
HAL Id: hal-02151779
https://hal.science/hal-02151779v1

Submitted on 10 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ON THE EXISTENCE AND UNIQUENESS OF
INVARIANT MEASURE FOR MULTIDIMENSIONAL

STOCHASTIC PROCESSES
C. Bianca, Christian Dogbe

To cite this version:
C. Bianca, Christian Dogbe. ON THE EXISTENCE AND UNIQUENESS OF INVARIANT MEA-
SURE FOR MULTIDIMENSIONAL STOCHASTIC PROCESSES. Nonlinear Studies, 2017. �hal-
02151779�

https://hal.science/hal-02151779v1
https://hal.archives-ouvertes.fr


DRAFT
ON THE EXISTENCE AND UNIQUENESS OF INVARIANT MEASURE

FOR MULTIDIMENSIONAL STOCHASTIC PROCESSES

C. BIANCA AND C. DOGBE

Abstract. - This paper deals with the mathematical analysis of multidimensional pro-
cesses solution of a class of stochastic differential equations. Specifically the analysis is
addressed to the derivation of criteria for the existence and uniqueness of the invariant
probability measure and its regularity properties in the case of stochastic processes whose
infinitesimal generator is uniformly elliptic or degenerate. The criteria are based on the
definition of Lyapunov functions and the Hörmander’s rank bracket condition. Finally
the criteria are employed for characterizing the invariant probability measure is some
applications, including Kolmogorov-Fokker-Planck-type operators.
Keywords. Invariant measure; Ergodicity; Elliptic equations for measures; Lyapunov
functions
MSC. 60H15; 82C31; 35R60; 35H10

1. Introduction

The existence and uniqueness of an invariant probability measure has recently gained
much attention considering the linking with the Markov processes theory. This paper aims
at exploring the invariant probability measure for a class of partial differential equations
(PDE) by employing techniques recently proposed. Specifically, let (Ω,F,P) be a complete
probability space, the present paper is concerned with a multidimensional diffusion process
X(t) .= Xt which is solution of the following stochastic differential problem:{

dXt = b(Xt) dt+ σ(Xt)dWt,

X0 = u0 ∈ Rd,
(1.1)

where (Wt)t∈[0,T ] is the standard d-dimensional Brownian motion, d ∈ N, the drift coefficient
b : Rd → Rd and σ : Rd → L(Rm,Rd), m ∈ N, are (at least) Lipschitz continuous function.
As well known, the problem (1.1) admits a unique solution (Xt)t>0, t > 0, x ∈ Rd, see, among
others, Friedman [8]. The solution of (1.1) admits the following stochastic representation:

Stϕ(x) := E[ϕ(X(t, x))], x ∈ Rd, ϕ ∈ Cb(Rd), (1.2)

where St, t > 0, is the corresponding transition semigroup, Cb(Rd) denotes the space of
all functions from Rd into R that are uniformly continuous and bounded, E denotes the
conditional expectation. If u0 : Rd → R is a regular function, then the following function:

u(t, x) := (Stu0)(x) := E[u0(Xt)] (1.3)
is the unique solution of the following problem:

∂u

∂t
+ Lu = 0 in [0,+∞)× Rd

u(0, x) ≡ u0 in Rd
(1.4)
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where L is the linear, second-order, uniformly elliptic operator associated with a diffusion
process in the whole space.
Let ∇ and D2 denote the gradient and the Hessian operators with respect to the spatial
variable x, respectively. The infinitesimal generator of the process (1.1) reads:

L = −a(x) : D2 − b(x)∇, (1.5)

where the matrix a(x) = (aij(x)) is defined as follows:

aij(x) = 1
2

k∑
`=1

σi`(x)σj`(x), (1.6)

and

a(x) : D2 = trace[aD2] =
d∑

i,j=1
aij∂ij .

It is worth pointing out that, under some assumptions on the coefficients, for any function
u ∈ W 2,1(Rd), the operators Lu and L∗u are defined in the generalized function set. For a
function ϕ ∈ C∞0 (Rd), we have (after integration by parts):

〈aij∂iju, ϕ〉 = −
∫
Rd

∂ju ∂i(aijϕ)dx,

where 〈·, ·〉 denotes the Euclidean inner-product in Rd with the Euclidean norm for a vector

x: |x| =
√

〈x, x〉 =
(∑

i

x2
i

)1/2

. In particular ∂i(aijϕ) = ϕ∂iaij + aij∂iϕ ∈ L2(Rd) and

similarly ∂i(biu) and ∂i(aij∂ju) are meaningful. Hence the formal adjoint is defined by

L∗ψ := −
∑
i,j

∂ij(aijψ) +
∑
i

∂i(biψ) (1.7)

where the summation convention is employed if confusion does not occur.
The connection between the diffusion process and the above defined problem can be

proved directly by using the Itô calculus. Accordingly, S(t) = e−tL denotes the C0-semigroup
(strongly continuous one-parameter semigroup) whose infinitesimal generator is −L.

The present paper deals with the existence and uniqueness of invariant probability mea-
sure for the above defined stochastic problem. Specifically the analysis is addressed to the
nondegenerate case (the least eigenvalue of σσT is bounded away from zero on every compact
subset of Rd) and the degenerate case. More precisely, if we assume that bi(x) ∈ C∞(Rd),
and the d× d matrix a is symmetric and positive semidefinite, i.e.

aij(x) = aji(x) ∈ C∞(Rd),
d∑

i,j=1
aij(x)ξiξj > 0 for any (x, ξ) ∈ Rd × Rd,

then L is a degenerate elliptic operator in Rd, i.e. (aij(x)) is not strictly positive definite
everywhere. An important example is the degenerate Ornstein-Uhlenbeck operator:

− Lu = trace(AD2u) + 〈Bx,Du〉, x ∈ Rd. (1.8)

A particular case of (1.6) is the uncontrolled diffusion, i.e. σ = σ(x), which leads to quasi-
linear equations of the degenerate elliptic equations.
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As known, for a bounded open set Ω in Rd, the controlled diffusion in (1.1), is said to be
nondegenerate in Ω if L is uniformly elliptic in Ω, namely if the following inequality holds:

d∑
i,j=1

aij(x)ξiξj > θ|ξ|2, (1.9)

for some constant θ > 0, ξ ∈ Rd and x ∈ Ω. The controlled diffusion in (1.1) is nondegenerate
(in Rd) if it is nondegenerate on every open ball BR. Intuitively this assumption means that
each component of the state vector x is directly influenced by the random increments dWt.

The present paper is organized into six more sections which follow this introduction.
Specifically Section 2 is devoted to review the definition of the mean and the strong er-
godicity and the definition of the related invariant probability measure. The existence and
uniqueness of the invariant probability measure is analyzed in Section 3 in the uniformly
elliptic case. Specifically the equivalence among different assumptions is studied, the re-
lated Liouville problem is analyzed and by employing the definition of (weak and strong)
Lyapunov functions the main results on the existence and uniqueness of the invariant prob-
ability measure for the Markov diffusion process solution of (1.1) follows. The regularity
properties of the invariant measure are also established. The degenerate framework is an-
alyzed in Section 4 where, in particular, the main results are obtained by employing the
Hörmander’s rank bracket condition. Section 5 is devoted to further investigations for the
one-dimensional framework. Section 6 deals with various examples and applications where
the existence and uniqueness of the invariant measure can be gained by employing the meth-
ods developed in the present paper. Finally, Section 7 concludes the paper with references
to future investigations.

2. Preliminaries

This section collects some basic definitions and results related to the ergodicity of a
diffusion process Xt. The reader interested in a more deeper understanding is referred to
the lecture of Lions [16].
The existence of invariant probability measure for a diffusion process is strictly related to
the notion of ergodicity. A probabilistic approach for the existence and uniqueness of an
invariant distribution and the related ergodicity can be found in the work of Meyn and
Tweedie [17], where the interest focuses on systems driven by jump processes.
The definition of ergodicity is based on the following time-averaged Cesàro functional:

Cu(t, x) := 1
t

∫ t

0
u(s, x) ds, t > 0.

Definition 2.1. (Cesàro mean ergodicity). Let Ω be a compact set of Rd. The system (1.4)
(or the associated semigroup of (1.5)) is said ergodic in the sense of Cesàro, if:
• L admits a unique invariant probability measure m, namely∫

Rd

e−tL u0dm =
∫
Rd

u0 dm, ∀t > 0, and
∫
Rd

m(x)dx = 1. (2.1)

• The solution u(t, x) of Eq. (1.4) satisfies the following assumption:

Cu(t, x) −−−→
t→∞

c :=
∫
Rd

u0 dm, uniformly in x. (2.2)
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Definition 2.2. (Strong ergodicity). The system (1.4) is said ergodic if L admits a unique
invariant probability measure m such that

L∗m = 0 in Rd, m > 0,
∫
Rd

dm = 1, (2.3)

and the solution u(t, x) of the Eq. (1.4) satisfies the following assumption:

lim
t→+∞

u(t, x) = c :=
∫
Rd

u0 dm, (2.4)

uniformly in x. The term c is the so-called ergodic constant.

