ω. The domain of integration appearing in
the sequel is, unless otherwise stated, the whole space of the integration variables. Since
we are not dealing with free particles, at least because of collisions, under some physical
assumptions, the Boltzmann collision operator, is an operator acting only w.r.t. velocity
variable v.
Assuming elastic collisions among the particles, the post-collisional velocities v′ and v′∗ reads:

v′ = v + 2m`

mα +m`
(ω ·v)ω, v′∗ = v∗ −

2mα

mα +m`
(ω ·v)ω. (2.3)

Relation (2.3) can be obtained from momentum and energy conservation during the collision
(v, v∗)↔ (v′, v′∗), that read:

mαv′ +m`v′∗ = mαv +m`v∗

mα|v′|2 +m`|v′∗|2 = mα|v|2 +m`|v∗|2

where mα is the molecular mass of the α-component.
As already mentioned, in this paper we consider the following hard-sphere form for the

function B`α appearing in the collision term (2.2) (see [15]):

B`α = (d`α)2

2 |ω ·V |, d`α = d` + dα

2 (2.4)

being dα the molecular diameter of species α.
It is worth stressing that if the right-hand side of (2.1) is set to zero, then this equation

would describe the free behavior of particles; one then obtains a transport equation.
The main aim of this paper is to investigate the steady behavior for small values of the

Knudsen number Kn, especially in the continuum limit where Kn vanishes. We underline
that there is no external force in the system.
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2.1. Properties of the collision operators. Denoting F = (FL, F H)T (in which “T”
means vector transpose), the collision operator can be written in compact form as follows:

C (F ) :=
(
Q(FL, FL) +Q(F H, FL)
Q(FL, F H) +Q(F H, F H)

)
(2.5)

and consequently the “two-species” Boltzmann equation now reads:

∂tF + v ·∇xF = C (F ). (2.6)

In order to clarify the collisions between two types of particles we use the following notations:

QL ≡ Q(F L, F L), QLH ≡ Q(F L, F H), QHL ≡ Q(F H, F L), QH ≡ Q(F H, F H).

Setting
ψ ≡ mLF L +mHF H and G ≡ mLF L −mHF H,

the system (2.1) can be rewritten as follows:

∂tψ + v ·∇xψ = mL(QL +QLH) +mH(QHL +QH) (2.7a)
∂tG+ v ·∇xG = mL(QL +QLH)−mH(QHL +QH). (2.7b)

We remark that, when mL = mH = m, i.e. the particles have unit mass then, the right-hand-
sides of (2.7) can be significantly simplified:1

∂tψ + v ·∇xψ = Q(ψ,ψ) (2.8a)
∂tG+ v ·∇xG = Q(G,G). (2.8b)

In what follows we summarize the main properties of the collision operator Q that are
fundamental in the study of the mixture equation (for details see, for instance the articles
by [22], [21], [31], [2], [17]):

(i) Mass conservation:∫
R3
QLdv = 0,

∫
R3
QLHdv = 0,

∫
R3
QHLdv = 0,

∫
R3
QHdv = 0, (2.9)

(ii) Momentum conservation:∫
R3
QLmLvdv = 0,

∫
R3

(QLHmLv +QHLmHv)dv = 0,
∫
R3
QHmHvdv = 0, (2.10)

(iii) Energy conservation:∫
R3
QLmL|v|2dv = 0,

∫
R3
(QLHmL|v|2 +QHLmH|v|2)dv = 0,

∫
R3
QHmH|v|2dv = 0, (2.11)

(iv) Entropy inequalities: For any functionG ∈ C∞0 (R+×R3
v) and for anyG = (GL, GH)T ,

the following inequality holds:

(C (G), logG)(L2(R3))2 =
(

C (G),
(

logGL
logGH

))
(L2(R3))2

≤ 0. (2.12)

1It turns out that it is convenient to consider the sum and difference of F L and F H, as proposed in [6]
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(v) Local thermal equilibria: As a consequence of the entropy inequality, any equilibrium
distribution, namely any distribution which maximizes the entropy, has the form of
a locally Maxwellian distribution. That is, for any G = (GL, GH)T , (C (G), logG) =
0⇔ G “is bi-Maxwellian”:

G =


nL
(
mL

2πθ

)3/2

exp
(
−mL |v − u|2

2θ

)

nH
(
mH

2πθ

)3/2

exp
(
−mH |v − u|2

2θ

)
 , (2.13)

where uL = uH = u ∈ R3, θL = θH = θ ∈ R+ for any L and H and nα =
∫
R3

Gαdv ∈ R+

is the number density of gas α; that is the two Maxwellians have the same local
temperature and mean velocities, with nα > 0 to maintain the positivity of the
distribution function and θ > 0 to guarantee its integrability with respect to v.
Here (·, ·) denotes the inner product in (L2(R3))2.

For simplicity we set:

ML ≡M[nL,u,θ](v) = nL
(
mL

2πθ

)3/2

exp
(
−mL |v − u|2

2θ

)
(2.14a)

MH ≡M[nH,u,θ](v) = nH
(
mH

2πθ

)3/2

exp
(
−mH |v − u|2

2θ

)
. (2.14b)

The density nα, the mean velocity uα = u and the temperature θα = θ are such that∫
M[nα,u,θ](v)

 1
mαv
mα|v|2

 dv =

 nα

mαnαu
mαnα|u|2 + 3θ

 . (2.15)

The quantities mαnαuα and Wα
M := 1

2m
αnα|u|2 + 3

2θ are the momentum and energy den-
sities of the Maxwellian. We have the same property for the species H.
When u = 0, we define

µL(v) = nL
(
mL

2πθ

)3/2

exp
(
−mL |v|2

2θ

)
, µH(v) = nH

(
mH

2πθ

)3/2

exp
(
−mH |v|2

2θ

)
. (2.16)

It is worth noting that if we define the scaling transformations of the functions defined on
R3 by

Λuf(ξ) = f(ξ − u), mλf(ξ) = λ−3f

(
ξ

λ

)
we get

M(n,u,θ)(v) = nm√θΛuM(1,0,1).

