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Introduction

The so called "isomorphism theorems" relate the square of a Gaussian free field (GFF) on an electrical network to occupation times of symmetric Markov jump processes [START_REF] Marcus | Markov processes, Gaussian processes and local times[END_REF][START_REF] Sznitman | Topics in occupation times and Gaussian free field[END_REF]. These date back to the work of Dynkin (Dynkin's isomorphism) [START_REF] Dynkin | Local times and quantum fields[END_REF][START_REF] Dynkin | Gaussian and non-gaussian random fields associated with Markov processes[END_REF][START_REF] Dynkin | Polynomials of the occupation field and related random fields[END_REF], and previously to Symanzik's identities in Euclidean Quantum Field Theory [START_REF] Symanzik | Euclidean quantum field theory[END_REF] and Brydges-Fröhlich-Spencer random walk representation of spin systems [START_REF] Brydges | The random walk representation of classical spin systems and correlation inequalities[END_REF]. Here we focus on the generalized second Ray-Knight theorem [START_REF] Eisenbaum | A Ray-Knight theorem for symmetric Markov processes[END_REF] and on Le Jan's isomorphism [START_REF] Jan | Markov paths, loops and fields[END_REF]. The generalized second Ray-Knight theorem couples the squares of two GFFs with different, ordered, boundary conditions by adding the occupation times of independent Markovian excursions from boundary to boundary to the square with lower boundary conditions in order to obtain the square with higher boundary conditions. Le Jan's isomorphism states that the whole square of a GFF can be obtained as the occupation field of a Poisson Point Process of Markovian loops, known as loop-soup. Le Jan's isomorphism in particular implies the generalized second Ray-Knight theorem.

In [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF] Lupu obtained "signed" or "polarized" versions of isomorphism theorems, where one relates to the Markovian trajectories not only the square, but also the sign of the GFF. In particular the sign of the GFF is constant on each Markovian trajectory. The construction goes through the introduction of the metric graph GFF. One first replaces each discrete edge of the electrical network by a continuous line, so as to obtain a continuous topological object, a one-dimensional simplicial complex known as metric graph or cable system, and then one interpolates the values of the GFF on the vertices by independent Brownian bridges inside the edges. This way one obtains a continuous Gaussian field. Its square can still be obtained as in Le Jan's isomorphism as an occupation field of a loop-soup of loops of the natural continuous diffusion on the metric graph. However, in this construction the sign components of the GFF are exactly the clusters of metric graph loops and the sign is chosen independently uniformly on each of them.

Lupu's isomorphism has also a purely discrete description. One enlarges the clusters of the discrete loop-soup by opening the edges not visited by loops with certain probability, and then on each enlarged cluster one chooses a sign independently uniformly.

The above couplings have also a counterpart in the Ising "world". Indeed, conditional on the absolute value of the GFF, its sign is distributed like Ising spins with coupling constants given by the absolute value. Then, the enlarged clusters in Lupu's isomorphism (discrete description), conditional on the absolute value of the GFF on the vertices, are exactly Fortuin-Kasteleyn random clusters [START_REF] Grimmett | The random-cluster model[END_REF], with cluster weight q = 2 and edge weights depending on the absolute value [START_REF] Lupu | A note on Ising random currents, Ising-FK, loop-soups and the Gaussian free field[END_REF]. FK random clusters with q = 2 are coupled to the Ising spins through the Edwards-Sokal coupling [START_REF] Edwards | Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm[END_REF], where one simply chooses the spin independently uniformly on each clusters. The discrete loop-soup in Le Jan's isomorphism is related to the random current expansion of the Ising model [START_REF] Lupu | A note on Ising random currents, Ising-FK, loop-soups and the Gaussian free field[END_REF][START_REF] Duminil-Copin | Random currents expansion of the Ising model[END_REF][START_REF] Lawler | Topics in loops measures and the loop-erased walk[END_REF]. Finally [START_REF] Lupu | A note on Ising random currents, Ising-FK, loop-soups and the Gaussian free field[END_REF] connects the dots and showed that there is a natural coupling between Ising random currents and FK-Ising random clusters, which is actually Lupu's isomorphism conditioned on the absolute value of the GFF. In Figure 1 we summarize all above models and the couplings and relations between them.

In this paper we deal with the inversion of Lupu's isomorphism, that is to say with retrieving the conditional law of the discrete loop-soup given a discrete Gaussian free field (both its absolute value and its sign). This extends the work of Sabot and Tarrès who in [START_REF] Sabot | Inverting Ray-Knight identity[END_REF] gave the inversion of isomorphisms only in the case when the absolute value of the GFF was given, or equivalently its square, but not its sign. To fix the ideas, let us introduce some notations.

Let G = (V, E) be a connected undirected graph, with V at most countable and each vertex x ∈ V of finite degree. We do not allow self-loops. Also in general we do not consider multiple edges, unless specified otherwise. Given e ∈ E an edge, we will denote e + and e -its endvertices, even though e is non-oriented and one can interchange e + and e -. Each edge e ∈ E is endowed with a conductance W e = W e -,e + = W e + ,e -> 0. There may be a killing measure κ = (κ x ) x∈V on vertices.

We consider (X t ) t≥0 the Markov jump processes on V which being in x ∈ V , jumps along an adjacent edge e with rate W e . Moreover if κ x = 0, the process is killed at x with rate κ x (the process is not defined after that time). ζ will denote the time up to which X t is defined. If ζ < +∞, then either the process has been killed by the killing measure κ (and κ ≡ 0) or it has gone off to infinity in finite time (and V infinite). We will assume that the process X is transient, which means, if V is finite, that κ ≡ 0. P x will denote the law of X started from x. Let (G(x, y)) x,y∈V be the Green function of (X t ) 0≤t<ζ :

G(x, y) = G(y, x) = E x ζ 0 ½ {Xt=y} dt .
Let E be the Dirichlet form defined on functions f on V with finite support:

E(f, f ) = x∈V κ x f (x) 2 + e∈E W e (f (e + ) -f (e -)) 2 .
(1.1) P ϕ will be the law of (ϕ x ) x∈V the centred Gaussian free field (GFF) on V with covariance

E ϕ [ϕ x ϕ y ] = G(x, y). In case V is finite, the density of P ϕ is 1 (2π) |V | 2 Given x 0 ∈ V and a ∈ R, P {x 0 },a ϕ
will denote the law of the GFF ϕ conditioned to equal a in x 0 . Note that if the killing measure κ is supported in x 0 , the law P {x 0 },a ϕ does not depend on κ and in this case one can as well take κ = 0.

We will denote by (ℓ x (t)) x∈V,t∈[0,ζ] the family of local times of X:

ℓ x (t) = t 0 ½ {Xs=x} ds.
For all x ∈ V , u > 0, let

τ x u = inf{t ≥ 0; ℓ x (t) > u}.
Recall the generalized second Ray-Knight theorem on discrete graphs by Eisenbaum, Kaspi, Marcus, Rosen and Shi [START_REF] Eisenbaum | A Ray-Knight theorem for symmetric Markov processes[END_REF] (see also [START_REF] Marcus | Markov processes, Gaussian processes and local times[END_REF][START_REF] Sznitman | Topics in occupation times and Gaussian free field[END_REF]):

Theorem 1 (Generalized second Ray-Knight theorem). For any u > 0 and x 0 ∈ V ,

ℓ x (τ x 0 u ) + 1 2 ϕ 2 x x∈V under P x 0 (•|τ x 0 u < ζ) ⊗ P {x 0 },0 ϕ has the same law as 1 2 ϕ 2 x x∈V under P {x 0 }, √ 2u ϕ .
Sabot and Tarrès showed in [START_REF] Sabot | Inverting Ray-Knight identity[END_REF] that the so-called "magnetized" reverse Vertex-Reinforced Jump Process (VRJP) provides an inversion of the generalized second Ray-Knight theorem, in the sense that it enables to retrieve the law of (ℓ x (τ

x 0 u ), ϕ 2 x ) x∈V conditional on ℓ x (τ x 0 u ) + 1 2 ϕ 2
x x∈V . The jump rates of that latter process are a product of a first factor accountable for a selfrepulsion (reverse VRJP) and a second one which can be interpreted as a ratio of two-point functions of the Ising model associated to time-evolving coupling constants (magnetization). The process introduced in [START_REF] Sabot | Inverting Ray-Knight identity[END_REF] also inverts the Le Jan's isomorphism [START_REF] Jan | Markov paths, loops and fields[END_REF] given the square of a GFF.

