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REGULARITY OF ENTROPY SOLUTIONS TO EQUATIONS OF

CONSERVATION LAWS

CARLO BIANCA1,2,?, CHRISTIAN DOGBE 3

Abstract. This paper is devoted to the analysis of solutions of scalar conservation laws
where the flux function is a x-dependent function. Specifically we prove that, under

less regular fluxes, the maximum between two entropy subsolutions is also an entropy

subsolution. The proof of the main result is based on the entropy method of the Kruzkhov
theory, P. L. Lions and P. Souganidis methods and the regularization method of Di Perna-

Lions.
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1. Introduction

Let u : Rd × R −→ Rd, (x, t) 7−→ u(x, t) = (u1, . . . , un), be the unknown function that
is sought, and f = (f1, f2, . . . , fd) : Rd × R → Rd a known nonlinear function, called the
flux function. This paper deals with the analysis of the following class of multidimensional
nonlinear conservation laws with flux f and without a term source:{

∂tu+ div f(x, u) = 0, in Rd × (0,∞)

u(x, 0) = u0(x), x ∈ Rd,
(1.1)

where u0(x) is the initial datum, ∂tu denotes the derivative of u with respect to t, ∂iu denotes

the partial derivative u with respect to the i-th component xi of Rd, and div =

d∑
i=1

∂i. The

notation uxi
and uxixi

will be also employed for the first and second derivatives of ui with
respect to xi. In order to control f at infinity, it will be assumed that

u0(x) ∈ L1(Rd) ∩ L∞(Rd). (1.2)

A mathematical theory is well established in the case of a single conservation laws, i.e. when
d = 1. In this case (1.1), called a ‘scalar conservation law’ (see for example [5, 1, 19]), is
of great interest in several areas of physics and engineering. Specifically applications refer
to porous media [4], traffic flows on highways with changing road conditions [13, 24], radar
shape-from-shading problems, blood flow, gas flow in a variable duct [15], ion etching in the
semiconductor industry [18], sedimentation-consolidation processes [2].

From the mathematical analysis point of view, several existence results have been obtained
concerning the Cauchy problem for conservation laws bases on Kruzkhov theory (for a flux
f independent of the space variable). In this context, the notion of entropy solution has
been employed. However due to the nonlinearity and less regularity of the flux f(x, ·), the
solutions of (1.1) develop discontinuities in finite time, even when the initial data is smooth
[12, 5]. Hence, solutions of (1.1) are sought in the sense of distributions. These weak
solutions are not necessarily unique. Additional admissibility criteria or entropy conditions
need to be imposed in order to select physically relevant solutions.
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The main aim of this paper is to extend some existing results in the case of a less regular
flux f . In the case of a smooth f , the existence and uniqueness of an entropy solution is
provided by the well known method of doubling of variables of the celebrated Kruzkhov’s
theorem, or by using the measure valued concept by DiPerna [6]. In [16] Panov shows the
existence of solution for a flux vector f assumed to be a Carathéodory vector (namely con-
tinuous with respect to u and measurable with respect to x). For BV initial data, Karlsen et
al. [9] has proved the existence of a weak solution by using compensated compactness. A
different approach to hyperbolic conservation laws is based on the so-called kinetic formula-
tion. The approach allows for a complete existence theory in the scalar case for initial data
that are only assumed to be integrable (see [17] for an extensive presentation of this theory).
In this paper, by using the recent ideas developed by P. L. Lions and P. Souganidis, we are
interested in the maximum and minimum between two entropy subsolutions of the problem
(1.1) which, as will be shown, are also entropy subsolutions. The main difficulty is related
to the flux f which here depends on the space variable, and then we do not have an a priori
BV bound for the function u. Therefore the general results related to the scalar conservation
laws cannot be employed.

The present paper is organized as follows. Section 2 is devoted to notations and back-
ground. In Section 3 we state our main result given by Theorem 3.2. The key for the proof
of the main result is the attractiveness of solutions given by Lemma 5.2. This lemma gives
an estimation for the gap between the solutions of Eq. (1.1). Its proof uses some ideas
originally developed for the ODE. Since the fluxes depend on the space variable and are less
regular, this requires additional attention in various crucial estimates. However the main
novelty is to combine the approach from ordinary differential equation and consequently
obtain a stronger result. The difficulty stems in part from the fact that constants are not
solution of our problem and the L1-contraction property collapses. The proof is based on
the combination of comparison principle with compactness arguments. In Section 4 we state
and prove a technical lemma that we use to prove .our main theorem. Section 5 is devoted to
the proof of the main theorem in full generality. The main tool is a maximum principle and
total variation estimates and we avoid the compensated compactness approach. In Section
6 we provide some motivating examples. Finally, in Appendix A we recall some technical
lemmas using in our proofs.

2. Preliminaries

This section is devoted to a brief summary of basic notations and definitions. Let r, s ∈ R,
r ∧ s := min(r, s), r ∨ s := max(r, s), r+ := r ∨ 0 and r− := (−r) ∨ 0, 1E the character-
istic function of the set E. The Banach space C(R+, L1(Rd)) endowed with the norm

‖φ‖C(R+,L1(Rd)) = max
x∈Rd

ˆ
Rd

‖φ(x, t)‖dx is considered. The space BV(Rd) is defined as follows:

BV(Rd) = {g ∈ L1(Rd) : |g|BV(Rd) <∞}

where |g|BV(Rd) denotes the total variation of g, i.e., g ∈ BV(Rd) if and only if g ∈ L1(Rd)
and the first-order distributional derivatives of g are finite measures on Rd. The following
space is also considered:

L1
loc(Rd; C0u(R)) :=

{
u ∈ L1(Rd) for all compact subset of Rd and continuous

}
.

It is worth mentioning that the space L1
loc(Rd; C0u(R)) is not a Banach space since we have

L1
loc.
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Definition 2.1. A function u ∈ C(R+, L1(Rd)) ∩ L∞loc(R+, L∞(Rd)) is called an entropy
solution of (1.1) if it satisfies (1.1) in the sense of distributions, more precisely, in D ′(Rd×
(0, T )), for k ∈ R:

∂t|u− k|+ div[sgn(u− k)(f(x, u)− f(x, k)] + sgn(u− k) div f(x, k) 6 0, (2.1)

with a sufficiently smooth function f . That is, for every differentiable function with compact
support ϕ(x) ∈ C∞0 (Rd):ˆ

Rd

|u(x)− k|ϕt +

ˆ
Rd

[div(f(x, u(x))− f(x, k))sgn (u(x)− k),∇ϕ(x))

+ sgn (u(x)− k) div f(x, k))ϕ(x)] > 0, (2.2)

where (·, ·) is the scalar product in Rd and the function sgn is defined by sgn(x) =
x

|x| for

x 6= 0 and sgn(0) = 0.

It is well known that the condition (2.1) can be rewritten in the following equivalent form:
For any convex function S(u) ∈ C1(R) (entropy)

∂tS(u) + div (η(x, u))

+ S′(u) divx f(x, u)− divx η(x, u) 6 0, (2.3)

where S is the corresponding entropy flux vector defined by the relation

η(x, v) :=

ˆ v

0

S′(v′)Fi(x, v
′)dv′, (2.4)

and

divx f(x, u) :=

d∑
i=1

∂fi(x, u)

∂xi
, div f(x, u) :=

d∑
i=1

∂fi(x, u)

∂xi
+
∂fi(x, u)

∂u

∂u

∂xi

Fi(x, v) :=
∂f

∂v
(x, v) ∈ L∞loc(R;L∞(Rd)).

The reader interested in the main properties of the entropy solutions is referred to Kruzkhov
[10] and Vol’pert [22] for the first-order and to Volpert and Hudjaev [23] for the second-order
equations.
Bearing all above in mind, it is expected that if u and v are two subsolutions, u ∨ v is a
subsolution.
The definition 2.1 in more convenient in the following form.

Definition 2.2. A function u : Rd → R belonging to L∞(Rd) is called an entropy subsolu-
tion (respectively supersolution) of (1.1) if for all k ∈ R one has:

∂t(u− k)+ + divx[sgn+(u− k)(f(x, u)− f(x, k))]− 1u<k

(
∂

∂xi
f

)
6 0, (2.5)

and

∂t(k − u)+ + divx[sgn+(k − u)(f(x, u)− f(x, k))]− 1u>k

(
∂

∂xi
f

)
6 0 (2.6)

respectively, where 1u>k = 1 if u > k and 0 if u < k, and (u − k)+ := max(u − k, 0) and
(u− k)− := min(u− k, 0). A function u ∈ L∞(Rd) is said to be an entropy solution of (1.1)
if it is a subsolution and a supersolution of (1.1).

It is well known (see [10]) that for any initial condition u0 ∈ L1(Rd) ∩ L∞(Rd), there
exists a unique entropy solution u ∈ C([0,+∞), L1(Rd)) ∩ L∞([0,+∞)× L∞(Rd)).
One of the main keys of the present paper is the fact that the maximum between an entropy
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subsolution and a constant is also an entropy subsolution, which is a straightforward con-
sequence of the definitions, particularly, the maximum between two entropy subsolutions is
also an entropy subsolution. In the work of P.L. Lions with P. Souganidis [14] it is observed
the general fact that the maximum between two entropy subsolutions is also an entropy
subsolution. Hence we can rewrite (2.1) in a more convenient form.