Hence it is enough to study the linearization of the collision integral at the Gaussian,

M(1,0,1)(v) = 1
(2π)3/2 e

− |v|2
2

which greatly simplifies the calculations involved.
Bearing all above in mind, we thus define Mα

(1,0,1) as an absolute normalized Maxwellians
with number density equal to 1, mass velocity equal to 0, temperature equal to 1, i.e.

Mα ≡M[1,0,1](v)(v) =
(
mα

2π

)3/2
exp

(
−mα |v|2

2

)
. (2.17)
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2.2. Moments and conservation laws. Macroscopic quantities such as the number, mo-
mentum and energy densities can be constructed from integrals of the distribution function
with respect to the velocity. We call such quantities “moments”. The density nα, mean
velocity uα and the energy densityWα of the species α can be computed from the α-species
distribution function fα according to nα

mαnαuα

Wα

 =
∫
Fα(v)

 1
mαvα

1
2m

α|v|2

 dv. (2.18)

The quantity mαnαuα is the α-species momentum density and Wα is the energy density.
Moreover the following fields can be defined:

c = v − uα (random velocity with bulk velocity u)

qαi = 1
2

∫
R3

ci|c|2Fαdv (i = 1, 2), (heat flow vector)

pαij =
∫
R3

cicjFα dv (i, j = 1, 2), (stress tensor with components pαij).

It is common to separate the drift motion (defined by the average velocity uα) and the
random kinetic motion (defined by the velocity c) in evaluating these integrals. By definition
of uα, one has ∫

v ⊗ vFαmαdv = mαnαuα ⊗ uα + Pα

where

Pα := trace(pij) =
∫

(v − uα)⊗ (v − uα)mαFαdv, (i, j = 1, 2),
and ∫ 1

2m
α|v|2vFαmαdv =Wαuα + Pαuα + Qα

with

Qα :=
∫
mα|v − uα|2

2 (v − uα)Fαdv.

The internal energy per particle eα and the temperature θα of α-species gas are defined as:

eα = mα

2nα

∫
R3

|v − uα|2Fα dv (2.19)

where, and in the sequel unless otherwise stated, the domain of integration is the whole space
of v (or of the variable of integration). We define the mass density %α by %α = mαnα. We also
define global quantities for the mixture: the counterparts of the mixture, i.e., the molecular
number density n, mass density %, mass average velocity v, pressure p and temperature θ,
are expressed by a proper combination of the quantities above as

n =
∑

α∈{L,H}

nα, % =
∑

α∈{L,H}

%α, E = nθ =
∑

α∈{L,H}

(
pα + 1

3 |u− v
α|2
)
.

The following proposition holds true, see [17] for the proof.

Proposition 2.1. Let Fα = Fα(t, x, v) be a solution of the Boltzmann mixture system (2.1)
that is locally integrable and rapidly decaying in v for each (t, x). Then the following local
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conservation laws hold :

∂t

∫
R3
Fαvdv +∇x

∫
R3
vFαdv = 0 (2.20a)

∂t

∫
R3
mαvFαdv +∇x

∫
R3
mαv ⊗ vFαdv =

∫
R3
mαvQ(Fα, F `)dv (2.20b)

∂t

∫
R3
mα 1

2 |v|
2Fαdv +∇x

∫
R3
mα 1

2 |v|L
2vFαdv =

∫
R3
mα 1

2 |v|
2Q(Fα, F `)dv (2.20c)

respectively the local conservation of mass, momentum and energy.

Bearing the previous notations for the thermodynamic fields in mind, these continuity
equations are, for the L-species:

∂tn
L +∇x ·(nLu) = 0 (2.21a)

∂t(mLnLu) +∇x
(∫

v ⊗ vF LmLdv

)
= QLH (2.21b)

∂tWL +∇x ·
(∫

mL|v|2

2 vF Ldv

)
= QLH (2.21c)

and similarly for the species H:
∂tn

H +∇x ·(nHu) = 0 (2.22a)

∂t(mHnHu) +∇x
(∫

v ⊗ vF HmHdv

)
= QHL (2.22b)

∂tWH +∇x ·
(∫

mH|v|2

2 vF Hdv

)
= QHL, (2.22c)

where Qα` and Qα` are the momentum and energy transfer rates toward species α from
species `: (

Qα`
Q`α

)
=
∫
Qα`(Fα, F `)(v)

(
mαv

1
2m

α|v|2
)
dv (2.23)

so that, because of the momentum and energy conservation properties of the unlike-collision
operators (2.10) and (2.11), we have

Qα` +Q`α = 0, Qα` + Q`α = 0. (2.24)

2.3. Linearization near global Maxwellians. In this subsection, we recall briefly some
basic ingredients on the linearized Boltzmann equation for a binary gaseous mixture.

Firstly we simplify the far field in (2.14). We further normalize the collision operator
(2.2) as

Q(Fα, F `) =
∫

S+×R3

|(v∗ − v), ω| [Fα(v′∗)F `(v′)− Fα(v∗)F `(v)]dωdv∗. (2.25)

Our main concern will be to study the operator (2.25) “close” to the equilibrium position.
We will reformulate the problem (2.1) as a perturbation of the equilibria. More explicitly,
if we define

Fα = µα +√µαfα, α ∈ {L, H}. (2.26)
as the standard perturbation of Fα(t, x, v) to √µα, we observe that the quadratic collision
operator (2.2) satisfies

QL(ML,ML) +QLH(ML,MH) = 0, and QHL(MH,ML) +QH(MH,MH) = 0.
Therefore, the linearized collision operator Lg, for g = [gL, gH], is defined by

Lg = [Lg,Hg], Lg ≡ −ALg −KLg, Hg ≡ −AHg −KHg (2.27)
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where

ALg ≡ µ−1/2
L Q(√µLg

L, µL) + µ
−1/2
L Q(√µLg

L, µH) (2.28a)

AHg ≡ µ−1/2
H Q(√µHg

H, µH) + µ
−1/2
H Q(√µHg

H, µL) (2.28b)

KLg ≡ µ−1/2
L Q(µL,

√
µLg

L) + µ
−1/2
L Q(µL,

√
µHg

H) (2.28c)