However in [START_REF] Sabot | Inverting Ray-Knight identity[END_REF] the link with the Ising model is only implicit, and a natural question is whether Ray-Knight inversion can be described in a simpler form if we enlarge the state space of the dynamics, and in particular include the "hidden" spin variables.

The answer is positive, and goes through a "signed" extension of the Ray-Knight isomorphism following Lupu's approach [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF], which couples the sign of the GFF to the Markovian path. The Ray-Knight inversion will turn out to take a rather simple form in Theorem 9 of the present paper, where it will be defined not only through the spin variables but also random currents associated to the field though an extra Poisson Point Process. Further, in Theorem 11 we will describe how the process we construct inverts Lupu's "signed" isomorphism between a loop-soup and a discrete GFF.

The paper is organized as follows.

In Section 2 we recall some background on loop-soup isomorphisms and on related couplings and state and prove a signed version of the generalized second Ray-Knight theorem. We begin in Section 2.1 by a statement of Le Jan's isomorphism which couples the square of the Gaussian Free Field to the loop-soups, and recall how the generalized second Ray-Knight theorem can be seen as its corollary: for more details see [START_REF] Jan | Markov loops, free field and Eulerian networks[END_REF]. In Section 2.2 we state Lupu's isomorphism which extends Le Jan's isomorphism and couples the sign of the GFF to the loop-soups, using a metric graph extension of both the GFF and the Markov process. Lupu's isomorphism yields an interesting realization of the Edwards-Sokal FK-Ising -spin Ising coupling, and provides as well a "Current+Bernoulli=FK" coupling lemma [START_REF] Lupu | A note on Ising random currents, Ising-FK, loop-soups and the Gaussian free field[END_REF], which occur in the relationship between the discrete and metric graph versions. We briefly recall these couplings in Sections 2.3 and 2.4, as they are implicit in this paper. In Section 2.5 we state and prove the generalized second Ray-Knight "version" of Lupu's isomorphism, which we aim to invert. In Section 2.6 we present a diagram which summarizes the models and the couplings.

Section 3 is devoted to the statements of inversions of these isomorphisms. We state in Section 3.1 a signed version of the inversion of the generalized second Ray-Knight theorem through an extra Poisson Point Process, namely Theorem 9. In Section 3.2 we provide a discrete-time description of the process, whereas in Section 3.3 we yield an alternative version of that process through jump rates, which can be seen as an annealed version of the first one. The annealed process of Section 3.3 is a reverse VRJP (self-repelling) which evolves on a subgraph of G which itself shrinks over time. These subgraphs can be interpreted as FK-Ising random clusters associated to time-evolving, decreasing, edge weights. In Section 3.4 we deduce a signed inversion of Lupu's isomorphism for loop-soups.

Finally Section 4 is devoted to the proof of Theorem 9: Section 4.1 deals with the case of a finite graph without killing measure, and Section 4.2 deduces the proof in the general case.

2. Le Jan's and Lupu's isomorphisms 2.1. Loop-soups and Le Jan's isomorphism. The loop measure associated to the Markov jump process (X t ) 0≤t<ζ is defined as follows. Let P t x,y be the bridge probability measure from x to y in time t (conditional on t < ζ). Let p t (x, y) be the transition probabilities of (X t ) 0≤t<ζ .

Let µ loop be the measure on time-parametrized nearest-neighbor based loops (i.e. loops with a starting site)

µ loop = x∈V t>0 P t x,x p t (x, x) dt t .
The loops will be considered here up to a rotation of parametrisation (with the corresponding pushforward measure induced by µ loop ), that is to say a loop (γ(t)) 0≤t≤tγ will be the same as (γ(T +t)) 0≤t≤tγ -T •(γ(T +t-t γ )) tγ -T ≤t≤tγ for all T ∈ (0, t γ ), where • denotes the concatenation of paths. A loop-soup of intensity α > 0, denoted L α , is a Poisson random measure of intensity αµ loop . We see it as a random collection of loops in G. Observe that a.s. above each vertex x ∈ V , L α contains infinitely many trivial "loops" reduced to the vertex x. There are also with positive probability non-trivial loop that visit several vertices. Let L . (L α ) be the occupation field of L α on V i.e., for all x ∈ V ,

L x (L α ) = (γ(t)) 0≤t≤tγ ∈Lα tγ 0 ½ {γ(t)=x} dt.
In [START_REF] Jan | Markov paths, loops and fields[END_REF] Le Jan shows that for transient Markov jump processes, L x (L α ) < +∞ for all x ∈ V a.s. For α = 1/2 he identifies the law of L . (L α ):

Theorem 2 (Le Jan's isomorphism). L . (L 1/2 ) = L x (L 1/2 ) x∈V has the same law as 1 2 ϕ 2 = 1 2 ϕ 2 x x∈V under P ϕ .
Let us briefly recall how Le Jan's isomorphism enables one to retrieve the generalized second Ray-Knight theorem stated in Section 1: for more details, see for instance [START_REF] Jan | Markov loops, free field and Eulerian networks[END_REF]. We assume that κ is supported by x 0 : the general case can be dealt with by an argument similar to the proof of Proposition 4.6. Let D = V \ {x 0 }, and note that the isomorphism in particular implies that L . (L 1/2 ) conditional on L x 0 (L 1/2 ) = u has the same law as ϕ 2 /2 conditional on ϕ 2

x 0 /2 = u.

On the one hand, given the classical energy decomposition, we have ϕ = ϕ D + ϕ x 0 , with ϕ D the GFF associated to the restriction of E to D, where ϕ D and ϕ x 0 are independent. Now ϕ 2 /2 conditional on ϕ 2

x 0 /2 = u has the law of (ϕ D + η √ 2u) 2 /2, where η is the sign of ϕ x 0 , which is independent of ϕ D . But ϕ D is symmetric, so that the latter also has the law of (ϕ D + √ 2u) 2 /2. On the other hand, the loop-soup L 1/2 can be decomposed into the two independent loopsoups L D 1/2 contained in D and L

(x 0 ) 1/2 hitting x 0 . Now L . (L D 1/2
) has the law of (ϕ D ) 2 /2 and L . (L

(x 0 ) 1/2 ) conditional on L x 0 (L (x 0 )
1/2 ) = u has the law of the occupation field of the Markov chain ℓ(τ x 0 u ) under P x 0 (•|τ x 0 u < ζ), which enables us to conclude.

2.2. Lupu's isomorphism. As in [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF], we consider the metric graph G (also known as cable system) associated to G. As a a topological space, it is obtained by replacing each discrete edge e by a continuous compact line interval I e . If two edges e and e ′ share a common extremity, the corresponding endpoints of I e and I e ′ are identified. So G is a one-dimensional simplicial complex, with 0-cells corresponding to vertices in V , and 1-cells to edges in E. V is naturally identified to a subset of G. We further endow G with a metric by setting the length of each I e to be equal to 1 2 W -1 e . We also consider the Radon measure m on G, such that its restriction to each I e is a one-dimensional Lebesgue measure of total mass 1 2 W -1 e (i.e. the length measure).

