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This paper deals with the link among the large-time behavior of a class of fully nonlinear partial differential equations, the concept of mean ergodicity of a dynamical system and the controllability problem. Specifically Abelian-Tauberian arguments are employed to develop a theory for the analysis of the ergodic mean behavior of systems of degenerate elliptic-parabolic equations and general systems of vector fields satisfying Hörmander's condition. A new criterium for ergodicity is established which is based on an asymptotic estimation of the rate of convergence. The new criterium is employed for the asymptotic analysis of Hamilton-Jacobi-Bellman type equations.

Introduction

The main aim of this paper is to analyze the large-time behavior of solutions of partial differential equations by employing arguments of stochastic differential equations and specifically the ergodicity framework. The motivation is twofold: on the one hand setting up the concept of ergodicity by revisiting the main definition in the field of dynamical systems and ergodic theory; on the other hand, developing a new ergodicity criterium for PDEs. The new criterium will be applied to the ergodic control problems. The term ergodic problem is motivated by the fact that for an uncontrolled system (i.e., an ordinary differential equation) the convergence property is equivalent to the ergodicity of that system. The ergodic problem has been widely studied in connection with homogenization or singular perturbation problems [START_REF] Bensoussan | Asymptotic analysis for periodic structures[END_REF][START_REF] Caffarelli | Homogenization of fully nonlinear, uniformly elliptic and parabolic partial differential equations in stationary ergodic media[END_REF]. The results of the present paper take advantage by the work of Lions [START_REF] Lions | Equations paraboliques et ergodicité[END_REF].

Let Ω be a bounded domain of R d , d ∈ N * , and S d (R) the space of the d × d real symmetric matrices. This paper focuses on the analysis of the following Cauchy problem:

∂ t u + F [u](x) = 0, in (0, ∞) × Ω u(0, x) = u 0 ∈ C 0 (Ω), (1.1) 
where u = u(t, x) : (0, ∞) × Ω → R, p = Du denotes the gradient vector of u, X = D 2 u denotes the Hessian matrix of second derivatives of the function u, and

F : Ω × R × R d × S d (R) → R
represents the following fully nonlinear second-order partial differential operator:

F [u](x) ≡ F (x, r, p, X) := F (x, u, Du, D 2 u). (1.2)
It is worth stressing that the fully nonlinear operator means that the partial differential equation is nonlinear in the highest-order derivatives of a solution.

The main interest in the above defined model is related to the theory of stochastic processes, stochastic control theory and the kinetic theory (see for example [START_REF] Fleming | Deterministic and stochastic optimal control[END_REF]).

In particular the most famous operator F is the following second-order differential operator:

F (x, u, Du, D 2 u) = -Tr(a(x)D 2 u)(x) -b(x) • Du, x ∈ Ω, (1.3) 
where the matrix (a ij ) is a nonnegative definite matrix (elliptic operator), the trace of aD 2 u is defined by Tr(aD 2 u)(x)

= d i,j=1 aij(x) ∂ 2 u ∂xi∂xj , b : Ω → R d . A
nonlinear second-order parabolic or elliptic problem is usually connected to an initial stochastic control problem. In particular the stochastic control problem related to Eq. (1.1) with F given by (1.3) can be derived. Accordingly, let (Ω, F, P) be a complete probability space and X(t) . = X t the random process solution of the following stochastic differential equation:

dX t = b(X t ) dt + σ(X t )dW t , X 0 = u 0 ∈ R d , ( 1.4) 
where the drift coefficient b : R d → R d and σ : R d → R d×m are (at least) Lipschitz continuous functions, and W t is the standard d-dimensional Brownian motion. Bearing all above in mind, the equation (1.4) admits a unique solution (X t ) t 0 , t 0, x ∈ R d , see, among others, Friedman [START_REF] Friedman | Stochastic differential equations and applications[END_REF]. Let C b (R d ) be the space of the bounded continuous functions, the stochastic representation reads:

S t ϕ(x) := E[ϕ(X(t, x)], x ∈ R d , ϕ ∈ C b (R d ) (1.5)
where S t , t 0 is the corresponding transition semigroup and E denotes the conditional expectation.

The main interest of this paper is the asymptotic behavior (as t → ∞) of the solution of the evolution equation (1.1). In general the asymptotic behavior is gained by employing regularity arguments of solutions and the strong maximum principle. The results are of great interest in the context of the ergodic/control problem. For such an evolution equation, it is expected that the large-time behavior of the solution of (1.1) has the following behavior:

u(t, x) = v(x) + ct + o (1) locally uniformly for x ∈ R d as t → ∞, (1.6) 
where (c, v) ∈ R × C (R d ) is solution, in the viscosity sense, of the following equation: c + F (x, v, Dv, D 2 v) = 0.

(1.7) In this context, the role of the following stationary problem is fundamental:

εu ε + F (x, u ε , Du ε , D 2 u ε ) = 0, x ∈ R d , ( 1.8) 
where ε > 0 and F is a fully nonlinear (possibly degenerate) elliptic operator.

It is worth stressing that the stationary problem (1.8), also called the discounted approximation of the ergodic problem, arises in optimal control theory and differential game theory where ε is a discount factor.

The following proposition summarizes the important role of the stationary problem (1.8) (see [START_REF] Lions | Homogeneization of Hamilton-Jacobi equations[END_REF] for the proof).

Proposition 1.1. The following statements are equivalent.

(i) Let u ε be solution of the stationary problem

εu ε + F (x, u ε , Du ε , D 2 u ε ) = 0, x ∈ R d , (1.9)
then εu ε → c uniformly in x as ε → 0, where c is a constant. (ii) Let u be solution of the Cauchy problem

∂ t u + F (x, u, Du, D 2 u) = 0 u(0, x) = 0 (1.10)
then u(t, x)/t converges uniformly in x to some constant as t → +∞.

In what follows we refer to [START_REF] Bensoussan | On Bellman equations of ergodic control in R n[END_REF] and the references cited therein for the ergodic stochastic control in R d . This problem is also studied in Meyn-Tweedie and [START_REF] Meyn | Markov chains and stochastic stability[END_REF] and in Down et al. [START_REF] Down | Exponential and uniform ergodicity of Markov processes[END_REF] by using techniques coming from the theory of geometric ergodicity and probabilistic arguments. Instead of looking for steady states (1.1), the authors work directly with the paths of the diffusion process.

The main tool used in this paper is the relationship between ergodicity and controllability, which follows by means of the strong maximum principle. The strong maximum principle is usually employed, in the classical sense, for the secondorder uniformly elliptic operator [START_REF] Gilbarg | Elliptic partial differential equations of second order[END_REF] but also for degenerate elliptic operators in the framework of viscosity solutions [START_REF] Trudinger | Comparison principles and pointwise estimates for viscosity solutions of nonlinear elliptic equations[END_REF][START_REF] Gripenberg | On the strong maximum principle for degenerate parabolic equations[END_REF][START_REF] Protte | Maximum principles in differential equations[END_REF]. In general the compactification of the semigroup is used to obtain the result (compactness of strong maximum principle). An alternative approach is to use the traditional proof of Doob (see, e.g., [START_REF] Doob | Heuristic approach to the Kolmogorov-Smirnov theorems[END_REF][START_REF] Donsker | Justification and extension of Doob's heuristic approach to the Kolmogorov-Smirnov theorems[END_REF]) by looking at the estimated transition probability. Our approach will follows a purely PDE point of view. Moreover by employing the concept of fundamental solution and nonlinear analysis arguments, we derive a rate of convergence. It is worth stressing that the model investigated in the present paper shares several similarities with some processes occurring in the crowd/swarm behavior [START_REF] Dogbe | Modeling crowd dynamics by the mean-field limit approach[END_REF] and mean field game models [START_REF] Lasry | Mean field games[END_REF].

The contents of the paper are outlined as follows. Section 2 contains preliminaries and fundamental results about ergodicity. In particular the relation between ergodicity and hypoellipticity is investigated by using a similar technique proposed in [START_REF] Lions | Equations paraboliques et ergodicité[END_REF]. The above mentioned relation can be interpreted as a version of the Abelian theorem (see Theorem 2.4 below), which states that the averaged functional related to u converges to a constant if and only if the family (εu ε ) ε>0 converges uniformly to a constant. The most important result of this section is a Tauberian type result which transforms our problem to the study of the resolvent. Moreover a propagation of maxima of our problem in a self-contained way is proposed. Section 3 deals with the linking between ergodicity and controllability. Section 4 is devoted to the definition of a criterium for ergodicity, which is based on the study of a convergence rate. Section 5 is devoted applications and specifically to Hamilton-Jacobi-Bellman equations. Finally, in section 6, we give a conclusion and some perspectives.

Background and preliminaries results

This section is devoted to the main definitions and results that will be used in the paper. 

