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2Grand Accélérateur National d’Ions Lourds (GANIL),
CEA/DRF - CNRS/IN2P3, Boulevard Henri Becquerel, 14076 Caen, France
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The impact of electron-capture (EC) cross sections on neutron-rich nuclei on the dynamics of core-
collapse during infall and early post-bounce is studied performing spherically symmetric simulations
in general relativity using a multigroup scheme for neutrino transport and full nuclear distributions
in extended nuclear statistical equilibrium models. We thereby vary the prescription for EC rates
on individual nuclei, the nuclear interaction for the EoS, the mass model for the nuclear statistical
equilibrium distribution and the progenitor model. In agreement with previous works, we show that
the individual EC rates are the most important source of uncertainty in the simulations, while the
other inputs only marginally influence the results. A recently proposed analytic formula to extrap-
olate microscopic results on stable nuclei for EC rates to the high densities and temperatures and
the neutron rich region, with a functional form motivated by nuclear-structure data and parameters
fitted from large scale shell model calculations, is shown to lead to a sizable (16%) reduction of
the electron fraction at bounce compared to more primitive prescriptions for the rates, leading to
smaller inner core masses and slower shock propagation. We show that the EC process involves
≈ 130 different nuclear species around 86Kr mainly in the N = 50 shell closure region, and establish
a list of the most important nuclei to be studied in order to constrain the global rates.

PACS numbers: 26.50.+x, 23.40.-s, 97.60.Bw

I. INTRODUCTION

Much effort has been devoted during decades to nu-
merical simulations of core-collapse supernovae (CCSN)
and a lot of progress has been achieved understand-
ing the complex physics of these spectacular events (see
e.g. [1, 2]). But even if the main lines have been eluci-
dated, many details still deserve attention.
It has been first pointed out by Bethe et al. [3] and con-

firmed by many subsequent studies that electron capture
(EC) on nuclei plays an important role during the late
stages of stellar evolution and the pre-bounce phase of
CCSN [4–8]. For a very close CCSN, DUNE [9] might
even be able to detect neutrinos from the pre-bounce
phase, as indicator of EC reactions [10]. Most sophisti-
cated simulations of CCSN evolution thereby model EC
in inhomogeneous nuclear matter typically by consider-
ing a nuclear statistical ensemble (NSE) distribution of
nuclei together with microscopically calculated EC rates
[11].
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Different recent works have, however, pointed out that
our understanding of these processes under relevant ther-
modynamic conditions is still insufficient and has an im-
pact on the dynamics of core collapse [12–17]. In par-
ticular, the systematic study by Sullivan et al. [12] has
shown that the uncertainties on the EC rates on individ-
ual nuclei induce stronger modifications on the mass of
the inner core at bounce and the maximum of the neu-
trino luminosity peak than the progenitor model or the
equation of state (EoS).

The results of Ref. [12] and the subsequent study [18]
clearly indicate that the simulations are most sensitive
to the EC rates for neutron-rich nuclei near the N =
50 closed shell and to less extent to the next close shell
at N = 82. The main difficulty is that for the relevant
nuclei not much information is available, neither experi-
mental nor from microscopic calculations. The situation
is nevertheless expected to improve in the near future
due to dedicated research programs (e.g. [19]). Several
other works have highlighted other aspects. First of all,
total EC rates are influenced as well by the nuclear dis-
tribution given by the EoS as by the rates on individual
nuclei, suffering both from uncertainties. Uncertainties
in matter composition mainly stem from the definition of
clusters in a hot nuclear environment and nuclear proper-
ties far from the stability valley. Uncertainties in rates on
individual nuclei are mainly due to nuclear structure and
finite temperature effects. The sensitivity of EC rates to
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the former was addressed in Refs. [13, 14, 16]. Thereby,
in Raduta et al. [13] it has been shown that the unknown
binding energies of nuclei far beyond the stability valley
and a possible shell quenching might increase the total
EC rate by up to 30%. Nuclear abundances also influ-
ence the neutrino opacity via neutrino-nucleus scatter-
ing [14]. Future experiments with exotic beams might
improve the situation in that respect, but further work
is necessary.Nagakura et al. [17] point out that a con-
sistent treatment of nuclear abundances in the EoS and
for calculating weak interaction rates is important to cor-
rectly study the EoS dependence of both the dynamics
and neutrino signals.

Concerning the individual rates, mostly values from
microscopic calculations – where available [11, 20–24]–
have been used. By far the richest collection of mi-
croscopically calculated EC rates is thereby discussed in
Juodagalvis et al. [11]. In particular, in order to be able
to extend the calculations to heavier and more neutron
rich nuclei populated abundantly in the later stages of
collapse, the authors define a strategy to describe elec-
tron captures by a hierarchy of nuclear models. However,
although this seminal work of Juodagalvis et al. [11] is
used by some groups performing CCSN simulations, the
data are not publicly available. The analytic parameteri-
zation of Ref. [25] is designed to complement microscopic
data for high electron densities and temperatures and is
extensively used in simulations, also to calculate rates for
nuclei not present in the data bases.

It has to be emphasized that the nuclei identified in
Refs. [12, 18] as having the highest impact lie outside the
region where –apart from the work by Juodagalvis et al.
[11]– microscopic calculations exist. Therefore, awaiting
for more microscopic calculations and additional informa-
tion from charge-exchange experiments which e.g. should
correctly include additional Pauli blocking effects [18], in
Ref. [15] an extended analytic parameterization has been
proposed incorporating different physical effects at high
electron density, temperature and isospin ratio with the
aim of improving the reliability of the extrapolation to
regions not covered by microscopic calculations. It has
been shown that the improved parameterization leads to
a systematic reduction of the total EC rate in agreement
with expectations [18] which can reach one order magni-
tude for some thermodynamic conditions.

In Refs. [13, 15], the impact of a potential shell-
quenching and of the improved EC rate parameterization
on the pre-bounce evolution of core collapse has been il-
lustrated using some typical thermodynamic conditions
with EC rates added perturbatively. Here we will per-
form self-consistent core-collapse simulations investigat-
ing the effect of modified EC rates and the mass model
on the evolution. In contrast to Ref. [12], where individ-
ual EC rates were thereby globally scaled by arbitrary
factors ranging from 2 to 10 with respect to the fidu-
cial values, we show here the effect of a physically mo-
tivated reduction of EC on nuclei. For an easier use of
our improved model in simulations, we will provide to-

tal EC rates and neutrino-nucleus scattering opacities for
the employed EoS within the Compose data base1 [26],
with a numerically efficient format easily adaptable to
any EoS.
The paper is organized as follows. We start with spec-

ifying the setup of our simulations in Section II. In sec-
tion III we discuss the influence of different ingredients
on the infall and early post-bounce evolution. In addi-
tion to comparing the different prescriptions for the EC
rates on individual nuclei, we investigate the dependence
on the progenitor model and on the EoS, including differ-
ent nuclear interaction models and different mass models
for determining binding energies of neutron rich nuclei.
Section IV is devoted to a determination of the most
relevant nuclei for EC in order to specify the nuclei for
which microscopic and/or experimental studies are the
most needed. We conclude in Section V.