One can define a standard Brownian motion B G t on G as follows. Inside each I e , B G t behaves as a standard one-dimensional Brownian motion. Upon reaching a vertex, B G t performs immediately independent Brownian excursions inside each adjacent edge, with equal rate for each direction, and that until eventually traversing one of the edge and reaching a neighbor vertex on the other side. See Section 2 of [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF] for more details. Alternatively, B G t can be defined as the symmetric Markov process associated to the Dirichlet form

Ẽ(f, f ) = 1 2 x∈ G f ′ (x) 2 d m(x),
where f : G → R is continuous and C 1 inside each of the I e . For more on Dirichlet forms and associated Markov processes, see [START_REF] Fukushima | Dirichlet Forms and Symmetric Markov Processes[END_REF]. B G t admits a family of Brownian local times lx (t), continuous in (x, t), such that for every bounded measurable function f : G → R and every t ≥ 0, 

t 0 f (B G s )ds = x∈ G f (x)
) 0≤t< ζ Let be A V (t) = x∈V lx (t), A -1 V (t) = inf{s ≥ 0|A V (s) > t}. Then, if B G 0 ∈ V , B G A -1 V (t) is a Markov jump process X t on V with jump rates (W e ) e∈E . Moreover, A V ( ζ) = ζ and ℓ x (t) = lx (A -1
V (t)) for x ∈ V . In [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF] Lupu introduces a measure μloop on time-parametrized continuous loops on G, associated to the Brownian motion (B G t ) 0≤t< ζ . Lα will denote the Poisson Point Process of loops of intensity αμ loop . The discrete-space loops L α can be deterministically obtained from Lα by taking the print of the latter on V , using the time-change A -1 V . Note that Lα contains loops that do not visit V and are entirely contained in one of the I e . These do not contribute to L α . Lα has an occupation field (L x ( Lα )) x∈ G , which is a sum over loops in Lα of Brownian local times in x of the loops. Moreover,

L x ( Lα ) = L x (L α ), ∀x ∈ V.
Similarly, the GFF ϕ on G with law P ϕ can be extended to a GFF φ on G as follows. Given e ∈ E, one considers inside I e a conditionally independent Brownian bridge, actually a bridge of a √ 2× standard Brownian motion, of length 1 2 W -1 e , with end-values ϕ e -and ϕ e + . This provides a continuous Gaussian field on the metric graph which still satisfies the spatial Markov property.

Lupu introduced in [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF] an isomorphism linking the GFF φ and the loop-soup L1/2 on the metric graph G. This one uses the clusters of L1/2 . First of all, cluster is an equivalence class of loops in L1/2 , where two loops γ and γ′ belong to the same cluster if there is a finite chain γ0 , . . . , γk of loops in L1/2 such that γ0 = γ, γk = γ ′ , and for i ∈ {1, . . . , k} the loops γi-1 and γi (their ranges) have a non-empty intersection. By extension, a cluster will also be a (connected) subset of G obtained as a union over a cluster of loops of ranges of the loops. Note that if L 1/2 is obtained as a print of L1/2 on V , each cluster of L 1/2 is contained in a cluster of L1/2 , but in general a cluster L1/2 may correspond to several different clusters of L 1/2 merged together. This is because there are more connections at the level of the metric graph.

Theorem 3 (Lupu's isomorphism).

There is a coupling between the Poisson ensemble of loops L1/2 and ( φy ) y∈ G defined above, such that the two following constraints hold:

• For all y ∈ G, L y ( L1/2 ) = 1 2 φ2
y ; • the zero set of φ, {x ∈ G| φx = 0}, is the set of points in G not visited by any loop of L1/2 ;

• the clusters of loops of L1/2 are exactly the sign clusters of ( φy ) y∈ G .

Conditional on (| φy |) y∈ G , the sign of φ on each of its connected components is distributed independently and uniformly in {-1, +1}.

Lupu's isomorphism and the idea of using metric graphs were applied in [START_REF] Lupu | Convergence of the two-dimensional random walk loop soup clusters to CLE[END_REF] to show that on the discrete half-plane Z × N, the scaling limits of outermost boundaries of clusters of loops in loop-soups are the Conformal Loop Ensembles CLE.

Let O( φ) (resp. O( L1/2 )) be the set of edges e ∈ E such that φ (resp. L1/2 ) does not touch 0 on I e , in other words such that all the edge-interval I e remains in the same sign cluster of φ (resp. loop cluster of L1/2 ). O( φ) and O( L1/2 ) have same law. Let O(L 1/2 ) be the set of edges e ∈ E that are crossed (i.e. endpoints visited consecutively) by loops in L 1/2 (obtained as the print on V of L1/2 ).

In order to translate Lupu's isomorphism back onto the initial graph G, one needs to describe on one hand the distribution of O( φ) conditional on the values of (ϕ x ) x∈V , and on the other hand the distribution of O( L1/2 ) conditional on L 1/2 and the cluster of loops O(L 1/2 ) on the discrete graph G. These two distributions are described respectively in Sections 2.3 and 2.4, and provide realisations of the Edwards-Sokal FK-Ising -spin Ising coupling and of the "Current+Bernoulli=FK" coupling lemma [START_REF] Lupu | A note on Ising random currents, Ising-FK, loop-soups and the Gaussian free field[END_REF].

The FK-Ising distribution of O( φ) conditional on |ϕ|.

Lemma 2.1. Conditional on (ϕ x ) x∈V , (½ {e∈O( φ)} ) e∈E is a family of independent random variables and

P (e ∈ O( φ)|ϕ) = 1 if ϕ e -ϕ e + < 0, exp -2W e ϕ e -ϕ e + if ϕ e -ϕ e + > 0.
Proof. Conditional on (ϕ x ) x∈V , the metric graph GFF ( φy ) y∈ G is constructed by adding independent Brownian bridges on each edge, so that (½ {e∈O( φ)} ) e∈E are conditionally independent random variables, and it follows from the reflection principle for one-dimensional Brownian motion that, if ϕ e -ϕ e + > 0, then

P e ∈ O( φ)|ϕ, ϕ e -ϕ e + > 0 = exp -1 2 W e (ϕ e -+ ϕ e + ) 2 exp -1 2 W e (ϕ e --ϕ e + ) 2 = exp -2W e ϕ e -ϕ e + .
Let us now recall how the conditional probability in Lemma 2.1 yields a realization of the FK-Ising coupling.

Assume V is finite. Let (J e ) e∈E be a family of positive weights. A (spin) Ising model on V with interaction constants (J e ) e∈E is a probability on configuration of spins (σ x ) x∈V ∈ {+1, -1} V such that

P Isg J ((σ x ) x∈V ) = 1 Z Isg J exp e∈E J e σ e -σ e + .
An FK-Ising random cluster model [START_REF] Grimmett | The random-cluster model[END_REF] with edge weights (1 -e -2Je ) e∈E is a random configuration of open (value 1) and closed edges (value 0) such that

P FK-Isg J ((ω e ) e∈E ) = 1 Z FK-Isg J 2 #clusters e∈E (1 -e -2Je ) ωe (e -2Je ) 1-ωe ,
where "#clusters" denotes the number of clusters created by open edges. The Edwards-Sokal [START_REF] Edwards | Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm[END_REF] coupling between FK-Ising and spin Ising reads as follows:

Theorem 4 (Edwards-Sokal coupling). 

E(ϕ, ϕ) = x∈V κ x ϕ 2 x + x∈V W x ϕ 2 x -2 e∈E J e (|ϕ|) sign(ϕ e + ) sign(ϕ e -),
where

W x = y∈V y∼x W x,y ,
y ∼ x meaning that x and y are joined by an edge. Similarly, when ϕ distributed according to

P {x 0 }, √ 2u ϕ has boundary condition √ 2u ≥ 0 on x 0 , then (sign(ϕ x ))
x∈V has an Ising distribution with interaction (J e (|ϕ|)) e∈E and conditioned on σ x 0 = +1. Now, conditional on ϕ, O( φ) has FK-Ising distribution with weights (1 -e -2Je(|ϕ|) ) e∈E . Indeed, the probability for e ∈ O( φ) conditional on ϕ is 1 -e -2Je(|ϕ|) , by Lemma 2.1, as in Theorem 4.

Note that, given that O( φ) has FK-Ising distribution, the fact that the sign on its connected components is distributed independently and uniformly in {-1, 1} can be seen either as a consequence of Theorem 4, or from Theorem 3.