It is worth stressing that a probability measure m ∈ Rd is an invariant measure of the
diffusion process Xt if for each u0 ∈ L∞(Rd), one has (see [5]):∫

Rd

u(t, x)m(x) dx =
∫
Rd

u0(x)m(x) dx, (2.5)

where u(t, x) = Ex[u0(Xt)] is the solution of the parabolic Cauchy problem (1.4). In differ-
ential form (infinitesimal invariance) one has:∫

Rd

Lf(x)m(x) dx = 0 ∀ f ∈ C∞0 (Rd), (2.6)

where C∞0 (Rd) denotes the set of all infinitely differentiable functions with compact support.
It is worth pointing out that the above definition of invariant measure is fairly general,
because no regularity for L is required. However, if L is regular enough, the identity (2.1)
can be equivalently rewritten in a different way. Indeed by differentiation one has∫

Rd

Lu0 dm = 0,

which can be rewritten as 〈Lu0,m〉 = 0; going back to (1.7) and by the arbitrariness of u0,
this becomes

L∗u = 0. (2.7)
Conversely, assume that (2.7) is fulfilled, then we observe that

d

dt

∫
Rd

S(t)u0dm = −
∫
Lu0dm = −

∫
Rd

u0 dL∗m = 0,

whence we deduce that t 7→
∫
Rd

S(t)u0 dm is constant and (2.1) follows.

It is worth mentioning that Cesàro mean ergodicity implies that for all u0 ∈ C (Rd)
1
T

∫ T

0
u0(Xt)dt

a.s.−−−→
ε→0

∫
Rd

u0 dm if t > +∞. (2.8)

This paper aims at answering to the questions: How a diffusion process is related to
invariant measures? There exists and it is unique a probability measure m on Rd such that

L∗m = 0? (2.9)
The answer is negative in general. Indeed if b = 0, then any solution of (2.9) with the matrix
A = I has harmonic density, hence cannot be a probability measure. Moreover if one takes
any smooth probability density ϕ on R such that ϕ(0) = 0 and ϕ > 0 outside 0, then the
measure ϕdx is not unique solution of (2.9) with A = 1 and b(x) = ϕ′(x)/ϕ(x). Indeed, let
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ψ(x) = ϕ(x)
2 if x 6 0 and ψ(x) = cϕ(x) if x > 0, where c is such that ψ(x) is a probability

density. Then ψ′/ψ = ϕ′ϕ and ψdx satisfies the same equation. A typical example is the
function ϕ(x) = cx2e−x

2 . It appears that the uniqueness is lost because of the singularity
of b at the origin. However in general for d > 2 the smoothness of b does not guarantee the
uniqueness.
Another example is the heat equation for x ∈ R:

∂u

∂t
− 1

2a(x)∂
2u

∂x2 = 0, a > 0.

If a = 1 (weak growth) we have not ergodicity because u does not tend towards a constant
which is the mean of the initial condition. Typically if the initial condition is constant at
infinity, it is the limit of the constant of the value at infinity, thus it is not a measure.
It is worth noting that, in the case of uniformly bounded coefficients (or more generally
that L is uniformly strongly hypoelliptic in the sense of Bony) and classical solutions, the
probability measure for the parabolic equation (1.4) has been investigated in the important
paper by Haminskii [15], where the main objective was to study the behavior of solutions
and their stabilization as t→∞.

An interesting relationship between uniqueness and ergodicity of an invariant probability
measure is contained in the following proposition [16].

Proposition 2.1. The following statements are equivalent.
(i) The process Xt solution of (1.1) is ergodic.
(ii) The diffusion (1.1) has an invariant probability measure.

(iii) There exists a unique invariant probability measure m, if and only if, for every
u0 ∈ L∞(Rd)

Cu(t, x) −−−→
t→∞

c :=
∫
Rd

u0 dm, uniformly in x. (2.10)

(iv) For any u0 ∈ L∞(Rd), u(x, t) −−−−→
t→+∞

c :=
∫
Rd

u0mdx, uniformly in x.

3. The uniformly elliptic case

This section is devoted to the existence and uniqueness analysis of invariant measure for
the problem (1.4) under the assumption that the operator L is uniformly elliptic (see (1.9)).

It is well known that the solution of equation (1.1) may explode in a finite time T .
However, according to [19], if the mean return time τ(t, x) is bounded, the existence and
uniqueness of a global solution, i.e. defined on [0, T ], is ensured. Roughly speaking, let
B0 = B(x0, r0) be the closed ball of center x0 and radius r0. It is expected that the
underlying process would return to the ball in finite times. Since, these are random times, it
means that their expectation is finite. Let τi be the return time to the state i and τ0 be the
first time at which the path of the process Xt reaches the boundary ∂B0. In the probability
language, non-exploding solution means that if we are in the whole space Rd (i.e. a ball in
Rd), the ergodicity is related to the existence of a point such that the first time of reaching
the ball satisfies

Ex(τ0) <∞, ∀ x. (3.1)

If the process leaves from very far, it will take an increasingly long time to reach x. Hence
Ex(τ0) must tend towards infinity when x tends to infinity. Let x0 be a point of the ball B0.
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We look at the time to reach x0.
Let w be the following function: {

w(x) := Ex(τ) <∞
w →∞ |x| → ∞.

(3.2)

From the PDE point of view, Eq. (3.2) means that there exists a function w̃ which solves
the following boundary value problem

Lw̃ = 1, on Bc0 (3.3a)
w̃ = 0 in ∂B0 (3.3b)
w̃ > 0, w →∞ |x| → ∞. (3.3c)

It is worth noticing that Eq. (3.3b) is the Dirichlet condition, (3.3c) is the property of the
solution, while one is looking for solutions of the equation (3.3a).
A different way to write (3.3a)-(3.3c) without the boundaries conditions is the following
Lyapunov assumption.
Assumption 3.1.

There exist functions f and w ∈ C∞(Rd) such that
Lw + χw = 1, x ∈ Rd

w ∈ C 0(Rd) ∩ C∞(Bc0), w > 0
C∞ 3 χ > 0 with compact support, i.e.
χ 6≡ 0 strictly positive somewhere

(3.4)

and there exists a ball B0 on which χ > 0.

Roughly speaking, the ball is replaced by the choice of the function χ and the existence of
such a function means the existence of a solution. Indeed χ is a particular function defined
as follows:

χ =
{ +∞ in B0

0 in Bc0.

Remark 3.2. The assumption “χ 6≡ 0 strictly positive somewhere” in Eq. (3.4) can be
rewritten as follows:

∃x0, ∃ r0 > 0 such that χ > α1
B0

, α > 0

where 1B0 is the indicator function of the unit ball B. We claim that

Proposition 3.3. The Assumption 3.1 and Eqs. (3.3a)-(3.3c) are equivalent.

Proof of Proposition 3.3. First we prove that the Assumption 3.1 implies (3.3a)-(3.3c).
The claim follows by a purely probabilistic argument which states that the solution of (3.4)
is given by the following Feynman-Kac formula:

w(x) = E
[∫ ∞

0
exp
(
−
∫ t

0
χ(xs)ds

)
dt

]
. (3.5)
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It is worth mentioning that in the integral (3.5), when we take the first reaching time of the
support of the ball B1 (where B1 ⊃ B0)

w(x) > E
[∫ τ1

0
exp
(
−
∫ t

0
χ(xs)ds

)
dt

]
(3.6)

and if we know that the support of supp(χ) ⊂ B1, thus for all the times up to τ1 which is
0, we have:

w(x) > E
[∫ τ

0
exp
(
−
∫ t

0
χ(xs)ds

)
dt

]
= E[τ1].

This shows that the ball B0 can be chosen arbitrarily and establishes the claim.
We prove now that the problem (3.3a)-(3.3c) implies (3.4). The proof is based on the

fact that w̃ is extendable to a continuous function. Indeed, the regularity (i.e. smoothness)
of w̃ in the uniformly elliptic framework allows to extend it to the whole Rd, to be reduced
to the following equation with some function f :

Lw̃ = f in Bc0

f ≡ 1, w̃ > 0 in Bc0

w̃ > −c0, f > −c0

with a constant c0. Then, the lemma is proved once we will construct a super-solution of
the equation (3.4). In order to establish this result, adding a constant c to w̃ and looking
at the quantity

Q := L(w̃ + c) + χ(w̃ + c),
to obtain

L(w̃ + c) + χ(w̃ + c) > f + χ(c− c0).

Since Lw̃ = f we have w̃ > −c0.
On the one hand, on Bc0 (outside B0) we have f = 1; therefore we have the estimate on the
right-hand side term:

f + χ(c− c0) = 1 + χ(c− c0) > 1 for c > c0.

On the other hand, on B0, one has χ > α · 1B0 , i.e. is greater than α. Since f > −c0 on B0
and χ > α, we have

f + χ(c− c0) > −c0 + α(c− c0).

Moreover, for a large c we get

f + χ(c− c0) > −c0 + α(c− c0) > 1, if c is large,

and thus we obtain a super-solution for Eq. (3.4). We conclude by observing that by taking
w̃ and adding a large constant, we obtain a super-solution. Thus, we deduce that

w̃ + c > w.