KHg ≡ µ−1/2
H Q(µH,

√
µHg

H) + µ
−1/2
H Q(µH,

√
µLg

L), (2.28d)

and the nonlinear part of the collision operator (2.2) is defined by

ΓL(g, h) = µ
−1/2
L Q(√µLg

L,
√
µLh

L) + µ
−1/2
L Q(√µLg

L,
√
µHh

H) (2.29a)

ΓH(g, h) = µ
−1/2
H Q(√µHg

H,
√
µHh

H) + µ
−1/2
H Q(√µHg

H,
√
µLh

L). (2.29b)

As expected from the H-theorem, L is non-negative and for every fixed (t, x) the null space
of L is given by the six dimensional space.
We denote by L2

M the associated Hilbert space, 〈·, ·〉 denotes the usual L2 inner prod-
uct without the weight. We summarize the properties of L in the following lemma (see
Proposition 2.1, pp. 635-638, [1]):

Lemma 2.2. We assume the hard-sphere interaction for the collision kernel.
1. L is the sum of a diagonal operator f 7→ Af

Af =
(
AL(v)fL

νH(v)fH

)
, with Aα(|v|) ∼ 1 + |v|

and a compact operator K. The domain of L is given by

D(L) = {f : ‖(1 + |v|)
1
2 f‖L1

M
<∞}.

2. L is self-adjoint in L2
M:〈

L
(
fL

fH

)
,

(
gL

gH

)〉
M

=
〈(

fL

fH

)
,L
(
gL

gH

)〉
M

(2.30)

L is nonnegative.
3. The kernel of L is a six-dimensional linear space:

ker(L) = Span{φi, i = 0, . . . , 5}
where

φ0 =
(

1
0

)
, φ1 =

(
0
1

)
, φi+1 =

(
mLvi
mHvi

)
, (i = 1, 2, 3), φ5 =

(
mL|v|2
mH|v|2

)
.

4. Any function f ∈ D(L) can be written as f = qf + wf with qf ∈ ker(L) and
w ∈ (ker(L))⊥ and we have 〈Lf, f〉M > δ0‖(1 + |v|)

1
2wf‖2.

3. Linking the Kinetic and Fluid Regimes: Multiscale Analysis

This section aims at showing how to connect the kinetic and fluid regimes via the method
of asymptotic expansions. The derivations (2.21) and (2.22) can be rigorous, if we take a
sequence of solutions Fαε , α ∈ {L, H} of (2.1), where the Knudsen number ε :=

√
π

2 Kn goes
to 0. The Knudsen number Kn is a small parameter defined by the ratio `0/L where `0 is
the mean free path and L is the typical length of the system.
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3.1. The rescaling problem. Different macroscopic models correspond to different scaling
assumptions. The so-called parabolic (low field) limit of kinetic equations leads to a drift-
diffusion type system (or reaction-diffusion system) in which the diffusion processes dominate
the behavior of the solutions. On the other hand, in the hyperbolic (high field) limit the
influence of the diffusion terms is of lower (or equal) order of magnitude in comparison with
other convective or interaction terms and the aim is the derivation of hyperbolic macroscopic
models.

Since all the collisions are completely elastic, we have the following scattering cross sec-
tions: σL (self collision for two L species); σH (self collision for two H species); σLH (cross
collision for H specie and L specie). We define:

νHH = σH

mH , νHL = σHL

mH νLL = σL

mL , νLH = σLH

mL (3.1)

where, νLL and νHH are the frequencies of self-collisions, νLH is frequency of collisions of L
molecules with H molecules, and νHL is frequency of collisions of H molecules with L molecules.
In order to take into account the collision between the species, we rewrite (2.1) as

∂tF
H + v ·∇xF H = νHLQ(F H, F L) + νHHQ(F H, F H) (3.2a)

∂tF
L + v ·∇xF L = νLLQ(F L, F L) + νLHQ

LH(F L, F H). (3.2b)

We will look at the solution of (3.2a) at time ε−1t and space ε−1x (hyperbolic scaling or
Euler scaling) by setting

F H
ε (t, x, v) = F H(ε−1t, ε−1x, v) (3.3)

together with the following choice of the frequency of collisions:
νHL = εq, q > 1, νHH = O(1). (3.4)

We will look at the solution of (3.2b) at a time ε−2t and space ε−1x (diffusion scaling) by
setting

F L
ε (t, x, v) = F L(ε−2t, ε−1x, v) (3.5)

together with the following choice of the frequency of collisions:
νLH = εq+1, q > 1, νLL = O(1). (3.6)

The rescaled distributions F H
ε (t, x, v) and F L

ε (t, x, v) have to solve the rescaled equation:

∂tF
H
ε + v ·∇xF H

ε = εqQ(F H
ε , F

L
ε ) + 1

ε
Q(F H

ε , F
H
ε ) (3.7a)

ε∂tF
L
ε + v ·∇xF L

ε = 1
ε
Q(F L

ε , F
L
ε ) + εq+1 Q(F L

ε , F
H
ε ). (3.7b)

We are looking for the diffusion/hydrodynamic asymptotic limit as ε→ 0. Clearly, Maxweliza-
tion for the L-species occurs faster than for the H-species, which is consistent with the
physical evidence. This choice is mainly guided by the structure of the collision operator.
We introduce the scaled time variable defined by

t = t′

εγ
(3.8)

where γ > 0 is the strength parameter of the scaling; this time scaling which is related to
the Strouhal number (ratio of the oscillation frequency to the bulk velocity) is introduced
to suppress, when γ 6= 0, the acoustic modes varying in a faster timescale than rotational
modes of the fluid. The Boltzmann mixture equations (3.7a)-(3.7b) become

εγ∂tF
H
ε + v ·∇xF H

ε = εqQ(F H
ε , F

L
ε ) + 1

ε
Q(F H

ε , F
H
ε ) (3.9a)

εγ+1∂tF
L
ε + v ·∇xF L

ε = 1
ε
Q(F L

ε , F
L
ε ) + εq+1 Q(F L

ε , F
H
ε ). (3.9b)
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We expect to recover the hydrodynamical equations in the limit ε → 0. Formally, it
is clear that in this limit the right-hand side of (3.9a) would become singular. The only
possibility to avoid this singularity is that

lim
ε→0

Q(F H
ε , F

H
ε ) = 0. (3.10)