II. SETUP OF THE SIMULATIONS

A. General description

In order to perform self-consistent numerical simu-
lations of CCSN, we use two different hydrodynamic
codes in general relativity. Most results are obtained
with the spherically symmetric version of the CoCoNuT

code [27]. It solves the general-relativistic hydrody-
namics, with a 3+1 decomposition of spacetime. High-
resolution shock-capturing schemes are used for hydro-
dynamic equations, whereas Einstein equation for grav-
itational field is solved with spectral methods [28]. In
addition to the 5 evolution equations solved for hydrody-
namics (coming from the conservation of baryon current
and energy-momentum tensor), this model considers the
advection equation for the electron fraction Ye = ne/nB,
where ne and nB are the electron and baryon number
densities, respectively.
The sources terms for neutrino energy losses and delep-

tonization are computed using the “Fast Multigroup
Transport” scheme developed by Müller and Janka [29].
This scheme solves the stationary neutrino transport in
the ray-by-ray approximation, with a closure relation for
the first Eddington factor. In the collapse phase the first
Eddington factor is set to 1, which is equivalent to a
free-streaming condition. In the post-bounce phase the
closure in obtained from a two-stream approximation as
in [29]. We switch between these two closures relations at
neutrinosphere detection (when the central optical depth
becomes larger than 0.66).
The analyses of the mass model and the most rele-

vant nuclei in sections III B 4 and IV require the use of a
very flexible input for the EoS and the matter composi-
tion. This is most easily achieved employing the pertur-
bative approach of Ref. [30]. For simplicity, this has not

1 https://compose.obspm.fr
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been implemented into the CoCoNuT code which works
with tabulated versions of the EoS, but in an improved
version of the code developed in Refs. [31–33], called
ACCEPT in the following. This spherically symmet-
ric code uses the same techniques for solving GR hydro-
dynamics as CoCoNuT. The differences between both
codes in solving Einstein equations are negligible within
our CCSN pre-bounce context. Neutrinos are treated in
a simple leakage-type scheme with a multi-group treat-
ment: they are considered either fully trapped (inside the
neutrinosphere) or freely streaming (outside the neutri-
nosphere), the neutrinosphere being defined by a trap-
ping density parameter. The latter parameter has been
adjusted such that both codes produce compatible re-
sults for all observables shown in this paper except the
neutrino luminosity leading to a value of 1×1012 g cm−3.
Due to the obvious limitations of the leakage scheme in
ACCEPT, the neutrino luminosity cannot be well repro-
duced within this scheme. This does, however, not affect
the results of Secs. III B 4 and IV. We have checked that
the limitation of the neutrino source terms to charged-
current reactions inACCEPT is irrelevant for the results
presented in those sections, too. Finally, in all the sim-
ulation presented here, initial models (progenitor star)
come from publicly available data computed by Woosley
et al. [34]2.

B. Equations of state

During the different stages of the core collapse evo-
lution wide domains of density (10−12 . nB . 1
fm−3), temperature (0.1 . T . 50 MeV) and charge
fraction (0.01 . Ye . 0.6) are explored. Matter
consists of baryons, leptons (electrons, positrons, neu-
trinos and antineutrinos) and photons, and it has a
homogeneous/inhomogeneous structure at supra-/sub-
saturation densities. Leptons and photons interact
weakly and are usually treated as ideal Fermi and, re-
spectively, Bose gases. Composition and thermodynam-
ics of baryonic matter is still under study, because of
the uncertainties related to the effective interactions and
difficulties in the modelling.
The so far most intensively used EoS models [35,

36] employ the so-called Single Nucleus Approximation
(SNA). It describes baryonic matter at sub-saturation
densities as a mixture of a uniform distribution of self-
interacting nucleons, a free gas of α-particles and a
unique cluster of nucleons, all of which in thermal and
chemical equilibrium with respect to the strong interac-
tion. Interactions between unbound nucleons and nuclear
clusters are included via the classical excluded volume
approximation and in-medium modifications of cluster
surface energy. The shortcoming of this approach be-

2 https://2sn.org/stellarevolution/

comes obvious at high temperature, where the macro-
scopic thermal equilibrium state corresponds to a collec-
tion of distinct microscopic states. The SNA is known to
have only a negligible impact on thermodynamic quan-
tities [37], but it could affect the weak interaction rates,
highly sensitive to structure effects and thus finally im-
pact the astrophysical evolution [38].

A more sophisticated approach consists in employ-
ing an extended Nuclear Statistical Equilibrium (NSE)
model which accounts for the entire nuclear distribu-
tion. Several NSE models and resulting EoS have been
proposed in the last decade, see e.g. [38–44]. For the
interaction between nucleons, different relativistic mean
field models, Skyrme effective interactions or variational
approaches have been employed that span significant
ranges of nuclear matter parameters in both isovector
and isoscalar channels, accounting thus well for present
day uncertainties in the nuclear matter EoS. Here we
are mainly interested in the infall phase, i.e. matter at
sub-saturation densities and with moderate isospin asym-
metries. Consequences of the above uncertainties in the
nuclear interactions on stellar matter are small in this
regime, since a significant amount of matter is bound in
clusters and, by construction, all effective interactions
offer a fair description of ground state nuclei. More
important differences among the different NSE models
arise from the modelling of nuclear clusters via the treat-
ment of i) (thermally) excited states, ii) maximum al-
lowed isospin asymmetry, iii) nuclear level density and
iv) nuclear binding energies away from the valley of sta-
bility, where no experimental data exist. It has been
shown that the latter point strongly influences the nu-
clear abundances under the thermodynamic conditions
during collapse [13, 14]. Additional differences exist in
the identification of the bound and unbound part of nu-
clear clusters to define abundances, but this point did
not sizably modify the EoS [41]. For further details, the
reader is referred to [39, 41].

For this work, as a fiducial case we will consider the
NSE model of [39] with DD2 [45] relativistic mean field
effective interaction, see Hempel et al. [38]. This model
takes into account the ensemble of nuclei whose masses
have been calculated within the Finite Range Droplet
Model in Moller et al. [46]. To get an idea of EoS effects,
we will consider a second model, the NSE EoS by [40].
It employs the SLy4 [47] Skyrme effective interaction.
Nuclear clusters have 2 < A < 300 and, in principle, any
value of the isospin asymmetry. Their binding energies
are complementarily given by experimental data [48, 49],
the predictions of the 10-parameter model by Duflo and
Zuker [50] and a liquid drop model parameterization [51],
with parameters harmonized with SLy4.