Definition 2.3. A function u is an entropy subsolution (respectively supersolution) of initial
value problem (1.1) if

∂

∂t
(u ∨ k) +

∂

∂xi
(fi(xi, u ∨ k)) + 1(u<k)

(
∂

∂xi
f

)
(x, k) 6 0. (2.7)

Likewise, we have

∂

∂t
(u ∧ k) +

∂

∂xi
(fi(xi, u ∧ k)) + 1(u>k)

(
∂

∂xi
f

)
(x, k) 6 0, (2.8)

in the sense of distributions D ′(Rd × R+).

It is worth to note that the inequality (2.7) is in the sense of distributions, that is, we
perform an integration by parts against a test function. Specifically ∀ϕ > 0, ϕ ∈ C∞0 (Rd)
one has:

d

dt

ˆ
ϕ(u ∨ k) dx−

d∑
i=1

ˆ
fi(xi, u ∨ k)

∂ϕ

∂xi
(x)dx−

ˆ
1(u>k)f(x, k)

∂ϕ

∂xi
(x)dx 6 0. (2.9)

Observe that the quantity
d

dt

ˆ
ϕ(u∨ k) is continuous in time, since u is continuous in time,

then the term (u ∨ k) is continuous in time. Accordingly multiplying by ϕ the integral is
continuous in time. Inequality (2.9) is like a differential equation.

3. Statement of the Main Result

The construction of the entropy solution of (1.1) is based on the classical vanishing-
viscosity method. Accordingly, we introduce, for any positive real ε, the following viscous
problem: {

∂tuε + ∂ifi(x, uε)− ε∆uε = 0, t > 0, x ∈ Rd

u(0, x) = u0(x).
(3.1)

The interest is to understand the behavior of uε when ε vanishes. The terms ∂tuε and ε∆uε
converge to ∂tu and 0, the problem is the term ∂ifi(x, uε). It is sufficient to prove that the
term fi(x, uε) converges in D ′(Rd ×R+), but the nonlinearity makes this task complicated.

It is well known that in the case of the homogeneous flux f , i.e. f does not depend on
x, the constants are stationary solutions of (1.1). The problem is invariant by translation:
Specifically, let h be a vector and τh the space shift by this vector: τhg = g(· + h); if uε
is solution of the approximate equation (3.1), then τhuε is also the solution of the same
equation with initial data a := τhu0. In addition one has the following L1-contraction
property: ˆ

|uε − uε(·+ h)|dx 6
ˆ
|u0(x)− u0(x+ h)|dx, ∀ t > 0, (3.2)

that is

‖τhuε − uε‖L1 6 ‖τha− a‖L1 . (3.3)

Since any constant is a solution of the equation, the comparison principle implies that

inf u0 6 u(x, t) 6 sup u0. (3.4)



REGULARITY OF ENTROPY SOLUTIONS 5

In the spatially dependent case, the inequality (3.2) is no longer true, namely the spatial
translation invariance and convergence arguments based on BV bound break down. However
it can be proved that our sequences are compact with respect to the L1

loc-norm.

The real question now is why there is compactness or how are we going to cope when
the flux is less regular? For scalar conservation laws, there exist two techniques to obtain
compactness in L1: The first technique consists in obtaining bounds BV and compactness in
L1; the second technique uses the phenomenon of compactification which is really linked to
the nonlinear structure of the problem and leads to compactness by compensation [21, 20]
or other regularizing effects. It is well-known that compactness arguments based on BV
bounds for the existence of solutions for quasilinear hyperbolic conservation laws is limited
to one-dimensional systems. Moreover, the multidimensional BV-based scalar existence
theory of Kruzkhov [10] hinges in an essential manner on the translation invariance of the
underlying solution operator. Lack of translation invariance excludes BV bounds (even in
the L1-contractive 1D case). Here, the compactness framework in Lemma 5.2 is established
to replace the BV compactness framework.

3.1. Structural assumptions on the vector field.

The flux f is assumed to satisfy the following assumption.

Hypothesis 3.1.

(H1) The flux f is smooth in (x, z), x ∈ Rd. More precisely, f ∈ C 1
b (Rd × [−M,M ]),

∀M > 0.
(H2) It is assumed that

(i) f ∈W 1,1
loc (Rd,R);

(ii) Dxf ∈ L1(Rd, C0(R)), where Dxf means the derivative part with respect to x.
Actually, we assume that

sup
|z|6M

|Dxf(x, z)| ∈ L1
loc. (3.5)

(H3) f ∈ L1
loc(Rd; C0u(R)), and divx f(x, 0) ∈ L1.

(H4) ∂uf exists continuously and ∂xifi ∈ L1
loc(Rd; C0u(R)).

(H5) ∂u∇f exists continuously and

divx f(x, z) sgn z > −C0(1 + |z|) almost everywhere in x, for all z. (3.6)

(H6) (i) The xz-derivative of f is bounded, that is, since u is bounded

∂2xzf ∈ L∞(Rd × [−M,+M ]) ∀M <∞ (3.7)

(ii) and

∂

∂x
(divx f) ∈ L1(Rd;C0([−M,+M ])), ∀M <∞. (3.8)

Comments on these assumptions.

Several remarks can be made concerning the hypotheses 3.1.

(i) If f is smooth enough then the above assumptions reduce to only (H1). Concerning
hypothesis (H2), if we restrict to the fluxes with separated variables, i.e. of the
type f(x, u) = V (x)g(z), this means V ∈ W 1,1(Rd). This hypothesis is a natural
assumption that will justify the doubling of variables.

(ii) The hypothesis (H3) is rather reasonable because if u ∈ L1, at infinity u is equal to
0 and we do not want the variation at infinity or the divx f(x, 0) to be integrable
otherwise it will mean that we are really adding a lot of mass to the infinity. This
hypothesis thus allows to control the mass at infinity.
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(iii) The hypothesis (H4) is the minimal regularity that will ensure uniqueness and the
contractiveness property. This allows to prove that the maximum of two subsolutions
is a subsolution in W 1,1(Rd). The main point here is that constants are not solution
to equation (1.1).

(iv) The sublinearity condition (H5) states that there exists a constant C0 > 0 such that,
for all z, the previous inequality is true almost everywhere in x. The Hypothesis
(H5) ensures the existence of L∞ bounds.

(v) Assumptions (H4)-(H5) have key importance. The bound on ∂u∇f ensures the
finite propagation speed of the solution. The bound on divx f ensures that the
solutions are bounded, similarly to the role of sublinearity in the ordinary differential
equation.

(v) Let us point out that, one has a BV-estimate provided that the assumption (H6)

is carried out. This is an essential point in the proof of our main theorem. We
emphasize that an assumption like (H6) is essential to our analysis. It is a necessary
and sufficient conditions in order to obtain existence and uniqueness of the solution.

The statement of the main theorem of this paper follows.

Theorem 3.2. (Less regular case). Suppose that the flux f satisfies (H2)-(H6) and u0 ∈
L1 ∩ L∞(Rd). If u and v are two entropy subsolutions (supersolutions) of (1.1), then the
max(u, v) (min(u, v)) is also an entropy supersolution.

Remark 3.3. The main theorem has the following meaning.

(1) In the independent spatial case, the existence of solutions is an easy consequence of
the uniqueness and the L1-contraction property; in the heterogeneous case where f is
smooth regular, the situation is also easy, but the difficult in general case considering
that the constants are no longer solutions to the problem. This is quite natural if we
think in (1.1) to a linear equation, f(x, u) = b(x)u with b ∈ W 1,1(Rd) (see [7]); the
L∞ bound will depend on how the flux tends to move away trajectories, or if there
are points where trajectories get closer; namely the divergence of the flow controls
the L∞-norm (well known for the conservative Liouville equation). These results
have been first observed by Lions and Souganidis [14].

(2) The notion of subsolution (respectively supersolution) is different (at least in the
formulation) from the usual definition. The main difference from the classical proof
of Kruzkhov is the presence of the term 1(u<k)∂xif(x, k) owing to the fact that k is
not any more solution of the equation of (1.1). One pays it with the presence of
this additional term. This term is not well-defined in the case of non-smooth flux f .
But we will prove that for a sufficiently large class of condition on f the uniqueness
of solutions can be proved, which is equivalent to the Kruzkhov entropy solution in
case that f is smooth.

(3) Actually, we want to prove that u∨v is an entropy subsolution and in order to check
this, we must look at (u ∨ v) ∨ k, ∀ k ∈ R. But we have

(u ∨ v) ∨ k = (u ∨ k) ∨ (v ∨ k), ∀ k ∈ R,

where (u∨ k) and (v ∨ k) are two entropy subsolutions. This is not clear since from
the inequality (2.7) u ∨ k entropy subsolution means the u ∨ k is subsolution in
the sense of distributions, and it is well-known that distributional solution are not
entropy solutions. In fact, if u is an entropy subsolution, then u ∨ k is an entropy
subsolution not only in sense of distributions. The u∨v is entropy subsolution means
that we have to take the maximum with any other constant `, namely we have to
take u∨ k ∨ ` and check that this is a subsolution in the sense of distributions. But
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observe that

u ∨ k ∨ ` =

{
u ∨ k if k > `

u ∨ ` if k < `

in which case we apply again the definition and deduce that u is a subsolution in the
sense of distributions. The explanation comes from the fact that we have maximized
with the constants and the maximums are trivial. Through the properties of the
operation max, we have automatically that if we have an entropy subsolution, then
u ∨ k checks the inequalities according to (2.7), and verifies also all the inequalities
that come from the entropy subsolutions.