Given ϕ = (ϕ x ) x∈V on the discrete graph G, we introduce in Definition 2.1 the random set of edges which has the distribution of O( φ) conditional on ϕ = (ϕ x ) x∈V . Definition 2.1. We let O(ϕ) be a random set of edges which has the distribution of O( φ) conditional on ϕ = (ϕ x ) x∈V given by Lemma 2.1.

2.4. Distribution of O( L1/2 ) conditional on L 1/2 . The distribution of O( L1/2 ) conditional on L 1/2 can
be retrieved by Corollary 3.6 in [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF], which reads as follows.

Lemma 2.2 (Corollary 3.6 in [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF]). Conditional on L 1/2 , the events e ∈ O( L1/2 ), e ∈ E \ O(L 1/2 ), are independent and have probability

(2.2) exp -2W e L e + (L 1/2 )L e -(L 1/2 ) .
This result gives rise, together with Theorem 3, to the following discrete version of Lupu's isomorphism, which is stated without any recourse to the metric graph induced by G. Definition 2.2. Let (ω e ) e∈E ∈ {0, 1} E be a percolation defined as follows: conditional on L 1/2 , the random variables (ω e ) e∈E are independent, and ω e equals 0 with conditional probability given by (2.2).

Let O + (L 1/2 ) be the set of edges:

O + (L 1/2 ) = O(L 1/2 ) ∪ {e ∈ E|ω e = 1}.
Theorem 5 (Discrete version of Lupu's isomorphism, Theorem 1 bis in [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF]). 

σ x 2L x (L 1/2 )
x∈V is a Gaussian free field distributed according to P ϕ .

Theorem 5 induces the following coupling between FK-Ising and random currents. If V is finite, a random current model [START_REF] Aizenman | Geometric analysis of ϕ 4 fields and Ising model[END_REF][START_REF] Duminil-Copin | Random currents expansion of the Ising model[END_REF] on G with weights (J e ) e∈E is a random assignment to each edge e of a non-negative integer ne such that for all x ∈ V , e∈E e adjacent to x ne is even, which is called the parity condition. The probability of a configuration (n e ) e∈E satisfying the parity condition is

P RC J (∀e ∈ E, ne = n e ) = 1 Z RC J e∈E (J e ) ne n e ! ,
where actually

Z RC J = Z Isg J . Let O(n) = {e ∈ E|n e > 0}.
The open edges in O(n) induce clusters on the graph G. Given a loop-soup L α , we denote by N e (L α ) the number of times the loops in L α cross the nonoriented edge e ∈ E. The transience of the Markov jump process X implies that N e (L α ) is a.s. finite for all e ∈ E. If α = 1/2, we have the following identity (see for instance [START_REF] Werner | On the spatial Markov property of soups of unoriented and oriented loops[END_REF][START_REF] Lawler | Topics in loops measures and the loop-erased walk[END_REF] We let σ ∈ {-1, +1} V be random spins sampled uniformly independently on each cluster induced by O u , pinned at x 0 , i.e. σ x 0 = 1, and define ϕ (u) x := σ x ϕ

(0)2 x + 2ℓ x (τ x 0 u ).
Then, conditional on τ x 0 u < ζ, ϕ (u) has distribution

P {x 0 }, √ 2u ϕ
, and O u has distribution O(ϕ (u) ) conditional on ϕ (u) . Remark 2.3. One consequence of that coupling is that the path (X s ) s≤τ x 0 u stays in the positive connected component of x 0 for ϕ (u) . This yields a coupling between the range of the Markov chain and the sign component of x 0 inside a GFF P

{x 0 }, √ 2u ϕ .
Proof of Theorem 8: The proof is based on [START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF]. Let D = V \ {x 0 }, and let L1/2 be the loop-soup of intensity 1/2 on the metric graph G, which we decompose into L(x 0 ) 1/2 (resp. LD 1/2 ) the loop-soup hitting (resp. not hitting) x 0 , which are independent. We let L 1/2 and L

(x 0 ) 1/2 (resp. L D 1/2
) be the prints of these loop-soups on V (resp. on D = V \ {x 0 }). We condition on

L x 0 (L 1/2 ) = u.
Theorem 3 implies (recall also Definition 2.1) that we can couple LD 1/2 with ϕ (0) so that

L x (L D 1/2 ) = ϕ (0)2
x /2 for all x ∈ V , and

O( L1/2 ) = O(ϕ (0) ). Define ϕ (u) = (ϕ (u)
x ) x∈V from L1/2 by, for all x ∈ V ,

|ϕ (u) x | = 2L x (L 1/2 )
and ϕ

(u) x = σ x |ϕ (u)
x |, where σ ∈ {-1, +1} V are random spins sampled uniformly independently on each cluster induced by O( L1/2 ), pinned at x 0 , i.e. σ x 0 = 1. Then, by Theorem 3, ϕ (u) has distribution P

{x 0 }, √ 2u ϕ . For all x ∈ V , we have L x ( L1/2 ) = 1 2 ϕ (0)2 x + L x (L (x 0 ) 1/2
). On the other hand, conditional on L . (L 1/2 ),

P(e ∈ O( L1/2 ) | e ∈ O( LD 1/2 ) ∪ O(L 1/2 )) = P(e ∈ O( L1/2 )) P(e ∈ O( LD 1/2 ) ∪ O(L 1/2 )) = P(e ∈ O( L1/2 ) | e ∈ O(L 1/2 )) P(e ∈ O( LD 1/2 ) | e ∈ O(L 1/2 )) = P(e ∈ O( L1/2 ) | e ∈ O(L 1/2 )) P(e ∈ O( LD 1/2 ) | e ∈ O(L D 1/2 )) = exp -W e L e -(L 1/2 )L e + (L 1/2 ) + W e L e -(L D 1/2 )L e + (L D 1/2 ) ,
where we use in the third equality that the event e ∈ O( LD 1/2 ) is measurable with respect to the σ-field generated by LD 1/2 , which is independent of L(x 0 ) 1/2 , and where we use Lemma 2.2 in the fourth equality, for L1/2 and for LD 1/2 . We conclude the proof by observing that L squared metric GFF ( φ2 Thm. 2

(x 0 ) 1/2 conditional on L x 0 (L (x 0 ) 1/2 ) = u
x ) x∈ G squared discrete GFF (ϕ 2 x ) x∈V metric graph GFF ( φx ) x∈ G discrete GFF (ϕ x ) x∈V Ising spins (σ x ) x∈V sign clusters O( φ) = O( L1/2 ) enlarged clusters O + (L 1/2 ) FK-

Inversion of the signed isomorphism

In [START_REF] Sabot | Inverting Ray-Knight identity[END_REF], Sabot and Tarrès give a new proof of the generalized second Ray-Knight theorem together with a construction that inverts the coupling between the square of a GFF conditional its value at a vertex x 0 and the excursions of the jump process X from and to x 0 . In this paper we are interested in inverting the coupling of Theorem 8 with the signed GFF : more precisely, we want to describe the law of (X t ) 0≤t≤τ x 0 u conditional on ϕ (u) . We present in Section 3.1 an inversion involving an extra Poisson process. We provide in Section 3.2 a discrete-time description of the process and in Section 3.3 an alternative description via jump rates. Sections 3.4 is dedicated to a signed inversion of Le Jan's isomorphism for loop-soups. We define a self-interacting process ( Xt , (ň e (t)) e∈E ) living on V × N E as follows. The process X starts at X(0) = x 0 . For t ≥ 0, we set

Φx (t) = ( Φx ) 2 -2 ľx (t), ∀x ∈ V, J e ( Φ(t)) = W e Φe -(t) Φe + (t), ∀e ∈ E.
where ľx (t) = Given (n e ) e∈E ∈ N E non-negative integer weights on edges, we will denote

C(n) = {e ∈ E|n e > 0}.
We consider the edges in C(n) as "open", and they naturally induce clusters. So C(ň(t)) ⊂ E denotes the configuration of edges such that ňe (t) > 0. As time increases, the interaction parameters J e ( Φ(t)) decreases for the edges neighboring Xt , and at some random times ňe (t) may drop by 1. The process ( Xt ) t≥0 is defined as the process that jumps only at the times when one of the ňe (t) drops by 1, as follows:

• if ňe (t) decreases by 1 at time t, but does not create a new cluster in C(ň(t)), then Xt crosses the edge e with probability 1/2 or does not move with probability 1/2; • if ňe (t) decreases by 1 at time t, and does create a new cluster in C(ň(t)), then Xt moves/or stays with probability 1 on the unique extremity of e which is in the cluster of the origin x 0 in the new configuration.