Finally, in order to assess the effect of shell closures
far from stability, we will compare different models for
the nuclear masses, using the perturbative method de-
scribed in Grams et al. [30] build upon on the EoS by
Lattimer and Swesty [35]. Specifically, the already men-
tioned phenomenological Duflo and Zuker mass model[50]

https://2sn.org/stellarevolution/
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(DZ10), which imposes the same magic numbers all over
the nuclear chart, will be compared with the Brussels-
Montreal microscopic mass model3 HFB-24 [53]. The lat-
ter, based on the self-consistent Hartree-Fock-Bogoliubov
method, uses a 16-parameter generalized Skyrme effec-
tive nucleon-nucleon interaction with a realistic contact
pairing force, and predicts a considerable quenching of
the N = 50 shell gap far from stability [53]. Both DZ10
and HFB-24 provide an excellent reproduction of mea-
sured masses, with a root-mean square deviation of about
0.5 MeV with respect to the 2012 Atomic Mass Evalu-
ation [49]. We will consider, too, as an extreme case,
masses as described by the Compressible Liquid Drop
Model (CLDM) of the Lattimer-Swesty EoS [35], which
completely neglects shell effects.

C. Electron capture rates

The rate of a generic weak interaction reaction– elec-
tron and positron capture and β-decays, depends –
apart from physical constants– on the nuclear transition
strength and a phase space factor. At finite temperature
weak reactions involve several states in the parent and
daughter nuclei, such that nuclear structure effects enter
the transition strength via both, nuclear energy levels
and transition matrix elements. Different reaction chan-
nels can contribute to the latter. In most cases, it is
dominated by Fermi (vector) and Gamow-Teller (axial)
contributions. The phase space factor depends on the
electron capture reaction kinematics and takes the form
of integrals over the momenta of incoming and outgoing
particles [54]. As such, it shows strong dependence on
thermodynamic conditions.
The first systematic calculation under stellar condi-

tions is due to Fuller, Fowler and Newman [20, 54–56]
who have also made available [20] the first weak interac-
tion rate table for nuclei with masses between 21 and 60
on a wide temperature T -electron density ne grid with
107 ≤ T ≤ 1011 K, and 10 ≤ ne ≤ 1011 g/cm3.
The fact that astrophysical simulations require high

accuracy weak interaction rates motivated further exten-
sive microscopic calculations optimized on experimen-
tal data considering in general the same T -ne grid as
Fuller et al. [20]. Different techniques have been em-
ployed, ranging from large scale shell model (LSSM) cal-
culations [21, 23, 57] to random-phase approximation
[58, 59], and quasiparticle random-phase approximation
(QRPA) [60, 61]. By accounting for all possible correla-
tions among valence nucleons in a major shell, LSSM cal-
culations offer the most accurate microscopic description
available to date, as testified by its ability to reproduce
the measured GT distributions, lifetimes and low energy

3 The mass table for this model is available on the BRUS-
LIB database at http://www.astro.ulb.ac.be/bruslib/, see also
Ref. [52].

spectroscopy [62]. They exist for sd− (17 ≤ A ≤ 39)
[23] and fp−shell nuclei (45 ≤ A ≤ 65) [21, 57]. The
mass domain 65 ≤ A ≤ 80 is covered by the table of
Ref. [24], which employs an empirical approach. Finally
weak interaction rate tables for sd- , fp- and fpg-shell
nuclei with 18 ≤ A ≤ 100 are given in [60, 61], which
employ QRPA. QRPA has been also recently employed
in [19] for calculating EC rates of neutron rich nuclei
with 26 ≤ Z ≤ 41 and 75 ≤ A ≤ 93, which correspond
to the high sensitivity region of Ref.[18]. Hybrid mod-
els which use shell-model Monte-Carlo (SMMC) [63] or
Fermi-Dirac parametrizations [11] to determine the pop-
ulation of excited states and RPA techniques for weak in-
teraction rates have also been proposed and exploited to
extend the existing data to heavier and more neutron rich
nuclei. In this way, the work by Juodagalvis et al. [11]
contains information for nuclei with 66 ≤ A ≤ 120 (250
nuclides) and with 28 ≤ Z ≤ 70 and 40 ≤ N ≤ 160 (2200
nuclides). In particular, cross shell correlations which
are important to overcome the N=40, 50 and 82 shell
gaps are accounted for, in agreement with the results of
finite temperature SMMC. Moreover, based on the obser-
vation that the electron Fermi energy grows faster with
core density than the nuclear Q-value, Juodagalvis et al.
[11] define a strategy to describe electron captures by a
hierarchy of nuclear models. They provide NSE-averaged
EC rates along two collapse trajectories. These rates are
not appropriate for other studies where the nuclear distri-
bution is calculated consistenly from the employed EoS.

It is easy to see that the available databases cover a
finite mass domain and an isospin asymmetry range close
to the valley of stability. Although strong structure ef-
fects translate into EC rates that, for low temperatures
and electron density, can vary by more than one order
of magnitude between neighboring nuclei in the isotopic
chart, the need of estimates for other nuclei, including
the neutron-rich ones copiously populated during the late
collapse stages, and/or thermodynamic conditions out of
the grids lead to the use of extrapolations and approxi-
mations within simulations.

The first parameterization, proposed by Bruenn [64],
relies on the independent particle model and estimates
the GT matrix element by the number of protons in
the π1f7/2 shell and the number of neutron holes in the
ν1f5/2 one. The reaction Q-value entering the phase
space factor is approximated by the difference between
proton and neutron chemical potential. This prescrip-
tion results in the total suppression of EC on both light
and/or neutron-rich nuclei, which is certainly unrealistic.