4. Technical lemma

Let % ∈ C∞0 (Rd) be a smoothing kernel such that % > 0 andˆ
Rd

%(z)dz = 1, (4.1)

and, for δ > 0, we define the two families of functions %δ ∈ C∞0 (Rd) such that

%δ(z) =
1

δd
%
(z
δ

)
, %ε(z) := ε−d%

(z
ε

)
which provide an approximation of the Dirac mass δ0. Moreover, we impose that the support
of % is included in the ball B1 ≡ {x ∈ Rd | |x| < 1}. We denote for any g ∈ L1

loc(Rd)

gδ(x) ≡ (g ? %δ)(x) ≡
ˆ
Rd

g(x− y)%δ(y)dy.

In particular, we define u0δ ≡ u0 ? %δ, where ? denotes the convolution operator.
The following Lemma will be useful in the proof of our main theorem and propositions. The
Lemma 4.1 below is strongly reminiscent of Lemma II.1 in [7] and serves the same purpose.

Lemma 4.1. (Commutator estimate) Assume that (H2)-(H6) hold true. Let Rε and Dε

the two commutators define as follows:

Rε := −
ˆ

(fi(x, u(s) ∨ v(s))− fi(y, u(s) ∨ v(s)))(∂i%ε)(x− y)) ds (4.2)

Dε := −
ˆ (

1(u<v)∂ifi(x, v) + 1(v<u)∂ifi(y, v)
)
%ε(x− y)dy. (4.3)

Then

‖Rε −Dε‖L1 → 0 as ε→ 0, (4.4)

and

‖R‖L1 6 C0‖ sup
|z|6M

|Dxf(x, z)|‖L1 . (4.5)

Proof. The proof is divided into two parts: The first part is dedicated to the case where
the flux is smooth enough, the second part for the case where the flux is less regular. The
two terms have not the same difficulty.

Step 1. The case where the flux f is regular. Since ∂if(x, v) is regular the term Dε does not
raise any difficulty. The flux f is integrable, hence one can use the Lebesgue’s derivation
theorem. Thus, the term Dε converges to (∂if)(x, u∨ v) and it is a convergence in L1. The
indicator functions disappear and one has:

−
ˆ[

1(u<v)∂ifi(x, v)− 1(v<u)∂ifi(y, v)
]
%ε(x− y)dy

L1
p.p.−−−−→
ε→0

(∂if)(x, u ∨ v), (4.6)
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by definition of indicator functions. The term Rε is an oscillation of functions, but the ∂i%ε
is obviously much more irregular. In its derivation, one recovers an extra 1/ε which is com-
pensated by fi(x)− fi(y). Thus, this term will be analyzed by the well-known commutator
lemma. Indeed, formally, since x− y < ε with support of %ε in the ball of radius ε, then we
can approximate f(x)− f(y) by

f(x)− f(y) ∼ ∂jf(x)× (xj − yj),

such that

(fi(x)− fi(y)) (∂i%ε) (x− y)dy =

ˆ
∂jf(x)

ˆ
xj − yj

ε

1

εd
∂i%ε

(
x− y
ε

)
dy.

Performing the change of variable z =
x− y
ε

, one has:

ˆ
xj − yj

ε

1

εd
∂i%j

(
x− y
ε

)
=

ˆ
zj∂i%(z)dz = −δij =


0 i 6= jˆ
Rd

% i = j.

Step 2. The case when the flux is less regular. By elementary properties of mollifiers, one
has:

Dε = −
ˆ (

1(u<v)∂ifi(x, v) + 1(v<u)∂ifi(y, v)
)
%ε(x− y)dy

L1
loc−−−→
ε→0

− ∂ifi(x, u ∨ v). (4.7)

By (4.4), it is therefore enough to prove

Rε −−−→
ε→0

− ∂ifi(x, u ∨ v) in L1
loc(Rd). (4.8)

Due to the Hypothesis 3.5, Rε is bounded in L1
loc(Rd). Next, keeping in mind that v depends

on y, that is

fi(x, u ∨ v)− fi(y, u ∨ v)) = fi(x, u ∨ v(x− εz))− fi(x− εz, u ∨ v(x− εz)),

and by using the Taylor formula

ϕ(y)− ϕ(x) =

ˆ 1

0

∇ϕ(x+ s(y − x))(y − x)ds

for smooth functions and performing the change of variable x− y to z =
x− y
ε

, yields:

Rε :=

ˆ
(fi(x, u ∨ v)− fi(y, u ∨ v)) (∂i%ε) (x− y)dy

= −
ˆ
B1

dz

ˆ 1

0

ds zj ∂jfi(x− εsz, u ∨ v)(∂i%ε)(z)dz. (4.9)

Indeed, the powers of ε disappeared thanks to the increase of (f(x, u ∨ v)− f(y, u ∨ v)). It
remains to show that (4.9) is bounded in L1. Therefore, by the Vitali’s convergence theorem,
one has:

Rε → −
(ˆ

B1

zj(∂i%ε)(z)dz

)
∂jfi(x, u ∨ v) = −∂ifi(x, u ∨ v). (4.10)

It remains to prove the bound (4.5). Since u and v are bounded: |u| 6 M , and |v| 6 M
almost everywhere, ∂i%ε is bounded, one has:∣∣∣∣−ˆ

B1

dz

ˆ 1

0

ds zj∂jfi(x− εsz, u ∨ v)(∂i%)(z)dz

∣∣∣∣
6 C0

ˆ
B1

dz

ˆ 1

0

sup
|ξ|6M

|∂jfi(x+ εz, ξ)|, (4.11)
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where C0 is a constant independent of ε. By integrating the right-hand side in the space
variable (justified by the regularity of the terms we have written), and by the invariance of
the Lebesgue integral by translation, one has:ˆ

Rd

C0

ˆ
B1

dz

ˆ 1

0

sup
|ξ|6M

|∂jfi(x+ εz, ξ)|dx =

ˆ
sup
|z|6M

|Dx.f |(x, z)dx. (4.12)

Hence ˆ
(fi(x, u ∨ v)− fi(y, u ∨ v))(∂i%ε)(x− y)) ds =

ˆ
sup
|z|6M

|Dx.f |(x, z)dx. (4.13)

This means, the L1 norm of Rε is estimates by a constante independent of ε:

‖R‖L1 6 C0‖ sup
|z|6M

|Dxf(x, z)|‖L1 .

This completes the proof. �

In what follows the case of the homogeneous conservation law, i.e. f does not depend on
x, is discussed and in particular the following Cauchy problem:{

ut + div f(u) = 0 in Rd × (0,∞)

u(0, x) = u0(x) in Rd.
(4.14)

We have the following results.

Proposition 4.2. (Homogeneous case) Let u = u(x, t) and v = v(x, t) be two entropy subso-
lutions (respectively, supersolutions) of (4.14). Then w(x) := max(u(x), v(x)) (respectively
min(u, v)) is still an entropy subsolution (respectively supersolution) of (4.14).

For the general scalar conservation laws (1.1), we will prove the following result.

Proposition 4.3. (Heterogeneous case and regular case)

(1) Assume (H1) and let u0 ∈ L1 ∩ L∞(Rd). Let u and v be two entropy subsolutions
of (1.1). Then max(u, v) is still an entropy subsolution. If u and v be two entropy
supersolutions of (1.1), then min(u, v) is still an entropy supersolution.

(2) Assume (H2). Let u and v be two entropy subsolutions of (1.1). Then max(u, v) is
still an entropy subsolution. If u and v are two entropy supersolutions of (1.1), then
min(u, v) is still an entropy supersolution.

Proof of proposition 4.2. The proof is based on the Kruzkhov’s doubling of variables
technique. It is worth stressing that a function u = u(x, t) ∈ L∞ is a entropy supersolution
of problem (1.1) if and only if −u is a entropy subsolution of the Cauchy problem for the
equation ut+divx(−f(−u)) = 0 with the initial function −u0(x); hence, the second assertion
of the proposition 4.2 follows from the first.