The converse is thus proved.

The Assumption 3.1 can be stated more precisely as follows.
Assumption 3.4.



DRAFT
8 C. BIANCA AND C. DOGBE

There exist functions f and w ∈ C∞(Rd) such that
Lw + χw = f > 1, in Rd

w > 0,
w, f →∞, if |x| → ∞

(3.7)

for some χ ∈ C∞(Rd).

It is worth noting that the assumption that f tends to infinity allows us to have tightly
compactness.

A key result is the following lemma, which makes precise the equivalence between Eqs.
(3.3a)-(3.3c) and Assumption 3.4. This characterization was first introduced by Lions [16].

Lemma 3.5. The following statements are equivalent.
(i) There exist a function f and w̃ ∈ C∞(Rd) such that

Lw + χw = f > 1, in Rd

w > 0,
w, f →∞, if |x| → ∞

(3.8)

for some χ ∈ C∞(Rd).
(ii) There exist a function f and w̃ ∈ C∞(Rd) such that

Lw̃ = f > 1 in Bc0

w̃|∂B0 = 0,
w, f →∞, if |x| → ∞.

(3.9)

Proof of Lemma 3.5. The proof is divided into two steps. Firstly we justify the limit for w
tending to zero, secondly we prove the equivalence between (3.8) and (3.9).
• First Step. Our first interest is to look for the justification of w → ∞. In order to

establish this claim, we turn to the problem{
Lw̃ = 1, |x| > 1
w̃||x|=1 = 0, w̃ > 0

(3.10)

which implies that there exists δ > 0 such that

w̃ > δLog|x|. (3.11)

Since the ball plays any role, we can take in (3.10) f = 1 and in order to simplify the
computations, we take |x| > 1, which is a ball centered at the origin with radius 1. To prove
the claim (3.11), we will prove that δLogx is a sub-solution. Indeed, we have

∂iLog|x| = xi
|x|2

,

and

∂ijLog|x| = δij
|x|2
− 2xixj
|x|4

|x| > 1.
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Since the second derivatives are bounded by 1
|x|2

, the terms aij are bounded by x2, and bi

are bounded by c0|x|, the following inequality holds true:

−aij∂ijLog|x| − bi∂iLog|x| 6 c0|x|2

|x|2
+ c0|x|
|x|
6 2c0.

Multiplying by a small δ and choosing δ = 1
2c0

we obtain a sub-solution with δLog|x|.

• Second Step. Proof of the equivalence between (3.8) and (3.9).
(ii) (⇒) (i). This proof uses an argument borrowed from [16]. It is enough to show that
it remains bounded at a point, by arguing at the level of the truncations and by means of
the Theorem of Harnack. The argument in the proof does not apply anymore if we can not
apply Harnack inequality (see [9], Theorem 8.19]). It is sufficient to consider the case f = 1,
solution of (3.3a) to establish the equivalence between assumptions and to find a solution of
(3.8), which tends to infinity.

Let UR0 = B(0, R0) denote the ball in Rd with center 0 and (large) radius R0. Assume
χ : Rd → R with χ ∈ C∞0 (Rd) satisfying χ > 0, and χ = 1 in UR0 and has compact support,
lying within UR0 and set w\(x) := w(x) + max

UR0

|Lw|+ max
UR0

|w|+ max
UR0

|Lw|+ 1.

First, for |x| 6 R0, observe that
Lw\ + χw\ > −max

UR0

|Lw|+ χ(w + max
UR0

|w|+ max
UR0

|Lw|+ 1)

and then
Lw\ + χw\ > 1.

Second, for |x| > R0, we have
Lw\ + χw\ > Lw > 1.

By collecting the above estimates, we deduce that the function w\ satisfies the following
equation:

Lw\ + χw\ =: f∗(x) > 1 in Rd, lim
|x|→∞

w\ = +∞. (3.12)

Let us now consider a regular partition of unity {φi}i>1 such that φi > 0,
∞∑

i=1

φi(x) = 1,

suppφi ⊂ U i+1\Ui−1. Denoting by Wn(x) the solution corresponding to one of the partition
φi satisfying

LWn + χWn =
n∑
i=1

φi in Rd, 0 6Wn 6 w
\. (3.13)

Since Wn(x) is a super-solution of (3.8) and is positive, there exists a regular solution wn
to the equation (3.13). Indeed, to prove this existence, following Bensoussan [5], for n > 0
sufficiently large, we introduce for each ε > 0 and m > n + 1, the approximating PDE of
the solution W ε

nm of the Dirichlet problem (in a bounded region): (L − ε∆)W ε
n + χW ε

n =
n∑
i=1

φi in Um

W ε
n = 0 on ∂Um

(3.14)

where for convenience we will omit the subscript the subscript m. The boundary value
problem (3.14) has a unique solution according to the classical Perron method (see [9],
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Sections 2.8, 6.3 or [12]). By standard arguments of the hypoelliptic theory, in the light of
the so-called vanishing viscosity method, as ε→ 0+, W ε

n(x) converges to Wn(x) in the ball
Um, where Wn is the solution of the following problem: (L − ε∆)Wn + χWn =

n∑
i=1

φi in Um

Wn = 0 on ∂Um
(3.15)

and the boundary condition is attained only in the viscosity sense. Also, Hörmander con-
dition guarantees the comparison principle for (3.15). Clearly, by (3.13) the functions
wi(x) := Wi(x)−Wi−1(x) solve

Lwi + χwi = φi in Rd, (3.16)

and w(x) =
∞∑
i=1

wi(x) < ∞ is a sum of a convergent series in Rd. At this point, the key

tools in our proof will be provided by the following claim related to the use of Harnack
inequalities.

Claim. Let an be a sequence of real numbers such that
∞∑

i=1

ui < +∞ with ui > 0. Then,

there exists a sequence {ai}i such that lim
i→+∞

ai = +∞ and
∞∑

i=1

aiui < +∞.

Proof of the claim. We construct a strictly increasing function of ϕ : N→ N and a sequence

∀n ∈ N
ϕ(n+1)−1∑
i=ϕ(n)

ui 6
1

(n+ 1)2n+1 . (3.17)

Once constructed the function ϕ(i) we choose ai = n+ 1 for ϕ(n) 6 i 6 ϕ(n+ 1)− 1. One
then has

0 6
ϕ(n+1)−1∑
i=ϕ(n)

aiui 6
n∑
i=0

1
2i+1 6 1. (3.18)

Since the increasing sequence p 7−→
p∑

i=ϕ(n)

aiui is bounded from time to time by 1, it is

always bounded, and therefore converges. �

Next, fix x0 and observe that the sequences wn(x0) converge. Then, there exists a monotonic

increasing sequence {ai}i such that lim
i→+∞

ai = +∞, with a0 > 1 and w[
n(x) :=

∞∑
i=1

aiwi(x) <

+∞. By means of Harnack’s theorem, we see that
∞∑

i=1

aiwi(x0) < +∞. Thereby the equation

(3.20) reduces to

Lw + χw =
∞∑
i=0

aiφi.
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Let n0 ∈ N be fixed. Let us denote by w[
n(x) :=

∞∑
i=1

aiwi(0). In the ball Un0 , the function

w[n(x) satisfies:

Lw[n + χw[n =
n0+1∑
i=1

aiφi w[n > 0.

Now the remainder of the proof simply exploits the Harnack inequality. Accordingly, there
exists a constant C(n0), independent of n, such that

sup
Un0

2

w[n 6 C(n0)
(

inf
Un0

2

w[n + sup
Un0

2

n0+1∑
i=1

aiφi

)

6 C(n0)
(

max
UR0

|w|+ sup
Un0

2

n0+1∑
i=1

aiφi

)
= C∗(n0). (3.19)

We now use the inequality (3.19) to argue that in any bounded set the function w[ is well

defined, i.e. w[(x) :=
∞∑
i=1

aiwi(x) < ∞ for every x ∈ Rd. We have a function of variable x

which tends to infinity, since for x ∈ [[n, n+ 1]], we have lim
i→+∞

ai = +∞. We thereby see that

the function w[ > 0 satisfies

Lw[ + χw[ =
∞∑
i=1

aiφi := φ. (3.20)

By combining (3.12) and (3.20), we deduce that the function w = w\ + w[ satisfies (ii) and
complete the first part of proof.
(i) (⇒) (ii). The converse is trivial, since f > 1, the solutions w and w̃ of the problems (3.8)
are more large than the solution w̃ in the equations (3.3a)-(3.3c). Thanks to the maximum
principle they are supersolutions.

3.1. Liouville-type problem.
We consider now the existence of non-constant, bounded solutions of the following prob-

lem:
Lw = 0 on Rd, w ∈ L∞(Rd). (3.21)

Any such solution belongs to W 2,p
loc (Rd) for all 1 < p <∞, C 2,α(Rd), for all 0 < α < 1, if b

is locally Lipschitz, and is smooth if σ and b are smooth. Roughly speaking, we will prove
that Xt is ergodic if 0 is a simple eigenvalue of L, or equivalently if the equation (3.21) has
only one solution.