F : Ω × R × R d × S d (R) → R a fully nonlinear operator. (1) F is called elliptic if for any (x, u, p, X) ∈ ×R d × R × R d × S d , we have F (x, u, p, X + Y ) > F (x, u, p, X). (2.1) (2) F is called degenerate elliptic if F (x, r, p, Y ) F (x, s, p, X) whenever r s and X Y, (2.2)
where X Y means that X -Y is a nonnegative definite symmetric matrix.

(3) F is said uniformly elliptic (with ellipticity constants λ Λ) if

λTr (Y ) F (x, u, p, X) -F (x, u, p, X + Y ) Λ Tr (Y ).
(

(4) ∂ t + F is called degenerate parabolic (see e.g. [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF]) if F is degenerate elliptic.

Some operators satisfying the conditions in definition 2.1 are now mentioned.

• The degenerate elliptic linear equation reads:

a ij (x)∂ ij u -b i (x)∂ i u -c(x)u(x) = f (x), x ∈ R d (2.4)
where the matrix a = (a ij (x)) is symmetric. Here and everywhere below we will use the implicit summation convention on repeated indices. The related operator F reads:

F (x, u, Du, D 2 u) := Tr(a(x)D 2 u) - b i (x)p i -c(x)r -f (x). (2.5) F is degenerate elliptic if and only if a(x) 0. If a constant C > 0 exists such that CI a(x) C -1 I for all x ∈ Ω where I is the identity matrix, F is uniformly elliptic. If C(x)I a(x) C -1 (x)I for C(x) > 0 and any x ∈ Ω, F is called strictly elliptic.
• The Hamilton-Jacobi-Bellman (in short HJB) and Isaacs equations are the fundamental partial differential equations employed for stochastic control and stochastic differential games. The natural setting involves a collection of secondorder elliptic operators depending either on one parameter α (in the Hamilton-Jacobi-Bellman case) or two parameters α, β (in the Isaacs case), which lie in some index sets. Let a α ij (x), a α,β ij ∈ S d (R), the following operators can be defined:

L α u := a α ij (x)∂ ij u -b α i (x)∂ i u -c α (x)u(x) + f α (x), (2.6) 
L α,β u := a α,β ij (x)∂ ij u -b α,β i (x)∂ i u -c α,β (x)u(x) + f α,β (x), (2.7) 
where all coefficients are uniformly bounded functions. In (2.7), the operator F reads:

F (x, r, p, X) = sup α inf β {-Tr(a α,β (x)X) + b α,β (x) • p + c α,β (x)r -f α,β (x)} where f α (•) = f (•, α) and f α,β = f (•, α, β
) are families of given smooth functions. The Hamilton-Jacobi-Bellman equation (resp. Isaacs equations) which is second-order, degenerate elliptic, fully nonlinear equations reads:

sup α∈A L α u = 0 (resp. sup α inf β L α,β u = 0), (2.8) 
where

A is a given set (α ∈ A, control), a α,β (x) = 1 2 σ α,β (x)(σ α,β (x))
T . The Hamilton-Jacobi-Bellman equations are examples of second-order, degenerate parabolic, fully nonlinear equations. In more abstractly and more compactly, it is written:

∂ t u + sup α∈A [L α u -f α ] = 0. (2.9)
In what follows we set

Γ = Ω × R × R d × S d (R) and (x, u, p, X) ∈ Γ. When F in (2.6
) is an affine function of the d variables, the equation (1.1) is called quasilinear; otherwise, it is called fully nonlinear.

Pucci's operator.

In this subsection we introduce the so-called Pucci's extremal operators (see [START_REF] Pucci | Operatori ellittici estremanti[END_REF]). Let X + , X -denote the positive and negative parts of X ∈ S d (R), respectively, namely X = X + -X -and Trace(X + ) (respectively Tr(X -)) denotes the sum of the positive eigenvalues of X (respectively, -X).

The maximal and minimal Pucci's extremal operators P + λ,Λ (X) and P - λ,Λ (X) are defined as follows:

P + λ,Λ (X) := sup M ∈M λ,Λ (-Tr(M X)) and P - λ,Λ (X) := inf M ∈M λ,Λ (-Tr(M X)), (2.10) where 0 < λ Λ and M λ,Λ := {M ∈ S d | λI M ΛI}.
The following equivalent definition of the Pucci extremal operators is often more convenient for calculations:

P + λ,Λ (X) = -λ µj >0 µ j -Λ µj <0 µ j and P - λ,Λ (X) = -Λ µj >0 µ j -λ µj <0 µ j ,
(2.11) where µ 1 , . . . , µ n are the eigenvalues of X. We will consider this definition for future references. The elementary properties of the Pucci operators can be found in [START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF]. Here, we remark only that they are uniformly elliptic, P + λ,Λ is convex and P + λ,Λ concave. This notion is one of the key tools we use to prove our results. Bearing all above in mind, an equivalent way of writing (2.3) is : There exists 0 < λ Λ such that for every X, Y ∈ S d (R),

P - λ,Λ (X -Y ) F (X) -F (Y ) P + λ,Λ (X).
Observe that (2.3) is satisfied for both F = P - λ,Λ and F = P + λ,Λ and these hypotheses imply

P - λ,Λ (X) F (X) P + λ,Λ (X), for each X ∈ S d .
Furthermore, an equivalent way of starting (2.3) is to assume that F is of the form

F (D 2 u) = sup α∈A -a α ij ∂ ij u or F (D 2 u) = inf α∈A -a α ij ∂ ij u , ( 2.12) 
where ∂ ij denote the first and second partial derivatives with respect to x i , x j , α is the indice that belong to some sets X and Y , and the symmetric matrices satisfy the inequality λI {a α ij } ΛI. Hence the Pucci extremal operators are also given by formula:

P + λ,Λ (D 2 u) = sup λI {a α ij } ΛI a α ij ∂ ij u and P - λ,Λ (D 2 u) = inf λI {a α ij } ΛI a α ij ∂ ij u.
(2.13) From (2.12) and (2.13), another examples of uniformly parabolic equations, especially in the theory of viscosity solution for fully nonlinear equations have the forms

∂ t u + P + λ,Λ (D 2 u) = f (x), ∂ t u + P - λ,Λ (D 2 u) = f (x). (2.14) 
The reader is referred to papers [START_REF] Crandall | User's guide to viscosity solutions of second order partial differential equations[END_REF][START_REF] Krylov | Nonlinear elliptic and parabolic equations of the second order[END_REF] for more information on the nonlinear degenerate elliptic equations.

Abelian-Tauberian arguments and characterization of ergodicity.

We collect two of the basic ingredients used in the next sections to study the ergodic behavior of the model (1.1). In particular the mean ergodic theorem is mentioned.

The Abelian-Tauberian method is an important approach that can be used to characterize ergodicity. The method consists in transforming the ergodicity problem in the large-time behavior analysis of the Laplace transform of the integrated density of states. At this aim, the paper focuses on the methods that allow the derivation of the asymptotic equation.

Let u be the solution of the following equation:

u t + Au = 0 in Ω ⊆ R d u(0, x) = u 0 ∈ C 0 (Ω), (2.15) 
where A denotes the following (possibly degenerate) elliptic operator with C ∞ (Ω) coefficients:

A = -a ij ∂ ij -b i ∂ i . (2.16)
It is worth stressing that the operator A is the generator of a semigroup associated to a parabolic PDE and it is said to be in divergence form. It is worth pointing out that, under technical assumptions for the coefficients, for any function u ∈ W 2,1 (R d ), the expressions Au and the adjoint A * u are defined in the sense of generalized function 1 : For a function ϕ ∈ C ∞ 0 (R d ), we have (after 

1 W p,1 (R d )
a ij ∂ ij u, ϕ = - R d ∂ j u ∂ i (a ij ϕ)dx,
where •, • denotes the Euclidean inner-product in R d with the Euclidean norm for a vector x:

|x| = x, x = i x 2 i 1/2 . In particular ∂ i (a ij ϕ) = ϕ∂ i a ij + a ij ∂ i ϕ ∈ L 2 (R d ) and similarly ∂ i (b i u) and ∂ i (a ij ∂ j u) are meaningful.
Hence the formal adjoint operator A * reads:

A * ψ := - i,j ∂ ij (a ij ψ) + i ∂ i (b i ψ), (2.17)
where the summation convention is employed if confusion does not occur.

In order to analyze the asymptotic properties of (2.15), the following Cesàro timeaveraged functional is considered:

C u (t, x) := 1 t t 0 u(s, x) ds, t > 0.
Let us briefly recall the definition of mean ergodicity (or weak ergodicity) and strong ergodicity on a compact set Ω ⊂ R d .

Definition 2.2. (Cesàro mean ergodicity)

Let Ω be a compact set of R d . The system described by Eq. (2.15) (or the associated semigroup of (1.4)) is said ergodic in the sense of Cesàro, if:

• A admits an unique invariant probability measure m, namely e -tA u 0 dm = u 0 dm, ∀t > 0, and m(x)dx = 1.