Then, by (2.13), the limit must be a Maxwellian, namely,

F H
0 =M[nH, u, θ], (3.11)

for some (nH, u, θ) which can be function of t and x and similarly for the specie L.
First, if F L

ε and F H
ε solve respectively the binary gas mixture Boltzmann equations (3.9b)

and (3.9a) then F L
ε satisfies the local conservation laws of mass, momentum, and energy:

εγ+1∂t

∫
R3
F L
ε dv +∇x ·

∫
R3
vF L

ε dv = 0, (3.12a)

εγ+1∂t

∫
R3
vmLF L

ε dv +∇x ·
∫
R3
v ⊗ vmLF L

ε dv = εq+1mLQ(F L
ε , F

H
ε ), (3.12b)

εγ+1∂t

∫
R3

1
2 |v|

2mLF L
ε dv +∇x ·

∫
R3
v

1
2 |v|

2mLF L
ε dv = εq+1mLQ(F L

ε , F
H
ε ), (3.12c)

and for F H
ε one has:

εγ∂t

∫
R3
F H
ε dv +∇x ·

∫
R3
vF H

ε dv = 0, (3.13a)

εγ∂t

∫
R3
vmHF H

ε dv +∇x ·
∫
R3
v ⊗ vmHF H

ε dv = εqmHQ(F H
ε , F

L
ε ), (3.13b)

εγ∂t

∫
R3

1
2 |v|

2mHF H
ε dv +∇x ·

∫
R3
v

1
2 |v|

2mHF H
ε dv = εqmHQ(F H

ε , F
L
ε ). (3.13c)

Since the solutions of the asymptotic equations are not guaranteed to exist or to be regular,
our proof is only formal. We assume that for each ε > 0, Fαε is a solution of (3.9a) and
(3.9b) that satisfies the local conservation laws of mass, momentum, and energy, as well as
the local entropy relation. Assume that

Fαε → Fα a.e
as well as ∫

R3
Fαε dv →

∫
R3
Fαdv in C (R+; D ′(R3)),

∫
R3
vFαε dv →

∫
R3
vFαdv in C (R+; D ′(R3)),

∫
R3
|v|2Fαε dv →

∫
R3
|v|2Fαdv in C (R+; D ′(R3)),

while ∫
R3
v ⊗ vFαε dv →

∫
R3
v ⊗ vFαdv in C (R+; D ′(R3)),

∫
R3
v|v|2Fαε dv →

∫
R3
v|v|2Fαdv in C (R+; D ′(R3)),

as ε→ 0.
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3.2. The Hydrodynamic Regime. We start from Boltzmann gas mixture system of
equations (3.9b)-(3.9a). As shown by Bardos et al. [4] starting from the nonlinear Boltzmann
equation, a whole family of scaled kinetic equations could be considered in general, with
different scales in time, space and departure of the initial data from µ corresponding to
different powers of ε. At the formal level of description it is then possible to recover, under
suitable hypothesis, various fluid limits like the incompressible linearized and nonlinear
Navier-Stokes equations, the incompressible linearized and nonlinear Euler equations.

The small Mach number (ratio of the bulk velocity to the sound speed) is realized if Fαε
is close to an absolute Maxwellian. If one takes the standard Maxwellian, the distance to
this absolute Maxwellian can be scaled in the unit of the Knudsen number ε as

Fαε (t, x, v) = µα + εβµ1/2
α (v)gαε (t′, x, v), α ∈ {L,H} (3.14)

where β > 0 is the strength parameter of the scaling. The distribution function gα can be
viewed as the microscopic response of the system to gradients of macroscropic variables.

Varying the strengths of these two scalings yields different limits as ε → 0. One can
derive different fluid equations (and in particular incompressible models) depending on the
chosen scaling.

It is worth stressing that we did not try to get all possible scalings. In particular, one
can easily derive simplified models to those we have here.

Before going further into the analysis, a linearization of Fαε is required.

3.3. Solution near absolute Maxwellian. We will look for the solution Fαε near µ, that
is, the solution having the form

F H
ε = µH + εβµ

1
2
H g

H
ε, F L

ε = µL + εmµ
1
2
L g

L
ε, (3.15)

with gαε = O(1) as ε→ 0.
Plugging the scaling (3.15) into the mixture system (3.9) to deduce the governing equation

of the new unknown gαε , one finds:

εγ+1∂tg
L
ε + v ·∇xgLε = 1

ε
L(gLε ) + εm−1Γ(gLε ) + (µL)−1/2

{
εβ+q−m+1QLH(µL, µ1/2

H gHε )

+ εq+1QLH(µ1/2
L gLε , µH) + εβ+q+1QLH(µ

1
2
L g

L
ε, µ

1
2
H g

H
ε)
}

(3.16)

εγ∂tF
H
ε + v ·∇xF H

ε = 1
ε
H(gHε ) + εβ−1Γ(gHε ) + (µH)−1/2

{
εm+q−βQHL(µH , µ

1
2
L g

L
ε)

+ εqQLH(µ
1
2
H g

H
ε, µL) + εm+qQHL(µ

1
2
H g

H
ε, µ

1
2
L g

L
ε)
}

(3.17)

For notational convenience, we set:

LLH
1 (gLH

ε ) = (µL)−1/2QLH(µL, µ1/2
H gHε ), LLH

2 (gLH
ε ) = (µL)−1/2QLH(µ1/2

L gLε , µH) (3.18)

HHL
1 (gHL

ε ) = (µH)−1/2QHL(µH , µ
1
2
L g

L
ε) HHL

2 (gHL
ε ) = (µH)−1/2QLH(µ

1
2
H g

H
ε, µL) (3.19)

ΓLH
1 (gLH

ε ) = (µH)−1/2QLH(µ
1
2
L g

L
ε, µ

1
2
H g

H
ε), ΓHL

2 (gHL
ε ) = (µH)−1/2QHL(µ

1
2
H g

H
ε, µ

1
2
L g

L
ε). (3.20)

Here, εγ allows us to choose the phenomenon we want to emphasize. By varying ε,β we can
formally derive the systems of the fluids dynamics.