We set

Ť := inf{t ≥ 0|∃x ∈ V, s. t. Φx (t) = 0},
clearly, the process is well-defined up to time Ť .

Proposition 3.1. For all 0 ≤ t ≤ Ť , Xt is in the connected component of x 0 of the configuration C(ň(t)). If V is finite, the process ends at x 0 , i.e. X Ť = x 0 .

Theorem 9. Assume that V is finite. With the notation of Theorem 8, conditional on ϕ (u) = φ, (X t ) t≤τ x 0 u has the law of ( X Ť -t ) 0≤t≤ Ť .

Moreover, conditional on ϕ (u) = φ, (ϕ (0) , O(ϕ (0) )) has the law of (σ ′ Φ( Ť ), C(ň( Ť ))) where (σ ′

x ) x∈V ∈ {-1, +1} V are random spins sampled uniformly independently on each cluster induced by C(ň( Ť )), with the condition that σ ′

x 0 = +1. If V is infinite, then P {x 0 }, √ 2u ϕ -a.s., Xt (with the initial condition φ = ϕ (u) ) ends at x 0 , i.e. Ť < +∞ and X Ť = x 0 . All previous conclusions for the finite case still hold. Remark 3.2. For the process above, one could also take ( Φx ) x∈V deterministic and (σ x ) x∈V random, distributed as an Ising model with interaction constants J e ( Φ(0)). Then the process ( Xt , Φ(t)) 0≤t≤ Ť , averaged out by the law of (σ x ) x∈V and the evolution of (ň e (t)) e∈E , is exactly the same as the process introduced in [START_REF] Sabot | Inverting Ray-Knight identity[END_REF], inverting the Ray-Knight identity for the square of the GFF (without the sign). Indeed, both processes (here and in [START_REF] Sabot | Inverting Ray-Knight identity[END_REF]), when we average out by Φ(0) = Φ random, distributed as |ϕ (u) | under P

{x 0 }, √ 2u ϕ , give us in law (X τ x 0 u -t , ϕ (0)2 x + 2ℓ x (τ x 0 u ) -2ℓ x (t)) x∈V,0≤t≤τ x 0 u under P x 0 (•|τ x 0 u < ζ) ⊗ P {x 0 },0 ϕ
. To conclude we use the fact that the law of ( Xt , Φ(t)) 0≤t≤ Ť is continuous with respect to Φ(0).

3.2.

Discrete time description of the process. We give a discrete time description of the process ( Xt , (ň e (t)) e∈E ) that appears in the previous section. Let t 0 = 0 and 0 < t 1 < • • • < t j be the stopping times when one of the stacks ňe (t) decreases by 1, where t j is the time when one of the stacks is completely depleted. It is elementary to check the following: Proposition 3.3. The discrete time process ( Xt i , (ň e (t i )) e∈E ) 0≤i≤j is a stopped Markov process. The transition from time i -1 to i is the following:

• first chose e an edge adjacent to the vertex Xt i-1 according to a probability proportional to ňe (t i-1 ); • decrease the stack ňe (t i-1 ) by 1;

• if decreasing ňe (t i-1 ) by 1 does not create a new cluster in C(ň(t i-1 )), then Xt i-1 crosses the edge e with probability 1/2 or does not move with probability 1/2; • if decreasing ňe (t i-1 ) by 1 does create a new cluster in C(ň(t i-1 )), then Xt i-1 moves/or stays with probability 1 on the unique extremity of e which is in the cluster of the origin x 0 in the new configuration.

3.

3. An alternative description via jump rates. We provide an alternative description of the process ( Xt , C(ň(t))) that appears in Section 3.1. We will use this description in [START_REF] Lupu | Inverting Ray-Knight identity on the line[END_REF] by passing it to a fine mesh limit to obtain a process inverting the Ray-Knight identity for a Brownian motion on R.

We will denote Č(t) = C(ň(t)), since below we will not have access to the knowledge of ň(t), only to that of C(ň(t)).

Proposition 3.4. The process ( Xt , Č(t)) defined in Section 3.1 can be alternatively described by its jump rates : conditional on its past at time t, if Xt = x, y ∼ x and {x, y} ∈ Č(t), then

(1) X jumps to y without modification of Č(t) at rate W x,y Φy (t) Φx (t) ;

(2) the edge {x, y} is closed in Č(t) at rate

2W x,y Φy (t) Φx (t) e 2Wx,y Φx(t) Φy (t) -1 -1
and, conditional on that last event:

-if y is connected to x in the configuration Č(t) \ {x, y}, then X instantaneously jumps to y with probability 1/2 and stays at x with probability 1/2;

-otherwise Xt moves/or stays with probability 1 on the unique extremity of {x, y} which is in the cluster of the origin x 0 in the new configuration. Remark 3.5. It is clear from this description that the joint process ( Xt , Č(t), Φ(t)) is Markov process, and well defined up to the time x,y (t) the number of parallel edges that are open in the configuration Č(N) (t) between x and y. Then, when N → ∞, (ň (N ) (t)) t≥0 , converges in law to (ň(t)) t≥0 , defined in Section 3.1. We will not detail this, but roughly, this corresponds to approximation of Poisson r.v. by binomial r.v.

Ť := inf{t ≥ 0|∃x ∈ V,
Proof of Proposition 3.4. Here ( Ft ) t≥0 will denote the natural filtration of ( Xt∧ Ť , Č(t ∧ Ť )) t≥0 .

Assume Xt = x, fix y ∼ x and let e = {x, y}. Recall that {x, y} ∈ Č(t) iff ňe (t) ≥ 1. Let be J x e (t, ∆t) = W x,y Φx (t) 2 -2∆t Φy (t), which is the value of J e (Φ(t + ∆t)) on the event

{X t = x, n(t + ∆t) = n(t), W x,y Φx (t) 2 -2∆t Φy (t) ≥ 0}.
Let us first prove ( 1 1 -e -2Je( Φ(t))

(1 -e -2(Je( Φ(t))-J x e (t,∆t)) ) + o(∆t)

= J e ( Φ(t)) -J x e (t, ∆t) + o(∆t) = W xy Φy (t) Φx (t) ∆t + o(∆t).
Similarly, (2) follows from the following computation:

P On [t, t + ∆t] first the edge e is closed in Č | Xt = x, e ∈ Č(t), Ft = P N e (2J x e (t, ∆t)) = 0, N e (2J e ( Φ(t)) = 1 | Xt = x, ňe (t) ≥ 1, Ft + o(∆t) = e -2J
x e (t,∆t) 2(J e ( Φ(t)) -J x e (t, ∆t))e -2(Je( Φ(t))-J x e (t,∆t))

1 -e -2Je(

Φ(t)) + o(∆t) = 2(J e ( Φ(t)) -J x e (t, ∆t)) e 2Je( Φ(t)) -1 + o(∆t) = 2W x,y Φy (t) Φx (t) e 2Wx,y Φx(t) Φy (t) -1 -1 + o(∆t).
We easily deduce from the Proposition 3.4 and Theorem 12 the following alternative inversion of the coupling in Theorem 8.

Theorem 10. With the notation of Theorem 8, conditional on (ϕ (u) , O u ), (X t ) t≤τ x 0 u has the law of self-interacting process ( X Ť -t ) 0≤t≤ Ť defined by jump rates of Proposition 3.4 starting with Φx = (ϕ

(0) x ) 2 + 2ℓ x (τ x 0 u ) and Č(0) = O u .
Moreover (ϕ (0) , O(ϕ (0) )) has the same law as (σ ′ Φ( Ť ), Č( Ť )) where (σ ′ x ) x∈V is a configuration of signs obtained by picking a sign at random independently on each connected component of Č( Ť ), with the condition that the component of x 0 has a + sign.