• The solution u(t, x) of Eq. (2.15) satisfies the following condition: 

C u (t, x) ---→ t→∞ c := u 0 dm,
A * m = 0 in R d , m 0, dm = 1, (2.19) 
and the solution u(t, x) of the Eq. (2.15) satisfies the following condition:

lim t→+∞ u(t, x) = c := u 0 dm, (2.20) uniformly in x.
It is worth stressing that in the context of the stochastic processes, strong ergodicity means that the process X t converges, as t → +∞, to an unique stationary state. The following result holds true. The result belongs to the class of the so-called Abelian-Tauberian theorems.

Theorem 2.4. (Ergodic mean characterization).

Let A be the (possibly degenerate) elliptic operator (2.16) and u ε ∈ C 0 (Ω), for ε > 0, solution of the (resolvent) equation εu ε + Au ε = f, (2.21) where f corresponds to u 0 , or equivalently u ε = (εI + A) -1 f . The following statements are equivalent.

(i) The operator C u (t, x) converges uniformly to a constant as t → +∞.

(ii) εu ε converges uniformly to a constant c as ε → 0.

(iii) εu ε is equicontinuous (compact in the space of continuous functions C 0 (Ω)) and Au = 0

u ∈ C 0 (Ω) ⇐⇒ u = c. (2.22)
Before proving the Theorem 2.4, the following remark needs to be underlined.

Remark 2.5. c (i) The relationship between the evolution equation (2.15) and the stationary equation (2.22) can be explained as follows: u satisfies (2.15), but we are looking at a new function u(T + s, x) with T s < ∞, possibly at the price of extracting subsequence denoting T n , converging uniformly to u (convergence uniformly in x and bounded in s belonging to any compact):

u(T n + s, x) converges unif. --------→ Tn→∞ u(s, x),
solution of Eq. (2.22). Note that the uniform convergence serves to ensure that u is continuous. The Abelian-Tauberian theorem (see, e.g., [START_REF] Simon | Functional integration and quantum physics[END_REF], Theorem 10.2) has an important rule. This theorem states that if f is a continuous function, and the following limit (Abel mean)

lim ε→0 ε ∞ 0 e -εt f (x(t))dt exists, then the limit (Cesàro mean) lim T →∞ 1 T T 0 f (x(t))dt
also exists and the following equality holds: (ii) The uniform convergence in Theorem 2.4 ensures that u is continuous which implies that u is constant. The continuity of u is important in this context. Indeed if we consider the following example (without control and boundary condition)

lim ε→0 + ε ∞ 0 e -εt f (x(t))dt = lim T →∞ 1 T T 0 f (x(t))dt,
: Ω = [-1, 1], a ij = 0 and b(x) = -x, the stationary equation reads -xu (x) = 0.
It is obvious that if u is continuous then u must be constant, i.e. u ≡ u(0); but if u is not continuous there might be a jump at t = 0 (u is a Heaviside step function, constant for x > 0 and for x < 0). (iii) The Definition 2.2 states the relationship between invariant measure and ergodicity, which is a key step in the study of the ergodic behavior of the underlying physical systems. The constant c can be represented in the form

c = R d u 0 dm, m ∈ P,
where P is a probability space and m is a probability measure. It is a positive linear form with respect to the initial condition u 0 that preserves the positivity. In addition, there is always at least one invariant measure m, which is not necessarily unique, but it still exists [START_REF] Bogachev | On the existence of Lyapunov functions for a stationary Kolmogorov equation with a probabilistic solution[END_REF]. In the case of ergodicity this measure is unique because if the invariant measure m is unspecified, according to the definition of ergodicity, one has:

R d u(t)dm = R d u 0 dm ∀ m ∈ P,
which, in the case of Cesàro, implies

1 T T 0 u(t)dm = u 0 dm.
By interchanging the integrals, one get

1 T T 0 u(t) converges unif --------→ t→∞ constant. Therefore 1 T T 0 u(t) c dm = constant.
The constant limit defines the action of any invariant measure on u 0 and therefore the invariant measure is automatically unique. On the one hand, for the problem (2.15) if one consider the following probabilistic representation:

u(t, x) = E x [u 0 (X t )], (2.24) 
with a Markov process which is at least, unique in law, then

u(t, x) = E x u 0 (X t ) u 0 L ∞ .
On the other hand, from Eq. (2.21), one has

εu ε = ε ∞ 0 e -εt S(t)f dt, S(t) = e -tA ,
and in light of the maximum principle, one get

εu ε f ∞ ∞ 0 εe -εt dt = f ∞ .
Taking the supremum over all possible controlled trajectories, we end up with εu ε L ∞ . Then the function εu ε is uniformly bounded. Thus the arguments one uses on the solution at any time, turns on resolvents in a property where u 0 is replaced by f and the u(t) is replaced by εu ε .

Proof of Theorem 2.4 (⇒) Assume that C u (t, x) := C u (t) converges uniformly to 0 as t → +∞. The problem of the mean ergodicity reduces to the following question: Does εu ε ----→ ε→0 + 0? On the one hand, since εu ε is equicontinuous, up to extraction of a subsequence

ε n ----→ n→∞ 0 such that ε n u εn converge unif.
--------→ n→∞ u giving us our limit and the equation for u:

A(ε n u εn ) + ε n u εn = ε n f.

On the other hand

A(ε n u εn ) cv. unif. -----→ n→∞ u, ε n u εn cv. unif. -----→ n→∞ u ε n f cv. unif.
-----→ n→∞ 0 therefore one has a continuous function such that u = 0. Hence, to prove ergodicity in the sense of Cesàro, we must prove (2.22). Next, from the representation of u ε , one has Therefore

u ε = ∞ 0 e -εs u(s)ds,
εu ε = -ε 2 ∞ 0 e -εs s 0 u ds ε 2 c ∞ 0 se -εs ds - → c.
(⇐) Let us show the reverse. By using the variation of constants formula, we get that the solutions of equation

Au ε = f -εu ε (2.25)
are given by

u ε = T 0 S(t)(f -εu ε ) + S(T )u ε (2.26)
where S(•) is the solution of linear semigroup of contraction in L ∞ to the homogeneous problem (2.25), s is replaced by t and t by T . Since u ε is independent of time, and since ∂ t u ε = 0, one can write

∂u ε ∂t + Au ε = f -εu ε . (2.27)
We then recovers S(T ) of the initial condition. Now, the solution at time T is given by 1

T u ε = 1 T T 0 S(t)(f -εu ε ) + 1 T S(T )u ε , (2.28) 
from which we deduce that the formulas (2.26) and (2.27) are equivalents. The reverse is that we know that εu ε -→ c and we are interested in what takes place on

1 T uε. We claim that 1 T T 0 S(t)f ----→ T →∞ constant = c
where c is the constant we seek; that is the mean of f . Observe that, when T is large enough, and εu ε independently of T , as ε becomes small, there is modulus of continuity ω(ε) such that

1 T T 0 S(t)f = c + ω(ε) + 1 T (u ε -S(T )u ε ) (2.29)
where ω(ε) → 0 as ε → 0 (and independently of the time). This is just the convergence of εu ε and since the semigroup preserves the bounds, we can estimate the expansion (2.29). Since

u ε C(ε), one can check classically that 1 T (u ε -S(T )u ε ) C(ε) T ,
equivalently, as T → ∞, for any ε one has Cesàro-means, namely

1 T T 0 S(t)f -c ω(ε) + C(ε) T , (2.30)
which is the key estimate needed to complete the ergodic result. The estimate (2.30) shows that, when T tends to infinity, one has information on Cesàro averages and completes the proof of the Theorem 2.4.

It is worth stressing that the Abelian-Tauberian theorem states that in order to study the mean ergodicity of Cesàro, it is sufficient to look at the resolvent and understand why εu ε converges towards a constant.

Remark 2.6. The existence of solutions of the resolvent equation (2.21) can be established by employing the maximum principle. However if A is degenerate the problem is still difficult, although existence of solutions to the resolvent equation is still ensured. In the non-degenerate case the situation is easier; if A is a uniformly elliptic operator, the resolvent set is well defined, indeed the first eigenvalue of A which 0 (the first eigenfunctions are constants). From a formal point of view, this problem is strongly related to Krein-Rutman's theorems (see [START_REF] Krein | Linear operators leaving invariant a cone in a Banach space[END_REF], Theorem 6.1).

Strong maximum principle and propagation of maxima.

This section contains some preliminaries that will allow to establish the connection with ergodicity/controllability through the propagation of maxima, and the hypoellipticity (in the sense of Hörmander [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés[END_REF]). As it is well known, the maximum principle provides a routine method for proving the uniqueness of classical solutions.

Our Strong Maximum Principle is the following. Theorem 2.7. Let a = (a ij ) be a symmetric and uniformly elliptic matrix. Let u be a viscosity subsolution of the following equation:

Au = ij a ij ∂ ij u + j b j ∂ j u = 0.
(2.31)

Assume that u takes a maximum at a point

x 0 ∈ Ω ⊂ R d , i.e. u(x) u(x 0 ) ∀ x ∈ Ω. (2.32)
Then u is constant in Ω almost everywhere.