The main result of the present paper is to perform the asymptotic limit when γ = β = 0,
m = 1. Specifically the main result shows that we obtain compressible Euler equation for
F H and Incompressible Navier-Stokes equations for F L. The above formal derivation can be
stated more precisely as follows.
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Theorem 3.1. Let F H
ε be smooth and assume that it converges to a limit, say F H

0 , in a
sufficiently strong norm. Then, when γ = β = 0, m = 1, the limit of Eq. (3.9a) is a local
Maxwellian

F H
0 =M[nH, u, θ], (3.21)

and the fluid quantities (nH, u, θ) are governed by the compressible Euler equation
∂tn

H + divx(nHu) = 0
∂t(mHnHu) +∇x ·(mHnHu⊗ u) +∇xpH = 0
∂tWH +∇x ·

(
(WH + pH)u

)
= 0.

(3.22)

Moreover, the fluid quantities (nL, u, θ) satisfy the incompressible Navier-Stokes-Fourier
equations 

Divx((nL + θ)I) = ∇x(nL + θ) = 0
∂tu+ u · ∇xu− ν∆xu = −∇xpL

5
2 (∂tθ + u · ∇θ)− κ∆θ = 0

(3.23)

where u = 〈gLv〉 and θ = −nL =
〈(
|v|2

5 − 1
)
g
〉

and

κ = 1
3

∫
R3
B · L(B)µdv,

where µ > 0 is the kinematic viscosity and κ > 0 is the thermal diffusivity.

Corollary 3.2. Let F H
ε be smooth and assume that it converges to a limit, say F H

0 , in
a sufficiently strong norm. Then, when γ = β = 0, m > 1, the fluid quantities (nL, u, θ)
satisfy the Stokes equation, that is:

∂tu+∇xp = µ∆xu

divx u = 0
5
2∂tu = κ∆xθ.

(3.24)

This is a system of linear heat equations where the kinematic viscosity µ and the thermal
diffusivity κ have the same values as in the Navier-Stokes-Fourier system.

4. Proof of Theorem 3.1

This section is devoted to the proof of the main result of the present paper. As already
mentioned in the introduction, the method for deriving the hydrodynamic equations from
the Boltzmann equation differs from the Hilbert and Chapman-Enskog expansions.
Our proof of the Theorem 3.1 consists in the following five steps:

(1) Showing the asymptotic fluctuations;
(2) Establishing the incompressibility and Boussinesq’s relations;
(3) Evaluating the limit for moments of the form 〈Lξgε〉/ε for every ξ ∈ Dom(L) ∩

Null(L)⊥;
(4) Determining the motion equation and heat equations;
(5) Determining Euler equation for the species H and Navier-Stokes and Stokes equations

for species L.

Before starting the derivation of our differents equations, let’s note that from gε → g
in w − L2([0, T ];L2(Mdv)), it follows that the velocity moments ϕgε converge to 〈ϕg〉 in
w − L2([0, T ];L2(dx)) and hence in the sense of distributions, for any ϕ polynomial in v.

� Limit for the species H.
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Acting directly on the system of conservation laws deduced from Boltzlann mixture equa-
tion for the species H, we will show first that the moments of F H

0 , the weak limit of the
sequence F H

ε , solve the compressible Euler system.
We divide this part of the proof into two main steps.
Step 1. Convergence to local equilibrium. Writing (3.9) as

ε(∂tF H
ε + v ·∇xF H

ε ) = Q(F H
ε , F

H
ε ) + εq+1Q(F H

ε , F
L
ε ) (4.1)

and assuming that F H
ε are sufficiently smooth and converge to a limit, say F H

0 , in a sufficiently
strong norm, we deduce that

Q(F H
ε , F

H
ε ) = 0 =⇒ F H =M[nH, u, θ] (4.2)

for some (nH, u, θ) which can be function of t and x.
Step 2. Passing to the limit in the local conservation laws. Taking the inner product 〈·〉 of
(4.1) with the collision invariants of QHH , one deduces:

∂tn
H
ε +∇x ·(nH

εuε) = 0 (4.3a)
∂t(mHnH

εuε) +∇x
(
mHnH

εuε ⊗ uε
)

+∇xpH
ε = εqQHL (4.3b)

∂tWH
ε +∇x ·

(
WH
εuε + PH

εuε + QH
ε

)
= εqQHL. (4.3c)

Additionally, we obviously have that
nH
ε −−−→

ε→0
nH, uε −−−→

ε→0
u. (4.4)

We also see that
WH
ε −−−→

ε→0
WH := nH

(
mH |u|2

2 + 3
2κθ

)
. (4.5)

Finally, a direct calculation gives
PH
ε → PH := nHκBθI = pHI. (4.6)

Letting ε→ 0, in (4.3), one concludes that
∂tn

H + divx(nHu) = 0, (4.7a)
∂t(mHnHu) +∇x ·(mHnHu⊗ u) +∇xpH = 0, (4.7b)
∂tWH +∇x ·

(
(WH + pH)u

)
= 0. (4.7c)

� Limit for the species L.
In terms of the relative number density fluctuation fL

ε , and after dividing by ε, we obtain

∂tg
L
ε + v

ε
·∇xgLε = 1

ε2L(gLε ) + εm−2Γ(gLε ) + εq−mLLH
1 (gLH

ε ) + εqLLH
2 (gHL

ε ) + εqΓLH
1 (gLH

ε ). (4.8)

The local conservation laws are written in terms of the relative number density fluctuation
gL
ε defined by (3.15) as

ε∂t〈gL
ε〉+ divx〈vgε〉 = 0 (4.9a)

ε∂t〈vgL
ε〉+ divx〈v ⊗ vgε〉 = RL

ε,1 (4.9b)

ε∂t

〈
1
2 |v|

2gL
ε

〉
+ divx

〈
v

1
2 |v|

2gL
ε

〉
= RL

ε,2 (4.9c)

where
RL
ε,1 = εq+1〈vLLH

1 (gLH
ε ))〉+ εq〈vLLH

2 (gLH
ε )〉+ εq〈vΓLH

1 (gLH
ε )〉 (4.10)

and

RL
ε,2 = εq+1

〈
1
2 |v|

2LLH
1 (gLH

ε ))
〉

+ εq
〈

1
2 |v|

2LLH
2 (gLH

ε )
〉

+ εq
〈

1
2 |v|

2ΓLH
1 (gLH

ε )
〉
. (4.11)

The argument is split in several steps.
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Step 1: The limiting number density fluctuations. The first step shows that the limit g is
an infinitesimal Maxwellian.
Upon multiplying the equation (4.8) by ε and letting ε→ 0, this suggests that

gε → g in the sense of distributions on R∗+ × R3 × R3 with Lg = 0

which says that

Ker(L) = {gL, gL = a+ b · v + c|v|2, where (a, b, c) ∈ R× R3 × R}.