Since our setting is the whole space Rd, we will use a property that replaces the standard
strong maximum principle of the periodic case and is the key ingredient for extending some
results of [2] to the nonperiodic setting. The classical theorem states that if for a bounded
C 2-function w, one has (3.21), then w is constant on Rd. We recall that, since we are
interested in the whole space, an assumption relative to the existence of a Lyapunov function
is needed. According to [14] (see Theorem 3.2. p. 450), w is a Lyapunov function if and only
if we have the non-explosion of the solution of the SDE (1.1). In order to establish that any
solution w ∈ L∞(Rd) of (3.21) is constant, we state all the additional assumptions that we
make about the Lyapunov function. This second group of assumptions deals with Lyapunov
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functions which allows to obtain the uniqueness of the invariant probability measure. The
definition of Lyapunov conditions to prove ergodicity for uniformly elliptic diffusions is a
well-developed subject (see [11, 18]).
We assume that one of the following assumptions are fulfilled.
Assumption 3.6.

There exists a function w ∈ C (Rd), called (strong) Lyapunov function, such that:

w(x)→ +∞ as |x| → +∞, lim
|x|→+∞

Lw = +∞. (3.22)

Assumption 3.7.
There exists a function w ∈ C (Rd), called (weak) Lyapunov function, such that:

w(x)→ +∞ as |x| → +∞, Lw > 1 for |x| large. (3.23)

Assumption 3.8.
There exists a function w ∈ C (Rd), called (weak) Lyapunov function, such that for some
R0 > 0:

Lw > 0 for |x| > R0, w(x)→ +∞ as |x| → +∞. (3.24)

Before stating a Liouville-type theorem, we recall the notion of viscosity solutions, which
is used in the statement of the next proposition.
The notion of viscosity solutions, introduced in the early 1980’s [7] and related to Kruzkov’s
theory of entropy solutions for scalar conservation laws, was used in earlier studies as a
natural tool for obtaining solution to PDE. Let us recall the following definition.

Definition 3.9. (Viscosity solutions). Let Ω ⊂ Rd be an open set. The upper semicontin-
uous function u : Ω → R is a viscosity subsolution of Lu = 0 in Ω if whenever φ ∈ C 2(Ω)
and x0 ∈ Ω such that (u − φ)(x) 6 (u − φ)(x0) for all x in a neighborhood of x0, then we
must have Lφ(x0) > 0. A function u : Ω→ R is a viscosity supersolution if −u is a viscosity
subsolution. A real function u is a viscosity solution of Lu = 0 if it is both a viscosity
subsolution and supersolution.

It is worth noting that in order to prove that u is a viscosity subsolution (supersolution),
it is sufficient to use test functions φ ∈ C 2(Ω) such that u−ϕ has a strict local max (min) at
x0. Indeed if, for example, u−ϕ has a maximum at x0 and we set ϕ(x) = ϕ(x) + ε|x−x0|2,
then u − ϕ − ϕ has a strict maximum at x0. Since Lϕ(x0) = Lϕ(x0) + 2ε trace (aij(x0)),
letting ε→ 0 we get Lϕ(x0) > 0.

Finally, the Strong Maximum Principle will be employed. It asserts that any viscosity
sub- or supersolution in Rd that attains an interior nonnegative maximum must be constant.
In addition, the generator L has the Liouville property (based on the Strong Maximum
Principle), i.e. any bounded sub- or supersolution of Lu = 0 is constant. Moreover we recall
(see [9], Theorem 8.19) that for every non-negative solution u ∈ W 2,1(Ω) of the equation
Lu = 0 (or the equation L∗u = 0) Harnack’s inequality states that for every ball B, with
B ⊂ Ω, there exists C(B) > 0 such that

sup
B
u 6 C(B) inf

B
u.
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In what follows the interest focuses on the problem of viscosity subsolutions and super-
solutions construction for equation (3.21) that satisfy Lyapunov conditions.

Proposition 3.10. Let w ∈ L∞(Rd) be solution of the following problem:
Lw = 0 in Rd. (3.25)

Assume that the Assumption 3.8 holds true. Then:
(i) Every bounded viscosity subsolution of (3.25) is constant.

(ii) Every bounded viscosity supersolution of (3.25) is constant.

Proof of the Proposition 3.10. The steps of the proof follow by adaptation of the method
used in [20] (see also [4]).
Let w > 0 be a bounded subsolution of (3.25) and w ∈ C 2(Rd) defined in (3.24). Following
[20], for any fixed ε > 0, define

wε(x) := w(x)− εw(x).

We fix R > R0, and we claim that wε(x) is a viscosity subsolution to (3.25) in |x| > R
for every ε > 0. Indeed consider x ∈ Rd with |x| > R and a smooth function ψ such
that wε(x) = ψ(x) and wε − ψ has a strict maximum at x. Assume by contradiction that
Lψ(x) > 0. By the regularity of ψ and of L, there exists 0 < k < R−R0 such that Lψ(x) > 0
for every |x− x| 6 k. Now we prove that εw+ ψ is a supersolution of (3.25) in B(x, k) and
ζ such that εw + ψ − ζ has a minimum at x̃.
Since w is a supersolution of (3.25) in |x| > R0, the linearity of the differential operator L
yields the following bounds:

0 6 L
(

1
ε

(ζ − ψ)(ỹ)
)

= 1
ε
Lζ(ỹ) + 1

ε
Lψ(ỹ) < Lζ(ỹ),

where in the last inequality we used the fact that ψ is a supersolution in B(x, k). By our
assumption w − (εw + ψ) has a strict maximum at x and w(x) = (εw + ψ)(x). Then, there
exists α > 0 such that

w(x)− (εw + ψ)(x) < −α on ∂B(x, k).
A standard comparison principle gives that

w(x) 6 εw + ψ(x)− α on B(x, k).

This contradicts our assumptions. This proves the claim: wε is a viscosity subsolution to
(3.25) in |x| > R for every ε > 0.
Now, observing that wε(x) → −∞ as |x| → +∞, for every ε we fix Mε > R such that
wε(x) 6 sup

|z|=R
wε(z) for every x such that |x| > Mε. The maximum principle applied in

{x, R 6 |x| 6Mε}, yields the following bound:
wε(x) 6 sup

|z|=R
wε(z) ∀ |x| > R, ∀ε > 0. (3.26)

Next we let ε → 0 in (3.26) and obtain w(x) 6 sup
|z|=R

w(z) for every x such that |x| > R.

Therefore w attains its global maximum at some interior point, then it is a constant (strong
maximum principle).
The proof of (ii) for bounded supersolutions u is analogous, with minor changes. It is
sufficient to define uε(x) as u(x) + εw(x) and to prove that uε → +∞ as |x| → +∞ and
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that it is a viscosity supersolution to (3.25) in |x| > R. Then the same argument holds by
exchanging the role of super- and subsolutions and using the strong minimum principle.

Assumption 3.8 or Assumption 3.4 are sufficiently for the existence of an invariant
measure. The following result on the existence of invariant measure m holds.

Theorem 3.11. Assume that the Assumption 3.6 holds. Then the Markov diffusion
process Xt solution of (1.1) admits a unique invariant probability measure m. Moreover
m ∈ W 1,p(Rd) (1 < p < ∞) (thus m ∈ C α(Rd) (0 < α < 1)), m is smooth if σ and b are
smooth, m > 0 on Rd and m satisfies the following property:∫

Rd

m(Lw)+dx <∞. (3.27)

Furthermore, for any u0 ∈ L∞(Rd), x ∈ Rd, E[u0(Xt)] converges locally uniformly on Rd,
as t goes to +∞, to

∫
Rd

u0 mdx.

Proof of Theorem 3.11. The proof is based on an approximation procedure. Accordingly
the following family of increasing sets is defined. Let w ∈ C 2(Rd). We pick R = Rn ↑n +∞.
Define OR as

OR := {x ∈ Rd st. w(x) 6 R},
and R is not a critical value of w. Of course, such sequence exists in view of the Sard’s
Theorem, according to which the set of singular values F (Σ) of the critical set Σ of a smooth
map F : X → M (where X and Y are open C∞ (paracompact) manifolds) is null in M
(see [1]). By coercivity1 of w we argue that

⋃
ROR = Rd. We will consider approximating

problems, that is, the diffusion process xnt solving (1.1) on the domains OR and pass to the
limit as R→∞ to capture the behavior of the original problem on the whole space.
Since OR is a bounded domain in Rd, it is a smooth open set. We then consider the
unique reflected diffusion process on OR whose diffusion operator is still given by L with
the following boundary condition on OR:

aij
∂u

∂νj
= 0 on ∂OR, (3.28)

where ν denotes the unit outnormal to ∂OR. In other words, xnt solves
dxnt = σ(xnt ) · dWt + b(xnt )dt− a(xnt ) · ν(xnt ) dknt
xn0 = x ∈ OR

knt is continuous, nondecreasing in t and knt =
∫ t

0
1∂OR

(xns )dkns .

