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Reconstructed drill-bit motion for sonic drillstring dynamics

Kaïs Ammari a , Lotfi Beji b , ∗

a UR Analysis and Control of PDEs, UR13ES64, Department of Mathematics, Faculty of Sciences of Monastir, University of Monastir, Monastir 5019, Tunisia
b IBISC-EA4526 Laboratory, University of Evry, 40 rue du Pelvoux, Evry 91020, France

In tunnel excavation that integrates Resonant Sonic Head Drilling (RSHD) machine, one of the important

stability problem to deal with is represented by the necessity to assign axial vibration amplitude induced

by the RSHD to a resonant vibration mode. In general, a control law depends on system variables which

are partially available for measurements. In drilling operation, the drillstring variables at the tip boundary

aren’t easy, if not impossible, to be measured. The sonic drillstring infinite dimension dynamics, derived

in this paper, will play an important role in PDE (Partial Derivative Equation) observer design for the drill

bit motion. The well-posedness problem is addressed, and the designed PDE-observer stability is detailed

using the resolvent method. The wave peak amplitude is determined from the resonant drillstring mode

shape, and the system’s stability is analyzed around a practical frequency mode.

1. Introduction

As hard rock drilling induces sever friction phenomena around 

the drillstring system and also at the bit, sever vibration variations 

are inherent for the equipment and may affect Rates Of Penetration 

(ROP). ROP are theprincipal monitoring factor like performance pa- 

rameter of drilling. In drilling environment, larger machines are de- 

signed to drill harder formations; these machine vibrate, rotate and 

inject a fluid for cooling and removal of waste cuttings. Machines 

equipped with head rotary are useful in oilwell drilling. However, 

for tunnel drilling support where the depth is limited, machines 

that integrate axial vibration tool are considered more efficient. 

The variation of frequency by the operator and the drill bit weight 

to match the material he is going through, ensure the best pene- 

tration rate and most accurate sampling is obtained. 

Sonic drilling has been used in industry for many years [17] . 

The majority of the research has been performed by private indus- 

try where they have kept the knowhow that they have developed 

internal and proprietary [3] . Most of the model, that describes the 

sonic drillstring found in the literature, did not take into account 

the damping of the soil along the length of the drill and they 

model poorly the interaction between the sonic drillstring bit and 

the crown [7] . The quantification of the sonic drill system variables 

integrates the under estimated friction from the drillstring and the 

crown. The essence of sonic drilling is high-frequency vibration 
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drilling where energy waves are transmitted though the drillstring 

to the end string and then reflected back. A sonic drill head works 

by sending high frequency resonant vibrations down the drillstring 

to the drill bit, as shown in Fig. 1 , while the operator controls these 

frequencies to suit the specific conditions of the soil/rock geology. 

Vibrations may also be generated within the drill head. The fre- 

quency is generally between 50 and 150 Hz (cycles per second) 

and can be varied by the operator. Resonance magnifies the am- 

plitude of the drill bit, which fluidizes the soil particles at the bit 

face, allowing for fast and easy penetration through most geologi- 

cal formations. An internal spring system isolates these vibrational 

forces from the rest of the drill rig. 

Despite the performance of the axial vibration controllers pro- 

posed in [6,7] by means of adequate simulation results, implemen- 

tation on real machine may be impractical. Actually, the downhole 

system’s variables measurements, are unrealizable during drilling 

in underground tunneling unlike in the oil well rotary drilling field. 

Observability is a property of a dynamical system which means 

that we can determine exactly the state of the system from the 

observer of its input and output on a sufficiently long time inter- 

val. Note that an observer for a given system is an another dynam- 

ical system that produces an estimate of the current state of the 

given system based on past observations. The construction of ob- 

servers is important in control applications for infinite-dimensional 

systems. The location of measurement and actuation plays an im- 

portant role in the design of the observer for PDEs. If the sensor 

and the actuator are placed at the opposite boundaries, we call this 

an anti-collocated setup, otherwise, when the sensor and the actu- 

ator are located at the same side, it is called collocated setup. In 
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Fig. 1. Drilling machine (RSHD) tip and top boundary conditions.

general, two approaches are used to design a convergent boundary 

observer for a distributed parameter systems. The first approach is 

based on the backstepping technique: in [19] , backstepping-based 

observers for a class of linear parabolic integro-differential equa- 

tions was presented. An observer design for general periodic quasi- 

linear parabolic PDEs in one space dimension is used in [5] . For 

the case of a linear first-order hyperbolic system, an estimation 

of boundary parameters has been proposed in [11] . The contin- 

uum backstepping approach was applied to a hyperbolic PDEs in 

[8] to derive a collocated observer. The second approach is Lya- 

punov. Using this theory, boundary observer is designed for a mo- 

torized Euler–Bernoulli Beam in [13] , for a towed seismic cable in 

[14] and for a flexible-link manipulator in [20] . 