In the case of first-order homogeneous fluxes f , it is enough to check that the function
w(x) = max(u(x), v(x)) satisfies the Definition 2.1. The core of the proof is the regularization
by convolution of problem (4.14). Let u(x, t) and v(y, s) be entropy subsolutions to the
problem (4.14). Since

max(u, k) := u ∨ k = (k + (u− k)+), (u− k)+ = max(u, k)− k,
2 max(u, k) = |u− k|+ (u+ k),

2f(max(u, k)) = (f(u)− f(k)) sgn(u− k) + (f(u) + f(k)),

we then write the entropy inequality (2.7) for the solution u ∨ v at point (y, s) as follows:

∂

∂t
(u ∨ v(y, s)) + (fi(u ∨ v(y, s)))xi

6 0, (4.15)
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in the sense of distributions, more precisely, in D ′(Rd × (0, T )) almost everywhere in (y, s).
Exchanging the functions u and v and the variables (x, t) and (y, s), we obtain the similar
inequality

∂

∂s
(u(x, t) ∨ v) + (fi(u(x, t) ∨ v))yi 6 0, (4.16)

in the sense of distributions D ′(Rd × (0, T )) and almost everywhere in (x, t). Summing up
(4.15) and (4.16), the resulting equation reads:

∂

∂t
(u ∨ v(y, s)) +

∂

∂s
(u(x, t) ∨ v) + (fi(u(x, t) ∨ v))yi + (fi(u ∨ v(y, s)))xi

6 0 (4.17)

which can be rewritten as follows:(
∂

∂t
+

∂

∂s

)
[(u ∨ v(y, s)) + (u(x, t) ∨ v)]

+ (divx + divy)[fi(u(x, t) ∨ v)) + (fi(u ∨ v(y, s))] 6 0. (4.18)

Relation (4.17) or (4.18) is the keystone of the proof. We will prove that inequality (4.17)
implies that w = u ∨ v is a subsolution, in the sense of D ′, of the problem (1.1). But we
want to prove that u∨v is an entropy subsolution. To force the variables to be the same, we
use a test function (approximation of the unit): %δ,ε := %δ(t − s)%ε(x − y), where %δ(t − s)
is dimension 1 and %ε(x − y) is d-dimension. Obviously, it is clear that the sequence of
functions %ε(z) converges (which is meant in the sense of distributions D ′(R)) to the Dirac
δ-measure as ε → 0. Next, we take k = v(y, s) in the first equation and integrate with
respect to (s, y); then we take ` = u(x, t) in the second and integrate with respect to (t, x).
Summing up the results and rearranging the terms therein, one has:

∂

∂t

ˆ
(u ∨ v(y, s))%ε(x− y)%δ(t− s)dsdy +

∂

∂xi

ˆ
%εfi(u ∨ v(y, s))%δ(t− s)dsdy

−
ˆ

(%ε)xi
(x− y)fi((u ∨ v)(y, s))%ε(t− s)dyds (4.19)

−
ˆ
fi(u,∨v(y, s))%δ(t− s)

∂

∂yi
(%ε(x− y))dyds 6 0,

since the terms containing the derivatives of %δ(t− s) cancel out. It remains to analyze two
terms. The first one which we rewrite as follows:ˆ

%ε(x− y)%δ(t− s)
[
∂

∂xi
(fi(u ∨ v(y, s)))

]
dsdy

=
∂

∂xi

ˆ
%ε(x− y)fi(u ∨ v(y, s))%δ(t− s)dsdy

−
ˆ

∂

∂xi
[%ε(x− y)]fi((u ∨ v)(y, s))%ε(t− s)dyds, (4.20)

and the second term which we integrate by part to have:ˆ
%ε(x− y)%δ(t− s)

[
∂

∂yi
fi(u(x, t) ∨ v))

]
dsdy

= −
ˆ
fi(u ∨ v(y, s)))%δ(t− s)

∂

∂yi
[%ε(x− y)] dsdy. (4.21)

One thereby sees that, in the first term of (4.19), as δ → 0, %δ → δ and since v(y, s) ∈ L1

then v(y, s)→ v(y, t). Hence,

∂

∂t

ˆ
(u ∨ v(y, s))%ε(x− y)%δ(t− s)dsdy −−−→

δ→0

∂

∂t

ˆ
(u(x, t) ∨ v(y, t))%ε(x− y)dy. (4.22)
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Likewiseˆ
(%ε)xi(x− y)fi((u ∨ v)(y, s))%δ(t− s)dyds

−
ˆ
fi(u,∨v(y, s))%δ(t− s)

∂

∂yi
(%ε(x− y))dyds

−−−→
δ→0

ˆ
(%ε)xi(x− y)fi((u ∨ v)(y, s))dyds−

ˆ
fi(u,∨v(y, s))

∂

∂yi
(%ε(x− y))dyds.

Finally, taking the limit as δ → 0 in (4.19), we reduce this inequality into the following form:

∂

∂t

ˆ
(u(x, t) ∨ v(y, t))%ε(x− y)dy +

∂

∂xi

ˆ
fi(u(x, t) ∨ v(y, t))%ε(x− y)dy (4.23)

−
ˆ (

∂

∂xi
%ε

)
(x− y)fi((u ∨ v)(y, s))dyds−

ˆ
fi(u,∨v(y, s))

∂

∂yi
(%ε(x− y))dyds 6 0.

Since ∂yi(%ε(x − y)) = − [∂xi
%ε(x− y)], the two terms of (4.23) cancel each other out and

we get

∂

∂t

ˆ
(u(x, t) ∨ v(y, t))%ε(x− y)dy +

∂

∂xi

ˆ
fi(u(x, t) ∨ v(y, t))%ε(x− y)dy 6 0, (4.24)

in the sense of distributions. Then taking the limit as ε→ 0, we have:

∂t(u(x, t) ∨ v(y, t)) + div f(u(x, t) ∨ v(y, t)) 6 0, (4.25)

that is, for the arbitrary test function ϕ ∈ C∞0 (Rd), ϕ > 0:ˆ
(u(x, t) ∨ v(y, t))ϕtdx+

ˆ
f(u(x, t) ∨ v(y, t))∇ϕ(x)dx > 0. (4.26)

This justifies that w(x) = max(u(x), v(x)) is an entropy subsolution. �

Proof of Proposition 4.3. We will accomplish the proof in two steps.

First case. We are going to show that u is actually an entropy solution to (1.1), that is
u ∨ v is a subsolution to (1.1) in the sense of distributions from Definition 2.3. To this end,
we proceed exactly as in the proof of Proposition 4.2. We take k = v(y, s) and ` = u(x, t)
in (2.6). We then write the entropy inequality (2.7) for the solution u ∨ v at point (x, t),
noting that the dependence of f on the space variable x produces additional terms:

∂

∂t
(u ∨ v(y, s)) + fi(xi, u ∨ v(y, s))xi

− 1(u(x)<v(y))∂ifi(x, v(y)) 6 0. (4.27)

Likewise for equation u ∨ v at point (y, s):

∂

∂s
(u(x, t) ∨ v) + fi(yi, u(x, t) ∨ v))yi − 1(v(y)<u(x))∂ifi(y, u(x)) 6 0. (4.28)

Summing up the last two inequalities, one obtains the key equation:

∂

∂t
(u(x, t) ∨ v(y, t)) + fi(xi, u ∨ v)xi

+ fi(yi, u ∨ v)yi

− 1(u(x)<v(y))∂if(x, v(y)) − 1(v(y)<u(x))∂if(y, u(x)) 6 0. (4.29)

It remains to prove that the inequality (4.29) leads to show that u ∨ v is a subsolution in
the sense of D ′(Rd × R+) to Eq. (1.1), namely:

∂

∂t
(u ∨ v) + div f(x, u ∨ v) 6 0. (4.30)
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The regularization is employed. For the same reason as in the previous proposition 4.2, we
take the following regularization i.e. a test function %δ,ε := %δ(t− s)%ε(x− y). This leads to
the relation:

∂

∂t

ˆ
(u ∨ v)%ε(x− y)dy +

∂

∂xi

(ˆ
f(x, u ∨ v)%ε(x− y)dy

)
+

∂

∂yi

(ˆ
fi(y, u ∨ v)%ε(x− y)dy

)
−
ˆ

(fi(x, u ∨ v)− fi(y, u ∨ v)) (∂i%ε(x− y)) dy

−
ˆ (

1(u<v)∂ifi(x, v)− 1(v<u)∂ifi(y, v)
)
%ε(x− y)dy 6 0

:= J1 + J2 + J3 + J4 + J5 6 0. (4.31)

The convergence of the terms Ji, for i = 1, 2, 3 is exactly the same as in Proposition 4.2.
Due to the step 1 of Lemma 4.1, the sum of the fourth and fifth terms vanishes and one has
(4.30).

Second case. The proof comes down by analyzing the two terms of inequality (6.22) in the
case where f is less regular.

C := −
ˆ

(fi(x, u ∨ v)− fi(y, u ∨ v)) (∂i%ε) (x− y)dy

D := −
ˆ (

1(u<v)∂ifi(x, v) + 1(v<u)∂ifi(y, v)
)
%ε(x− y)dy.

There are two difficulties in passing to the limit. The first one is the lack of compactness in
space since this term is an oscillations of functions, which can be solved by using Lemma 4.1.
The second one is the lack of compactness in time, due to the presence of high oscillations
in time (acoustic waves). Observe that all the derivatives are in L1 and the divergence
∂ifi ∈ L1. It is then straightforward to deduce that:

−
ˆ (

1(u<v)∂ifi(x, v) + 1(v<u)∂ifi(y, v)
)
%ε(x− y)dy

L1
loc−−−→
ε→0

−∂ifi(x, u(x, t) ∨ v(x, t)).

It remains for us to show that:

−
ˆ

(fi(x, u ∨ v)− fi(y, u ∨ v)) (∂i%ε) (x− y)dy − ∂ifi(x, u ∨ v)
L1

loc−−−→
ε→0

0, (4.32)

uniformly with respect to ε. This is done by the second part of Lemma 4.1 and justifies how
in the regular case w(x) = max(u(x), v(x)) is an entropy subsolution of (1.1) and conclude
the proof of Proposition 4.3. �

5. Proof of the main Theorem

The proof proceeds through a series of lemmas, which shows that a subsequence of uε of
Eq. (3.1) converges a.e. as ε→ 0.

5.1. A priori estimates.

To achieve the desired compactness properties we need to establish several a priori esti-
mates. The key point in proving the Theorem 3.2 is to obtain a priori estimates and almost
everywhere convergence of a subsequence {uε} solution to (3.1). These uniform bounds in
ε will allow us to establish the necessary compactness in order to pass into the limit ε→ 0
obtaining the global existence of the solutions of the original problem (1.1).