By Hilbert’s theorem, gL is an infinitesimal Maxwellian, meaning that gL(t, x, v) is of the
form

gL =
{
nL + u · v + θ

(
|v|2

2 − 3
2

)}
√
µL, (4.12)

for some (nL, u, θ) in L∞(dt;L2(dx;R× R3 × R)).
Step 2: The incompressibility condition. The second step shows that (nL, u, θ) satisfies the
incompressibility and Boussinesq relations.

Passing to the limit in the sense of distributions in the continuity equation, i.e. the first
equality in (4.9), we obtain

divx〈vg〉 = 0 or equivalently divx u = 0 (4.13)

which is the incompressibility condition in the Navier-Stokes equations.
Passing to the limit in the sense of distributions in the momentum equation, i.e. the

second equality in (4.9), we obtain

divx〈v ⊗ vg〉 = 0 or equivalently divx(nL + u) = 0. (4.14)

Since g ∈ L∞(dt;L2(µdvdx)), nL + θ ∈ L∞(dt;L2(x)); the only a.e. constant function in
L2(R3) being 0. The Boussinesq relation implies that the infinitesimal Maxwellian form
(4.12) of g reduces to

nL + θ = 0 and gL = v · u+
(
|v|2

2 − 5
2

)
θ, (4.15)

for some (u, θ) ∈ L∞(dt;L2(dx;R3 × R)).

Step 3: The limiting fluctuations of density and temperature. The next three steps show
that the evolution of (u, θ) is governed by the motion and heat equations. The difficulty
here is that when the local conservation laws (4.9) are written so that the time derivatives
are order 1, the fluxes become order 1/ε.

Note that the asymptotic limit can be formally derived from (3.16) using the asymptotic
expansion

gL
ε = gL + εh+ ε2k +O(ε3). (4.16)

Besides, to first order, we obtain

∂tg
L + v · ∇xh = −Lk + 2ΓL(gL, h) (4.17)

from which we deduce that

∂t〈vgL〉+∇x · 〈v ⊗ vh〉 = 0, (4.18a)

∂t

〈(
|v|2

5 − 1
)
gL
〉

+∇x ·
〈
v

(
|v|2

5 − 1
)
h

〉
= 0. (4.18b)

To get a closed equation for gL, we have to inverse the operator L.
The next Lemma claims that the integral equation Lφ = ψ, ψ ∈ L2(µdv) satisfies the

Fredholm alternative.
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Lemma 4.1. Let A = v ⊗ v − 1
3 |v|

2I (resp. B =
(
|v|2

2 −
5
2

)
v) in L2((µdv) ∩ Null⊥(L)).

The Fredholm alternative holds for L namely, that Range(L) = Null(L)⊥. In particular, it
implies that unique Â ∈ L2(µdv;R3×3) and B̂ ∈ L2(µdv;R3) exist which solve

LÂ = A Â ∈ Null⊥(L) entrywise, (4.19a)
LB̂ = B B̂ ∈ Null⊥(L) entrywise. (4.19b)

The solution Â or B̂ of the equation (4.19a) can then be written as

Â(v) = γ(|v|)A(v). (4.20)

The higher order terms of ε tend to zero, when ε→ 0. We finally obtain in the limit:

∂t〈gLvi〉+∇x · 〈Aij(Γ(gL, gL)− v · ∇gL)〉+∇
〈
|v|2

3 h

〉
. (4.21a)

∂t

〈(
|v|2

5 − 1
)
gL
〉

+∇x ·
〈
B̂(Γ(gL, gL)− v · ∇gL)

〉
= 0. (4.21b)

The crucial ingredient needed to compute the term 〈Aij(Γ(gL, gL))〉 in Eq. (4.21a) is the
following result whose proof can be found in [4].

Lemma 4.2. For each φ, ψ ∈ LM, one has
ΓM(φ, ψ) = 1

2LM(φψ) .

Proof. Differentiate twice the relation C(M(n,u,θ)) = 0, and observe that the range of the
differential dM(n,u,θ) is equal to Ker(L).

Bearing all above in mind, one has
〈ÂΓ(gL, gL〉 = 1

2 〈ÂL((gL)2)〉 = 1
2 〈Â(gL)2〉 = 1

2 〈Â⊗ Â〉 :
(
u⊗ u− 1

3 |u|
2I
)
.

Therefore
〈ÂΓ(gL, gL〉 → 1

2 〈A⊗A〉 :
(
u⊗ u− 1

3 |u|
2I
)
− 1

2 〈A⊗A〉 : D(u) .
Thus, in view of the previous computation, the second term in (4.21a) becomes

∇x · 〈Aij(Γ(gL, gL)− v · ∇gL)〉 → 1
2 〈A⊗A〉 :

(
u⊗ u− 1

3 |u|
2I
)
− 1

2 〈Â⊗A〉 : D(u)
=

(
u⊗ u− 1

3 |u|
2I
)
− νD(u)

where ν is defined by
ν = 1

10 〈Â : LÂ〉.
Upon placing this expression in the momentum conservation laws, we obtain

∂tu+ divx(u⊗ u)− ν divxD(u) + divx( 1
3 |u|

2I) +∇x 1
ε 〈

1
3 |v|

2gε〉 = 0 ,
or equivalently

∂tu+ divx(u⊗ u)− ν∆xu = −∇x
( 1
ε 〈

1
3 |v|

2gε〉 − 1
3 |u|

2) .
Indeed, the divergence free condition divx u = 0 implies that

divxD(u) = ∆xu+∇x(Divx u)− 2
3∇x(divx u) = ∆xu .