In the present paper the main contribution here is to propose 

a collocated infinite dimensional observer for axial vibrations with 

sensing restricted to the boundary. To the author’s knowledge, all 

previous works considering the vibrations control problem were 

carried out in the field of oil well drilling, where the variables in 

the bottom hole can be measured as there are sensors fixed on 

the drill collars which is not the case in the tunneling field. The 

estimation problem of the unmeasured parameters related to vi- 

brations has not been found in the literature. The only results deal 

with estimating the pressure and temperature conditions. 

The paper is organized as follows. The second section is con- 

cerned by the system model, we present a distributed parame- 

ter model of the drill string axial vibrations and we state the ob- 

server problem. In Section 3 , we define the collocated observer de- 

sign. Sections 5 and 6 address the well-posedness and the stabil- 

ity problems, respectively. Finally, simulation results are shown in 

Section 7 , and a conclusion will end the paper. 

2. Mathematical model

To reduce the complexity of the system and thus derive a math- 

ematical model, it is necessary to make some initial assumptions 

and simplifications of the system when the boundary conditions 

are selected [16] . It is assumed that the drill string is a long pipe 

having a uniform cross-sectional area A and assumed to have a 

negligible effect of the torsional vibrations due to the pipe limited 

length (3–18 m) and the natural applied input forces (axial). The 

forces that excite the drill string are assumed to act on the top of 

the sonic drill. In oil and gas field, a rotary table is deployed, and 

where the pipe length is very important (km). Hence, torsional vi- 

bration can not be neglected. Thus, this phenomena has intensively 

studied in the literature. One may refer to Saldivar et al. [18] and 

Zhao [21] and references therein. 

Because damping along the length is very low, the sonic drill 

operator has to be very careful not to overstress the drill string 

at resonance when the bottom drill tip is not engaged in drilling. 

The damping at the drill bit is the most important variable of the 

drilling system, as it defines the drilling work that is taking place. 

The governing differential equations of motion for the sonic 

drill is derived from force balance. We denote by u ( x , t ) the longi- 

tudinal displacement of a rod’s section A , that is a distance x from 

the vertices at time t as shown in Fig. 2 . 

ρAdx 
∂ 2 u ( x, t ) 

∂ t 2 
+ 2 bAdx 

∂u ( x, t ) 

∂t 
+ aAdxu ( x, t ) 

+ σA −

(

σA + 
d

dx 
( σA ) dx 

)

= 0 

where ρ is the pipe density, E is the Young modulus, a and b are 

respectively the coupling and damping constants along the length 

of the drillstring, and σ is the stress given by σ = E ∂u (x,t) 
∂x 

. So, we 

get 

ρAdx 
∂ 2 u ( x, t ) 

∂ t 2 
+ 2 bAdx 

∂u ( x, t ) 

∂t 

+ aAdxu (x, t) − EAdx 
∂ 2 u (x, t) 

∂ x 2 
= 0 (1) 

Dividing by ρAdx , we obtain 

∂ 2 u ( x, t ) 

∂ t 2 
+ 

2 b 

ρ

∂u ( x, t ) 

∂t 
+ 

a

ρ
u ( x, t ) −

E 

ρ

∂ 2 u ( x, t ) 

∂ x 2 
= 0 (2) 

We define the speed of the sound through the steel drill c by c = 
√ 

E 
ρ . 

Eq. (1) became 

∂ 2 u ( x, t ) 

∂ t 2 
+ 

2 b 

ρ

∂u ( x, t ) 

∂t 
+ 

a 

ρ
u ( x, t ) − c 2 

∂ 2 u ( x, t ) 

∂ x 2 
= 0 (3) 

It remains to define the boundary conditions of the drillstring dy- 

namics given above. 

In order to calculate the drill string natural frequencies, the 

boundary conditions at the ends of the string must be known 

when the frequency functions are derived. The sonic driver mass, 

the input force from the sonic driver, and the air spring all re- 

side, where x is equal to zero. The sonic driver mass and the air 

spring are always boundary conditions. At the drill tip of the string, 

where x is equal to the drillstring length L , a boundary condi- 

tion caused by coupling of the sonic drill tip to the material be- 

ing drilled through exists. All boundary conditions are located on 

the ends of the drill string and because of this, all the conditions 

have to equal the apparent forces at the end conditions. The forces 

for the ends are found by taking the drill string’s elastic constant 

E multiplied by the cross sectional area of the drill string A and 

also multiplied by the partial derivative of the local deflection u 

with respect to the location in space x and setting this equal to 

the boundary condition, as shown in Fig. 2 . 