Lemma 5.1. Let u0 ∈ L1∩L∞. The solution uε of the approximate problem (3.1) satisfies,
for t > 0, the following uniform estimates:

‖uε‖C([0,T ];L1(Rd)) 6 ‖u0‖L1(Rd). (5.1)
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‖uε(x, t)‖L∞(Rd) 6 ‖u0(·)‖L∞(Rd). (5.2)

ˆ
Rd

∣∣∣∣∂uε∂xi
(x, t)

∣∣∣∣ dx 6 ˆ
Rd

∣∣∣∣∂u0∂xi
(x)

∣∣∣∣ dx. (5.3)

It is worth stressing that the estimation (5.3) explains how we can get a BV type estimates,
which means that the gradient belongs to the space of bounded measures M (Rd×R+). This
estimate provides compactness in order to prove existence.

Proof of lemma 5.1. In what follows, the superscript ε is omitted except when the
emphasis is necessary. In the case of homogeneous flux, theses bounds follows easily from
the comparison principle. However, in the present case, this argument does not hold, since
constants are not solutions of (1.1).

• L1 bound. The proof of the L1-bound is standard and exploits the comparison principle
(the maximum principle) with appropriate subsolution. Since the system is conservative
one has:

‖uε‖C([0,T ];L1(Rd)) 6 ‖u0‖L1(Rd). (5.4)

• L∞ bounds. We analyze the L∞ bounds when the flux is space dependent. The computa-
tions can be justified in terms of approximations. Unlike the x-independence solution, the
L∞ bounds are not always true as in L1 theory. To see that the solution associated with
the problem (1.1) is uniformly bounded, we use firstly the chain rule in (1.1), obtaining

div f(x, u) =
∂fi
∂z

(x, u)
∂u

∂xi
+ (divx f) (x, u).

Therefore equation (1.1) can also be written as follows:

∂u

∂t
+
∂fi
∂z

(x, u)
∂u

∂xi
+ (divx f) (x, u) = 0. (5.5)

By hypothesis (H3), since the derivative
∂fi
∂z

(x, u)
∂u

∂xi
vanishes in an extremum point,

using the maximum principle we get

d

dt
‖u‖L∞ 6 C0(1 + ‖u‖L∞). (5.6)

Then we can apply Gronwall’s inequality to conclude. We thus obtain a L∞ bound.

• Uniform spatial BV estimate. The next step is to prove an uniform BV type estimate
for the entropy solutions u of (1.1). We will make a formal demonstration, but it can be
made rigorously by introducing a sequences of smooth functions sgnη(ξ) that converges,
when η → 0, to the function sgn(ξ).

Let us differentiate the approximate equation (3.1) with respect to xk, (1 6 k 6 d) and

integrate over Rd. Setting Dku =
∂u

∂xk
, one has:

0 =

ˆ
Rd

∂

∂t

(
∂u

∂xk

)
sgn

(
∂u

∂xk

)
dx+

ˆ
Rd

∂

∂xi

(
∂

∂xk
fi(x, u) +

∂fi
∂z

(x, u)uk

)
sgn

(
∂u

∂xi

)
dx

−ε
ˆ
Rd

∂

∂xk
(∆u) sgn

(
∂u

∂xk

)
dx, (5.7)

almost everywhere in (0, T )× Rd. The first term of the right-hand side of (5.7) is equal to:

∂

∂t

(
∂u

∂xk

)
sgn

(
∂u

∂xk

)
dx =

d

dt

ˆ
Rd

∣∣∣∣ ∂u∂xk
∣∣∣∣ dx.
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On the other hand, let us observe that for the x-derivative of the third term of (5.7) gives:

∂i(∂xk
fi(x, u)) = ∂2xixk

fi(x, u) + ∂2xkz
fi(x, u)

∂u

∂xi
;

thus introducing the above expression in (5.7) and passing to the absolute value we get:

∂

∂t
|Du|+ ∂i

(
∂fi
∂z
|Du|

)
+

∣∣∣∣(∂2xxk
f(x, u) + ∂2xkz

fi
∂u

∂xi

)
∂ku

|Du|

∣∣∣∣ 6 0. (5.8)

For the second term, one has:ˆ
Rd

∂

∂xi

∂

∂xk
(fi(x, u))

(
∂u

∂xi

)
sgn

(
∂u

∂xi

)
=

ˆ
Rd

∂

∂xi

(
f(x, u)

∂u

∂xi

)
sgn

(
∂u

∂xi

)
= −

ˆ
Rd

f(x, u)
∂u

∂xk

∂

∂xi
sgn

(
∂u

∂xk

)
dx.

and observe that, formally, one has:

∂u

∂xk

∂

∂xi
sgn

(
∂u

∂xk

)
= 0.

Finally, the fourth term of (5.7) is positive, because an integration by part shows:

−ε
ˆ
Rd

∂

∂xk
(∆u) sgn

(
∂u

∂xk

)
dx = −ε

ˆ
Rn

∂

∂xk

∑ ∂2u

∂x2i
sgn

(
∂u

∂xk

)
dx

= −ε
ˆ
Rn

∑ ∂

∂xi

∂2u

∂xk∂xi
sgn

(
∂u

∂xk

)
dx

= ε

ˆ
Rn

sgn′
(
∂u

∂xk

) (
∂2u

∂xi∂xk

)2

dx,

and this last expression is positive because sgn′
(
∂u

∂xk

)
is a positive distribution. Thus, we

obtain:
d

dt

ˆ
|Du| 6

ˆ ∣∣∣∣ ∂∂x (divx f)(x, u)

∣∣∣∣ dx+

ˆ ∣∣∣∣ ∂2

∂x∂z
f

∣∣∣∣ |Du|. (5.9)

Thanks to the Hypothesis 3.1-(H6), the conclusion follows from Gronwall inequality giving
a BV type estimate. This ends the proof. �

A careful examination of the above proofs reveals that in the smooth regular cases, the
existence, uniqueness and the comparison principle are obtained without the assumption
of regularity (besides hypotheses (H1)-(H6)). Thus, a possible strategy will be to try to
estimate how the solution depends on the fluxes, with the hope that from uniqueness result,
the solution will depend continuously on the flux, and therefore, using the argument for
uniqueness, we can obtain solutions from the more smooth situations with more hypotheses.
Bearing all above in mind, we will be particularly interested in the gap between two solutions.

Nevertheless, there two difficulties. The first is that: even we have a good framework of
solutions, for a given flux f , can we able to use then uniqueness of solutions to construct
Cauchy sequences and deduce that all solutions approach these sequences? The second
one is that since in our case the fluxes are not the same, we cannot use the technique of
doubling of variable since the estimations we will obtain, inevitably going to reveal gaps on
the solutions. To overcome these difficulties it is necessary to develop a convenient tools
in order to get rid of this problem. This is done as in Lemma 5.2, since the convolution
provides compactness in space and the continuity equation provides compactness in time.
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5.2. Gaps between two solutions.

Key tools in this section is the following lemma related to controlling the gap between
two solutions.

• We define the following functional W p
δ (u, v):

W p
δ (u, v) :=

ˆˆ
|u(x)− v(y)|p%δ(x− y) dxdy 1 6 p <∞. (5.10)

It is a gap between two solutions u and v except that it does not follow from a norm, where
%δ is a regularizing kernel. This object naturally appears in the Kruzkhov demonstrations.

Lemma 5.2. Let Wδ be the functional defined in (5.10). Then, one has:

W 1
δ (u, v) > ‖u− v ∗ %δ‖L1 ; ‖W 1

δ (u, v)‖ 6 ‖u− v‖+W 1
δ (v, v). (5.11)

Let (un)n∈N be a Cauchy sequence. Then

lim sup
δ→0

lim sup
n,m

W 1
δ (un, um) = 0; lim sup

δ→0
lim sup
n,m

W 2
δ (un, um) = 0 (5.12)

that is

W 2
δ (un, um) 6 ωδ(n,m) + α(δ)

with

ωδ(n,m) −−−−−→
n,m→∞

0, α(δ) −−−→
δ→0

0.

It is worth stressing that the information in Lemma 5.2 allows to pass to the limit in all
terms in entropy formulation of Eq. (1.1). The key for the convergence statement of Lemma
5.2 hinges on a method inherited from ordinary differential equations.

Proof of Lemma 5.2. The proof of Lemma 5.2 relies on the following observation:

W p
δ (u, v) :=

ˆ
|u(x)|pdx

ˆ
%δ(x− y)dx.

Putting u = v, we deduce that W p
δ 6= 0 unless u is constant; thus W p

δ is not a distance. At
the same time, for fixed u, v, as δ → 0 in (5.10), this leads to:

W p
δ −−−→

δ→0
‖u− v‖pLp . (5.13)

Some facts concerning the cases p = 1 and p = 2.

• We begin with the simpler case p = 1. We are interested in estimating the L1 distance
between v and u. Clearly, one has:

W 1
δ (u, v) > ‖u− v ? %δ‖L1 (5.14)

or symmetrically

W 1
δ (u, v) > ‖u− v ? %δ‖L1 ∨ ‖u ? %δ − v‖L1 .