An improved parameterization, which is presently the
most extensively used in CCSN simulations, was pro-
posed in Langanke et al. [25]. It is based on results
of SMMC calculations at finite temperature in the full
pf − sdg shell with residual pairing plus quadrupole in-
teractions and RPA calculations of EC for nuclei with
65 ≤ A ≤ 112. At variance with the independent particle
model, all nuclei studied in Langanke et al. [25] manifest
holes in the pf shell and, for Z > 30, non-vanishing pro-
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FIG. 1. (color online) EC rate evolution (labelled by baryon
density) in the central grid cell during infall using different
prescriptions for the EC rate on nuclei, see text for details.
The vertical dashed lines show the density above which β-
equilibrium sets in.

ton occupation numbers in the sdg orbitals. This means
that GT transitions are unblocked and EC rates take
place. This new parametretization reads:

jEC =
ln 2 · B

K

(

T

mec2

)5
[

F4(η) − 2χF3(η) + χ2F2(η)
]

.(1)

In this expression, χ = (Q − ∆E)/T , η = χ + µe/T ,
where Q denotes the EC reaction heat, Q = M(A,Z) −
M(A,Z−1), with M(A,Z) the nuclear mass, and ∆E =
Ef − Ei. me and µe stand for electron rest mass and
chemical potential, respectively. Fi(η) denotes the rela-
tivistic Fermi integral, Fi(η) =

∫∞

0 dxxk/(1+exp(x−η)).
B represents an average value for the nuclear matrix
element. The constant values proposed in Ref. [25],
B = 4.6 and ∆E = 2.5 MeV, are obtained from a fit of
SMMC+RPA calculations for nuclei with 65 ≤ A ≤ 112,
and shown to correctly reproduce their gross features for
the thermodynamic conditions explored by the central
element before bounce [25]. For lower values of tempera-
ture and electron density, Eq. (1) may nevertheless lead
to both underestimations and overestimations of micro-
scopic calculations, as showed in Refs. [25, 65]. Note that
the parameter ∆E accounts for possible transitions from
and to excited states in the parent/daughter nucleus, so
that it is not necessary to introduce an effective Q-value
such as in Sullivan et al. [12].

The above parameterization, Eq. (1), being integrated
over neutrino energies, can actually not directly be imple-
mented into our multigroup neutrino treatments. Instead
we use the following expression for the neutrino creation
rate (Θ is the usual Heaviside step function and fe− the
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FIG. 2. (color online) Time evolution of the electron fraction
Ye(r = 0) for the central element of the numerical grid for all
three EC models during the late pre-bounce phase.

electron distribution function):

j(ǫ) = Θ(ǫ− χT )
ln 2 · B

K

(

1

mec2

)5
(hc)3

4πc

× (ǫ− χT )2fe−(ǫ − χT ) . (2)

which once integrated over neutrino energy ǫ assuming
a vanishing neutrino distribution function exactly repro-
duces Eq. (1). Throughout this work this parameteriza-
tion will be denoted LMP(0).
Eq. (1) has been recently generalized by Raduta et al.

[15], allowing for a temperature, electron density, and
isospin I = (N − Z)/A-dependence as well as for odd-
even effects in ∆E. The temperature dependence con-
tains two competing effects: the increasing number of
excited states in the daughter nucleus with increasing
temperature, leading to a larger ∆E and the decreasing
electron chemical potential, µe, for fixed electron den-
sity, which shows the opposite trend. With increasing
ne, more excited states and higher energies can be pop-
ulated and thus ∆E increases, too. Finally the isospin
dependence and odd-even effects of ∆E are introduced
to account for nuclear structure effects in the centroid of
the GT resonance, as computed within LSSM for pf -shell
nuclei [57].
As shown in Ref. [15] for a wide range of thermody-

namic conditions typical to late stage evolution of core-
collapse, the most important improvement of Eq. (1)
arises from isospin and odd-even effects, i.e. nuclear
structure properties. These features are particularly use-
ful in accounting for the large dispersion of jEC in a given
Q-value bin – as shown by the data in [21, 23, 24, 60, 61]–
, and for the extrapolation to large negative Q, typical
to intermediate mass neutron-rich nuclei [15]. In rela-
tion with the latter effect we point out that, for T & 1
MeV and the highest ne-values considered in the grid,
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the improvements discussed in Raduta et al. [15] lead
to EC rates lower by two orders of magnitude or more
than those produced assuming Eq. (1). Given the over-
all neutron-enrichment of stellar matter before bounce,
reduction of two orders of magnitude of the individual
rates on neutron-rich nuclei entails a reduction of up to
one order of magnitude for the average EC rate summed
over the complete nuclear distribution [15]. Further de-
velopments, which are out of the scope of present work,
should also account for isospin effects on the GT strength
[57] and temperature-dependent Pauli blocking.
Out of the different improved versions of Eq. (1) pro-

posed in [15] we shall here consider only one, model 3,
which best reproduces microscopic data. To be more
precise, instead of employing a global value ∆E, for each
grid point of ne(i), T (j) in the microscopic calculations
we write

∆E(AB)(ne(i), T (j)) = b
(AB)
i,j I + c

(AB)
i,j , (3)

and intermediate values of ne, T are obtained by linear
interpolation. The coefficients b, c have been determined
in Raduta et al. [15] by a least square fit to LSSM cal-
culations. Eq. (3) assumes a linear isospin dependence
and odd even effects are included by employing different
coefficients {(AB)} = {(OO), (OE), (EE)} for odd-odd,
odd-even and even-even nuclei, respectively. For details
and in particular values of the coefficients, see the ap-
pendix of Raduta et al. [15]. Hereafter this parameteriza-
tion, implemented in its energy dependent form Eq. (2),
will be referred to as LMP(3).
During the advanced stage of the collapse, before β-

equilibrium is reached at the center of the star, T and
ne exceed the values covered by the weak rate tables and
thus ∆E cannot be fitted in that region. We have used
two different ways to extrapolate ∆E in this case: (i) first
order extrapolation or (ii) constant value fixed to the last
available T, ne grid point. The predicted EC rate (and
subsequently the evolution of Ye) differ by less than 3.5 %
between these two procedures, indicating that EC rates
under those extreme conditions are of little relevance and
that the extrapolation procedure for ∆E is not of great
influence.
A word of caution has to be added. Being based on

fits of pf -shell nuclei, the approximation proposed in Ref.
[15] might not be appropriate for EC rates of heavy nu-
clei, which, due to cross-shell correlations, manifest sup-
pression of Pauli blocking effects [66]. This unblocking
of the GT transition was predicted by theoretical models
for nuclei with Z < 40 and N > 40, and confirmed by
experiments.

III. EVOLUTION OF THE COLLAPSE

All simulations start from an unstable stellar model as
mentioned in Sec. II A. Except for Sec. III B 3, where we
study the influence of the progenitor model on the results,
a 15 M⊙ progenitor from Woosley et al. [34] will be used,
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FIG. 3. (color online) Radial profiles of the electron fraction
at bounce employing the three different EC rate prescriptions.

the s15model, see Table I. We then follow the collapse of
the iron core, with establishment of β-equilibrium at the
center and finally stop the simulation a few milliseconds
after bounce. Simulations in Sections III A to III B 2 have
been performed with the CoCoNuT code, whereas those
in Sections III B 4 and IV with the ACCEPT code.