Top boundary condition: 

EA 
∂u ( 0 , t ) 

∂x 
= m sh 

∂ 2 u ( 0 , t ) 

∂ t 2 
+ c sh 

∂u ( 0 , t ) 

∂t 
−U ( t ) + k sh u ( 0 , t ) (4) 

where m sh is the mass of the sonic head, k sh and c sh are respec- 

tively the spring and the damping rates of the air spring on top of 

the sonic drill. 

The input force is typically fixed, as it is dependent on the 

size of the eccentrics and on the square of the angular frequency. 

U ( t ) = m ec r ec ( 2 πξ ) 
2 sin ( 2 πξ t ) where m ec , r ec and ξ are respec- 

tively the mass of the two eccentrics, eccentricity of the eccentrics, 

and the temporal frequency en Hz . 
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Fig. 2. Sonic drill model [10] .

Tip boundary condition: 

EA 
∂u ( L, t ) 

∂x 
= −m bit 

∂ 2 u ( L, t ) 

∂ t 2 
− c bit 

∂u ( L, t ) 

∂t 
− k bit u ( L, t ) (5) 

where m bit is the mass of the sonic drill bit, k bit and c bit are re- 

spectively the spring and the damping rates of the drill bit while 

drilling. 

Despite the performance of the axial vibration controllers pro- 

posed in [6,7] by means of adequate simulation results, implemen- 

tation on real machine may be impractical. Actually, the down hole 

system’s variables measurements, are unrealizable during drilling 

in underground tunneling unlike in the oil well rotary drilling field. 

The problem is to design an observer for the system with only 

boundary measurements in the top of the drillstring (i.e. x = 0 ) 

available, to estimate the drill bit parameters not accessible by 

measurements. 

3. Observer design

We consider the axial vibrations model (3) –(5) represented by 

a damped wave equation and actuated in the top extremity of the 

drillstring ( x = 0 ) by the boundary control input U ( t ). 

The investigation of the observer error dynamics’s (9) –(11) sta- 

bility is really defiant, crucial and innovative in the underground 

tunneling field. 

In the following distributed parameter observer design, we as- 

sume the availability of u (0, t ) for measurement, as described 

above. Consider the following distributed parameter observer. 

∂ 2 ̂  u ( x, t ) 

∂ t 2 
+ 

2 b 

ρ

∂ ̂  u ( x, t ) 

∂t 
+ 

a 

ρ
ˆ u ( x, t ) − c 2 

∂ 2 ̂  u ( x, t ) 

∂ x 2 
= 0 (6) 

EA 
∂ ̂  u ( 0 , t ) 

∂x 
= m sh 

∂ 2 ̂  u ( 0 , t ) 

∂ t 2 
+ c sh 

∂ ̂  u ( 0 , t ) 

∂t 

−U ( t ) + k sh ̂  u ( 0 , t ) − G ( ̂  u ( 0 , t ) − u ( 0 , t ) ) (7) 

EA 
∂ ̂  u ( L, t ) 

∂x 
= −m bit 

∂ 2 ̂  u ( L, t ) 

∂ t 2 
− c bit 

∂ ̂  u ( L, t ) 

∂t 
− k bit ̂  u ( L, t ) (8) 

where ˆ u is the observed value of u and G is the observer gain pa- 

rameter. 

Let ū = ˆ u − u the error dynamic and subtracting (6) –(8) by (3) –

(5) gives the observer error model: 

∂ 2 ̄u ( x, t ) 

∂ t 2 
+ 

2 b 

ρ

∂ ̄u ( x, t ) 

∂t 
+ 

a 

ρ
ū ( x, t ) − c 2 

∂ 2 ̄u ( x, t ) 

∂ x 2 
= 0 (9) 

with the boundary conditions 

EA 
∂ ̄u ( 0 , t ) 

∂x 
= m sh 

∂ 2 ̄u ( 0 , t ) 

∂ t 2 
+ c sh 

∂ ̄u ( 0 , t ) 

∂t 
+ ˜ G ̄u ( 0 , t ) (10) 

EA 
∂ ̄u ( L, t ) 

∂x 
= −m bit 

∂ 2 ̄u ( L, t ) 

∂ t 2 
− c bit 

∂ ̄u ( L, t ) 

∂t 
− k bit ̄u ( L, t ) (11) 

where ˜ G = k sh − G > 0 . 