3.4.

Inversion of Lupu's isomorphism for loop-soup. Let us first recall how the loops in L α are connected to the excursions of the jump process X. We refer to [START_REF] Jan | Markov paths, loops and fields[END_REF] for details. G is the Green's function. L x 0 (L α ) follows a Γ(α, G(x 0 , x 0 )) distribution, that is to say L x 0 (L α )/G(x 0 , x 0 ) follows a Gamma distribution Γ(α, 1) with density

½ {r>0} 1 Γ(α)
r α-1 e -r dr.

As a process in α, where one drops independent loops as the intensity parameter α increases, (L x 0 (L α )/G(x 0 , x 0 )) α≥0 is a pure jump Gamma subordinator with Lévy measure

dΛ(r) = ½ {r>0} 1 Γ(α) e -r r dr.
Given such a Gamma subordinator (R(α)) α≥0 with R(0) = 0, then for all α > 0, the marginal R(α) follows a Γ(α, 1) distribution. Moreover, the normalized family of jump sizes

R(a) -R(a -) R(α) 0≤a≤α,R(a) =R(a -)
is independent of R(α) and has the law of a Poisson-Dirichlet partition P D(0, α) of [0, 1]. The above may be taken as a definition of P D(0, α). It is a random infinite countable family of positive reals summing to 1. For more on Poisson-Dirichlet partitions, we refer to [START_REF] Pitman | Combinatorial stochastic processes[END_REF].

Proposition 3.7 (From excursions to loops). Let α > 0 and x 0 ∈ V . L x 0 (L α ) is distributed according to a Gamma Γ(α, G(x 0 , x 0 )) law, where G is the Green's function. Let u > 0, and consider the path

(X t ) 0≤t≤τ x 0 u conditional on τ x 0 u < ζ. Let (Y j ) j≥1 be an independent Poisson- Dirichlet partition P D(0, α) of [0, 1] (so that j≥1 Y j = 1). Let S 0 = 0 and S j = j i=1 Y i . Let τ j = τ x 0 uS j . Consider the family of paths (X τ j-1 +t ) 0≤t≤τ j -τ j-1 j≥1 .
It is a countable family of loops rooted in x 0 . It has the same law as the family of all the loops in L α that visit x 0 , conditional on L x 0 (L α ) = u.

Next we describe how to invert the discrete version for Lupu's isomorphism Theorem 5 for the loop-soup in the same way as in Theorem 9. The idea is to define an arbitrary order on the vertices, (x i ) 1≤i≤|V | . Then, starting from a signed GFF, run the inverting process introduced previously starting from x 1 , up to exhausting the field in x 1 . This would produce a path from x 1 to x 1 , which is conditionally distributed like all the loops in L 1/2 that visit x 1 , glued together. By partitioning this path according to the procedure described in Proposition 3.7, one recovers all the loops visiting x 1 . Then one continues with the remaining field, which is 0 in x 1 and has smaller FK-Ising clusters than the initial one, and runs the inverting process starting from x 2 , in order to get all the loops that visit x 2 but not x 1 . Then one iterates. At each step, one gets all the loops that visit x i , but none of x 1 , . . . , x i-1 . In what follows we describe this more formally.

Let ( φx ) x∈V be a real function on

V . Set Φx = | φx |, σ x = sign( φx ).
Let (x i ) 1≤i≤|V | be an enumeration of V (which may be infinite). We define by induction on i the self interacting processes (( Xi,t ) 1≤i≤|V | , (ň e (t)) e∈E ). Ťi will denote the end-time for Xi,t , and Ť + i = 1≤j≤i Ťj . By definition, Ť + 0 = 0. L x (t) will denote

L x (t) := 1≤i≤|V | ľx (i, 0 ∨ (t -Ť + i )),
where ľx (i, t) are the occupation times for Xi,t . For t ≥ 0, we set

Φx (t) = ( Φx ) 2 -2L x (t), ∀x ∈ V, J e ( Φ(t)) = W e Φe -(t) Φe + (t), ∀e ∈ E.
The end-times Ťi are defined by induction as Ťi = inf{t ≥ 0| Φ Xi,t (t + Ť + i-1 ) = 0}. Let (N e (v)) v≥0 be independent Poisson Point Processes on R + with intensity 1, for each edge e ∈ E. We set ňe (t) = N e (2J e ( Φ(t))), if σ e -σ e + = +1, 0, if σ e -σ e + = -1.

We also denote by C(ň(t)) ⊂ E the configuration of edges such that ňe (t) > 0. Xi,t starts at

x i . For t ∈ [ Ť + i-1 , Ť + i ],
• if ňe (t) decreases by 1 at time t, but does not create a new cluster in C(ň(t)), then Xi,t-

Ť + i-1
crosses the edge e with probability 1/2 or does not move with probability 1/2; • if ňe (t) decreases by 1 at time t, and does create a new cluster in C(ň(t)), then Xi,t-Ť + i-1 moves/or stays with probability 1 on the unique extremity of e which is in the cluster of the origin x i in the new configuration. By induction, using Theorem 9, we deduce the following: Theorem 11. Let ϕ be a GFF on G with the law P ϕ . If one sets φ = ϕ in the preceding construction, then for all i ∈ {1, . . . , |V |}, Ťi < +∞, Xi, Ťi = x i and the path ( Xi,t ) t≤ Ťi has the same law as a concatenation in x i of all the loops in a loop-soup L 1/2 that visit x i , but none of the x 1 , . . . , x i-1 . To retrieve the loops out of each path ( Xi,t ) t≤ Ťi , one has to partition it according to a Poisson-Dirichlet partition as in Proposition 3.7. The coupling between the GFF ϕ and the loop-soup obtained from (( Xi,t ) 1≤i≤|V | , (ň e (t)) e∈E ) is the same as in Theorem 5.

Remark 3.8. One could consider the discrete time version of the procedure described in Theorem 11, and look only at the total number of times ne an edge e is visited by the trajectories constructed, without distinguishing the directions. Than (n e ) e∈E is a current, and its conditional distribution given Č(0) is the same as the conditional distribution of a random current given an FK-Ising cluster when both are coupled as in Theorem 7.

Corollary 3.9. Let ϕ be a GFF on G with the law P ϕ . Let (n e (ϕ)) e∈E be a family of r.v., distributed conditional on φ as independent Poisson r.v., each one with mean W e ϕ e -ϕ e + if ϕ e -ϕ e + > 0, 0 otherwise. One can couple ϕ, (n e (ϕ)) e∈E and a loop-soup L 1/2 such that the coupling between L 1/2 and ϕ is that of Theorem 5, and moreover, a.s. for every e ∈ E, N e (L 1/2 ) ∈ {n e (ϕ) -1, n e (ϕ), n e (ϕ) + 1}.

Proof. We use the construction of Theorem 11. Conditional on ϕ, we have independent Poisson stacks with mean ½ {ϕe -ϕe + >0} 2W e ϕ e -ϕ e + and each time we unpile a stack, we chose with probability 1/2 to jump (which gives a Poisson r.v. with mean ½ {ϕe -ϕe + >0} W e ϕ e -ϕ e + ), except possibly when the stack is reduced to 1, when our choice might be constrained (which gives ±1).

Proof of theorem 9

4.1. Case of finite graph without killing measure. Here we will assume that V is finite and that the killing measure κ ≡ 0.

In order to prove Theorem 9, we first enlarge the state space of the process (X t ) t≥0 . We define a process (X t , (n e (t))) t≥0 living on the space V × N E as follows. Let ϕ (0) ∼ P {x 0 },0 ϕ be a GFF pinned at x 0 . Let σ x = sign(ϕ (0)

x ) be the signs of the GFF with the convention that σ x 0 = +1. The process (X t ) t≥0 is as usual the Markov Jump process starting at x 0 with jump rates (W e ) e∈E . We set (4.1) Φ x = |ϕ (0) x |, Φ x (t) = Φ 2 x + 2ℓ x (t), ∀x ∈ V, J e (Φ(t)) = W e Φ e -(t)Φ e + (t), ∀e ∈ E.