Proof. Recall that, the probabilistic representation of the solution of Eq. (2.31) is given by u

(x) = E x [u(X t )],
with the process u(X t ). Assume that u takes a maximum at x 0 , i.e.

u(x 0 ) = max x u.
Since we are working on the compact space and that u is continuous, for the maximum point x 0 , one has

max u(x) = E x0 [u(X t )] u almost everywhere in x ∈ Ω.
This means that if there is a maximum point and all trajectories emanating from this point, then, on all these trajectories or almost everywhere, u is constant:

∀ t max u(X x0 t ) = u(x 0 ) = max u.
We can now use the same arguments to show that for a minimum point y 0 , one has u(y 0 ) = min u and then min u(X y0 t ) = u(y 0 ) = min u, almost everywhere, which guarantees that u is a constant and the claim is proved.

Accordingly to the strong maximum principle, for a solution of an elliptic equation the extrema can be attained in the interior if and only if the function u is a constant. We will use the above strong maximum principle to solve the ergodic problem in the next sections.

In order to quantify the directions in which the maximum (or minimum) propagates, a controllability problem is set. The idea dates back to the paper by Bony [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés[END_REF], where Hörmander operators are considered. For Eq. (1.4) the following matrix σ is considered:

a = 1 2 σσ T , a α ij = 1 2 σ α i σ α j , σ α = σ α 1 . . . σ α d T , (2.33)
where σ T denotes the transpose matrix of σ, σ α a vector field and d is the dimension of the space. Suppose σ and b are bounded infinitely differentiable functions and let A denotes the generator of the corresponding Markov process on R d , possibly degenerate, written in non-divergence form (2.16). Before we get to the heart of the matter, it is interesting to write A in the form of a square matrix. Define the following vector fields:

X α = d i=1 σ α i ∂ ∂x i , Y = d i=1 b i ∂ ∂x i , 1 d, (2.34)
where X α , Y are first-order differential operators with C ∞ coefficients. Then, it is helpful to rewrite the operator A in geometrical form by setting

A = -X 0 - 1 2 (X α ) 2 with X 0 ≡ β(x) • ∇, (2.35) 
where X 2 u := X(Xu). We recall that A hypoelliptic means that every distributional solution of Au = 0 is a C ∞ function. The relationship between the vector field b in Eq. (2.16) and β in Eq. (2.35) follows. Writing the operator A in (2.16) in Hörmander form, one obtains:

Au = - 1 2 (σ α • ∇)(σ α ∇) -β i ∂ i u = -a ij ∂ ij u - 1 2 [(σ α • ∇)σ α ] • ∇, (2.36) 
with

σ α ∇ x • σ α ∇ x = d i,j=1 σ α i ∂ ∂x i σ α j ∂ ∂x j , 1 d.
This means that we can rewritten (2.16) in the form

1 2 σ α ∇ x • σ α ∇ x + b • ∇ x = 1 2 d =1 X 2 + X 0 .
(2.37) Therefore equation (2.36) can be written as

Au = - 1 2 d i,j=1 a ij ∂ 2 ∂x i ∂x j + d i=1 b - 1 2 σ σ i ∂ ∂x i (2.38)
where σ σ is given by (σ σ) i = σ ij i σ j . Finally, we deduce that

β = b - 1 2 (σ α • ∇)σ α . (2.39)
Example 2.8. (The Fokker-Planck equation). We may associate to (1.4) two partial differential equations. The Fokker-Planck (or forward Kolmogorov) equation

∂ t u + ∂ i (ub i ) - 1 2 ∂ ij (σ ik σ jk u) = 0 (2.40)
and its adjoint equation, the backward Kolmogorov equation

∂ t u -b i ∂ i u - 1 2 σ ik σ jk ∂ ij u = 0, (2.41) 
where repeated indices denotes summation. Eq. (2.41) may be written as

- 1 2 σ ik σ jk ∂ ij u = - 1 2 ∂ i (σ ik σ jk ∂ j u) - 1 2 ∂ i (∂ j (σ ik σ jk )u), (2.42) 
then the Fokker-Planck equation (2.41) may be written as

∂ i u + ∂ i u b i - 1 2 ∂ j (σ ik σ jk ) - 1 2 ∂ i (σ ik σ jk ∂ j u) = 0 (2.43)
which is equivalent to

∂ t u + ∂ i (β u) - 1 2 ∂ i (σ ik σ jk ∂ i u) = 0.
(2.44)

The Link between Ergodicity and Controllability

This section is devoted to show the link between the reachability/controllability properties of the system and the ergodic behavior of the solutions. Definition 3.1. Let C (x) be the set of points z ∈ Ω which is controllable from x, i.e.

C (x) = z ∈ Ω | ∃ T > 0, ∃ α(•) : (0, ∞) → A, and there exists u ∈ L 2 ([0, T ]) such that ẋ = σ α(t) i u i (t) + β α(t) i ; x(0) = x, satisfies x(T ) = z (3.1) and C + (x) the closure of C (x); i.e. C + (x) = C (x), for all x ∈ Ω, (3.2) 
where the bar denotes the closure in the uniform topology.

Remark 3.2. The set C + (x) is the closed trajectories, namely the set of points z that can be reached at any time T , with a control α t and u ∈ L 2 , where one solves the associated differential equation starting from x and by arriving in z. The quantities σ α and β in (3.1) are defined in the Hörmander operator (2.39). The set C + (x) characterizes the set of points where the maximum propagates from x.

The transfer mechanism between stochastic system (1.4) and deterministic control systems (3.1) is furnished by the so-called support theorems [START_REF] Stroock | On degenerate elliptic-parabolic operators of second order and their associated diffusions[END_REF] which states that if P x is the probability in C (R + , R d ) for x t with initial value x ∈ R d , and P t , t ∈ R + , the semigroup corresponding to P (t, •, •), then supp (P x ) = C + (x).

(3.3)

Actually, supp (P x ) is the law of the process P x , starting in x t ; that is, the points which we will reach with a positive probability. Clearly (3.3) resembles an ergodicity property. The support Theorem of Stroock and Varadhan [START_REF] Stroock | On the support of diffusion processes with applications to the strong maximum principle[END_REF] is a bridge between diffusions and nonlinear (deterministic) control systems. Let X 0 , X i , i = 1, . . . , r, be C ∞ vector fields on a C ∞ manifold M of dimension d.

Let L A(X 0 , X i ) be the Lie algebra of vector fields generated by X 0 , X i , i.e. the smallest subalgebra of the vector fields on M that contains the X 0 , X i , and is closed under the Lie bracket operation [X, Y ], where in local components x = (x 1 , . . . , x d ) on M , reads:

[X, Y ] i = d j=1 X j ∂Y i ∂x j -Y j ∂X i ∂x j .
The second-order operator (2.35) is hypoelliptic (see [START_REF] Hörmander | Hypoelliptic second order differential equations[END_REF]) on M , if

dim L (x) = d for all x ∈ Ω, (3.4) 
i.e. the Lie algebra L A(Y, X i ) spans the whole tangent space T x M for all x ∈ M . As a consequence of assumption (3.4) we have exact controllability in the interior of control sets. Under (3.4), it was shown in [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés[END_REF] that any solution of Au = 0 vanishing in neighborhood of a point of Ω must vanish in the hole of Ω. Using Bony's technique, one can show that

C + (x) contains all φ ∈ C ([0, ∞), R d ) such that φ(t) = x 0 + t t0 Z(u, φ(u))du + t t0 Y (u, φ(u))du, t t 0 , (3.5) 
where Z is an element of the Lie algebra L A(X 1 , . . . , X d ) generated by X 1 , . . . , X d . Observe that condition (3.4) implies that the control system (3.1): (3.1) is accessible, i.e. C + (x) = ∅ for all x ∈ Ω. This information gives another possibility for observing an ergodic behavior. The following theorem show the connection between ergodicity and controllability. (i) The system (2.15) is mean ergodic in the sense of Cesàro implies that

Au = 0 u ∈ C 0 (Ω) ⇐⇒ u = c.
(ii) For every pair of points (x 0 , y 0 ) ∈ Ω, ∀ x 0 = y 0 , one has C x0 ∩ C y0 = ∅, where x 0 is a maximum point and y 0 a minimum point and C x is the closure of the set of points z ∈ Ω which is controllable from x, i.e.

{z ∈ Ω s.t. ∃ T 0, ∃ u ∈ L 2 (0, T ; Ω) s.t. ẋ = σ α (x)u α (t) + β(t), x(0) = x, satisfies x(T ) = z},
where, u α are the coordinates of u, C x0 is the set of accessibility and C y0 is the set of controllability.