Equivalently
∂tu+ divx(u⊗ u)− ν∆xu = 0 (modulo gradient fields)

which is Navier-Stokes equation and the Fourier equation namely (3.23).

Case m > 1. Derivation of the Stokes equation (the momentum equation) for L.
Step 1. The starting point in our analysis is Eq. (4.8).
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Accordingly, we split the tensor v ⊗ v into its traceless and scalar component:
v ⊗ v =

(
v ⊗ v − 1

3 |v|
2I
)

+ 1
3 |v|

2I ,

so that the local conservation of momentum becomes

∂t〈vgLε 〉+ 1
ε
∇x · 〈(v ⊗ v −

1
3I)gε)〉+ 1

ε
∇x〈

1
3 |v|

2gε〉

= εq−m〈LLH
1 (gLH

ε )〉+ εq〈LLH
2 (gHL

ε )〉+ εq〈ΓLH
1 (gLH

ε )〉
(4.22)

where the trace of the tensor v ⊗ v has been separated out. The term ∇x〈 1
3 |v|

2gε〉 has the
form ∇xpε for pε ≡ 1

3 |v|
2gε it vanishes when, according to our prescription, we integrate

(4.22) against a divergence-free test function. Therefore, we are going to ignore this term in
the computation below.

The goal is to replace the second term in the equation (4.22) with an expression whose
limit we can compute. To this end let’s now define

Φ(v) = L−1(v ⊗ v − 1
3 |v|

2I).

Next, multiply (4.22) by Φ and average it over the velocity domain. Using the selfadjointness
of L, we obtain

ε∂t〈Φ(v)gε〉+∇x ·〈v ⊗ Φgε〉 = −1
ε
〈(v ⊗ v − 1

3 |v|
2I)gε〉+ εq−m〈LLH

1 (gLH
ε )Φ〉

+ εq〈LLH
2 (gHL

ε )Φ〉+ εq〈ΓLH
1 (gLH

ε )Φ〉. (4.23)
Upon formally letting ε→ 0 in this equation, only the second and third terms do not vanish,
so that

∇x ·〈v ⊗ Φgε〉 = −1
ε
〈(v ⊗ v − 1

3 |v|
2I)gε〉+O(ε). (4.24)

One can then pass to the limit in (4.8) to get
∂t〈vg〉 − ∇x ·(∇x ·〈v ⊗ Φg〉) = 0. (4.25)

To conclude, we need to compute the term ∇x ·〈v ⊗ Φg〉. Observe that

∇x ·〈v ⊗ Φg〉 = 〈L−1(v ⊗ v − 1
3 |v|

2I)⊗ (v ⊗ v) :∇xu. (4.26)

One can add to the expression (4.26), without altering it, the term − 1
3 |v|

2I since the latter
is in Null(L), which is orthogonal to the range of L−1. We can rewrite

∇x ·〈v ⊗ Φg〉 = 〈L−1(v ⊗ v − 1
3 |v|

2I)⊗ (v ⊗ v − 1
3 |v|

2I) :∇xu. (4.27)

By virtue of (4.20), we can set

〈L−1(v ⊗ v − 1
3 |v|

2I)⊗ (v ⊗ v − 1
3 |v|

2I)〉

= 〈β(|v|)(v ⊗ v − 1
3 |v|

2I)⊗ (v ⊗ v − 1
3 |v|

2I)〉 ≡ T

where T is fourth order tensor. Taking into account the fact that L−1 is a positive definite
operator, the diagonal entries of T are positive quantities, as one expects them to be, given
their physical interpretation in relation with the kinematic viscosity ν, as we are going to
see. Componentwise, we have

Tijlm = 〈β(|v|)(vivj −
1
3 |v|

2δij)(vlvm −
1
3 |v|

2δlm)〉,

which, because of the oddness of the integrand, vanishes whenever there is an unpaired
index. The many symmetries of the tensor T allow to write, by inspection,

Tijlm = aδijδlm + bδilδjm + cδimδjl.
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But Tijlm = Tijml implies c = b, so Tijlm = c(δimδjl+δilδjm)+aδijδlm. Since (v⊗v− 1
3 |v|

2I)
is a traceless tensor, it has to be that Tijll =llij= 0, which yields 2cδilδjl + aδijδll = 0, that
is a = − 1

3c, so that

Tijlm = c(δimδjl + δilδjm −
2
3δijδlm).

The value of c is obtained by taking the double trace of T . One writes Tijij = 20c, from
which the positivity of c follows.

To compute (T : ∇xu), notice that δimδjl∂lum = ∂jui, δilδjm∂lum = ∂iuj while the
incompressibility condition yields δijδlm∂lum = 0. Therefore one gets

T :∇xu = c(∇xu+ (∇xu)T ).

Taking the divergence of the expression (4.27), we finally obtain

∇x ·(∇x ·〈v ⊗ Φg〉) = c∇x ·(∇xu+ (∇xu)T ) = ν∆u(t, x), (4.28)

where we used the incompressibilty condition and set c = ν.
From equation (4.25) because of the weak notion of solution derived from the Boltzmann

equation, one has
d

dt

∫
φ · udx = ν

∫
∆xφ · udx,

valid for any φ ∈ V = {u ∈ (C∞(Ω))3, ∇x · u = 0,
∫
udx = 0}, where Ω ⊂ R3, so that, for

almost every t1, t2 the relation∫
φ · u(t2)dx−

∫
φ · u(t1)dx− ν

∫ t2

t1

∫
∆xφ · udtdx = 0

holds. One can therefore write

∂tu(t, x) +∇xp(t, x) = ν∆xu(t, x).

To obtain the heat equation we start with equation (4.12). One easily checks that

〈12 |v|
2 − 5)gL

ε〉 → 〈
1
2 |v|

2 − 5)gL〉 = 5
2θ (4.29)

and one finds that
〈B̂v ·∇xgL〉 = 〈52κ∇xθ〉 (4.30)

and like

〈B̂Q(gL, gL)〉 = 1
2 〈B̂Lµ((gL)2)〉 = 1

2 〈(LµB̂)(gL)2〉 = 1
2 〈B(gL)2〉 = 5

2uθ. (4.31)

Combining (4.29), (4.30) with (4.31), we thereby finish the proof of the first part of our
theorem:

5
2∂tθ + div(uθ)− κ∆xθ = 0,

with
κ = 2

15 〈B̂ · LB̂〉.