4. Well-posedness

In this section, we will prove the global existence and the 

uniqueness of the solution of problem (3) –(5) . For this purpose 

we will use a semigroup formulation of the initial-boundary value 

problem (6) –(8) . 

If we denote V := ( u , u t , u (0), u t (0), u ( L ), u t ( L )) 
T , we define the 

energy space: 
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H = { (u, v , w 1 , w 2 , z 1 , z 2 ) ∈ H 
1 (0 , L ) × L 2 (0 , L )

× R 
4 , w 1 = u (0) , z 1 = u (L ) } .

Clearly, H is a Hilbert space with respect to the inner product 

〈 V 1 , V 2 〉 H = 
a

ρ

∫ L 

0
u 1 u 2 dx + c 2 

∫ L 

0
u 1 x u 

2 
x dx + 

∫ L

0
v 
1 
v 
2 dx 

+ c 2 
˜ G 

EA 
w 

1 
1 w 

2 
1 + c 2 

m sh 

EA 
w 

1 
2 w 

2 
2 

+ c 2 
k bit 
EA 

z 1 1 z 
2 
1 + c 2 

m bit 

EA 
z 1 2 z 

2 
2 (12) 

for V 1 = (u 1 , v 1 , w 1 1 , w 1 2 , z 
1 
1 , z 

1 
2 ) 

T , V 2 = (u 2 , v 2 , w 2 1 , w 2 2 , z 
2 
1 , z 

2 
2 ) 

T . 

Therefore, if U ∈ L 2 comp (0 , + ∞ ) , 1 the problem (3) –(5) is formally 

equivalent to the following abstract evolution equation in the 

Hilbert space H: 
{

V ′ (t) = A V (t) + BU(t) , t > 0 ,

V (0) = V 0 := (u 0 , v 0 , w 0 1 , w 0 2 , z 
0 
1 , z 

0 
2 ) 

T , 
(13) 

where ′ denotes the derivative with respect to time t , B := 

⎛ 

⎜ 
⎜ 
⎜ 
⎝ 

0
0 
0 
1 

m sh 
0
0

⎞ 

⎟ 
⎟ 
⎟ 
⎠ 

and the operator A is defined by: 

A 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

u 

v 

w 1 

w 2 

z 1 

z 2 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

= 

⎛ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎜ 
⎝ 

v 

c 2 u xx −
2 b

ρ
v −

a

ρ
u 

w 2 

EA 

m sh 
u x (0) −

c sh
m sh 

w 2 −
G̃

m sh 
w 1 

z 2 

−
EA

m bit 
u x (L ) −

c bit
m bit 

z 2 −
k bit 
m bit 

z 1 

⎞ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎟ 
⎠ 

.

The domain of A is given by 

D(A ) = { (u, v , w 1 , w 2 , z 1 , z 2 ) 
T ∈ H; u ∈ H 

2 (0 , L ) , v ∈ H 
1 (0 , L ) ,

w 2 = v (0) , z 2 = v (L ) } .

We have the following. 

Theorem 4.1. The operator A generates a C 0 semigroup of contrac- 

tions (e tA ) t≥0 on H. 

Proof. According to the Lumer–Phillips’ theorem, we should prove 

that the operator A is m-dissipative. 

Let V = (u, v , w 1 , w 2 , z 1 , z 2 ) 
T ∈ D(A ) . By definition of the oper- 

ator A and the scalar product of H, we have: 

〈A V, V 〉 H 

= 
a

ρ

∫ L

0 
v (x ) u (x ) dx + c 2 

∫ L

0
v x (x ) u x (x ) dx 

+ 

∫ L

0

(

c 2 u xx (x ) −
2 b 

ρ
v (x ) −

a

ρ

)

v (x ) dx + c 2 
G̃

EA 
w 2 w 1 

+ c 2 
m sh 

EA 

(

EA 

m sh 
u x (0) −

c sh
m sh 

w 2 −
G̃

m sh 
w 1 

)

w 2 + c 2 
k bit 
EA 

z 1 z 2 

+ c 2 
m bit 

EA 

(

−
EA

m bit 
u x (L ) −

c bit
m bit 

z 2 −
k bit 
m bit 

z 1 

)

z 2 . 

1 L 2 comp (0 , + ∞ ) = 
{

f ∈ L 2 (0 , + ∞ ) ; the support of f is compact 
}

. 