Before going into the proof, some remarks are needed. Specifically we take the maximum at some point x 0 and this maximum point is propagated on certain set which is exactly the set C (x). Roughly speaking, when one takes a curve along the trajectory in C (x), according to the differential equation in (3.1), the first derivative of this curve, along this curve is equal to 0: It is a maximum point and then the gradient is equals to zero. This is a weak maximum principle; the second derivative with respect to time is zero. The Theorem 3.3 actually states that, when one takes a curve along the path of C (x), from the strong maximum principle one can integrate along this path and that remains constant. We make these ideas precise below.

Proof of Theorem 3.3. The proof is based on the analytical approach of Bony [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés[END_REF] which uses the relationship between the strong maximum principle and the propagation of maxima. Observe that if u takes a maximum at x 0 ∈ Ω, then

Au = 0, u(x 0 ) = max Ω (u)
and one obtains:

∇u(x 0 ) = 0 but also all the operators of the second order vanish. For simplicity, we will say that if a = 1 2 σ α i σ α j , from the weak maximum principle, we will know

a ij ∂ ij u(x 0 ) = 0. (3.6)
Roughly speaking, the gradient of u vanishes at x 0 , and the Hessian of u is nonpositive definite at x 0 , i.e.

∇u(x 0 ) = 0 and ∇ 2 u(x 0 ) 0.

In light of the Hopf's demonstration of strong maximum principle, one deduces that the fields the vector fields σ α are always tangent to the closed set, which is the set of all points containing the connected component of the closed set containing x 0 . This ensures a certain propagation along the integral curves of the vector field. Now, by virtue of Bony's interior principles [START_REF] Bony | Principe du maximum, inégalite de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés[END_REF], by choosing a maximum point x 0 , for a regular function u, it follows that Au = 0, and u(x 0 ) = max(u) which implies u(x) ≡ u(x 0 ) on C (x 0 ).

Ergodicity and rate of convergence

This section is concerned with the problem (1.1) and specifically with the prove that the rate of convergence is related to the uniform ellipticity or hypoellipticity. Consider the controlled diffusion processes of the form (1.4). In the general setting, assume that X t is a solution of (1.4) such that the distribution of x 0 is absolutely continuous and has the density v(x). Then X t has also the density u(t, x) and satisfies the so called, Fokker-Planck (or forward Kolmogorov) equation

∂ t u + Au = 0 u(0, x) = u 0 ∈ C b (Ω) (4.1)
where A is defined by (2.16), with coefficients a ij (x) > 0 ∀x, b i (x) and σ ij (x) connected with the coefficients of SDE (1.4). The solution u(t, x) of the Cauchy problem (4.1) represents the conditional transition probabilities of the process X t , which solves SDE (1.4). Namely, the Feynman-Kac representation formula of (1.4) is

u(t, x) = E[u 0 (X t )|X 0 = x 0 ]. (4.
2)

The easiest way to formulate precisely what we mean is to use the mathematical formulation of dynamic programming principle (see, e.g., A. Bensoussan-J. L. Lions [START_REF] Bensoussan | Applications des inéquations variationnelles en contrôle stochastique[END_REF], Krylov [START_REF] Krylov | of Stochastic Modelling and Applied Probability[END_REF]). Accordingly, we define

M (R) ≡ sup z∈B(R) v(z), m(R) ≡ inf z∈B(R) v(z),
where B(R) denotes the closed ball in R d with center O, radius R, and we set osc

B(R) v ≡ M (R) -m(R), 0 < R < R 0 , ( 4.3) 
which denotes the oscillation function of v on B(R).

The following theorem holds true.

Theorem 4.1. Assumes that the equation (4.1) is hypoelliptic or uniformly elliptic. Then, ∀u 0 periodic and bounded function on R d , there is a constant u := u0dm, such that the following estimate holds

sup Ω |u(t, x) -u| Ce -rt u 0 L ∞ , (4.4)
where r is a positive constant independent of x and t.

Note that the convergence in (4.4) implies mean ergodicity of the corresponding semigroup (S t ) t 0 . Hence, Theorem 4.1 rests on the following lemma which we now establish.

Lemma 4.2. Let u(t) = S(t)u 0 be the semigroup associated to (4.1). Then, if

u 0 ∈ L ∞ ∃ κ ∈]0, 1] such that osc(S(1)u 0 ) κ osc(u 0 ), (4.5) 
where osc(u) is defined in (4.3).

Before turning to a description of the proof, let us make some remarks. Modulo compactness, the strictly decreasing of the oscillation means that one looks at the maximum and minimum at the time 1, which are propagated in a certain set and one wants to say essentially that the only case where the oscillation does not decrease is the case where it is already constant; therefore everything is null. This corresponds essentially to say that

∃ T 0 , ∀ x = y, ∃ T T 0 , C (x, T ) ∩ C (y, T ) = ∅ where C (x, T ) = cls{z | s.t. ∃ u ∈ L 2 (0, T ; R d ) s.t. ẋ = σ α (x)u α (t) + β(t) x(0) = x, x(T ) = z}.
This means C (x, T ) crosses C (y, T ) and will ensure that osc (S(t)u 0 ) κ osc(u 0 ), if u 0 belongs to a family of continuous functions on a compact. Exploiting the above idea, one can use a method to ensure that there is an exponential convergence for ergodicity. We make these ideas precise below.

Proof of Lemma 4.2. Our proof is an adaptation of the methods developed by Lions [START_REF] Lions | Equations paraboliques et ergodicité[END_REF] and the proof is obtained by contradiction. Observe that, adding or subtracting a constant if necessary to u 0 , the estimate (4.5) remains invariant since the oscillation does not vary. Thus

• one can always renormalize the essential minimum of u 0 to be equal to 0 (since u 0 ∈ L ∞ ). • Also multiplying u 0 by any positive factor, the estimate (4.5) remains invariant; therefore we can renormalize u 0 so that the maximum of u 0 is 1.

Hence we must prove that the oscillation at time 1 cannot be equal to 1 uniformly. Indeed, since u 0 is renormalized, choosing u 0 ∈ [0, 1] with oscillation 1, then S(1)u 0 is compact within the space of continuous functions, as a regulated realvalued function. These observations allows to prove the lemma by contradiction.

In order to do so, we truncate the space R d by a ball of radius R and center 0 and then pass to the limit. Up to extraction of a subsequence denoted (u n 0 ) we get osc

B(R) (u n 0 ) = 1 such that osc B(R) (S(1)u n 0 ) -----→ n→+∞ 1,
with u n 0 ∈ [0, 1] and S(1)u n 0 compact in the space of continuous functions. Possibly at the cost of extracting a subsequence, we can deduce that

u n 0 w-L ∞ * -------→ n→∞ u 0 , such that 0 u 0 1
and local maximum/minimum values decrease/increase monotonically in time. Possibly u n 0 is constant. But more generally, one knows that

u n (t, x) uniformly ------→ n→∞ u(t, x) = S(t)u 0 , t > 0, in x, with 0 u(t, x) 1, provided that osc B(R) (S(1)u 0 ) = 1,
in view of the uniform convergence (in the max(u) at time 1, as well as for min(u) also). We now apply, the strong maximum principle to obtain max

B(R)
(S(1)u 0 ) = 1 and min

B(R) (S(t)u 0 ) = 0.
If this is not true, u is constant, this is because S(1)u 0 ∈ [0, 1] and also u(t, x) ∈ [0, 1] and oscillation of u(t, x) is 1. For any continuous function u belonging to [0, 1] such that osc(u) = 1, one has max(u) = 1 and min(u) = 0. This infers, thanks to the strong maximum principle, that if

max x∈B(R) u(x) = 1 ⇒ u ≡ 1 and min x∈B(R) u(x) = 0 ⇒ u ≡ 0, (4.6)
then a contradiction. Thus (4.4) the proof of Lemma 4.2 is reached.

Applications to Hamilton-Jacobi-Bellman type equations

This section is concerned with some diffusion processes where ergodicity can be stated by the results of the present paper.

Mean-field games theory.

From the modeling viewpoint, the equation (4.1) is able to describe the penalization of congestion problem.

Let Ω be a bounded, smooth domain of R d , the interest is to minimize the following cost functional:

J(t, x) := E T t ψ(X T ) + 1 q |α s | q ds, (5.1)
where E denotes the average, |α s | q measures the cost of speed,

1 q
|αs| q is a Lagrangian depending on the position of the agent and the control; q is a parameter, ψ is the terminal cost. According to Eq (5.1) the cost of movement of an agent is affected by the density of neighborhood agents. The process X t -the state process or the controlled process -is the solution of the following generic stochastic differential equation:

dX t = σdW t -α t dt.
(5.2) Let u be the Bellman (value) function, namely:

u(x) = inf α∈A J(x, α), x ∈ Ω, (5.3)
where the inferior is taken over all admissible systems. According to the dynamical programming principle of R. Bellman, the value function u ∈ C 2 (Ω) is solution of the following second-order quasilinear elliptic equation:

   ∂u ∂t -ν∆u + H(∇u) = 0 u(0, x) = u 0 , (5.4)
where H is the convex conjugate function of the Lagrangian, which reads:

sup α α • ∇ x u - |α| q q = H(∇u).
(5.5)

The hamiltonian (5.5) is the convex conjugate function of Lagrangian, thus (α) q-1 = ∇u, (5.6) where ∇u is the optimal control, with the following notation: For any p, (p) q-1 := |p| q-2 p.