Step 2. Derivation of the energy equation
This step shows that the evolution of (u, θ) is governed by the motion and heat equations

(3.24).
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Combining the conservation laws for mass and energy
5
2

(
∂t〈gε〉+ 1

ε
∇x ·〈vgε〉

)
= 0 (4.32a)

∂t

〈
1
2 |v|

2gε

〉
+ 1
ε
∇x ·〈vgε〉 = RL

ε,2 (4.32b)

yields

∂t

〈(
1
2 |v|

2 − 5
2

)
gε

〉
+ 1
ε
∇x ·

〈(
v

1
2 |v|

2 − 5
2

)
gε

〉
= RL

ε,2. (4.33)

Upon formally letting ε→ 0 in the equation (4.33), the first term of (4.33) converges to

∂t

〈
( 1

2 |v|
2 − 5

2)(n(t, x) + v · u(t, x) +
(

1
2 |v|

2 − 3
2)θ(t, x)

)〉
= 3

2∂tθ − ∂t
〈
n(t, x) + v · u(t, x) +

(
1
2 |v|

2 − 3
2)θ(t, x)

)〉
= 3

2∂tθ − ∂tn = 5
2∂tθ, (4.34)

where we used 〈(1
2 |v|

2− 3
2)2〉 = 3

2 , 〈(
1
2 |v|

2− 3
2)〉 = 0 and the integrated Boussinesq relation

n = −θ.
For the second term of (4.33) we make use of a technique similar to the one employed for
the corresponding term in the momentum equation, namely write

1
ε
∇x ·

〈(
v

1
2 |v|

2 − 5
2

)
gε

〉
= 1
ε
〈ΨLgε〉, (4.35)

where now
Ψ ≡ L−1[

(
1
2 |v|

2 − 5
2

)
v]. (4.36)

It can be checked that ( 1
2 |v|

2− 5
2 )v is in Null(L)⊥ and so it is in the range of L−1. Eliminate

〈ΨLgε〉 using the Boltzmann equation, which gives

〈ΨLgε〉 = −ε〈Ψ∂tgε〉 − 〈Ψv · ∇xgε〉. (4.37)

The first term on the right-hand side goes to zero, while taking the limit in the second term
and bringing the gradient outside, one sees that 〈Ψv·∇xgε〉 converges to ∇x·〈v⊗Ψg〉. Direct
calculation shows that

∇x ·〈v ⊗Ψg〉 = ∇x ·〈v ⊗Ψ(n(t, x) + v · u(t, x) + ( 1
2 |v|

2 − 5
2 )θ(t, x))〉

= ∇x ·〈v ⊗ L−1[( 1
2 |v|

2 − 5
2 )v](v · u(t, x) + ( 1

2 |v|
2 − 5

2 )θ(t, x)〉,

where again, the Boussinesq relation has been used. Since L−1 preserves the parity, the only
surviving term is

∇x ·〈v ⊗ L−1[( 1
2 |v|

2 − 5
2 )v]( 1

2 |v|
2 − 5

2 )θ(t, x)〉

= 〈L−1[( 1
2 |v|

2 − 5
2 )v]⊗ v( 1

2 |v|
2 − 5

2 )〉 · ∇xθ(t, x) = 5
2κ∇xθ. (4.38)

It follows directly from Lemma 4.1 and relation (4.20) and the symmetry properties of the
integrand, that

〈L−1[( 1
2 |v|

2 − 5
2 )v]⊗ v( 1

2 |v|
2 − 5

2 )〉

= 〈α(|v|)( 1
2 |v|

2 − 5
2)v ⊗ v( 1

2 |v|
2 − 5

2 )〉 = 5
2κI, (4.39)
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with
κ = 2

15 〈Ψ · LΨ〉.

Taking the divergence of the expression (4.38) and gathering the limiting terms in (4.33),
we finally get

∂tθ(t, x) = κ∆(t, x).
We have thus recovered the Stokes equation. This concludes the proof of the Theorem 3.1
and of the related corollary.

5. Conclusions and Research Perspectives

This paper has been concerned with a hydrodynamic limit for a binary inert gas mixture
by employing a new mathematical method. This study reveals significant physical and
mathematical features which result from the interaction of the component gases as described
by the kinetic models. Our analysis has been limited to the case γ = β = 0, m ≥ 1 that
has shown an important macroscopic dynamics related to the Navier-Stokes equations. The
derivation of macroscopic equation for further general cases is the main research perspective.

In particular we are interested in showing that at the hydrodynamic scale the system
shows that the flow of the mixture vanishes in the continuum limit, but the vanishing flow
gives a finite effect on the behavior of the mixture in this limit. This is a kind of phenomena
called “ghost effects” (the effect of an infinitesimal flow field on other physical quantities,
such as the temperature field) discovered recently by Sone [33], [30] in the continuum limit
that has been studied in [35].

The analysis of the ghost effect in a single component gas is one of the classical problems in
modern kinetic theory and has been tackled by various methods, including moment methods.
It is well known that rarefied gases, in which the molecular mean free path is not negligible
compared to the typical scale of the flow, should be dealt with the Boltzmann equation
and not by the system of conventional fluid-dynamic equations. The analysis of the latter
equation is, however, not an easy task, mainly because of the complexity of the collision term,
which represents effects of molecular interactions on a change of the velocity distribution
function of molecules [31]. This effect is particularly important because it reveals the fatal
defect contained in the Navier-Stokes system for a gas. The effect manifests itself in a wide
class of problems.

Moreover we are interested in showing that the sequence: Euler equations, Navier-Stokes
equations, Burnett equations, etc. breaks down at the Burnett level since these equations are
ill-posed [12]. In fact, it is well known (see [12], [13], [14]) that the Burnett hydrodynamic
equations violate the basic physics behind the Boltzmann equation. Namely, sufficiently
short acoustic waves are amplified with time instead of decaying.

The rigorous proofs are in progress and the results will be presented in due course.
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