By Green’s formula we obtain: 

〈 A V, V 〉 H = −
2 b

ρ

∫ L

0
v 
2 (x ) dx − c 2 

c sh 
EA 

w 
2 
2 − c 2 

k bit 
EA 

z 2 2 ≤ 0 . (14) 

Thus the operator A is dissipative. 

Now we want to show that for λ > 0 , λI − A is surjective. 

For F = ( f 1 , f 2 , f 3 , f 4 , f 5 , f 6 ) 
T ∈ H, let V = 

(u, v , w 1 , w 2 , z 1 , z 2 ) 
T ∈ D ( A ) solution of 

( λI − A ) V = F , 

which is: 

λu − v = f 1 , (15) 

λv − c 2 u xx + 
2 b

ρ
v + 

a 

ρ
u = f 2 , (16) 

λw 1 − w 2 = f 3 , (17) 

λw 2 −
EA

m sh 
u x (0) + 

c sh
m sh 

w 2 + 
G̃ 

m sh 
w 1 = f 4 (18) 

λz 1 − z 2 = f 5 (19) 

λz 2 + 
EA

m bit 
u x (L ) + 

c bit
m bit 

z 2 + 
k bit 
m bit 

z 1 = f 6 . (20) 

To find V = (u, v , w 1 , w 2 , z 1 , z 2 ) 
T ∈ D(A ) solution of the system 

(15) –(20) , we suppose u is determined with the appropriate regu- 

larity. Then from (15), (17) and (15) , we get respectively: 

v = λu − f 1 , w 2 = λu (0) − f 3 , z 2 = λu (L ) − f 5 . (21) 

Consequently, knowing u , we may deduce v , w 1 = u (0) , w 2 , z 1 = 

u (L ) , z 2 by (21) . 

We recall that since V = (u, v , w 1 , w 2 , z 1 , z 2 ) 
T ∈ D(A ) we auto- 

matically get w 2 = v (0) and z 2 = v (L ) . 

From Eqs. (16) , (18), (20) , and (21) , u must satisfy: 

λ2 u − c 2 u xx + 
2 b 

ρ
λu + 

a

ρ
u = f 2 + 

2 b 

ρ
f 1 + λ f 1 , in (0 , L ) (22) 

with the boundary conditions 

λ2 u (0) −
EA 

m sh 
u x (0) + λ

c sh 
m sh 

u (0) + 
G̃

m sh 
u (0) = f 4 + λ f 3 + 

c sh 
m sh 

f 3 , 

(23) 

λ2 u (L ) + 
EA 

m bit 
u x (L ) + λ

c bit 
m bit 

u (L ) + 
k bit
m bit 

u (L ) = f 6 + λ f 5 + 
c bit 
m bit 

f 5 . 

The variational formulation of problem (22), (23) is to find 

(u, w 1 , z 1 ) ∈ H := { (u, w 1 , z 1 ) ;ω ∈ H 1 (0 , L ) , w 1 = u (0) , z 1 = u (L ) }
such that: 
∫ L 

0

{(

λ2 + 
2 b 

ρ
λ + 

a

ρ

)

uω + u x ω x 

}

dx 

+ c 2 
m sh 

EA 

(

λ2 + λ
c sh
m sh 

+ 
G̃

m sh 

)

u (0) w (0) 

+ c 2 
m bit 

EA 

(

λ2 + λ
c bit
m bit 

+ 
k bit
m bit 

)

u (L ) w (L ) 

= 

∫ L

0

(

f 2 + 

(

λ + 
2 b

ρ

)

f 1 

)

ω dx 

+ c 2 w (0) 

(

f 4 + λ f 3 + 
c sh 
m sh 

f 3 

)

+ c 2 w (L ) 
(

f 6 + 

(

λ + 
c bit
m bit 

)

f 5 

)

, (24) 
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for any ( ω, ξ 1 , ξ 2 ) ∈ H . Since λ> 0, the left hand side of (24) de- 

fines a coercive bilinear form on H . Thus by applying the Lax–

Milgram theorem, there exists a unique (u, w 1 , z 1 ) ∈ H solution of 

(24) . Now, choosing ω ∈ C ∞ 
c , (u, w 1 , z 1 ) is a solution of (22) in the

sense of distribution and therefore u ∈ H 2 (0, L ). Thus using Green’s 

formula and exploiting Eq. (22) on (0, L ), we obtain finally: 

c 2 
m sh 

EA 

(

λ2 + λ
c sh 
m sh 

+ 
G̃

m sh

)

w (0) u (0) 

+ c 2 
m bit 

EA 

(

λ2 + λ
c bit
m bit 

+ 
k bit
m bit 

)

w (L ) u (L ) 

= c 2 
m sh 

EA 

(

f 4 + 

(

λ + 
c sh
m sh 

)

f 3 

)

w (0) 

+ c 2 
m bit 

EA 

(

f 6 + 

(

λ + 
c bit
m bit 

)

f 5 

)

w (L ) . 