As it is well known, xnt is, for each n, ergodic and there exists a unique invariant probability
measure mR on OR that solves{

L∗mR = 0 in OR

νi{∂j(aijmR)− bimR} = 0 on ∂OR
(3.29)

with Neumann condition due to the reflection that takes place at the boundary ∂OR. We
will show that mR is not “disperse” as the domain OR grows. As explain above, mR is

1A function f is coercive if f(x) → +∞ when |x| → +∞.
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bounded, uniformly in n large enough, in W 1,p(Br0) for all 1 < p <∞, r0 ∈ (0,∞) denoting
Br0 = {|x| < r0} and thus, extracting subsequences if necessary, we may assume that mR

converges uniformly locally in Rd to some m > 0 (m ∈ L1(Rd)). We have to verify that m is
a probability measure. If we able to show that

∫
Rd

mdx = 1, then m is indeed an invariant
measure for xt. Indeed

xnt = xt, if t 6 τn = inf{t > 0, xt 6∈ OR} and τn −−−−−→
n→+∞

+∞ a.s.

Therefore,
E[u0(xnt )] −−−−−→

n→+∞
E[u0(xt)], for any t > 0, x ∈ Rd

u0 ∈ L∞(Rd), and thus ∫
Rd

u(x, t)m(x) dx =
∫
Rd

u0(x)m(x) dx,

follows from the fact that mR is the invariant measure of xnt . Therefore, we only have
to prove that

∫
Rd

mdx = 1. In order to overcome this problem, we multiply (3.29) by w

(according to assumption 3.6) and integrate by parts over OR:∫
OR

∂j(aijmR)∂iw −mRb · ∇w = −
∫
OR

mR(aij∂ijw + b · ∇w) +
∫
OR

mRaij∂iwνj

=
∫
OR

mRLw +
∫
∂OR

mR aij ∂iw νj .

Next, we observe that, since w ≡ R on ∂OR and w < R in OR, we get
∂iw = ∂w

∂ν
νi

∂w

∂ν
> 0, on ∂OR.

An immediate consequence is ∫
OR

mR Lw dx 6 0.

Thanks to Assumption 3.6, Lw →∞ as |x| → +∞, we deduce that mR satisfies for some
constant C > 0 independent of n ∫

OR

mR(Lw)+ dx 6 C,

and thus, more specifically we get

sup
n>1

∫
(|x|>R)∩OR

mR → 0 as R→ +∞.

Therefore m is a probability measure on Rd and yields the following bound:∫
Rd

m(Lw)+ dx <∞.

The proof is thus completed.
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In what follows the interest focuses on the solutions of the following equation:

L∗m = 0 on Rd,
∫
Rd

m = 1, (3.30)

where L∗ is the formal adjoint to the operator L. We will prove that the existence of
a Lyapunov function yields the existence of a unique solution in the class of probability
measures.

Remark 3.12. From ellipticity regularity results and the strong maximum principle, we
immediately deduce (at least when σ and b are smooth) that m is smooth and m > 0 on
Rd. Indeed, if m > 0 satisfies Eq. (3.30) then m ∈ W 1,p

loc (Rd) for all 1 < p < ∞ and thus
m ∈ C α(Rd) (for all 0 < α < 1) by Sobolev embeddings. In addition, if b and ∂j(aij) are
locally Lipschitz, then m ∈W 2,p

loc (Rd), for all 1 < p <∞ and thus m ∈ C 1,α(Rd).

The next theorem gives another characterization of ergodicity and an invariant probability
measure for the process Xt.

Theorem 3.13. Assume that the Assumption 3.8 holds. Then the Markov diffusion process
Xt solution of (1.1) admits a unique invariant probability measure m on Rd, which satisfies
the properties of Theorem 3.11.

Proof of the Theorem 3.13. This is straightforward since the process Xt is well-defined if
and only if there is no blow up. Let {u(t, x); t ∈ R+} denotes the solution of the SDE (1.1)
and let t ∧ τn be a Markov time associated with u(t, x). If we assume that there exists a
function w ∈ C 2(Rd) satisfying the Assumption (3.24), the following holds:

w(xt∧τn
) = w(x) +

[∫ t∧Tn

0
(−Lw)(xs) ds

]
(3.31)

where ∧ denotes the minimum. By taking expectations on both sides we then obtain the
well-known Dynkin’s Formula: for all x ∈ Rd, t > 0 and n > 1

E[w(xt∧τn
)] = w(x) + E

[∫ t∧Tn

0
(−Lw)(xs) ds

]
.

Therefore τn ↑n +∞ as n→ +∞ and for all t > 0, x ∈ Rd, E[w(xt)] <∞. Next, to obtain
the uniqueness of bounded solution of (1.4) we use the maximum principle. Let u and v be
two bounded solution of (1.4). For ε > 0, consider

uε = v + ε(w + C(t+ 1))

for some C to be determined later on. Obviously, we have for C large enough
∂uε
∂t

+ Luε = ε{Lw + C} > 0

uε|t=0 ≡ u0 + ε(w + C) > u0.
(3.32)

In addition, since w → +∞ as |x| → +∞, uε > v for |x| large enough (uniformly for t
bounded). We may thus apply the maximum principle and deduce that we have:

uε > v on Rd × [0,∞).

Hence, we conclude upon letting ε go to 0+.
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The following proposition provides some important equivalences for the existence of a
unique invariant measure.

Proposition 3.14. Let M be a definite positive symmetric matrix and (aij) defined as in
(1.6). Suppose that

lim inf
|x|→+∞

ess
{
|x|µ−1

[
−Tr (a ·M)− (µ− 1)a〈Mx,Mx〉

〈Mx, x〉
− 〈b,Mx〉

]}
= +∞, (3.33)

where µ is some positive number. Then the process Xt solution of (1.1) is ergodic (there
exists a unique invariant probability measure m on Rd). In particular, the Assumption 3.6
holds true as soon as for some ε > 0, we have

lim inf
|x|→+∞

ess
{

Tr (a ·M)− εa〈Mx,Mx〉
〈Mx, x〉

− 〈b,Mx〉
}
> 0. (3.34)

Furthermore, if a is bounded on Rd, then (3.6) holds true if
lim inf
|x|→+∞

ess {〈b,Mx〉 − Tr(a ·M)} > 0. (3.35)

Proof of Proposition 3.14. The proof is based on the identification of a useful Lyapunov
structure. We choose

w(x) =
(

1
2 〈Mx, x〉

)µ
, µ > 1, (3.36)

and we compute Lw. A straightforward computation shows that

Lw = µ

(
1
2 〈Mx, x〉

)µ−1{
−Tr(a ·M)− (µ− 1)a〈Mx,Mx〉

〈Mx, x〉
− 〈b,Mx〉

}
. (3.37)

Therefore the Assumption 3.6 holds if there exists µ > 1, and M is a symmetric positive
definite matrix such that:

lim inf
|x|→+∞

ess
{
|x|µ−1

[
−Tr(a ·M)− (µ− 1)a〈Mx,Mx〉

〈Mx, x〉
− 〈b,Mx〉

]}
= +∞. (3.38)

Specifically, for a such µ, the Assumption 3.6 holds as soon as we have some ε > 0, for a
symmetric positive definite matrix M :

lim inf
|x|→+∞

ess
{

Tr(a ·M)− εa〈Mx,Mx〉
〈Mx, x〉

− 〈b,Mx〉
}
> 0. (3.39)

If a is bounded over Rd, then (3.39) holds (thus the Assumption 3.6 as well) and if we have
some symmetric positive definite matrix M , upon choosing µ close enough to 1, taking the
limit as |x| → +∞, an immediate consequence of the attenuation inequality (3.39) is that

lim inf
|x|→+∞

ess {〈b,Mx〉 − Tr(a ·M)} > 0. (3.40)

Suppose we had
a(x)→ c0I as |x| → ∞ for some c0 > 0. (3.41)

It is easily checked that the limit (3.40) (and thus Assumption 3.6) holds if b satisfies
lim inf
|x|→+∞

ess {−〈b(x), x〉} > c0d, (3.42)

which completes the proof.
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A trivial consequence of the above theorems is the following corollary, which guarantees
the uniqueness of the invariant distribution.
Corollary 3.15. Assume that the Assumption 3.6 holds true with (3.27) replaced by

lim
|x|→∞

sup
k
〈bk(x), x〉 = −∞. (3.43)

Then the Markov diffusion process Xt solution of (1.1) admits a unique invariant probability
measure m ∈ Rd.

Remark 3.16. The formula (3.43) is reminiscent of other similar assumptions about re-
currence of diffusion processes in the whole space. Indeed if we take the following fully
nonlinear degenerate operator:

L := b(x) ·DV + trace(σ(x)σT (x)D2V ), (3.44)

then the Assumption 3.4 is satisfied
lim sup
|x|→+∞

[b(x) · y + trace(σ(x)σT (x))] < 0.

Indeed, in this case it is sufficient to choose w(x) = |x|2. Pardoux and Veretennikov [21]
assume σσT bounded and

lim
|x|→+∞

b(x) · x = −∞,

called the recurrence condition.