The initial values (n e (0)) are choosen independently on each edge with distribution (4.2) n e (0) ∼ 0 if σ e -σ e + = -1, P(2J e (Φ)) if σ e -σ e + = +1, where P(2J e (Φ)) is a Poisson random variable with parameter 2J e (Φ). Let ((N e (v)) v≥0 ) e∈E be independent Poisson point processes on R + with intensity 1. We define the process (n e (t)) by n e (t) = n e (0) + N e (J e (Φ(t))) -N e (J e (Φ)) + K e (t), where K e (t) is the number of crossings of the edge e by the Markov jump process X before time t. Remark 4.1. Note that compared to the process defined in Section 3.1, the speed of the Poisson process is related to J e (Φ(t)) and not 2J e (Φ(t)).

We recall that with our notations, C(n(t)) = {e ∈ E|n e (t) > 0}.

Recall also that τ x 0 u = inf{t ≥ 0|ℓ x 0 (t) = u} for u > 0. We define ϕ (u) by ϕ (u) x = σ x Φ(τ x 0 u ), ∀x ∈ V, where (σ x ) x∈V ∈ {-1, +1} V are random spins sampled uniformly independently on each cluster induced by C(n(τ x 0 u )) with the condition that σ x 0 = +1.

Lemma 4.3. The distribution of (Φ := |ϕ (0) |, n(0)) is given by the following formula for any bounded measurable test function h:

E (h(Φ, n(0))) = n∈N E R V \{x 0 } + dΦh(Φ, n)e -1 2 x∈V WxΦ 2 x -e∈E Je(Φ) e∈E (2J e (Φ)) ne n e ! 2 #c.C(n)-1 .
where the integral is on the set

{(Φ x ) x∈V ∈ R V + |∀x = x 0 , Φ x > 0, Φ x 0 = 0}, and 
dΦ = x∈V \{x 0 } dΦ x √ 2π |V |-1
, and #c.C(n) is the number of clusters induced by the edges such that n e > 0.

Proof. Indeed, by construction, summing on possible signs of ϕ (0) , we have

E (h(Φ, n(0))) = σ∈{±1} V σx 0 =+1 n∈N E n≪σ R V \{x 0 } + dΦh(Φ, n)e -1 2 E(σΦ,σΦ) e∈E σe -σe + =+1 e -2Je(Φ) (2J e (Φ)) ne n e ! , (4.3) 
where n ≪ σ means that n e vanishes on the edges such that σ e -σ e + = -1. Since we have, similarly to (2.1),

1 2 E(σΦ, σΦ) = 1 2 x∈V W x Φ 2 x - e∈E J e (Φ)σ e -σ e + = 1 2 x∈V W x Φ 2 x + e∈E J e (Φ) - e∈E σe -σe + =+1
2J e (Φ), we deduce that the integrand in (4.3) is equal to

h(Φ, n)e -1 2 E(σΦ,σΦ) e∈E σe -σe + =+1 e -2Je(Φ) (2J e (Φ)) ne n e ! = h(Φ, n)e -1 2 E(σΦ,σΦ) e -e∈E, σe -σe + =+1 2Je(Φ) e∈E (2J e (Φ)) ne n e ! = h(Φ, n)e -1 2 x∈V WxΦ 2 x -e∈E Je(Φ) e∈E (2J e (Φ)) ne n e ! ,
where we used in the first equality that n e = 0 on the edges such that σ e -σ e + = -1. Thus,

E (h(Φ, n(0))) = σ∈{±1} V σx 0 =+1 n∈N E n≪σ R V \{x 0 } + dΦh(Φ, n)e -1 2 x∈V WxΦ 2 x -e∈E Je(Φ) e∈E (2J e (Φ)) ne n e ! .
Reversing the sum on σ and n and summing on the number of possible signs which are constant on clusters induced by the configuration of edges {e ∈ E|n e > 0}, we deduce Lemma 4.3.

which is also the number of crossings of the edge e by the process X, between time 0 and t. With these notations we clearly have

Φx (t) = Φ2 x -2 lx (t),
where lx (t) = t 0 ½ { Xs=x} ds is the local time of X at time t, and ne (t) = ne (0) + (N e (J e ( Φ(t))) -N e (J e ( Φ(0)))) -Ke (t).

By time reversal, the law of ( Xt ) 0≤s≤τ x 0 u is the same as the law of the Markov Jump process (X t ) 0≤t≤τ x 0 u , where τ x 0 u = inf{t ≥ 0| lx 0 (t) = u}. Hence, we see that up to the time T = inf{t ≥ 0|∃x Φx (t) = 0}, the process ( Xt , ( Φx (t)) x∈V , (n e (t)) e∈E ) t≤ T has the same law as the process defined at the beginning of step 2. Then, following [START_REF] Sabot | Inverting Ray-Knight identity[END_REF], we make the following change of variables conditional on the processes (X t , (n e (t)) e∈E ):

(0, +∞) V × N E → (0, +∞) V × N E ((Φ x ) x∈V , (n e ) e∈E ) → (( Φx ) x∈V , (n e ) e∈E ),
which is bijective onto the set

{( Φx ) x∈V ∈ R V + | Φx 0 = √ 2u, ∀x = x 0 , Φx > 2ℓ x (τ x 0 u )} × {(n e ) e∈E ∈ N E |∀e ∈ E, ne ≥ K e (τ x 0 u ) + (N e (J e ( Φ(τ x 0 u ))) -N e (J e (Φ)))}.
Note that we always have Φx 0 = √ 2u. The last conditions on Φ and ne are equivalent to the conditions X T = x 0 and ne ( T ) ≥ 0. The Jacobian of the change of variable is given by

x∈V \{x 0 } dΦ x =   x∈V \{x 0 } Φx Φ x   x∈V \{x 0 } d Φx , since d Φx = d Φ 2 x + 2ℓ x (τ x 0 u ) = Φ x Φ 2 x + 2ℓ x (τ x 0 u ) dΦ x = Φ x Φx dΦ x .
Step 3: With the notations of Theorem 12, we consider the following expectation for g and h bounded measurable test functions:

E g X τ x 0 u -t , n e (τ x 0 u -t) 0≤t≤τ x 0 u h(ϕ (u) ) . (4.7)
By definition, we have ϕ (u) = σΦ(τ x 0 u ), where (σ x ) x∈V ∈ {-1, +1} V are random signs sampled uniformly independently on clusters induced by {e ∈ E|n e (τ x 0 u ) > 0} and conditioned on σ x 0 = +1. Hence, we define for (Φ

x ) x∈V ∈ R V + and (n e ) e∈E ∈ N E , H(Φ, n) = 2 -#c.C(n)+1 σ∈{±1} V σx 0 =+1, σ≪n h(σΦ), (4.8)
ii) Let P ≤t x 0 , Φ,n and P ≤t x 0 , Φ,ň be the law of the process ( ZT s ) s≤t and ( ŽT s ) s≤t respectively, then

d P ≤t x 0 , Φ,n d P ≤t x 0 , Φ,ň = Mt∧ T M0 .
Using this lemma we obtain that in the right-hand side of (4.12)

Ēx 0 , Φ,n M T M0 G ( Zt ) t≤ T = Ěx 0 , Φ,n G ( Žt ) t≤ Ť .
Hence, we deduce, using formula (4.8) and proceeding as in Lemma 4.3, that (4.7) is equal to

R V \{x 0 } d φe -1 2 E( φ, φ) h( φ) n≪ φ   e∈E, φe -φe + ≥0 e -2Je(| φ|) (2J e (| φ|)) ne ne !   Ēx 0 ,| φ|,n M T M0 G ( Zt ) t≤ T ,
where the last integral is on the set {( φx

) x∈V ∈ R V |ϕ x 0 = u}, d φ = x∈V \{x 0 } d φx √ 2π |V |-1
, and where n ≪ φ means that ne = 0 if φe -φe + ≤ 0. Finally, we conclude that

E g X τ x 0 u -t , n e (τ x 0 u -t) 0≤t≤τ x 0 u h(ϕ (u) ) = E g Xt , ňe (t) 0≤t≤ Ť h( φ) ,
where in the right-hand side φ ∼ P {x 0 }, √ 2u ϕ is a GFF and ( Xt , ň(t)) is the process defined in Section 3.1 from the GFF φ. This exactly means that ϕ (u) ∼ P {x 0 }, √ 2u ϕ and that Law X τ x 0 u -t , n e (τ x 0 u -t)

0≤t≤τ x 0 u ϕ (u) = φ = Law Xt , ň(t) t≤ Ť .
This concludes the proof of Theorem 12.