Indeed ˆˆ
|u(x)− v(y)|%δ(x− y)| >

ˆ
dx

∣∣∣∣ˆ (u(x)− v(y))%δ(x− y)dy

∣∣∣∣ ,
and ˆ

u(x)%δ(x− y)dy = u(x),

ˆ
v(y)%δ(x− y)dy = v ? %δ,

given the L1-norm of (u− v). Meanwhileˆˆ
|u(x)− v(x)|%δ(x− y)| 6

ˆˆ (
|u(x)− v(y)|+ |v(x)− v(y)|

)
%δ(x− y)dxdy,
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and then

‖W 1
δ (u, v)‖ 6

ˆˆ
|u(x)− v(y)|%δ(x− y)dxdy +

ˆˆ
|v(x)− v(y)|%δ(x− y)

= ‖u− v‖+W 1
δ (v, v),

which tends to 0 when δ → 0. Symmetrically, we have

‖W 1
δ (u, v)‖ 6 ‖u− v‖+W 1

δ (v, v) ∧W 1
δ (u, u).

• For p = 2, it is easy to work in the Fourier space (we denote by û the Fourier transforms
of u in the x variable). One has:ˆˆ

|u(x)− v(y)|2%δ(x− y)dxdy =

ˆ
u2(x) + v2(y)− 2

ˆˆ
u(x)v(y)%δ(x− y)dxdy

which in terms of Fourier transform, after normalization, givesˆˆ
|u(x)− v(y)|2%δ(x− y)dxdy =

ˆ
|û|2 + |v̂|2 − 2û v̂ %̂,

which shows that if %̂ = 1, thenˆˆ
|u(x)− v(y)|2%δ(x− y)dxdy =

ˆ
|û|2 + |v̂|2 − 2û v̂,

given L2-norm. But since one has: % > 0, then

|%̂| 6 %̂(0) = 1,

such that ˆ
|û|2 + |v̂|2 − 2û v̂ %̂ >

ˆ
(|û| − |v̂|)2,

given the idea to how the functional W 2
δ controls the gap between the two solutions. �

The next Lemma claims that we have a good estimate on W 1
δ (un, um) where un is so-

lution of approximate equation; that is {un} is a Cauchy sequence. Loosely speaking,
contrary to the operation sup

β
sup
γ

which commutates, interchanging the limiting operations

lim sup
β

lim sup
γ

is not possible. The convergence criterion on the sequence {un} must be

introduced.

Lemma 5.3. (Cauchy sequence) Let (un) be the approximate solution of the problem (1.1).
Then

lim sup
δ→0

lim sup
n,m

W 1
δ (un, um) = 0. (5.15)

Proof. We will work in L2-norm using the fact that:

(
√
a−
√
b)2 6 (a− b)2, a, b > 0,

which allows to go from a gap W 1
δ to a gap W 2

δ and also in order to have a weak-convergence
we need to pass to the limit. Due to the estimate (5.2), one has:

‖un‖L∞ 6 C.

Since we need weak-star convergence, we will work with L2-norm. The relation (5.15) means
that

W 2
δ (un, um) 6 ωδ(n,m) + α(δ),

where ωδ(·, ·) denotes a modulus of continuity, satisfying the following relation:

ωδ(n,m) −−−−−→
n,m→∞

0 and α(δ) −−−→
δ→0

0,
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for n and m fixed such that

lim sup
δ→0

lim sup
n,m

W 2
δ (un, um) = 0.

Let u be a weak limit of the subsequence (um)

um ⇀ u weakly−∗ in L2.

On the one hand, from (5.10), (where v = um), the functional W p
δ is a convexe expression

when %δ > 0. Hence, by weak-star topology of L2, one deduces that

W 2
δ (un, u) 6 ωδ(n) + α(δ)

In others words, one has a fixed u. On the other hand, by applying Jensen’s inequality one
has

ωδ(n) + α(δ) > ‖un − u ? %δ‖L2 .

Thus

‖un − u‖L2 6 ωδ(n) + α(δ) + ‖u− u ? %δ‖L2 . (5.16)

But since

α(δ) + ‖u− u ? %δ‖L2 −→
δ

0,

as a result, the difference in the left-right hand side of (5.16) goes to 0 uniformly in n as
δ → 0, since un is weakly compact in L1((0, T )×Rd). This implies that un converge strongly
to u in L2 (which is also true in L1):

un −−→ u strongly in L2

and completes the proof. �

Now the Theorem 3.2 can be proved. With the above lemmas, it is clear that the essential
problem in this strategy is to study the compactness of the approximate solutions with
respect to ε→ 0 of (3.1) in order to obtain global entropy solutions

Proof of Theorem 3.2. The proof of Theorem 3.2 is based on Kruzkhov’s idea of doubling
variables, but in the rest of the proof different ideas have to be used to handle the non-linear
terms. We follow the strategy first proposed by Lions [14]. At the crucial point in the proof,
we will apply Lemma 5.2 using techniques developed in [14]. For simplicity we drop the
index ε. Let n ∈ N and let χn be the characteristic function of the ball Bn(0) ⊂ Rd. We
regularize the initial date as follows:

un0 ≡ (u0χn) ∗ %1/n.

We now obtain the existence of some un ∈ C((0, T );L1(Rd)), solving the following prob-
lem: {

∂tun + div f(x, un)− ε∆un = 0

un(0, ·) = un0
(5.17)

The proof is presented in two steps. First we establish the existence of entropy solutions
of (1.1) in the sense of Definition 2.2 and then, in comparison with the arguments used in
ODE (see in appendix), we show a kind of attractiveness of the solutions of equation (1.1).
The novelty is not so much in the particular arguments but rather in the identification of
the additional term which makes the proof even more interesting.

Step 1. Existence of solution with initial datum assuming to satisfy un0 ∈ L1(Rd)∩L∞(Rd).
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Let {un} be the sequence of solutions to the approximate problem (5.17) with initial data
un0 ∈ L1(Rd) ∩ L∞(Rd) and such that

‖u0 − un0‖L1(Rd) −−−−→
n→∞

0. (5.18)

Let fn(x, u) be the fluxes for which, thanks to the BV-estimates (5.3), one has the solutions
un. For Lemma 5.1 these solutions un are bounded in the spaces L1(Rd) and L∞(Rd):

‖un‖C([0,∞[;L1(Rd)) 6 C and ‖un‖L∞(]0,∞[×Rd) 6 C. (5.19)

It is worth to note that we have any estimates on solutions un in BV. Choose a smooth
u0 ∈ L1(Rd) ∩ L∞(Rd). Granted these two a priori bounds (5.19), since the sequence
un(x, t) satisfies (5.19), then f(x, un) is weakly sequentially continuous with respect to the
sequence un.

The next step consists in constructing a classical solution of the problem as limit of a
Cauchy sequence in L1 of approximate solutions of the problem. Since it is not possible
to obtain BV estimates for the approximate solutions un, the idea is to prove that (un)
is a Cauchy sequence. To be more precise, we want to prove that the sequence (un) is a
Cauchy sequence in L1

loc(Rd; C0u(R)) hence u ∈ L1
loc(Rd; C0u(R)) and un converges toward u

in L1
loc(Rd; C0u(R)). To this end, we need to have an estimation on the term which raises the

problem, that is the integral:

ˆˆ
‖un(x)− um(y)‖%δ(x− y)dxdy, (5.20)

in the sense of distributions describing a small gap between the approximate solutions and
the solution we want to build. We exploit Kruzkhov-Kuznetsov’s idea of doubling variables
[10, 11]. Let us denote u = u(x, t) and v = v(y, s) for (x, t), (y, s) ∈ Rd × R∗+. Let m and n
be two integers, and let un and um denote two entropy solutions corresponding to un0 and u00
respectively of the Cauchy problem (1.1). We apply the Definition 2.3 to un and um. Since
un solves Eq. (1.1) point-wise, for each (y, s), we can write, in the sense of distributions:

∂

∂t
(un∨um(y, s)−um)+fi(xi, un∨um(y, s))xi

−1un(x)<um(y) divx fn(x, um(y)) 6 0. (5.21)

Note that it is the x dependency that introduces the last term of (5.21). Interchanging the
roles of un and um we similarly obtain, for any fixed point (x, t) in Rd × [0,+∞):

∂

∂s
(un(x, t)∨um−un)+fi(yi, u(x, t)∨um))yi− 1um(y)<un(x) divx fm(y, un(x)) 6 0. (5.22)

Summing up the obtained inequalities to bring back at the same time, one finds that:

∂

∂t
(un(x, t)− um(y, t))+ + (fi(xi, un ∨ um(y, s))xi

+ fi(yi, u(x, t) ∨ um))yi)

−
(
1un(x)<um(y) divx fn(x, um(y))− 1um(y)<un(x) divx fm(y, un(x))

)
6 0. (5.23)

Following [8], we compute the time derivative after multiplying the equation (5.23) by
%δ(x− y). Then integrating over (x, y) (which is justified by the regularity of the terms
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we have written), the resulting inequality reads:

d

dt

ˆˆ
(un(x, t)− um(y, t))+%δ(x− y) dxdy

− ∂

∂xi

(ˆˆ
fi(xi, un ∨ um(y, s))xi

%δ(x− y) dxdy

)
+

ˆˆ {
1un(x)<um(y) divx fn(x, um(y)) + 1um(y)<un(x) divx fm(y, un(x))

}
%δ(x− y) dxdy

+

ˆˆ {
fni (x, un(x) ∨ um(y))− fmi (y, un(x) ∨ um(y))

}
∂

∂xi
%δ(x− y) dxdy 6 0. (5.24)

As a result,

d

dt

ˆˆ
|un(x)− um(y)|%δ(x− y)dxdy (5.25)

6

∣∣∣∣ ∂∂xi
(ˆˆ

fi(xi, un ∨ um(y, s))xi%δ(x− y) dxdy

)
+

ˆˆ [{
1un(x)<um(y) divx fn(x, um(y)) + 1um(y)<un(x) divx fm(y, un(x))

}
%δ(x− y)

+

ˆˆ {
fni (x, un(x) ∨ um(y))− fmi (y, un(x) ∨ um(y))

}
∂

∂xi
%δ(x− y)dxdy

]∣∣∣∣ .
Step 2. Passing to the limit.