So u ∈ H 2 (0, L ) verifies (18), (20) and we recover u, w 1 = u (0) , z 1 = 

u (L ) and v ∈ H 1 (0 , L ) and thus by (21) , we obtain w 2 = v (0) , z 2 = 

v (L ) , we have found V = (u, v , w 1 , w 2 , z 1 , z 2 ) 
T ∈ D(A ) solution of 

(I − A ) V = F . 

This completes the proof of Theorem 4.1 . �

We have, in particular, that the problem (6) –(8) , which can be 

rewritten as follows:
{

Z ′ (t) = A Z(t) , t > 0 ,
Z(0) = Z 0 = (u 0 , v 0 , w 0 1 , w 0 2 , z 

0 
1 , z 

0 
2 ) 

T (25) 

admits for all Z 0 ∈ H a unique solution Z(t) = e tA Z 0 ∈ C ( R + ;H ) . 

Moreover, for Z 0 ∈ D(A ) , the system (25) admits an unique solu- 

tion 

Z(t) = (u (t ) , u t (t ) , u (0) , u t (0) , u (L ) , u t (L )) ∈ C ( R + ;D(A ) ) 

and satisifes the following energy identity: 

E(t) − E(0) = −
2 b

ρ

∫ L

0
u 2 t (x ) dx − c 2 

c sh 
EA 

u 2 t (0 , t) 

− c 2 
k bit 
EA 

u 2 t (L, t) , ∀ t ≥ 0 , (26) 

where 

E(t) := 
1 

2 
‖ Z(t) ‖ 

2 
H , ∀ t ≥ 0 . (27) 

Thus the well-posedness of problem (3) –(5) is ensured by: 

Proposition 4.2. Let U ∈ L 2 comp (0 , + ∞ ) , V 0 ∈ H, then there exists a

unique mild solution V (t) = e tA V 0 + 
∫ t 
0 e 

(t−s ) A BU(s ) ds ∈ C ( R + ;H ) of

problem (13) . 

5. Stability

Recall the following frequency domain theorem for exponential 

stability from [4,15] of a C 0 -semigroup of contractions on a Hilbert 

space: 

Theorem 5.1 [4 , 15] . Let A be the generator of a C 0 -semigroup of con- 

tractions S ( t ) on a Hilbert space X. Then, e tA is exponentially stable, 

i.e., for all t > 0,

|| e tA || L (X ) ≤ C e −δt ,

for some positive constants C and δ if and only if 

ρ(A ) ⊃
{

iγ
∣

∣ γ ∈ R 
}

≡ i R , (28) 

and 

lim sup 
| γ |→ + ∞ 

‖ (iγ I − A ) −1 ‖ L (X ) < ∞ , (29) 

where ρ( A ) denotes the resolvent set of the operator A. 

We are now in a position to state the first main result of this 

section: 

Theorem 5.2. There exist C , δ > 0 such that 

‖ e tA ‖ L (H) ≤ C e −δt , ∀ t > 0 .

Our first concern is to show that i γ is not on the spectra of 

A for any real number γ , which clearly implies (28) . We have the 

following: 

Lemma 5.3. The spectrum of A contains no point on the imaginary 

axis. 

Proof. Since the resolvent of A is compact, its spectrum σ (A ) only 

consists of eigenvalues of A . We will show that the equation 

A V = i βV (30) 

with V = (u, v , w 1 , w 2 , z 1 , z 2 ) 
T ∈ D(A ) and β ∈ R has only the triv- 

ial solution (i.e. V = (0 , 0 , 0 , 0 , 0 , 0) T ). 

By taking the inner product of (30) with V and using 

ℜ 〈A V, V 〉 H = −
2 b

ρ

∫ L

0
v 
2 (x ) dx − c 2 

c sh 
EA 

w 
2 
2 − c 2 

k bit 
EA 

z 2 2 , (31)

since 〈A V, V 〉 H = ℜ (iβ‖ V ‖ 2 
H ) = 0 , then we obtain that v = 0 , w 2 = 

0 , z 2 = 0 . 