A. Influence of electron capture rates

Our fiducial simulation starts from a 15M⊙ progenitor
(zero-age main-sequence) labelled s15 in the catalog by
Woosley et al. [34]4. As a first test we plot in Fig. 1 aver-
aged EC rates in the central cell of our numerical grid, as
functions of the baryon density in that cell during infall,
for all three approaches detailed in Sec. II C: the original
one by Bruenn [64], LMP(0) [25] and LMP(3) [15]. To
average the rates, we assume a Fermi-Dirac equilibrium
distribution for neutrinos,

jav =

∫ ∞

0

j(ǫ)ǫ3f (eq)
ν (ǫ)dǫ . (4)

The density where β-equilibrium is achieved with the
different EC prescriptions is shown by dashed lines. From
this figure, it is obvious that up to a baryon density
of nB ≃ 2 × 10−5 fm−3, EC rates given by Bruenn’s
model are higher than the LMP ones. The behavior
gets inverted at densities between 2 × 10−5 fm−3 and
7×10−4 fm−3 because, within this density interval, many
neutron-rich nuclei are populated with vanishing EC
rates in the simplified Bruenn’s approach. This den-
sity region is located close to the onset of β-equilibrium

4 https://2sn.org/stellarevolution/

https://2sn.org/stellarevolution/
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with the highest EC rates, such that it is to be ex-
pected that the difference in EC rates between the three
models is relevant for the evolution. The importance
of EC on neutron-rich nuclei has already been noted in
Ref. [7], comparing simulations employing LMP(0) rates
and Bruenn’s rates.

The electron fraction Ye is directly linked to the EC
rates. Its time evolution at the center of the star is plot-
ted in Fig. 2. During infall, the model with Bruenn’s
rates shows a different behavior with respect to the two
LMP models. This can be understood as follows: during
most of the collapse, the central baryon density is lower
than 2 × 10−5 fm−3 and EC rates by Bruenn are higher
than the other ones (see Fig. 1), which implies a lower Ye

for the model using Bruenn’s EC rates before t ≃ 210 ms.
As shown in Fig. 1, for higher densities until the onset
of β-equilibrium, the situation is inverted and EC rates
by LMP(0) and LMP(3) models are higher, leading to
a stronger decrease of Ye after t ≃ 210 ms. This be-
havior shows again the importance of EC rates in the
density range 2 × 10−5 fm−3 ≤ nB ≤ 7 × 10−4 fm−3 for
the evolution of the collapse, where EC on neutron-rich
nuclei occurs. At bounce differences of about (30%) in
Ye(r = 0) are observed, which can be explained by the
fact that EC in this density region occurs predominantly
on nuclei for which no microscopic calculations exist [12].
Although qualitatively the behavior is very similar be-
tween the two LMP models, the decrease in Ye is less
pronounced employing model LMP(3).

The study of Sullivan et al [12], where – in order to ac-
count for uncertainties in EC rates – these are scaled by a
constant factor of 10, indicates differences of up to ±30%
in the central Ye at bounce. The nuclear physics consider-
ations (mainly isospin dependence and odd-even effects,
see Section II C) entering the improved model LMP(3)
considerably reduce the EC rates in the late stages of
collapse and thus clearly point to a higher Ye at bounce
than for LMP(0).

In Figure 3 we display the radial Ye profiles at bounce
for the three EC rate models. These results indicate
that differences appear mostly in the central region of
the collapsing star, i.e. for r . 50 km at bounce, where
neutron-rich nuclei are most abundant. As the three EC
rate models presented in this paper mostly differ on these
exotic nuclei, the overall behavior displayed in Fig. 3 is
understandable.

Going further, we now look at the influence of our EC
rate models on the collapse and bounce dynamics. Since
the collapse can be seen essentially as a free fall, it is clear
that the collapse time shows only little difference between
the models: it is about 4% larger with the two LMP
models than with Bruenn’s rates. This small difference
can be understood from the fact that in the early collapse
phase, electron degeneracy pressure is dominant. The
lower electron fraction for the model with Bruenn’s rates
(see Fig. 2) in this phase thus explains the accelerated
collapse.

Radial velocity profiles at bounce, and at two instants

after bounce (1 ms and 3 ms) are shown in Fig. 4. Al-
though the radius at which the shock is formed is the
same for all three EC rate models (left panel), the situ-
ation is different 3 ms after bounce (right panel), where
the shock is seen to have reached the largest distance
from the center for the Bruenn case, and closest to the
center with the LMP(0) rates. This can be interpreted in
terms of the inner core mass, i.e. the mass of the matter
inside the shock formation radius: the higher the mass
of this inner core, the larger the kinetic energy given to
the shock. Additionally, if the inner core mass is larger,
the iron layers that must be crossed by the shock are
thinner, thus making the shock lose less energy. Values
of the inner core mass at bounce are computed to be
0.31M⊙, 0.4M⊙ and 0.45M⊙, for models with EC rates
from LMP(0), LMP(3) and Bruenn, respectively, con-
firming the above reasoning. Please note that, if we had
shown the shock position as a function of the enclosed
mass and not as a function of the radius (left panel of
Fig. 4), the difference in the inner core mass at bounce
would have induced visible differences, see e.g. Fig. 7 of
Sullivan et al. [12].

The ordering of the inner core mass can in turn be un-
derstood as a consequence of the electron fraction evo-
lution discussed above: The mass of the inner core at
bounce is roughly proportional to 〈Y 2

L(e)〉, the mean frac-
tion of trapped leptons squared [67] which is fixed and
given by Ye at the moment when neutrino trapping sets
in.

Finally, in Fig. 5 are drawn, for each EC rate model,
the corresponding electron neutrino luminosity as func-
tions of time. Qualitatively, the behavior is similar: for
all curves one notes first an increase before bounce cor-
responding to the increase of electron captures. About
1 ms before bounce, the density increases so that neutri-
nos are trapped and luminosity starts to decrease. A few
milliseconds after bounce a second peak appears, due to
the shock reaching the neutrinosphere.

Quantitatively, the first peak is strongest for Bruenn’s
rates, reflecting the higher EC in the early collapse phase
for that model. Following Ref. [12], the ordering of the
second peak, highest and fastest for Bruenn, followed by
LMP(3) and LMP(0), can be interpreted as consequence
of the shock propagation velocity. If the shock propa-
gates faster, it simply reaches the neutrinosphere ear-
lier. The velocity profiles given in Fig. 4 confirm this
interpretation. The total energy taken away by elec-
tron neutrinos, up to 15 ms after bounce can be com-
puted and is roughly independent of the EC rate model:
4.58 × 1051 ergs with Bruenn’s model, 4.90 × 1051 ergs
with LMP(0) and 4.99× 1051 ergs with LMP(3).
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FIG. 5. (color online) Time evolution of electron neutrino lu-
minosity around bounce, for the three different EC rate pre-
scriptions.