4. The Degenerate case

The results presented in the two preceding sections are based on the essential assump-
tion of ellipticity (even uniform ellipticity). Under ellipticity and convenient smoothness
assumptions on the drift and the diffusion coefficient, the process Xt admits a unique invari-
ant measure. This section is devoted to the degenerate case, i.e. when σσT (x) is nowhere
strictly positive.

Hypoellipticity is a condition that guarantees the existence of smooth solutions for the
equation despite this degeneracy. Roughly speaking, a system is hypoelliptic if the drift
terms help to spread the noise to all phase space directions, such that the system has a
nondegenerate transition density. Technically, hypoellipticity requires certain conditions
involving the Lie brackets (i.e. commutator) of drift and diffusion fields, known as Hörman-
der’s conditions; when these assumptions are satisfied, the system can be shown to possess
smooth transition densities. Observe that for any differential operator

P =
d∑
i,j

aij(x)∂i∂j

with (aij(x)) positive semi-definite matrix, the weak maximum principle holds. Moreover, if
P is in divergence form and is generated by vector fields satisfying the Hörmander condition,
then Strong Maximum Principle (see [6]) holds.

Going back to the linear second-order operator L of the form (1.5), we define smooth
vector fields X0, X1, . . . , Xd on Rd by

X0 =
d∑
i=1

(
bi −

d∑
j=1

∂jaij

)
∂i, Xi =

d∑
j=1

aij∂j , (1 6 i 6 d) (4.1)
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We assume that
a(x) = (aij(x))d×d ∈ C 1(Rd,Sd),
b(x) = (b1(x), . . . , bd(x)) ∈ C (Rd,Rd),

(4.2)

where Sd denotes the class of symmetric non-negative matrices; this implies that L is the
degenerate elliptic-parabolic operator in Rd. With the notations (4.1) the operator L takes
the Hörmander form:

L = 1
2

m∑
k=1

X2
k +X0, (4.3)

where X2
k denotes the second iterative of directional derivative operator X. The form

(4.3) is however much more convenient for the purpose of the study of the present section.
The vector fields X1, . . . , Xm satisfy the Strong Hörmander condition if their Lie brackets
generate the tangent space. It satisfies Hörmander’s condition if X0 is allowed. We now
make the assumption that combined with the Lyapunov function will induce ergodicity.

Assumption 4.1. (Hörmander’s rank bracket condition)
We assume that σ and b are smooth and L satisfies the Strong Hörmander condition,

namely the vector fields Xi = σi · ∇ and a finite number of their Lie brackets generate
the full algebra of vector fields on Rd.

The Assumption 4.1 is a specific case of the widely known parabolic Hörmander condition
that ensures the hypoellipticity of ∂t − L∗, which implies the existence of an invariant
measure.

Theorem 4.2. Assume that σ and b fulfilled the conditions resulting from the Assumption
4.1 and there exists a Lyapunov function. Then the process Xt admits a unique invariant
probability measure m on Rd.

The reader interested in further references on the ergodicity of hypoelliptic diffusions is
addressed to [13] and [3].

5. The invariant measure for the one-dimensional diffusion

This section is devoted to the analysis of (2.3) and (3.21) for d = 1. A regular time
invariant solution m of Equation (2.3) will then satisfy the following problem:

− d2

d2x
(a(x)m) + d

dx
(b(x)m(x)) = 0 x ∈ R. (5.4)

If we are looking for m > 0 (locally Lipschitz) which solves (5.4), given sufficient regularity
on the parameters, we may then state that

− d

dx
(a(x)m(x)) + b(x)m(x) = C1, x ∈ R (5.5)

for some C1 ∈ R. A straightforward calculation shows that if m exists, is given by

m = 1
a(x) exp

(∫ x

0

b(y)
a(y)dy

){
C1 + C2

∫ x

0
exp
(
−
∫ y

0

b(s)
a(s)ds

)
dy

}
(5.6)

for some constants C1 and C2 with C1 > 0 since m(0) > 0.
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Next we solve the equation (3.21). It is a second order linear equation in one variable; the
set of solutions has dimension two and there exists a linearly independent solution. Clearly,
if w ∈ L∞loc (and thus W 2,∞

loc ) solves (3.21), then a simple calculation shows:

w(x) = D1 +D2

∫ x

0
exp
(
−
∫ y

0

b(s)
a(s)ds

)
dy. (5.7)

The stopping times are defined as follows:

τc = inf{t > 0, x(t) = 0} τa = lim
x→a

τc, and τb = lim
x→b

τc.

Lemma 5.1. Assume that a < 0 < b. If lim
x→b

w(x) =∞, that is∫ b

0
exp
(
−
∫ y

0

b(s)
a(s)ds

)
dy = +∞

then Px[τb <∞] = 0. If ∫ 0

a

exp
(
−
∫ y

0

b(s)
a(s)ds

)
dy = +∞

then Px[τa <∞] = 0.

Proof of Lemma 5.1. For a < a′ < x < b′ < b,

Px[τb′ > τa′ ] = w(b′)− w(x)
w(b′)− w(a′) (5.8)

and it tends to 1 as b′ → b. Therefore, Px[τb′ > τa′ ] = 1. The path from x→ b has to go to
a′ first. But if it is go to b from a′ it has cross x, and then by strong Markov property has
to return to a′ again. Clearly it is getting a run around and is never going to make it to b.

Consequently the choice of the condition w bounded implying D2 = 0 (where D2 is the
constant defined in (5.7)) reduces to:∫

R
exp
(
−
∫ y

0

b(s)
a(s)ds

)
dy = +∞, (5.9)

and this is obviously necessary and sufficient. If we define the scale function by

s(x) = exp
(
−
∫ x

0

b(y)
a(y)dy

)
, (5.10)

and

S(x) =
∫ x

0
s(y)dy for x > 0, S(x) = −

∫ 0

x

s(y)dy for x < 0 (5.11)

then (5.9) is equivalent to

lim
x→+∞

S(x) = +∞, lim
x→−∞

S(x) = −∞ (5.12)

which is equivalent to

M :=
∫ +∞

−∞
m(x)dx < +∞ (5.13)
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M is the normalizing constant. In this case, the unique invariant probability measure of the
process can be represented as

m(x) = 1
Ma(x) exp{−θ(x)} with θ(x) := −

∫ x

0

b(s)
a(s)ds. (5.14)

The problem is now to ensure that the process does not blow up in finite time. Accordingly
the following assumption on the coefficients of (1.1) is made.

Assumption 5.2.
We assume (at least) that σ and b are measurable and locally bounded and inf

σ∈[−R,+R]
essσ > 0,

for all R ∈ (0,∞).

Claim. Under the Assumption 5.2, X(t) is well-defined locally and the process does not
blow up in finite time if one has∫ +∞

0
exp(θ(x))dx =

∫ 0

−∞
exp(θ(x)) dx = +∞. (5.15)

Proof of Claim 5.15. Assume to the contrary that∫ +∞

0
exp(θ(x))dx < +∞,

the other case is similar. We apply the Itô formula with

w(x) =
∫ x

0
exp
(
−
∫ t

0

b(s)
a(s)ds

)
dt,

and first for x > 0
E[w(xτ0∧τR

)] = w(x),
where

τ = inf{t > 0, x(t) = 0} and τR = inf{t > 0, x(t) = R}, x < R <∞.

In particular we have
(w(R)− w(0))P(τR<τ0) = w(x)− w(0).

Letting R go to +∞ and denoting by τ∞ = inf{t > 0, Xt = +∞} (first time of “positive”
blow up) we deduce

P(τR<τ0) = w(x)− w(0)
w(+∞)− w(0) > 0, where w(+∞) =

∫ +∞

0
exp
(
−
∫ x

0

b(y)
a(y)dy

)
dx.

The process almost surely never diverges before possibly reaching zero as soon as S(x) is
diverges at∞. Hence, we have shown that if Xt is well-defined and ergodic, then necessarily
(5.15) holds. We thus conclude that the process does not blow up in finite time in these
cases, which ends this part of the proof.

Now we return to the question of the invariant probability measure and the blow up property.
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Proposition 5.3. There exists an invariant measure m ∈ L1(R) for (1.1) if and only if
1

a(x) exp
(∫ x

0

b(y)
a(y)dy

)
∈ L1(R) (5.16)

and the above is equivalent to (5.15), and then the Assumption 3.6 holds.