With this notation and from (5.6) one has

α = (∇u) 1/q-1 .
Inserting the value of α in (5.5) leads to

sup α α • ∇ x u - |α| q q = sup α 1 - 1 q (∇u) 1/q-1 • ∇u = |∇u| p p , ( 5.7) 
and setting ν = σ 2 /2 (from d'Itô formula), we have

   ∂u ∂t -ν∆u + 1 p |∇u| p = 0 u(0, x) = u 0 (5.8)
with the notation (ξ) r = |ξ| r-1 ξ, p > 1 is the conjugate exponent of q i.e. p = q q -1 , 1 < q < ∞, where, we change the sense of the time: t → T -t, such that the initial condition becomes u(0, x) = u 0 . The equation (5.8) is a very particular case of the so-called Hamilton-Jacobi-Bellman equation. If p = 2 it is possible to prove that there exists a unique λ ∈ R such that:

(i) u(t, x)/t converges uniformly to a constant λ ∈ R;

(ii) u(0, x) -λt → v solution of the following ergodic problem:

v -ν∆v + 1 p |∇v| p = 0.

The linear case.

In this subsection, we assume that Ω is a bounded domain of R d and u 0 a periodic function in the variable x. The corresponding probability density u(t, x) is solution of the forward Kolmogorov (Fokker-Planck) equation (2.40). Note that Eq. (2.40) is a linear partial differential equation, while (1.4) is a (generally nonlinear) system of stochastic ordinary differential equations.

In what follows we assume that for all i = 1, . . . , d, and j = 0, . . . m, the functions σ ij are sufficiently smooth and have bounded derivatives of all orders, and the coefficients of the matrix σ are also bounded. Moreover we assume that there exists:

a bounded measurable σ : [0, +∞[×R d → S d (R)
such that a = σσ T .

(5.9) It is worth noting that in this case the existence and uniqueness of strong solutions is not always ensured. A related result is the following. and that the initial condition u 0 ∈ L ∞ (R n ). Let X t be solution of the stochastic differential equation (1.4). Then the function

u(x) = inf all choices of α E[u 0 (X t )] (5.11)
is solution of the following Cauchy problem:

   ∂u ∂t = inf A∈Ac 0 ,ν tr(AD 2 u), u| t=0 = u 0 ≡ 0 (5.12)
where α is the control, A = (a α ij ) are constant matrices satisfying, for all t and x, the following uniform ellipticity condition:

νI {a α ij } c 0 I. (5.13)
Moreover the function u converges to some constant c:

u(t) ---→ t→∞ c = u 0 m, m 0, m = 1. (5.14)
Proof. The parabolic case follows by the elliptic setting. Let us note that in the absence of regularity, the resolution of the problem (1.4) poses problem as well as the resolution of the associated partial differential equation. The two keys points for proving the ergodicity underlying Lemma 5.1 are the maximum principle and the Pucci's extremal operators which will provide a partial differential equation. We prove the claims by the following three steps.

Step 1. We begin by normalizing u 0 . Adding a constant to u 0 , we may assume without loss of generality that ess-inf u 0 = 0. Since the equation is invariant, subtracting the infimum reduce to the case where the infimum is 0 and multiplying u 0 by what is needed ensure that ess-sup u 0 = 1. One can check classically that ess-sup 0. If ess-supu 0 = 0, everything remains constant and the inequality (4.5) is true with everything we want and thus as soon as the ess-sup is not zero, one divides by a constant, this is because the equation (1.4) is a linear problem with the solution given

u(t, x) = E x [u 0 (x t )], (5.15) 
thus giving a trajectorial interpretation of the system.

Step 2. As we have no partial differential equations, we will introduce a nondecrease and non-increase function u by writing a stochastic control problem. Let us consider the upper and lower envelopes of u defined by

u =: sup all controls s.t. c0I aij νI E x [u 0 (x t )] and u := inf all controls s.t. c0I aij νI E x [u 0 (x t )]
where x t is trajectory of the following stochastic differential equation

dx t = 2σ(t, ω) dW t + b i (x t )dt, (5.16) 
namely σ = a 1/2 is a control. Here, a 1/2 is the positive square root of the matrix (a ij (x)). By virtue of the definition of u and u, one has u u in R d × [0, T ] and since u and u are viscosity solutions, by strong comparison property, one has u(x, t) u(t, x) u(x, t).

Rephrasing the stochastic differential equation (5.16), we said that: one chooses all adapted processes such as their square lies between c 0 I and νI and one takes any process with which the square satisfies this terminal, and defines

dx t = σ(t, ω)dW t + b(x t , ω)dt.
(5.17

)
The problem is formulated as follows: one chooses a process and one looks at all these processes, one maximizes and thus u is certainly larger and of course if there is a solution (that it is strong or weak in a certain space) which is one of the elements of the collection, once one has a solution, one says that σ(x t ) are certainly a process of x t and of ω. The advantage is that now look for a stochastic control problem which should satisfy a certain partial differential equation called the Hamilton-Jacobi-Bellman equation, this is because one has a Markov property. This equation brings up the operator defined in (2.10). The function u solves the evolution equation

     ∂u ∂t + inf νI a α ij c0I -a α ij ∂ ij u = 0 u| t=0 = u 0 , (5.18) 
where the infimum is taken over all controls define above, a α ij (α is our control) are constant matrices. Eq. (5.18) can be rewritten in more abstractly and more compactly form

   ∂u ∂t + P + (u) = 0 u| t=0 = u 0 , (5.19) 
where P + denotes the extremal Pucci operators. One obtains now the envelope of all the generators through the infimum. Finally, we derive general parabolic Bellman problem of the form

   ∂u ∂t = F (D 2 u) = inf A∈Aν,c 0 {-Tr(AD 2 u)}, (x, t) ∈ Ω, u| t=0 = u 0 ≡ 0, (5.20) 
with Ω = {(x, t) : x ∈ R n , t > 0} and A ν,c0 is the set of all such matrices A ∈ S n , i.e., positive definite matrices, the eigenvalues of which belong to [[ν, c 0 ]].

Step 3. As a consequence of our analysis, it follows from the L p -theory developed in Krylov and Safonov [START_REF] Krylov | An estimate for the probability of a diffusion process hitting a set of positive measure[END_REF], and Caffarelli [START_REF] Caffarelli | Interior a priori estimates for solutions of fully nonlinear equations[END_REF][START_REF] Caffarelli | Fully nonlinear elliptic equations[END_REF] that • when u 0 ∈ L ∞ the compactification is obtained (this is the parabolic version of Caffareli's results), for all strictly positive times, one has Hölder's estimates and Eq. (5.18) admits instantaneously a C 1,1 -solutions, thus one can apply the strong maximum principle.

• Therefore the maximum of u is obliged to lower proportionally to the maximum of u 0 otherwise the solution is constant.

• Therefore we can apply the lemma and we will actually have that the maximum of u(x, t) decreases strictly proportionally to the maximum of u 0 otherwise it is constant and everything is zero and the minimum of u grows strictly proportionally to the minimum of u 0 and one has compactness. Indeed, by using the representation of the solutions to write

max x E[u 0 (X t )] E[max x u 0 (X x t )] max z u 0 (z).
Therefore, between the time 0 and time t, the maximum decreases; one has semigroup property. It means that the function is decreasing; if one changes u 0 , we have the same estimate on the minimum.

Conclusion.

Thanks to the Hamilton-Jacobi-Bellman equation (5.19), and in light of the Theorem 4.1, we obtain the following estimation

u(t) -u 0 m ∞ Ce -rt .
(

This means that the convergence of u to some constant:

u(t) ---→ t→∞ c = u 0 m, (5.22) 
where m is a probability measure. The constant c is a linear, positive with respect to the initial condition u 0 , preserving positivity. The required conclusion follows immediately from inequalities (5.21) and (5.22) and complete the proof of the Lemma 5.1.

The nonlinear case.

This section is devoted to the nonlinear case and specifically it consists of two subsections for taking into account the uniformly elliptic case (the matrix a = 1 2 σσ T is definite positive) and the degenerate case. The type of result expected here is the limit (1.6)-(1.7).

Uniformly elliptic framework.