B. Influence of other parameters

1. SNA vs NSE

We study here the influence of other parameters on
the infall evolution, starting with a comparison between
NSE or SNA approaches within the EoS (see Sec. II B
for details) when computing neutrino reactions. To that
end, we simulate infall using EC rates computed with the
LMP(3) model, the s15 progenitor model as well as the
HS(DD2) EoS. SNA calculations thereby extract the av-
erage nucleus from the entire available NSE distribution.
Thermodynamic quantities are thus unchanged between
SNA and NSE and we can more easily isolate neutrino
reaction effects. In the SNA case, the Q-value needed
for both LMP models is computed using the nucleus ob-

tained by rounding off the avagerage (A,Z) to the closest
integers.
This approach differs from previous studies comparing

SNA and NSE presciptions. Studies focussing on thermo-
dynamic quantities of course recalculate the full EoS in
SNA or NSE approach, respectively, but employ in gen-
eral simplified neutrino treatments, see e.g. Hempel et al.
[38], who calculate the NSE weak reactions extracting
two average nuclei from the full distribution with Bruenn
rates. They confirm that considering the full nuclear dis-
tribution for thermodynamic quantities has only a minor
impact [38, 68] on core collapse. On the contrary, the
importance of taking into account the full nuclear distri-
bution for calculating weak rates is well known, see e.g.
[7]. Our approach allows to properly investigate the is-
sue since we consistently compute weak rates from the
nuclear distribution of the underlying EoS.
The left panel of Fig. 6 shows a comparison of averaged

neutrino inverse mean free paths from EC processes in
the central cell,

1

λa
=

∫ ∞

0

κ∗
a(ǫ)ǫ

3f (eq)
ν (ǫ)dǫ

/
∫ ∞

0

ǫ3f (eq)
ν (ǫ)dǫ (5)

as function of baryon density. κ∗
a denotes here the absorp-

tion opacity corrected for stimulated absorption given

by j(ǫ)/f
(eq)
ν [64]. This Fermi-Dirac weighted average

yields the correct mean free path for gray energy trans-
port in an optically thin medium. As expected, most
important differences appear in the density ranges above
nB & 10−4fm−3 where the nuclear distribution is large
and potentially dominated by more than one peak.
The middle panel of Fig. 6 shows a comparison of

NSE and SNA for the averaged inverse neutrino mean
free path obtained from scattering off nuclei. We as-
sume isoenergetic scattering and include corrections due
to ion correlations and electron screening, see Horowitz
[69] and Bruenn and Mezzacappa [70] for detailed expres-
sions. The right panel shows the time evolution (labelled
by baryon number density) of Ye in the central cell for
both cases.
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FIG. 6. (color online) Neutrino inverse mean free path as functions of baryon density in the central numerical cell with reactions
computed either on a single mean nucleus (SNA) or on a statistical ensemble of nuclei (NSE): contribution of electron capture
effects only (left panel) and scattering effects only (central panel). Electron fraction time evolution for both models (right
panel).

It is obvious that, although differences between SNA
and NSE occur mainly in the region where the nu-
clear distribution is large, the overall effect is much
smaller than using different prescriptions for EC rates.
We should stress, however, that Bruenn’s rates as well
as both parameterizations LMP(0) and LMP(3) aver-
age over nuclear structure effects and the difference be-
tween NSE and SNA might become more important when
employing microscopic rates all over the nuclear chart,
which are presently not available.

2. EoS dependence

The EoS model can have some influence on the electron
fraction, too. To check this, we compare simulations ob-
tained with both extended NSE EoS models described in
Sec. II B, HS(DD2) from Hempel et al. [38] and the SLy4
from Raduta and Gulminelli [41] using model LMP(3) for
the EC rate. Ye at the star’s center shows little differ-
ences during the collapse, and almost no difference in the
resulting value at onset of β-equilibrium and at bounce.
For the evolution of the central density after bounce, only
small differences between both models were noted, too.
The only noticeable discrepancy between the two EoS
models could be seen in the temperature evolution at the
center of the star: the EoS by Raduta and Gulminelli
[41] always leads to slightly lower values than the one by
Hempel et al. [38], but these differences have little in-
fluence on the overall dynamics during pre-bounce and
early post-bounce.
The EoS dependence of the CCSN evolution before

and after bounce has been previously considered in Refs.
[12, 17, 38, 71, 72], which employed a relatively wide
collection of models in both SNA and NSE frameworks.
The unanimous conclusion is that a certain, though lim-
ited, dependence is observed for practically all considered
thermodynamic and dynamic quantities in all stages of
the evolution as well as for the deleptonisation rate, Ye

Progenitor name Metallicity ZAMS mass Mass at collapse
s15 Solar 15M⊙ 2.1M⊙

s25 Solar 25M⊙ 2.9M⊙

s40 Solar 40M⊙ 2.6M⊙

u15 10−4×Solar 15M⊙ 2.0M⊙

u25 10−4×Solar 25M⊙ 2.3M⊙

u40 10−4×Solar 40M⊙ 4.6M⊙

TABLE I. Progenitor models taken from Woosley et al. [34].
Mass at collapse demotes the mass present on the numerical
grid at the beginning of simulation.

and neutrino signals. Fischer et al. [72] reaches the con-
clusion that Ye of the protoneutron star and its evolution
depend on the symmetry energy.

3. Progenitor dependence

We have also explored the role of the progenitor model
in the determination of electron fraction at bounce by
considering six different models from Woosley et al. [34],
see Tab. I. The simulations employ LMP(3) EC rates and
the HS(DD2) EoS. Although the overall collapse time
may noticeably depend on the type of progenitor with
differences of up to 25%, the electron fraction at bounce
varies only from 0.23 to 0.27, with the exception of the
model u40, for which it drops down to 0.2. This last
point can be understood from the large mass present on
the numerical grid at the beginning of the collapse (see
Tab. I). We thus confirm conclusions from Sullivan et al.

[12], who showed that the detailed progenitor model can
have less influence on the electron fraction at bounce than
the precise EC rate prescription.
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FIG. 7. (color online) Baryonic number of the most probable
nucleus in the central element during infall as function of time
(labelled by the baryon number density). Three different mass
models are considered.

4. Influence of the nuclear mass model

Finally, we have examined the influence of the nuclear
mass model on the dynamics of the collapse. Previous
works [13, 14, 30] have shown that the composition of
matter in the thermodynamic conditions of core collapse
considerably varies according to the functional used for
extrapolating nuclear masses beyond known ones. In par-
ticular, since the composition is dominated by magic nu-
clei [12], it was reported in Refs. [13, 14, 30] that a po-
tential modification of magicity far from stability would
strongly affect the distribution of matter.