Proof. The proof is similar to the one used in [22]. Specifically we choose a function f > 0
with f ∈ C (R) such that:

+∞ >

∫ 0

−∞

f(y)
a(y) exp

(∫ x

0

b(y)
a(y)dy

)
dx >

∫ +∞

0

f(x)
a(x) exp

(∫ x

0

b(y)
a(y)dy

)
dx > 0

and f(x)→ +∞ as |x| → +∞. Upon choosing M > 0 such that∫ 0

−∞

f(x)
a(x) exp

(∫ x

0

b(y)
a(y)dy

)
dx > M >

∫ +∞

0

f(x)
a(x) exp

(∫ x

0

b(y)
a(y)dy

)
dx (5.17)

and defined w as follows:

w(x) =
∫ x

0

{
M −

(∫ η

0

f(y)
a(y) exp

(∫ y

0

b(s)
a(s)ds

)
dy

)}
exp
(
−
∫ η

0

b(y)
a(y)dy

)
dη, (5.18)

a straightforward computation shows that

w′(x) =
(
M −

(∫ x

0

f(y)
a(y) exp

(∫ y

0

b(s)
a(s)ds

)
dy

))
exp
(
−
∫ x

0

b(y)
a(y)dy

)
(5.19)

and

w′′(x) = − b(x)
a(x)

{
M −

(∫ x

0

f(y)
a(y) exp

(∫ y

0

b(s)
a(s)ds

)
dy

)
− f(x)
a(x) exp

(∫ y

0

b(s)
a(s)ds

)}
exp
(
−
∫ x

0

b(y)
a(y)dy

)
. (5.20)

Combining (5.19) and (5.20), we obtain
Lw = −aw′′ − bw′ = f → +∞ as |x| → +∞.

Taking into account (5.12) (or with (5.15)), we get w′(x)→ +∞ as x→ +∞ and similarly,
w′(x) → −∞ as x → −∞. Consequently, w → +∞ as |x| → +∞ and (3.6) holds, which
completes the proof.

Bearing all above in mind, the following result holds.

Proposition 5.4. The following statements are equivalent.
(i) Xt is well-defined and ergodic;

(ii) The identity (5.15) and the condition (5.16) hold;
(iii) Assumption 3.6 holds.

According to the above proposition, the Assumption 3.6 is necessary and sufficient in the
case d = 1.

Example 5.5.(Ornstein-Uhlenbeck process) LetX be the one-dimensional Ornstein-Uhlenbeck
process given by

dXt = −kXtdXt + σdBt, (5.21)
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where b and σ are positive constants. In this case a(x) = σ2 ∈ R∗+ and b(x) = −kx with
k ∈ R∗+, given constants. We have

θ(x) := −
∫ x

0

k

σ2xdx = k

σ2x
2, x ∈ R,

leading to

K =
{∫ +∞

−∞

1
a

exp(−θ(x)}dx
}−1

= 1
a

(πa
k

)− 1
2
.

Consequently

m(x) =
(
k

πa

) 1
2

exp
{
−k
a
x2
}
, x ∈ R,

which is a Gaussian density.

6. Examples and Applications

This section is devoted to some specific examples of stochastic processes solution of (1.1)
such that the existence of the invariant measure can be proved by employing the theory
discussed in the present paper.

Example 1.
Consider the diffusion on Rd solution of the following SDE:

dXi
t = γXidt+ (1 +X2

i )dW i
t . (6.1)

Proposition 6.1. The Assumption 3.6 holds true for the Example 1.

Proof. The infinitesimal generator with unbounded coefficients associated to the Eq. (6.1)
is given by

L = −
d∑
i=1

(1 + x2
i )∂2

x2
i
− γixi∂xi

, γi > 1. (6.2)

According to Section 3, it is sufficient to consider w(x) =
d∑
i=1

x2
i := r2 as Lyapunov

function.

Example 2.
Assume that the vector field b in Eq. (1.1) is conservative (is the gradient of a scalar

function V ):
dXt = −∇V (Xt)dt+ dWt. (6.3)

This is a gradient flow perturbed by a noise. The generator is

L = −∇V (x) · ∇+ ∆. (6.4)

Proposition 6.2. Assume that V (x) in Eq. (6.4) is a smooth potential and that e−V (x) ∈
L1(Rd). Then the Markov process solution of (6.3) is ergodic.
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Proof. The equation
L∗m = 0,

∫
Rd

m(x)dx = 1, (6.5)

has a unique solution (a Gibbs distribution) given by

m(x) = 1
Z
e−V (x), Z =

∫
Rd

e−V (x)dx, (6.6)

where Z is the normalization constant. The Gibbs distribution is an invariant distribution.
Indeed, Eq. (6.5) can be rewritten as follows:

∇x · (∇xV (x)m(x) +∇xm(x)) = 0. (6.7)

One can immediately check that m(x) given by (6.7) satisfies
∇xV (x)m(x) +∇xm(x) = 0,

and hence it satisfies (6.6). Furthermore, by construction we have that∫
Rd

1
Z
e−V (x)dx = 1

and hence m(x) is correctly normalized. Finally, m is the smooth density of an invariant
measure, since it satisfies L∗m = 0. Uniqueness follows by the ergodicity of the stochastic
process with generator L.

Example 3. (Fokker-Planck equation)
Let X,Y ∈ Rd, V (X) : Rd → R a C 2 function and Bt a d-dimensional Brownian

motion. Consider the following Fokker-Planck equation on Rd × Rd defined as follows:{
dXt = Ytdt

dYt =
√

2 dBt −∇V (Xt)dt− Ytdt
(6.8)

where
√

2 represents a normalization coefficient.

Proposition 6.3. Assume that V in Eq. (6.8) is a smooth potential and that e−V (x)− ‖V ‖2
2 ∈

L1(Rd). Then the Markov process solution of (6.8) is hypoelliptic and admits an invariant
measure.

Proof. Define a density pt of the law (Xt, Ẋt) in Rd×Rd. Then p is solution of the following
partial differential equation associated to (6.8):

∂p

∂t
+ v · ∇xp−∇V (x) · ∇vp = ∆vp− v · ∇vp, (x, v) ∈ Rd × Rd. (6.9)

The generator of (6.9) given by the following partial differential operator:
L = ∆v − v · ∇v +∇V · ∇v − v · ∇x (6.10)

is not elliptic. We rewrite (6.10) with the help of Hörmander form as follows:

L =
n∑
i=1

X2
i + Y, with Xi = ∂

∂vi
, Y = −v · ∇v +∇V · ∇v − v · ∇x

By setting
Xi := ∂

∂vi
, X := ∇v, Y = v · ∇x −∇V (x) · ∇v,
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one obtains
[X,Y ] = ∇x or [Xi, Y ] = ∂

∂xi

Then, the vectors (X1, . . . , Xn, [Y,X1], . . . , [Y,Xn]) form a basis of R2d at each point. Hence
L is hypoelliptic. The existence and uniqueness of an invariant measure m follows from The-
orem 4.2. Moreover, as recalled in section 3, m solves L∗m = 0 in the sense of distributions
and m is given by

dm = e−V (x)− ‖V ‖2
2 dxdv.

Example 4.
We consider a hypoelliptic diffusion. Let x1(t) (resp. x2(t)) be the position (resp. the

velocity) at time t of a physical system moving in R2:{
dx1(t) = dw1

dx2(t) = x1dt.
(6.11)

Proposition 6.4. The condition of Theorem 4.2 is satisfied in Example 4.

Proof. This process is degenerate in the sense that its infinitesimal generator

L = −∂2
x2

1
− x1∂x2 , (6.12)

is not elliptic. The operator L is Hörmander type hypoelliptic. Indeed, on the other hand

X0 = x1∂2, X1 = ∂1, and X2 = 0.

Thus the
Span{X1, X2, [X1, X2], [X1, X0], [X2X0] = Span{∂1, ∂2} = R2.

This implies that L and L∗ are hypoelliptic. Accordingly the Hörmander’s condition holds
and by using the Lyapunov function w(x) = x2

1 + x2
2, the existence and smoothness of

invariant measure is the immediate consequence of the Theorem 4.2.

Example 5.
Let us consider the stochastic differential equation (1.1) with formal generator of the

diffusion generated by the Kolmogorov operator:

Lφ = Tr(σσTD2φ) + 〈b,Dφ〉, φ ∈ C∞0 (Rd), (6.13)

where C∞0 (Rd) denotes the class of all infinitesimally differentiable functions on Rd with
compact support in Rd.

Proposition 6.5. The condition of Proposition 3.11 is satisfied in Example 5.

Proof. The operator L satisfies all the hypotheses of section 3. Taking w(x) = 〈x, x〉µ =
|x|2µ, for µ ∈ N, we show that w(x) is a Lyapunov function of the process xt. We start by
computing

Dw(x) = 2µ
{
|x|2
}µ−1

x, D2w(x) = 2µ
{
|x|2
}µ−1 I + 4µ(µ− 1)

{
|x|2
}µ−2 (x · xT ).
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Upon placing the above computation into (6.13) we obtain

Lw(x) = 4µ(µ− 1)
{
|x|2
}µ−2

d∑
i,j=1

Aijk xixj + 2µ
{
|x|2
}µ−1 Tr (Ak(x))

+ 2µ
{
|x|2
}µ−1 〈x, bk(x)〉

6 〈x, x〉µ−1 [4µ(µ− 1)‖Ak(x)‖+ 2µd‖Ak(x)‖+ 2p〈x, bk(x)〉] . (6.14)

Observing that

sup
k

∫
Rd

|Lw|dm 6 C, (6.15)

with
C := 2 sup

k

∫
B

|Lw|dm, (6.16)

where, for every R > 0, we set BR = {x ∈ Rd : |x| < R}, a centered open ball of radius R,
and B is such that Lw > 1 we deduce that

sup
k

∫
Rd

|Lw(x)|mdm <∞. (6.17)

Thanks to (6.14) and the uniform boundedness of ‖Ak(x)‖, we conclude that

sup
k

∫
Rd

〈x, x〉µ−1mdx <∞. (6.18)

The theory can be applied if we take A = I and B(x) = −k(x)x where k ∈ Lαloc(Rd) is such
that:

k(x) |x|2 → +∞ as |x| → ∞.