Passing to the limit in nonlinear terms requires convergence in a strong topology. The
difficulty in passing to the limit in (5.25) is that the fluxes are of order 1/δ due to the
presence of %δ. Terms in right-hand side require more work. This difficulty is overcome by
using the commutator Lemma 4.1.

Now we let n → ∞ by using (H3)-(H5). For δ fixed, one realizes that, due to (3.6) and
(5.6), one has strong convergence, i.e. convergence in L1

loc:

fn −−−−→
n→∞

f, and fm −−−−→
m→∞

f, in L1
loc(Rd; C0u(R)). (5.26)

Since un and um are uniformly bounded thanks to (5.19), we can pass to the limit in the
terms of divergence to get:

divx fn(x, um(y)) −−−−→
n→∞

divx f(x, um(y)) in L1
loc(Rd; C0u(R)). (5.27)

Similar arguments yield:

div fm(y, un(x)) −−−−→
m→∞

div f(y, un(x)) in L1
loc(Rd; C0u(R)) (5.28)

and also for the term:

fni (x, un(x) ∨ um(y)) −−−−→
n→∞

fi(x, un(x) ∨ um(y) in L1
loc(Rd; C0u(R)). (5.29)

Likewise

fmi (y, un(x) ∨ um(y)) −−−−→
n→∞

fi(y, un(x) ∨ um(y)) in L1
loc(Rd; C0u(R)). (5.30)
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After combining these limits, that is to use the regularization and the convergence in
L1

loc(Rd; C0u(R)), we conclude that:

d

dt

ˆˆ
|un(x)− um|%δ(x− y)dxdy

6

∣∣∣∣ˆˆ {1un(x)<um(y) divx f(x, um(y)) + 1um<un(x) divx f(y, un(x))%δ(x− y)

}
+

ˆˆ {
fi(x, un(x) ∨ um(y))− fi(y, un(x) ∨ um(y))

}
∂i%δ(x− y)dy

∣∣∣∣+ ωδ(n,m),

:= Iδ1 + Iδ2 + ωδ(n,m), (5.31)

where the term ωδ(n,m) is the error made by passing from fni and fmi to f . This means
that, by regularization, we are brought back to the same flows by paying ωδ(n,m) as error.
We will consider each term in the above inequality, respectively. To be more precise, what
remains is to investigate the limit of each term in (5.31), that is:

lim sup
δ→0

lim sup
n,m

ˆˆ
|un(x)− um|%δ(x− y)dxdy. (5.32)

We start with the term Iδ1 . Thanks to the smoothness of divx f and divy f , one can easily
take the limit δ → 0 in Iδ1 . We can invoke Lebesgue differentiation theorem, which leads to:ˆˆ

(1un(x)<um(y) divx f(x, um(y)) + 1um<un(x) divx f(y, un(x))%δ(x− y)) dxdy

−−−−→
δ→0

divx f(x, un(x) ∨ un(y)) in a.e. L1.

On the other hand, we deal with Iδ2 . This term is more difficult because it is an oscillation of
functions, but the ∂i%δ is more irregular since by derivation, one brings an additional term

1/δ which is compensated by fi(x, un)− fi(y, um) and that creates
x− y
δ

. We will show the

convergence of this term via commutation lemma.

From (3.5) we know that Iδ2 is bounded in L1
loc(Rd). Taking into account the Lemma 4.1,

we have:ˆˆ {
fi(x, un(x)∨um(y))−fi(y, un(x)∨um(y))

}
∂i%δ(x−y)dy

a.e.−−−−−−→
δ→0

∂ifi(x, un∨um) in L1.

It is then straightforward to deduce that:∣∣∣∣ ddt
ˆˆ
|un(x)− um(y)|%δ(x− y)dxdy

∣∣∣∣ 6 ωδ(n,m) + α(δ), (5.33)

with

ωδ(n,m) −−−−−→
n,m→∞

0 and α(δ) −−−−−−→
δ→0

0, (5.34)

and α(δ) corresponds to the fact that one has uniqueness for the limiting problem. We
deduce that

lim sup
δ→0

lim sup
n,m

ˆˆ
|un(x)− um|%δ(x− y)dxdy = 0. (5.35)

Actually, the compactness is replaced by the previous bound. In order to conclude the proof,
we deal with the initial data. Thanks to the L1-contraction principle (3.2) for solutions of
the limit equation we have, for all integers n,m ∈ N, for all t > 0:ˆ

|un(t, x)− um(t, x)|%δdxdy 6 C‖un0 − un0‖L1(Rd). (5.36)
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Loosely speaking, we have

‖un − um‖C1([0,T ];L1(Rd)) 6 ‖un0 − um0 ‖L1(Rd) −−→ 0, as n,m→∞, (5.37)

which gives, together with (6.15), that t0 ∈ [0, T ], un(t0, x) forms a Cauchy sequence in
L1(Rd) and admits a limit u(t0, x). We conclude that sequence {un} is a Cauchy sequence
in C([0, T ];L1(Rd)); thus there exists a function u ∈ C([0, T ];L1(Rd)) such that un converges
towards u as n→∞ in C([0, T ];L1(Rd)), satisfying the same distributional formula. Hence
the proof is concluded. �

6. Extensions and applications

This section deals with some examples that fit into (1.1) and to which the above analytical
results can be applied.

Example 6.1. The first example is the case where the flux f depends on the space variable
through a coefficient k and the dependence is of the multiplicative type:{

∂tu+ div(k(x)f(u)) = 0, (x, t) ∈ Rd × R+

u(x, 0) = u0(x), x ∈ Rd
(6.1)

where k = (k1, . . . , kd) is a vector field, f = f(u) is a scalar function. This equation
expresses that u is conserved with a flux density given by k(x)f(u). Such conservation arise
in a diversity of contexts ranging from models of traffic flow via models of flow in porous
media, to hydrodynamic limits of nearest particle processes, and sedimentation-consolidation
processes [2]. Note that the flux f(x, u) = k(x)g(u) can have a possibly discontinuous spatial
dependence through the coefficient k, which is allowed to have jump discontinuities, but we
are not concerned with this kind of problem. A simple physical model corresponding to (6.1)
is the Witham model of car traffic flow on a highway [13, 24]. The spatially varying coefficient
k corresponds to changing road conditions. In a similar way, the entropy inequality for (6.1)
that we impose now is:ˆ

|u− c|φt + sgn (u− c)[k(x)(f(u)− f(c)] · ∇φ− sgn(u− c) div k(x)f(c)φdx > 0. (6.2)

Using Definition 2.7 we write:

∂

∂t
(u ∨ c) +

∂

∂xi
[ki(x)fi(u ∨ c)]− 1(u<c)

(
∂

∂xi
(k(x)f(c))

)
6 0. (6.3)

Let u, v ∈ C((0, T );L1(Rd)) ∩ L∞(Rd × (0, T )) be two entropy solutions of (6.1) with
initial data

u0, v0 ∈ L1(R) ∩ L∞(R) (6.4)

respectively. Throughout this section we make the following assumption on the vector field
k.

Hypothesis 6.2.

(E1) We assume that (see for instance [3])

k ∈W 1,1
loc (Rd), k, div k ∈ L∞(Rd). (6.5)

Let us emphasize that the Hypothesis 6.2 is essential to our analysis. We start with the BV

type estimation. To this end, observe that

divx(k(x)f(u)) = ki
∂f

∂z

∂uk
∂xk

+ f div k(x). (6.6)
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Also we have

∂i

[
k(x)

∂f

∂z

∂uk
∂xk

+ f div ki

]
= ∂i

(
ki
∂f

∂z

∂uk
∂xk

)
+ ∂i (f div ki) . (6.7)

Now, observe that the second term of the right-hand side of (6.7) can be rewritten as follows:

∂i (f div ki) =
∂uk
∂xk

∂f

∂z
· divx k(x) + f(u)

∂

∂x
(divx k). (6.8)

Consequently, and passing to the absolute value we get:

∂

∂t
|Du|+ ∂i

(
ki
∂f

∂z
|Du|

)
+
∂f

∂z
· divx k(x)|Du|+

(
f(u)

∂

∂x
(divx k)

)
Du

|Du|
6 0 (6.9)

and integrating with respect to t, one obtains the BV type estimate. Theorem 3.2 then gives
that any two entropy solutions (by writing equation in x by setting c = v(y, s)) satisfy:

∂

∂t
(u ∨ v(y, s)) +

∂

∂xi
[ki(x)fi(u ∨ v(y, s))]− 1(u(x)<v(y)) div k(x)f(v(y, s)) 6 0. (6.10)

We write equation in y:

∂

∂s
(u(x, t) ∨ v) +

∂

∂yi
[ki(y)fi(u(x, t) ∨ v)]− 1(u(x)<v(y)) div k(y)f(u(x, t)) 6 0. (6.11)

Summing the two obtained inequalities yields the following inequality:

∂

∂t
(u(x, t) ∨ v(y, s)) +

∂

∂xi
[ki(x)fi(u(x, t) ∨ v(y, s))] +

∂

∂yi
[ki(y)fi(u(x, t) ∨ v(y, s))]

−1(u(x)<v(y)) div k(x)f(v(y))− 1(u(x)<v(y)) div k(y)f(u(x)) 6 0. (6.12)

Multiplying (6.11) by %ε(x− y) and integrating with respect to y, one has:

∂

∂t

ˆ
(u(x, t) ∨ v(y, s))%ε(x− y)dy +

∂

∂xi

(ˆ
[ki(x)fi(u ∨ v)]%ε(x− y)dy

)
−
ˆ

(ki(x)fi(u ∨ v)− ki(y)fi(u ∨ v)) (∂i%ε(x− y)) dy (6.13)

−
ˆ [

1(u(x)<v(y)) div k(x)f(v(y)) + 1(u(x)<v(y)) div k(y)f(u(x))

]
%ε(x− y)dy 6 0.