For the present study, we have used the perturba-
tive method introduced in Ref. [30] to compute the NSE
distribution starting from a given density functional for
the EoS. As mentioned in Sec. II B, the Lattimer-Swesty
functional has been applied for that purpose and sim-
ulations have been performed with the ACCEPT code
using LMP(0) parameterization for the EC rates.

In Fig. 7 the evolution of the most probable nucleus as
a function of time in the central element is shown compar-
ing the predictions from a CLDM prescription (LS [35]),
with that of two microscopic mass models, DZ10 [50] and
HFB-24 [53]. In very good qualitative agreement with
Refs. [13, 30], we can see that the presence (in DZ10 and
HFB-24) or absence (in LS) of shell effects impacts in a
considerable way the composition of matter. The HFB-
24 model, which predicts a stronger quenching of the shell
gaps far from stability than the DZ10 model, naturally
predicts a faster evolution towards heavier nuclei. This
is expected, since a quenching of the shell gap reduces
the waiting-point effect due to magicity, well known in
the framework of r-process calculations [73].

However, the differences between the mass models only

marginally affect the global dynamical evolution of the
collapse. This is demonstrated in Fig.8, which gives as
an example the radial profile at bounce of different repre-
sentative quantities. The behavior of the most probable
cluster (left part) follows the trends already observed in
Fig. 7. Since a potential magicity quenching does not
change the global pattern of nuclei produced, but only
the time at which they appear, it is not surprising that
the profiles at bounce of the different models are very sim-
ilar. Less expected is the fact that the electron fraction
and entropy profile (central and right part of Fig. 8) of
the different models are indistinguishable, meaning that
the time integrated effect of the different compositions
is very small. This is true even for the simplistic liquid
drop model (LS) which does not account for any struc-
ture effect, and even if the global distribution of nuclei is
very different between the LS and the other models at all
times (see Fig. 6 of Ref. [30]). This is clearly noticeable
in Fig. 9 (see also Fig. 6 of Ref. [30])5, where we plot the
distribution of nuclei for a given thermodynamic condi-
tion reached during the collapse in the center of the star
(T = 1 MeV; ρB = 6.021011 g cm−3; Ye = 0.27) for the
LS model (oval-shaped contours) and the HFB-24 mass
model (bimodal contours). While for the LS model the
most probable nucleus is located around N ≈ 86 and
Z ≈ 37, for the HFB-24 mass model, the most probable
nucleus is still located around the magic number N = 50
and Z = 28, and the probabilities show a bimodal dis-
tribution with a second peak close to the magic number
N = 82.

This might be at least partially explained by the fact
that for this simulation we have used an analytic contin-
uous parameterization (LMP(0)) for the EC rates wash-
ing out nuclear structure effects observed in microscopic
rate calculations [21]. Some dependence on the different
mass models might therefore be recovered if microscopic
rates consistent with the mass model were used. Unfortu-
nately, this can presently not be tested since, as we show
in the next section, the number of nuclear species present
in the tabulated microscopic rates is largely insufficient
to cover the NSE distribution and in particular the rel-
evant nuclei for EC during collapse. However, even if a
final quantitative conclusion cannot be drawn at present,
it is clear from Fig. 8 that the details of the mass model
have much less influence on the dynamics of core collapse
than precise EC rates.

5 The nuclear distributions shown in Fig. 9 appear quite differ-
ent from those shown in Fig. 6 of Ref. [30]. This is because in
Ref. [30], the cluster probabilities have been calculated on a fixed
core-collapse trajectory using Bruenn’s rates and with a trapping
density fixed to 3 × 1011 g cm−3, while here the calculations
have been consistently done in the core-collapse simulations us-
ing LMP(0) rates and a trapping density fixed at 1012 g cm−3,
thus yielding different thermodynamic conditions.
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FIG. 9. (color online) Distribution of nuclei (N,Z) for a
chosen thermodynamic condition during the collapse before
trapping: T = 1 MeV; ρB = 6.02 × 1011 g cm−3; Ye = 0.27.
Contour lines correspond to the cluster normalized probabil-
ities (red to blue, more to less probable) for the original LS
model (oval-shaped contour) and for the HFB-24 nuclear mass
model. See text for details.

IV. DETERMINATION OF THE MOST

RELEVANT NUCLEI

In the previous section we have shown that the
most influential microscopic ingredient entering a core-
collapse simulation is the expression of the individual
EC rates, particularly their behavior at low Q-values,
which corresponds to very neutron-rich nuclei and which
is still largely unknown. The improved parameteriza-
tion LMP(3), providing a better fit to the microscopic
calculations by Langanke and Martinez-Pinedo [21], sug-
gest a considerable average reduction of the rates in the
neutron-rich region with respect to the original parame-
terization LMP(0). Still, the difference observed in the
collapse dynamics arises from the extrapolation of those
fits to unknown regions where no data nor microscopic
calculations are available. It is therefore clear that ad-
ditional constraints are needed at low Q-values before
a parameterization can be considered as fully reliable.

For this reason, here we try to identify the most impor-
tant nuclei for the deleptonization process. Experimen-
tal and/or microscopic calculations on these key nuclei
could provide benchmarks for future improved parame-
terizations.
The simulations of this section were performed with

the same settings as in Sec. III B 4, employing the HFB-
24 [53] mass model.
An estimation of the number of nuclear species that

should be taken into account to have a realistic core-
collapse simulation can be inferred from Fig. 10. In the
upper part we display the deleptonization rate obtained
by considering only the k most abundant nuclei in the
NSE distribution, as a function of the number k of con-
sidered nuclei. The reason why we prefer to rank nuclei
according to their abundances rather than the more rele-
vant product between abundance and capture rate is that
the latter quantity is strongly affected by the assumed
EC rate model. The different curves are labelled by
their instantaneous EC rate which is a monotonically ris-
ing function of time, and the different curves correspond
thus to different times during collapse, before reaching β-
equilibrium. The rate is normalized to the value obtained
by summing the contribution of the 200 most abundant
nuclei, considering that k = 200 is sufficient at all times
to recover the total rate.
The SNA approximation, obtained considering k = 1

in Fig. 10 (upper part), obviously leads to a systematic
underestimation of the rate by a factor between 2 and
10, depending on the time. As observed in Fig. 6, this
underestimation leads to roughly 5% overestimation of
the electron fraction at bounce, meaning that a larger
pool of nuclei has to be considered at each time step to
have a complete picture of the collapse.
To get an idea of how many different nuclei have to be

considered, we display in the lower part of Fig. 10 the
number of nuclei responsible for half of the total EC rate
as function of time (labelled by the total instantaneous
rate). It shows that at each time one half of the total
rate is due to the capture on not more than 20 nuclei,
which reduce to less than 5 in the later stages before β-
equilibrium is reached and EC and its inverse β-decay
become irrelevant.
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FIG. 10. (color online) Upper panel: the instantaneous cap-
ture rate evaluated on a limited number k of nuclei, normal-
ized to the rate obtained taking the 200 most probable ones, as
function of the size of the sample. Nuclei are ordered accord-
ing to their abundance. The labels give the instantaneous rate
on the whole distribution, lower rates corresponding to earlier
times. Lower panel: the number of nuclei accounting for 50%
of the total instantaneous rate is plotted as a function of the
EC rate (dashed line). The number of species which are not
included in the tabulated microscopic EC rates [20, 21, 23, 24]
is plotted with a solid line.