More generally, if A = I, then it suffices to have the weaker estimate

lim
|x|→+∞

〈x, x〉µ−1[2(µ− 1) + d〈b(x), x〉] = −∞,

for µ > 1.

Example 6. (Sharp condition in R2)
Let xt = (xt, yt)T be solution of the following system of SDE:

dxt = τ(xt)dt+ % dW 1
t

dyt = κ(xt)dt+ α
xt√

1 + x2
t

dW 2
t

(6.19)

where %, α > 0, W 1
t and W 2

t are two independent Brownian motions.

Proposition 6.6. The condition of Propisition 3.14 is satisfied in Example 6.

Proof. The corresponding generator reads:

L = −1
2%

2∂2
x2 −

1
2
α2x2

1 + x2 ∂
2
y2 − τ(x)∂x − κ(x)∂y

= Tr(σσTD2·) + 〈B,D·〉 ≡ 1
2

m∑
k=1

(Xk)2 +X0, (6.20)
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with

σ =
(
% 0
0 αx√

1 + x2

)
, A = σσT =

%2 0

0 α2x2

1 + x2

 . (6.21)

We are interested in identifying the sharp condition of the above system of SDE. Let us
point out that, the matrix L is degenerate. The vector fields are

X0 = τ(xt)∂1 + κ(xt)∂2, X1 = %∂1, X2 = α
xt√

1 + x2
t

∂2.

The corresponding Lie brackets are

[X0, X1] = −%(τ ′(xt)∂1+κ′(xt)∂2), [X0, X2] = τ(x)α
(1 + x2)3/2 ∂2, [X1, X2] = α%

(1 + x2)3/2 ∂2,

which generates the full tangent space at each point (x, y) ∈ R2

Lie ([X1, [X1, X2]]) =
(
%∂1,

α%

(1 + x2)3/2 ∂2

)
= R2

and then, this satisfies the strong Hörmander condition. This implies the hypoellipticity of
L. The Assumption 3.6 is indeed sufficient for the ergodicity of xt. It remains to find a
Lyapunov function fulfilling the assumptions in Section 3. To this end, we will choose the
Lyapunov function w to be w(x) =

{ 1
2 〈x, x〉

}µ, with µ > 1. We compute

Dw(x) = µ
{ 1

2 〈x, x〉
}µ−1

x, D2w(x) = µ
{ 1

2 〈x, x〉
}µ−1 I + µ(µ− 1)

{ 1
2 〈x, x〉

}µ−2(x · xT ).

Therefore, we find

Lw = −1
2%

2∂2
x2w −

1
2
α2x2

1 + x2 ∂
2
y2w − τ(x)∂xw − κ(x)∂yw

= µ{1
2 |x|

2}µ−1
{
−1

2%
2 − 1

2
α2x2

1 + x2 − b(x) · x

−(µ− 1)
[
%2x2 + α2 x2y2

1 + x2

]
|x|−2

}
,

with b := (τ, κ). Consequently, arguing as in Proposition 3.14, we find that Assumption
(3.6) holds as soon as b satisfies

lim inf
|x|→+∞

(−b(x) · x) > 1
2%

2 + 1
2α

2, (6.22)

upon choosing M = I in (3.38), µ close enough to 1.
• Existence of the measure m. In order to prove the existence of m, it is enough to regularize
xt and yt by xδt and yδt (δ > 0) which solves

dxδt = τ(xδt )dt+ % dW 1
t

dyδt = κ(xδt )dt+ α
x√

1 + x2
dW 2

t + δdW 3
t

(6.23)

for some Brownian motion W 3
t independent of (W 1

t ,W
2
t ). We may rewrite (6.23) as(

dxδt
dyδt

)
=
(
τ
κ

)
dt+

(
% 0
0 xα√

1 + x2

)(
dW 1

t

dW 2
t

)
+
(

0 0 0
0 0 δ

)dW 1
t

dW 2
t

dW 3
t

 (6.24)
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with now

σδ =
(

0 0 0
0 0 δ

)
σδ(σδ)T =

(
0 0
0 δ2

)
(6.25)

The matrix

Aδ =

%2 0

0 α2x2

1 + x2 + δ

 (6.26)

is locally positive definite in R2. The generator of this process is

Lδ = −1
2%

2∂2
x2 −

1
2
α2x2

1 + x2 ∂
2
y2 −

δ2

2 ∂
2
y2 − τ(x)∂x − κ(x)∂y. (6.27)

Therefore, using again the function w(x) =
{ 1

2 〈x, x〉
}µ, we obtain

Lw = −1
2%

2∂2
x2w −

1
2
α2x2

1 + x2 ∂
2
y2w −

δ2

2 ∂
2
y2 − τ(x)∂xw − κ(x)∂yw

= µ{1
2 |x|

2}µ−1
{
−1

2%
2 − 1

2

(
α2x2

1 + x2 − δ
2
)
− b(x) · x

−(µ− 1)
[
%2x2 + α2 x2y2

1 + x2 + δ2
]
|x|−2

}
.

The existence of an invariant probability measure mδ for xδ (for δ > 0 small enough) follows
from (6.22) and the argument in the previous example. Since

Lδw + δ2

2 ∂
2
y2w > ν|x|2(µ−1),

for |x| large, for some ν > 0, uniformly in δ > 0, we find for some C > 0 independent of δ,∫
RN

mδ(x)|x|2(µ−1) dx 6 C. (6.28)

Once this is done, extracting a subsequence if necessary and letting δ go to 0+, we obtain
an invariant probability measure m for xt. Since m is a stationary solution of the following
parabolic equation:

∂v

∂t
− 1

2%
2∂2
x2v −

1
2
α2x2

1 + x2 ∂
2
y2v −

δ2

2 ∂
2
y2v + τ(x)∂x,+κ(x)∂yv = 0,

we deduce the smoothness and strict positivity of m, thereby finishing the proof.

Example 7.
Consider the following multi-dimensional stochastic differential equation:

dxt = σ(xt)dWt + b(x)dt (6.29)

where x ∈ Rd, W is a standard m-dimensional Brownian motion for some m 6 d and
σ is a fixed matrix in Rd×m.

Proposition 6.7. The condition of Proposition 3.11 is satisfied in Example 7.
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Proof. Define the infinitesimal generator of the process xt to be the differential operator
defined (1.5). The operator L is no more elliptic but still hypoelliptic. In order to use our
theory, we introduce xδt solving

dxδt = σ(xδt )dWt + δdBt + (b(xδt ) + δ2Y (xδt ))dt (6.30)

with Bt a Brownian motion independent of Wt and

Y (x) = −ϕ(x)∇· (6.31)

with a function ϕ : Rd → R+. The generator of (6.30) reads:

Lδ := σ2(x)
2 ∆x + δ2

2 ∆y + b · ∇+ δ2Y (x)∇. (6.32)

We now make assumption concerning Y (x) that combined with the Assumption 3.6 induces
ergodicity. Let w ∈ C 2(Rd) be solution of the Assumption 3.6. There exists a function
ϕ > 0 and ϕ ∈ C (Rd),

Y (x) = −ϕ(x)∇w, (6.33)
such that, for x sufficiently large, one has the inequality

ϕ >
1
2

∆w
|∇w|2

.

Clearly, arguing in Example 6, we find that Assumption 3.6 is satisfied uniformly in δ and
a little computation reveals that

Lw − δ2

2 ∆w − δ2β(x) · ∇w = Lw + δ2
(
−1

2∆w + ϕ(x)|∇w|2
)
> Lw (6.34)

as required.

7. Conclusions and perspectives

The present paper has been devoted to develop criteria based on stochastic Lyapunov
technique in order to establish sufficient conditions for the existence of invariant probability
measures for multidimensional diffusion process. The existence and uniqueness of invariant
measures investigated in the pertinent literature by other researchers, such as [10, 21, 17],
is different from the analysis in this paper considering the different notion of invariant
measures. Indeed usually the invariant measures is defined in terms of the transition function
of a particular version of an associated diffusion process which in turn is constructed by a
Girsanov transformation.

The main novelty of the present paper is that by interpreting the first time of reaching of
a system underling in some closed ball we obtain new criteria that have enabled us to prove
the existence and uniqueness of invariant measures for stochastic processes with degenerate
diffusions in the whole space Rd. The proof strategy leading to our results is also not
standard: we propose an approach that combines the use of Lyapunov function techniques
with an approximation of the problem on bounded sets with reflection of the diffusion at
the boundary. To the best of our knowledge, the assumptions used to obtain the invariant
measure are missing in many papers. In the pertinent literature, the existence is postulated
by using probabilistic arguments. The present framework and result allows to clarify the
notion of ergodicity in the whole space.
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