In this subsection we consider the case of nonlinear elliptic equations on a bounded domain. Specifically the Theorem 4.1 is generalized to the case of nonlinear operators of the form (1.2) in the uniformly elliptic framework. Accordingly we consider the following second-order partial differential equation:

∂ t u + F (x, u, Du, D 2 u) = 0 u(0, x) = u 0 , ( 5.23) 
where the functional F defined by (2.6) is fully nonlinear in the sense that it is a second order equation in which the nonlinearity involves the second derivatives, where A denotes a set of controls. Eq. (5.23) is usually called Hamilton-Jacobi-Bellman (briefly, HJB) equation. We assume that there exist matrices σ α such that a = 1 2 σ α (σ α ) T (x) and νI a α ij (x) c 0 I (

where 0 < ν c 0 positive constants, I the d × d identity matrix and

a α ij , b α i ∈ L ∞ (Ω).
Let CP the following Cauchy problem:

CP :    ∂u ∂t + A α u = f u(0, x) = 0, (5.25) 
where

A α := -a α ij (x)∂ ij -b α i (x)∂ i .
Setting u t = v and differentiating Eq. (5.25) with respect to t, Eq. (5.25) rewrites as

   ∂v ∂t + A α v = 0 v(0, x) = f.
(5.26)

It is natural to think that the solution u(t, x) of the problem (5.23) when it exists, will behave as follows:

u(t, x) = v(x) + o t (1), (5.27) 
where v is the unique solution of the associated stationary problem

F (x, v, Dv, D 2 v) + c = 0, v(x) = v 0 .
(5.28)

However the problem (5.28) does not always admit solutions. In what follows we show that the unique solution u of (5.23) has the behavior (5.27) when the limiting problem (5.28) has a solution. If the equation (5.28) does not admit solution, we show that the asymptotic behavior of u is of the following type:

u(t, x) = ct + v(x) + o t (1), (5.29) 
where the constant c and the function v defined on Ω come from the associated "ergodic problem" consisting in finding a couple (c, v) such as u satisfied the equation (5.28). The estimate (5.29) raises obvious questions concerning the existence of solutions of (5.26). Thus the question we address in this section is: What happens to the limit u(t, x)/t when t → ∞ (since obtaining u requires integration v; the passage from where u and v ε := εu ε are respectively the solution to problem (5.23) and to equation

v ε + F (x, v ε , Dv ε , D 2 v ε ) = 0, x ∈ R d . (5.32)
Hence, the behavior of the solution u(t, x) of (5.23) helps to study the limit (5.31).

In other words, the study of (5.31) In what follows the following condition is assumed. (H1) We assume that the coefficients a ij ≡ a ij (t, x).

As consequence the main result of this section is the follows.

Theorem 5.2. Let (H1) holds. Then, there exists an unique c, and r > 0 such that

∂ t u -c ∞ C 0 e -rt .
(5.33)

We deduce that u(t)ct ∞ C 0 e -rt , (

where C 0 is a constant. In addition, there exists a unique, up to additive constant, solution v of the problem

F (x, v, Dv, D 2 v) + c = 0. (5.35)
Let us try to give an outline of the main ideas behind the proof of Theorem 5.2. The existence of v is classical since v represents (up to a multiplication by a constant) the solution of the stationary ergodic problem. When the equation is nondegenerate, which will be an assumption when looking for (1.6), the structure of the solutions of (5.28) is simpler: the solution of (5.28) is unique up to translations by constants. Then Cauchy problem (5.25) is nondegenerate when it is uniformly parabolic, i.e., the diffusion is elliptic, namely (5.24) holds. The new point here is the new method we use to obtain the rate of convergence through the method developed in Lemma 4.2. Applying the comparison principle to the Cauchy problem

u t + F (x, u, Du, D 2 u) = 0 u(0, x) = 0 (5.36) then one has u(t, •) -ct -v L ∞ v L ∞ .
Letting t → +∞, one get u(t, x) t → c as t → +∞, uniformly on x.

Therefore, F is ergodic and c = -F . The result of Theorem 5.2 follows the idea of Lions [START_REF] Arisawa | On ergodic stochastic control[END_REF] to study the asymptotic behavior of these kind of equations.

Proof of Theorem 5.2. Differentiating the partial differential equation (5.23) with respect to the variable t, we obtain

∂v ∂t + F A • D 2 v + F p • Dv = 0, (5.37) 
where F A := a ij (x, t) and F p := b(x, t) denotes the first partial derivative of F with respect to its ij-th entry (resp. in p). On the one hand, by (5.24) we know that F A is uniformly elliptic, with ellipticity positive constants ν and c 0 independent of the regularity of u. This property ensures that, for all X, Y ∈ S d with Y 0 (nonnegative definite)

inf νI M c0I (-Tr(M X)) F (X + Y ) -F (X) sup νI M c0I (-Tr(M X)).
This means that the oscillations of the function F are trapped by such extremal operators introduced by Pucci. On the other hand, observe that Equation (5.37) is a parabolic equation which is time dependent. So we must slightly change the assumptions of Lemma 4.2 replacing a ij (x, t) with a ij (x, t+n). To be more precise, we assume that:

there exists κ ∈ [0, 1] (independent of n) such that osc (n + 1) κ osc (n).

(5.38) This means to write Lemma 4.2 on [0, 1], but by shifting the coefficients for times which vary between n and n+1 or times that vary between 0 and 1. Thus Theorem 4.1 tells us that v converges exponentially fast to a constant and consequently there exists r > 0, and c > 0 such that u tc

C 0 e -rt .

The time derivative satisfies an equation of the type we had already looked for and we did not require the regularity on the coefficients. Formally, we have at least one non-degenerate parabolic equation solved by v(t) and right away we know that entails exponential convergence. From (5.34), the solution u asymptotically behaves like u ∼ ct + v, namely

u(t, x) = v(x) + ct + o t (1), as t → ∞,
where (c, v) is a solution of the stationary ergodic problem (5.35). Hence

u(t) -ct -v Ce -rt ,
which ends the proof.

Degenerate framework.

An other question we address in this paper, is the connections with the large time behavior of the solutions of the controlled Itô stochastic differential equation in

R d dX t = σ αt (X t )dW t + f αt (X t )dt, t > 0, X 0 = x. (5.39)
This problem is interesting when the diffusion process described by (5.39) is degenerate, namely, the matrix a α := 1 2 σ α (σ α ) T is merely positive semidefinite for some α. This will be a situation where the associated Legendre transform F is

F (x, p, A) = sup α∈A a α ij (x)A ij -b α i p i -f α i (x) , ( 5.40) 
where A ij := ∂ ij . We impose the following conditions on the drift term b and the first spatial derivative of σ are uniformly Lipschitz continuous in x. For σ and b, we form the operator

1 2 σ α ∇ x • σ α ∇ x + b • ∇ x = X 0 + 1 2 d =1 X 2 , ( 5.41) 
by the prescription given in subsection 2.3. Roughly speaking, there is a collection parameterized by α which describes a set A of operators and the envelope of these operators is taken; this is Pucci type operators. The set A is the set of all matrix between νI and C 0 I. In (5.40), the coefficients depend on x and are all uniformly in α and regular in x.

Thus we had simply taken a collection of operators as within the framework linear and taken their envelope by sup. That corresponds to minimize the expectations of all the processes associated with these operators with the possibility constantly of choosing like dynamics one or the other of these diffusions. Thus one can start and choose that at any moment in a random way; one starts with a dynamics then one switch over the second . . . etc. one finds at the end a process; one calculates its expectation and thus one minimizes compared to any possible choice. This gives an infinitesimal equation which is no longer parabolic equation for a semigroup process to a diffusion process, but what it gives us is the envelope of all these operators and all these equations through the operation of sup. The methods and arguments discussed in the preceding sections link the theory of viscosity solutions and the fact that u ε (resp. u(T, x)) is the unique continuous viscosity solution of the equation of Hamilton-Jacobi-Bellman associated (HJB), that means,

εu ε + sup α∈A (A α u -f α ) = 0, x ∈ Ω (5.42) respectively ∂ t u + sup α∈A (A α u -f α ) = 0, (x, t) ∈ Ω × (0, ∞) u| t=0 ≡ 0, x ∈ Ω (5.43)
and A α is operator A with parameter α defined in (2.16). Using the Hamiltonian, we can reformulate the associated F as

F (x, p, A) = sup α∈A [-Tr(a α • A) -b α • p -f α ].
(5.44)

We will answer the question raised in previous sections regarding the limit of the functions, as t → +∞, of the Eq. (5.43). It is well known that in L ∞ framework, it holds max This ensures that if one looked at the evolution problem (5.43), the ergodic theorem states that

x (εu ε ) converges ------→ ε→0 M et min x (εu ε ) converges ------→ ε→0 m. ( 5 
max x t -1 u(t) converges ------→ t→∞ M min x t -1 u(t) converges ------→ t→∞ m.
This attempt to replicate what we have already done, that is the convergence of the maximum.

Convergence of εuε and characterization of the limit number. Here we investigate the regions where u ε uniformly converges to some constant function. This can be guaranteed by suitable controllability assumptions on our system. We will adapt the arguments of the preceding section. We assume that

(H2) C + (x) = Ω, for all x ∈ Ω ⇒ v = Constant.
This assumption corresponds to the requirement that one has controllability starting from any point. Note also that (H2) implies that the system is ergodic (convergence to a constant). Next, in order to apply the tools involved in these theories some compactness properties of the process (or semigroup) defined by the equation are requested. Roughly speaking, to study the ergodic problem, we introduce additional hypothesis ensuring the characterization of ergodicity. Following the subsection 2.2, we assume that (H3) (u(t, x)/t) t>0 (resp. εu ε ) is equicontinuous on R d (resp. uniformly continuous, uniformly in ε > 0).