Since it is not possible to obtain BV estimates for the approximate solutions un, the idea
is to prove that (un) is a Cauchy sequence. We repeat everything up to (5.25) and find that:

d

dt

ˆˆ
|un(x)− um(y)|%δ(x− y)dxdy (6.14)

6

∣∣∣∣ ∂∂xi
(ˆˆ

ki(x)fni (un(x) ∨ um(y))− ki(y)fmi (un(x) ∨ um(y))

)
(∂i%δ(x− y))

+

ˆˆ [{
1un(x)<um(y) divx k(x)fn(um(y)) + divy k(y)fm(un(x))

}
%δ(x− y)

+

ˆˆ {(
ki(x)fni (un(x) ∨ um(y))− ki(y)fmi (un(x) ∨ um(y))

)
∂

∂xi
%δ(x− y)dxdy

]∣∣∣∣ .
Taking into account the convergence (5.26)-(5.30), the final result takes the form:∣∣∣∣ ddt

ˆˆ
|un(x)− um(y)|%δ(x− y)dxdy

∣∣∣∣ 6 ωδ(n,m) + α(δ), (6.15)

with ωδ(n,m) and α(δ) defined in (5.34). Therefore (un) is a Cauchy sequence, hence it
converges to a unique limit u of entropy solution of the problem (6.1).
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Example 6.3. The natural extension of the Example 6.1 is about nonlinear conservation
laws problem in L1 of the following type:{

∂tu+ div f(k(x), u) = 0, x ∈ Rd, t > 0

u(x, 0) = u0(x), x ∈ Rd.
(6.16)

Equations of the above type arise in fluid flows in heterogeneous media such as in two phases
flow in a porous medium with changing rock types that arise in the petroleum industry. The
BV regularity can be done as follows. Observe that:

∂

∂xi
fi(k(x), u) = div k(x)(divx f)(k(x), u) +

∂fi
∂z

(k(x), u)
∂u

∂xk
. (6.17)

Taking the derivative with respect to xk in (6.17) we obtain:

∂i(∂xk
fi(k(x), u) = ∂i[div k(x)(divx f(k(x), u))] + ∂i

[
∂fi
∂z

(k(x), u)
∂u

∂xk

]
. (6.18)

On the one hand, the first term in the right-hand side of (6.18) can replaced by

∂i[div k(x)(divx f(k(x), u))]

=
∂

∂x
(div k(x)) (divx f)(k(x), u)) + div k(x) ∂i (divx f(k(x), u)) .

On the other hand

∂i (divx f(k(x), u)) = div k(x)∂2xixk
f(k(x), u) + ∂2xkz

f(k(x), u)
∂u

∂xi
. (6.19)

Hence

∂i[div k(x)(divx f(k(x), u))] =
∂

∂x
(div k(x)) (divx f)(k(x), u))

+ (div k(x)2∂2xixk
f(k(x), u) + div k(x)∂2xkz

f(k(x), u)
∂u

∂xi
,

and passing to the absolute value we get:

∂

∂t
|Du|+ ∂i

(
∂fi
∂z
|Du|

)
+

∣∣∣∣( ∂

∂x
(div k(x)) (divx f)(k(x), u)) + (div k(x)2∂2xixk

f(k(x), u)

+ div k(x)∂2xkz
f(k(x), u)

∂u

∂xi

)
∂ku

|Du|

∣∣∣∣6 0.

The entropy solution theory breaks down when k(x) is discontinuous. By a standard limiting
argument, (2.1) implies that the Kruzkhov-type entropy condition:

|u− c|t + div

[
sgn(u− c)(f(k(x), u)− f(k(x), c))

]
+ sgn(u− c)f(k(x), c)x 6 0,

holds for all c ∈ R in the sense of distributions on Rd. That is, for 0 6 φ(x) ∈ C∞0 :ˆ
(|u− c|φt + sgn(u− c) (f(k(x), u)− f(k(x), c))φx) dx−

ˆ
sgn(u−c)f(k(x), c)xφdx > 0,

(6.20)
holds in D ′(R+ × Rd), for all c ∈ R and we used the shorthand notation:

f(k(x), c)x := k′(x) · fk(k(x), c) =

d∑
j=1

k′j(x)fkj (k(x), c).

Inequality (2.7) reads then as follows:

∂

∂t
(u ∨ c) +

∂

∂xi
[fi(ki(x), u ∨ c)]− 1(u<c)

(
∂

∂xi
f(k(x), c)

)
6 0. (6.21)
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Finally, take c = v(y, s) in (6.21) and multiplying by %ε and integrating with respect to y,
which can be easily justified, yields:

∂

∂t

ˆ
(u ∨ v)%ε(x− y)dy +

∂

∂xi

(ˆ
f(k(x), u ∨ v)%ε(x− y)dy

)
−
ˆ

(fi(k(x), u ∨ v)− fi(k(y), u ∨ v)) (∂i%ε(x− y)) dy (6.22)

+

ˆ (
1(u<v)∂ifi(k(x), v) + 1(v<u)∂ifi(k(y), v)

)
%ε(x− y)dy 6 0.

Again, as in (5.25), we find that:

d

dt

ˆˆ
|un(x)− um(y)|%δ(x− y)dxdy (6.23)

6

∣∣∣∣ ∂∂xi
(ˆˆ

fni (ki(x), un(x) ∨ um(y))− fmi (ki(y), un(x) ∨ um(y))

)
(∂i%δ(x− y))

+

ˆˆ [{
1un(x)<um(y) divx fn(k(x), um(y)) + divy fm(k(y), un(x))

}
%δ(x− y)

+

ˆˆ {(
fni (ki(x), un(x) ∨ um(y))− fmi (ki(y), un(x) ∨ um(y))

)
∂

∂xi
%δ(x− y)dxdy

]∣∣∣∣ .
Using the same passages as in the previous section, we conclude that the whole sequence
{un} converge to the unique solution of (6.16).

A. Appendix

A.1. Auxiliary facts: Attractiveness of solutions of the ODE.

In this section we provide a few facts having an auxiliary character which we use in this
paper. It would be interesting to study the links between our problem with the properties
of the ordinary differential equation (ODE)

d

dt
x(t) = b0(x(t)), t > 0; x(0) = x0, (A.1)

where we assume that b0 is Lipschitz. The two most classical and widely used results on the
well-posedness of (A.1) are as follows:

• Cauchy-Lipschitz: If b0 is locally Lipschitz continuous, (A.1) has a unique local (in time)
solution for any initial value x0 ∈ Rd.

• Peano: If b0 is continuous, for every x0 ∈ Rd, there exists at least a local solution of
(A.1).

It is well known that there exists a unique flow associated to (A.1). We proceed by regu-
larization. In fact, the most direct way to establish the existence of such flow is of course
through a simple approximation procedure. That means taking smooth vector fields {bn}n
with bn → b0, a.e., bn is uniformly bounded in L∞ which enables to solve,

d

dt
xn(t) = bn(xn(t)), xn(0, x) = x, (A.2)

by the usual Cauchy-Lipschitz Theorem. To pass to the limit in (A.2) and obtain (A.1), it is
enough to have compactness in some strong sense (in L1

loc for instance) for the sequence xn.
One can prove that the sequences (xn) are Cauchy sequences without applying the existence
of a solution of the limit problem. Actually, all the trajectories of the approximate flows will
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converge towards the unique trajectory of the limiting problem, which attracts them all. To
this end, it is enough to write, for arbitrarily fixed natural numbers n,m that:

d

dt
(xn − xm) = (b0(xn)− b0(xm)) + (bn(xn)− b0(xn))− (bm(xm)− b0(xm)). (A.3)

Hence we infer, by using the uniformly convergent on Rd, the following inequality:

d

dt
|xn − xm| 6 C0|xn − xm|+$(n,m), (A.4)

where

$(n,m) = |bn(xn)− b0(xn)|+ |bm(xm)− b0(xm)|.
Therefore, taking into account that the sequence {bn} is uniform convergence on Rd, we
conclude that:

$(n,m) −−−−−→
n,m→∞

0.

From the above estimate, we deduce that (xn) is a real Cauchy sequence. It is exactly the
same principle we have used in the proof of the Theorem 3.2. One has the attractivity of
the solutions of (A.1). Our proof follows the same strategy. �
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