Next, we get the following ordinary differential equation: 
⎧ 

⎪ 
⎪

⎪ 
⎪ 
⎪ 
⎪

⎪ 
⎨ 

⎪ 
⎪

⎪ 
⎪ 
⎪ 
⎪ 
⎪

⎩

iβu = 0 , (0 , L ) , 

−c 2 u xx + 
a 
ρ u = 0 , (0 , L ) , 

iβu (0) = 0 , 

− EA 
m sh

u x (0) + 
˜ G 

m sh
w 1 = 0 , 

iβu (L ) = 0 , 

EA 
m bit

u x (L ) + 
k bit 
m bit

z 1 = 0 . 

(32) 

• If β = 0 then

0 =

∫ L 

0

(

−c 2 u xx + 
a

ρ
u 

)

dx 

= c 2 
∫ L

0
| u x (x ) | 

2 
d x + 

a

ρ

∫ L 

0
| u (x ) | 

2 
d x + c 2 

G̃ 

m sh 
| u (0) | 

2 

+ c 2 
k bit 
m bit 

| u (L ) | 
2

⇓ 

u = 0 , w 1 = u (0) = 0 , z 1 = u (L ) = 0 . 

Which implies that V ≡0. 

• If β � = 0 then u = 0 , w 1 = u (0) = 0 and z 1 = u (L ) = 0 . So V ≡ (0,

0, 0, 0, 0, 0) T .

We deduce that the system (32) has only the trivial solution. �

Proof of Theorem 5.2. We suppose that condition (29) does not 

hold. This gives rise, thanks to Banach–Steinhaus Theorem 2 (see 

[2, Theorem 2.2] ), to the existence of a sequence of real numbers 

γ n → ∞ and a sequence of vectors V n = (u n , v n , w n , p n , z n , q n ) 
T ∈ 

D(A ) with ‖ V n ‖ H = 1 such that

‖ (iγn I − A ) V n ‖ H → 0 as n → ∞ , (33) 

i.e.,

iγn u n − v n ≡ f n → 0 in H 
1 (0 , L ) , (34) 

2 Let E and F be two Banach spaces and ( T i ) i ∈ I be a family (not necessarily count- 

able) of continuous operators from E into F . Assume that sup i ∈ I ‖ T i x ‖ F < ∞ ∀ x ∈ E. 

Then sup i ∈ I ‖ T i ‖ L (E,F ) < ∞ . 
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Fig. 3. Practical and estimated axial displacements at the tip boundary ( x = L ), G = 

1 . 62 ∗ 10 6 . 

Fig. 4. Practical and estimated axial displacements at the tip boundary ( x = L ), G = 

1 . 5 ∗ 10 6 . 

iγn v n − c 2 (u n ) xx + 
2 b

ρ
v n + 

a 

ρ
u n ≡ g n → 0 in L 2 (0 , L ) , (35) 

iγn w n − p n = a n → 0 in C , (36) 

iγn p n −
EA

m sh 
(u n ) x (0) + 

c sh
m sh 

p n + 
G̃ 

m sh 
w n ≡ b n → 0 in C , (37) 

iγn z n − q n = r n → 0 in C , (38) 

iγn q n + 
EA

m bit 
(u n ) x (L ) + 

c bit
m bit 

q n + 
k bit 
m bit 

z n ≡ s n → 0 in C . (39) 

The ultimate outcome will be convergence of ‖ V n ‖ H to zero as

n → ∞ , which contradicts the fact that ∀ n ∈ N , ‖ V n ‖ H = 1 .

Firstly, since 

‖ (iγn I − A ) V n ‖ H ≥ | ℜ ( 〈 (iγn I − A ) V n , V n 〉 H ) | = −ℜ〈A V n , V n 〉 H

= 
2 b

ρ

∫ L

0
| v n (x ) | 

2 
dx + c 2 

c sh 
EA 

| p n | 
2 

+ c 2 
k bit
EA 

| q n | 
2 
,

it follows from (33) that 

v n → 0 , → 0 in L 2 (0 , L ) and p n → 0 , q n → 0 in C . (40) 

Fig. 5. Drill-bit axial displacements at the boundary x = L under G = 1 . 7 ∗ 10 6 . 

Fig. 6. Drill-bit axial velocities at the boundary x = L under G = 1 . 7 ∗ 10 6 . 

Fig. 7. Practical and estimated axial positions at the tip boundary ( x = L ), G = 1 . 5 ∗

10 6 .
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Fig. 8. Practical and estimated axial velocities at the tip boundary ( x = L ), G = 1 . 5 ∗

10 6 .