We show in the same figure the number of those rel-
evant nuclei for which microscopic calculations [20, 21,
23, 24] are not available (solid line). Evidently, for many
nuclei contributing in a dominant way to EC during col-
lapse, no microscopic rates exist. In particular in the
later stages, most relevant for the dynamics of the col-
lapse, the rates on all those nuclei have to be estimated
by extrapolations. Note, however, that the number of
relevant unconstrained rates is relatively limited. The
corresponding isotopes are represented in Fig. 11, where
the color scale represents the relative contribution to the
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FIG. 11. (color online) Time integrated relative deleptoniza-
tion rate (color scale) associated to the different nuclear
species identified by their proton Z and neutron N number.
The black contour indicates the most relevant nuclei for EC
identified by Sullivan et al. [12] and Titus et al. [18]. The
red, blue, and green contours indicate the nuclei for which
microscopic rates are available from Langanke and Martinez-
Pinedo [21], Oda et al. [23], and Pruet and Fuller [24], respec-
tively. Nuclei with experimentally known masses are situated
between the grey lines.

time integrated rate associated to the different nuclei.
The ensemble of nuclei represented in this figure account
for 89 % of the total time integrated EC rate, and can
therefore be considered as the relevant pool of nuclei for
the EC process during infall. In the same figure, the
grey lines delimit the isotopic region where experimental
values are known for the nuclear masses, and the closed
red/blue/green surfaces represents the region where mi-
croscopic calculations are available [21, 23, 24]. The nu-
clei relevant for EC are essentially located close to the
N = 50 shell closure, in good qualitative agreement with
the results of the sensitivity study by Sullivan et al. [12]
and Titus et al. [18] (shown by the black contour).
It should be stressed that for most of 130 different

nuclei represented in Fig. 11 no microscopic calculation
exists. Dedicated microscopic calculations for all these
nuclei represent still an enormous challenge, but it is in-
teresting to observe that these nuclei are concentrated
on a relatively reduced zone of the nuclear chart. This
means that some extra experimental and/or theoretical
information on weak processes even on a few of the most
important ones would greatly help to constrain analytic
forms such as LMP(3), for a systematic application to
the whole nuclear pool.
One remark of caution is needed at his point. For

our calculations here, we have used the LMP(0) param-
eterization for all nuclei. This is at variance with Sul-
livan et al. [12], where the LMP(0) was used only for
nuclei that are not contained in any of the three tables
of Refs. [21, 23, 24]. The exact list of relevant nuclei
for EC might thus be slightly different from those shown
in Fig. 11 if the microscopic rates were used where they
are known. We expect this effect, however, to be small
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since most of the relevant nuclei lie outside the range of
the tables with microscopic rates. Please note that the
absolute rates reported in Fig. 11 are anyway model de-
pendent. For instance, if we had employed the LMP(3)
parameterization instead of LMP(0) they would clearly
be reduced.

V. CONCLUSIONS

Within this study we have performed simulations of
the pre-bounce evolution of core-collapse supernovae in-
vestigating the effect of improved EC rates on nuclei de-
veloped in Raduta et al. [15]. As pointed out already by
Langanke et al. [25], Bruenn’s EC rates commonly used
break down as soon as neutron-rich nuclei become pop-
ulated abundantly in the later stages of the pre-bounce
evolution. Although some attempts have been made to
extent LSSM calculations to heavier and more neutron
rich nuclei using hybrid approaches [11, 63], microscop-
ically calculated rates for these nuclei are still not the
most convenient to be directly applied in large CCSN
simulations. Therefore, for the most exotic and neutron-
rich nuclei EC rates are extrapolated [25] and are thus
subject to large uncertainties. Sullivan et al. [12] have
therefore performed a systematic sensitivity study, where
individual EC rates were thereby globally scaled by ar-
bitrary factors ranging from 2 to 10 with respect to the
fiducial values showing that the uncertainties on nuclear
EC rates have a stronger influence on pre-bounce evolu-
tion than other inputs, such as progenitor model or EoS.
Here, we confirm qualitatively the findings as well of

the pioneering work of Hix et al. [7], Langanke et al. [25]
as that of Sullivan et al. [12] and the subsequent stud-
ies of [18]. Electron captures occur predominantly on
neutron-rich nuclei during the last stages of pre-bounce
and enhanced captures reduce central Ye at bounce with
differences of up to 30% between the different prescrip-
tions for EC on heavy neutron-rich nuclei. Lower Ye

at bounce leads to smaller inner core mass and slower
shock propagation after bounce. The effect of different
EC rates is clearly predominant with respect to the EoS,
the nuclear mass model, or the progenitor model. How-

ever, the improved parameterization LMP(3) motivated
by nuclear physics considerations clearly points to a re-
duction of EC on neutron-rich nuclei with respect to the
work by Langanke et al. [25]. Although the impact of EC
on neutron-rich nuclei is thus attenuated, we emphasize
that still, the results are considerably different from those
employing Bruenn’s rates and it is important to include
EC on those nuclei.

The important sensitivity to the different prescriptions
for EC rates clearly indicates the importance of clarify-
ing the rates on those nuclei, either by theoretical cal-
culations or experiments. Indeed, the parameterization
LMP(3) is certainly improved by nuclear physics consid-
erations with respect to the basic extrapolation proposed
in LMP(0), but still it is just an improved fit to complete
LSSM calculations, and the differences with respect to
the simpler LMP(0) prescription arise from the extrapo-
lation of the fit to the low Q-value region where no mi-
croscopic calculations are available. We have therefore
provided a list of the most relevant nuclei accounting for
the 89 % of the total time integrated deleptonization rate.
Although the details of this list are certainly model de-
pendent (EoS, mass model, progenitor, EC rate parame-
terization, . . . ), there is a large overlap with the 74 most
important nuclei for EC identified in Refs. [12, 18] with
different settings, such that the identification is robust.

Our approach on the computation of EC rates in CCSN
simulatons presented here possesses the advantages of be-
ing numerically efficient and applicable to any EoS. We
plan to make public in the near future these rates as well
as neutrino-nucleus scattering opacities.
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