The above assumption means that (u(t, x)/t) t>0 is compact. Our next theorem is a resolution of the limit problem. It claims that the family (εu ε ) converges to a constant.

Theorem 5.3. Let Assumptions (H2)-(H3) hold and a

α ij ∈ C ∞ (R d ) for all α ∈ A. Then v ε := εu ε (resp. 1 t u(t, •)) converges uniformly on R d to a constant c as ε goes to 0 + (resp. t → ∞)
. Furthermore, c is the unique constant such that there exists a solution v to equation

F (x, v, Dv, D 2 v) + c = 0, x ∈ Ω ⊆ R d . (5.46)
Let us try to give an outline of the main ideas behind the proof. The proof is delicate when the matrix A is degenerate since the structure of the solutions of (5.46) can be very complicated. One can obtain easily in general that the ergodic constant c is unique but there can be a lot of solutions of (5.46). It is obvious that, given a solution v of (5.46), all the translations by constants are still solutions but there can exist even solutions which are not translation of a given one by constants, see Lions et al. [START_REF] Lions | Homogeneization of Hamilton-Jacobi equations[END_REF]. Actually, in a linear framework, this issue was solved by using a point of maximum and a point of minimum and said that if one can check from a point of a maximum and check a point from a point of minimum and get as close as one wants, the assertion is proved: that is to say, the maximum is equal to the minimum because the maximum is propagated. But, here there is a non-linear equation and we cannot work with a point of minimum, because they are not at all the same operators of our case. Actually, the operator who counts, it is that which maximizes here and in another point, it is another operator who counts. Thus to compare things does not makes no sense. However, this argument breaks down in the nonlinear case. Therefore, we cannot work at the same time with the properties of the maximum and the minimum. In other words, which we did in the linear case breaks down in the non-linear case. On the other hand, we can try to work only with the maximum, that is to use the hypothesis (H2). The strong maximum principle is essential to prove the existence of the ergodic number c in theorem 5.3.

Proof of Theorem 5.3. From equicontinuity assumption (H3), and setting

v ε = εu ε ,
the problem is now to determine the behavior of v ε as ε goes to 0. We can consequently reinterpret Eq. (5.43) as follows. Replacing u t with v in the equation (5.43), then the problem reduces to the study the following equation: (5.50) From hypothesis (H3), for any sequence ε n > 0 going to 0, there exists a subsequence, still denoted by ε n , such that ε n u εn converges uniformly on R d to some v which satisfies (5.50). As an immediate consequence of (5.49), we deduce that

A α v 0, in R d , ∀ α ∈ A,
and as well-known this is equivalent to

A α v 0, in D (R d ), ∀ α ∈ A.
Then regularizing v by conclusion if necessary, one obtains A α v = 0 in D (R d ), ∀ α ∈ A. Next, we conclude the proof by showing that v is a constant. The strong maximum principle states that v attains a maximum at x 0 ∈ Ω; then v is a constant function. From (5.45) the maximum of v is identified: max(v) = M, and thus, we are going to be able to conclude that v is constant. In order to do so, we have to examine how the maximum is propagated. By virtue of assumption (H2), the propagation set C + (x) of the maximum at x, is the entire space R d , on which we will have the possibility of taking any control, and Eq. (5.49) 

corresponds to v = inf αt E[v(x t )],
where x t is a process corresponding to a control α(t, ω). This implies a strong maximum principle for a class of operators that are not strictly elliptic and there is propagation, not only for one operator, but for all operators. We may then apply the strong maximum principle to deduce that v is constant and our claim is proven.

Conclusions and perspectives

This paper has been devoted to the link between the asymptotic analysis of PDE and the ergodicity problem in dynamical systems theory. According to Abel-Tauberian type theorems, the proof of mean ergodicity relies on the limit of (εu ε ) ε>0 , when ε tends to zero, and on the analysis of the resolvent equation. The paper proposes the link among the asymptotic behavior, ergodicity, and controllability as criterium for the analysis of nonlinear PDEs. To the best of our knowledge, these features (especially the last one) have never been tackled up in literature. The proof of the main results of the present paper is based on the method introduced in [START_REF] Lions | Equations paraboliques et ergodicité[END_REF]. In particular the method proposed in this paper works clearly for the second order fully parabolic integro-differential equation such as those appearing in stochastic control of jump diffusion process. One of the novelties of our work is that the proposed methods allow to approach also non-linear problems, especially the degenerate case where controllability sets still play an important role. These questions were tackled by many authors but from the stochastic point of view [START_REF] Stroock | On degenerate elliptic-parabolic operators of second order and their associated diffusions[END_REF][START_REF] Arnold | On unique ergodicity for degenerate diffusions[END_REF][START_REF] Vaidya | Controllability for a class of area-preserving twist maps[END_REF][START_REF] Mattingly | Ergodicity for SDEs and approximations: locally Lipschitz vector fields and degenerate noise[END_REF].

Concerning our results, some open problems can be addressed. For instance, ergodicity has been investigated under the equicontinuity assumption. A question thus arises: Can equicontinuity be relaxed? It is worth stressing that the assumption that the family (u ε ) ε>0 is locally equibounded and equicontinuous has allowed to employ the Ascoli-Arzela theorem and standard diagonal arguments in order to conclude the existence of a solution of (1.8). The following problem set the motivation of this question. Specifically, we consider the following equation

-a ij (x)∂ ij u ε + H(∇u ε ) + εu ε = f a ij = 1 2 σσ T (6.1)
where > 0, H(∇u ε ) = |∇u | where |•| is Euclidean norm with periodic boundaries conditions, σ and f are regular, the matrix (a ij ) is assumed symmetric, positive or null matrices and not necessarily non-degenerate. What about the ergodic problem? Is that (u ε ) ε>0 equicontinuous? (u ε ) ε>0 converges to a constant? Clearly, for a ij = 0, one has |εu ε | C, that is v ε := εu ε is bounded (see e.g. [START_REF] Lions | Homogeneization of Hamilton-Jacobi equations[END_REF]). For a ij > 0, Eq. (6.1) is uniformly elliptic and |v ε | C is bounded from

-a ij (x)∂ ij v + |∇v | = εf.
Hence, the answer of our question is positive. But, what happens if the matrix (a ij ) is not uniformly elliptic or a ij = 0? In one-dimensional case, it is not hard to show that Eq. (6.1) writes as follows:

-

au ε + |u ε | + εu ε = f, (6.2)
which is bounded and thereby, it is not very complicated to convince ourselves that this involve that u ε is bounded, independently of ε, thus making possible to obtain a priori estimates.
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 21 Let Ω ⊂ R d be a bounded domain of R d , d ∈ N * , S d (R) the space of the d × d real symmetric matrices, and
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 0 provided that at least one side is meaningful. Thus it is clear the relation between lim ε→0 + εu ε and lim T →∞ u(T, x) T . According to the theorem 2.4, the main problem is to understand the behavior of εu ε . Multiplying (2.21) by ε, one has ε(εu ε ) + Aεu ε = εf. (2.23)Observe that εf → 0 and by the equicontinuous of εu ε , possibly at the cost of extracting a subsequence, one has εu ε → u with u solution of Au = 0. From the informal point of view, the theorem 2.4 states the link between ε and 1/t in the Cesàro time-averaged functional and the operators 1 -As ds, (εI + A) -1 .

since the relation ∞ 0 e

 0 -εs e -As ds = (εI + A) -1 , holds if A is a constant or an operator. Integrating by part and using the estimate
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 33 The following statements are equivalent.

Lemma 5 . 1 .

 51 Assume that a = σσ T , ∃ ν such that a νI,(5.10) 

  u ε is a solution of the associate approximate stationary equationεu ε + F (x, u ε , Du ε , D 2 u ε ) = 0?By standard theory, c fulfills c = lim t→+∞ u(t, x) t = lim ε→0 + εu ε (x) uniformly in x,(5.31) 

  leads to the introduction of the notion of ergodicity used in the theory of dynamical systems. It is the objective of what follows to verify these facts.

(

  εu ε ) is decreasing, and min x (εu ε ) is increasing.

  u -f α ) = 0. (5.47) Multiplying the equation (5.47) by ε, is recovered sup α(A α v ε -εf α ) + εv ε = 0.(5.48)From the Arzelà-Ascoli Theorem, upon letting ε → 0, possibly at the cost of extracting a subsequence, we have thatv ε = εu ε converges uniformly ------------→ ε→0 v,which, in view of the structural stability of viscosity solutions is a solution of the homogeneous equation supα (A α v) = 0. (5.49)This infers that A α v = 0, on R d , ∀ α ∈ A.