Therewith 

w n → 0 , z n → 0 in C . (41) 

Now, let us take the inner product of (35) with u n . A straight- 

forward computation gives 

c 2 
∫ L

0
| (u n ) x | 

2 dx + 
a

ρ

∫ L

0 
| u n | 

2 dx

= −

∫ L

0
iγn u n v n dx + 

∫ L

0
g n u n dx −

2 b 

ρ

∫ L 

0
v n u n dx

− c 2 
˜ G 

m sh 
| w n | 

2 − c 2 
k bit 
m bit 

| p n | 
2 −

(

iγn w n p n + 
c sh 
m sh 

p n w n 

)

−

(

iγn z n p n + 
c bit 
m bit 

q n p n 

)

→ 0 . (42) 

In the light of (40), (41) and (42) , we conclude that ‖ V n ‖ H → 0

which was our objective. 

Lastly, the sufficient conditions of Theorem 5.1 are fulfilled and 

the proof of Theorem 5.2 is completed. �

Table 1

Numerical values used for simulations [12] .

L 3 m ρ 7850 Kg/m 3

E 2 . 1 ∗ 10 11 Pa A 8 . 6 ∗ 10 −3 m 2 

m sh 453.6 Kg m bit 8 Kg

k sh 84040034.023 N/m c sh 10 N s/m

c 2 = E/ρ 2 . 6752 ∗ 10 7 m 2 /s 2 m ec 28.4 Kg

r ec 0.06 m k bit 1194.519 N/m

c bit 1 N s/m b 0 N s/m 4

a 2334.434 N/m 4 ξ 68 Hz

6. Simulation results

Using the obtained analytical form of the sonic drill PDE model 

and integrating the boundaries, at first, we have computing the 

different model resonant frequencies. For this, we are referred to 

the work of Lieu and Jovanovic [9] and the Matlab Chebfun’tool 

in order to solve the analytical form in a frequency domain. The 

detailed frequency analysis was addressed in [12] where the ob- 

tained ξ = 68 Hz matches the value requested in practice in tunnel 

reinforcing domain [7] . Recall here, in order to achieve the simu- 

lation procedure, we used the Fourier transform to compute the 

frequency operator of the system. This permits to quantifying the 

system’s performance in the presence of a stimulus, and it char- 

acterizes the steady-state response of a stable system to persistent 

harmonic forcing. Consequently, the model integrating the observer 

is transformed in ( x , ξ ) domain (Fourier transform w.r.t. time t and 

temporal frequency ξ ). In a second step, we study the temporal 

response using the intbvp and trapz Matlab functions. Numerical 

results are performed with the initial model (3) –(5) , and the ob- 

server scheme (6) –(8) . For this, the physical parameters are given 

in Table 1 . 

The results are sketched in Figs. 3–9 from which the proposed 

observer scheme is shown stable/practically stable in terms of the 

drill-bit displacements and velocities. For example, shows the sta- 

bility behavior of the observed and the real wave signals. The sys- 

tem’s total energy is represented in a frequency domain for G = 

1 . 62 ∗ 10 6 where we prove an important quantity of energy at the 

resonance ω = 68 Hz ( Fig. 9 (left)). Fig. 9 (right) shows a less quan- 

tity of energy under the observer gain parameter G = 0 . 5 ∗ 10 6 . Un- 

der this last value, the system losses the resonance (figure is not 

given here). Hence, we may conclude, the adequate choice of the 

Fig. 9. Total energy, the maximum is emphasized at the resonance ( ω = 68 Hz), G = 1 . 62 ∗ 10 6 (left) and G = 0 . 5 ∗ 10 6 (right). 
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gain parameter will guarantee that the observer works at the drill- 

string resonance mode. Other parameters related to non homoge- 

neous underground layers can be studied under a control based 

observer. 

7. Conclusion

From the idea of being not able to measure the drill bit am- 

plitude at the bottom, defined here as the top boundary, a PDE 

observer was performed from the drillstring dynamics. Theoretical 

computations were conducted toward the well-posedness problem 

and the stability sufficient conditions of the observer. In general, 

sonic drill operators will monitor hydraulic pressure of motors that 

drive at resonant rotation of eccentrics and produce the maximum 

axial vibrations. Note that the operator has to adjust the drillstring 

behavior and fluid injection till a resonant value. Consequently, 

to implement axial vibration control and reach an autonomous 

drilling operation, and thereby the improvement of safety level on 

construction sites and also reducing the drilling time, a PDE ob- 

server is developed for the tip boundary. Future results require a 

new control input elaboration in agreement with the designed ob- 

server. Possibility of integrate and evaluate the effect of moving 

boundary on the system stability, as for example due to the pres- 

ence of the cuttings in the crown (The wave equation case is stud- 

ied in [1] ). 
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