Proof of Lemma 4.5. The generator of the process Zt defined in (4.6) is given, for any bounded and C 1 for the second component test function f , by

( Lf )(x, Φ, n) = - 1 Φx ( ∂ ∂ Φx f )(x, Φ, n)+ y∈V y∼x W x,y f (y, Φ, n -δ {x,y} ) -f (x, Φ, n) + W x,y Φy Φx f (x, Φ, n -δ {x,y} ) -f (x, Φ, n) . (4.13) 
where n -δ {x,y} is the value obtained by removing 1 from n at edge {x, y}. Indeed, since Φx (t) = Φx (0) 2 -2 lx (t), we have

d dt Φx (t) = -½ { Xt=x} 1 Φx (t) , (4.14)
which explains the first term in the expression. The second term is obvious from the definition of Zt , and corresponding to the term induced by jumps of the Markov process Xt . The last term corresponds to the decrease of n due to the increase in the process N e (J e ( Φ)) -N e (J e ( Φ(t))). Indeed, on the interval [t, t + dt], the probability that N e (J e ( Φ(t))) -N e (J e ( Φ(t + dt))) is equal to 1 is of order

- d dt N e (J e ( Φ(t)))dt = ½ { Xt endpoint of e} W e Φe -(t) Φe + (t) Φ Xt (t) 2 dt,
using identity (4.14).

Let Ľ be the generator of the Markov jump process Žt = ( Xt , ( Φx (t)), (ň e (t))). We have that the generator is equal, for any smooth test function f , to

( Ľf )(x, Φ, n) = - 1 Φ x ( ∂ ∂Φ x f )(x, Φ, n) + (4.15) 1 2 y∈V y∼x n x,y Φ 2 x ½ A 1 (x,y) f (y, Φ, n -δ {x,y} ) + f (x, Φ, n -δ {x,y} ) -2f (x, Φ, n) + y∈V y∼x n x,y Φ 2 x ½ A 2 (x,y) f (y, Φ, n -δ {x,y} ) -f (x, Φ, n)) + y∈V y∼x n x,y Φ 2 x ½ A 3 (x,y) f (x, Φ, n -δ {x,y} ) -f (x, Φ, n) ,
where A i (x, y) correspond to the following disjoint events: 

• A 1 (x,
d dt J e ( Φ(t))dt = ½ {Xt endpoint of e} ňe (t) 1 ΦXt (t) 2 dt.
We define the function

Θ(x, (Φ x ), (n e )) = e -1 2 x∈V WxΦ 2 x -e∈E Je(Φ) e∈E (2J e (Φ)) ne n e ! 2 #c.C(n)-1
y∈V \{x} Φ y ½ {x∈C(x 0 ,n), and ∀e∈E, ne≥0} , so that Mt∧ T = Θ( Zt∧ T ).

To prove the lemma it is sufficient to prove ([3], Chapter 11) that for any bounded smooth test function f ,

1 Θ L (Θf ) = Ľ (f ) . (4.16)
Let us first consider the first term in (4.13). Direct computation gives

1 Θ 1 Φ x ∂ ∂Φ x Θ (x, Φ, n) = -W x + y∈V y∼x -W x,y Φ y Φ x + n x,y 1 Φ 2 x .
For the second part, remark that the indicators ½ {x∈C(x 0 ,n)} and ½ {ne≥0, ∀e∈E} imply that Θ(y, Φ, n-δ {x,y} ) vanishes if n x,y = 0 or if y ∈ C(x 0 , n-δ {x,y} ). By inspection of the expression of Θ, we obtain for x ∼ y,

Θ(y, Φ, n -δ {x,y} ) = ½ {nx,y>0} (½ A 1 + 2½ A 2 ) n x,y 2J x,y (Φ) Φ y Φ x Θ(x, Φ, n) = (½ A 1 + 2½ A 2 ) n x,y 2W x,y 1 Φ 2 x Θ(x, Φ, n).
Similarly, for x ∼ y,

Θ(x, Φ, n -δ {x,y} ) = ½ {nx,y>0} (½ A 1 + 2½ A 3 ) n x,y 2J x,y Θ(x, Φ, n) = (½ A 1 + 2½ A 3 ) n x,y 2W x,y Φ x Φ y Θ(x, Φ, n).
Combining these three identities with the expression (4.13) we deduce

1 Θ L (Θf ) (x, Φ, n) = - 1 Φ x ∂ ∂Φ x f (x, Φ, n) - y∈V y∼x n x,y 1 Φ 2 x f (x, Φ, n) + y∈V y∼x (½ A 1 + 2½ A 2 )n x,y 1 2Φ 2 
x f (y, n -δ {x,y} , Φ) + y∈V y∼x

(½ A 1 + 2½ A 3 ) 1 2Φ 2 
x f (x, n -δ {x,y} , Φ).

It exactly coincides with the expression (4.15) for Ľ since 1 = ½ A 1 + ½ A 2 + ½ A 3 .

4.2. General case.

Proposition 4.6. The conclusion of Theorem 9 still holds if the graph G = (V, E) is finite and the killing measure is non-zero (κ ≡ 0).

Proof. Let h be the function on V defined as h(x) = P x (X hits x 0 before ζ).

By definition h(x 0 ) = 1. Moreover, for all x ∈ V \ {x 0 }, -κ x h(x) + y∈V y∼x W x,y (h(y) -h(x)) = 0.

Define the conductances W h e := W e h(e -)h(e + ), and the corresponding jump process X h , and the GFF ϕ The process (X h t ) t≤τ x 0 ,h u has the same law as the process (X θ h (t) ) t≤(θ h ) -1 (τ x 0 u ) , conditional on τ x 0 u < ζ, after the change of time dθ h (t) = h(X θ h (t) ) 2 dt.

This means in particular that for the occupation times, (4.17) ℓ h x (t) = h(X θ h (t) ) -2 ℓ x (θ h (t)). Moreover, we have the equalities in law

ϕ (0) h law = h -1 ϕ (0) , ϕ (u) h law = h -1 ϕ (u) .
Indeed, at the level of energy functions, we have: = Cst(f (x 0 )) + E h (f, f ),

E(hf, hf ) =
where Cst(f (x 0 )) means that this term does not depend of f once the value of the function at x 0 fixed. Let Xh t be the inverse process for the conductances (W h e ) e∈E and the initial condition for the field ϕ (u) h , given by Theorem 9. By applying the inverse of the time change (4.17) to the process Xh t , we obtain an inverse process for the conductances W e and the field ϕ (u) . Proposition 4.7. Assume that the graph G = (V, E) is infinite. The killing measure κ may be non-zero. Then the conclusion of Theorem 9 holds. Proof. Consider an increasing sequence of connected sub-graphs G i = (V i , E i ) of G which converges to the whole graph. We assume that V 0 contains x 0 . Let G * i = (V * i , E * i ) be the graph obtained by adding to G i an abstract vertex x * , and for every vertex x ∈ V i connected by an edge in E i to a y ∈ V \ V i , adding an edge {x, x * } with with a conductance

W x,x * = y∈V \V i y∼x W x,y .
(X i,t ) t≥0 will denote the Markov jump process on G * i , started from x 0 . Let ζ i be the first hitting time of x * or the first killing time by the measure κ½ V i . Let ϕ (0) i , ϕ (u) i will denote the GFFs on G * i with condition 0 respectively √ 2u at x 0 , with condition 0 at x * , and taking in account the possible killing measure κ½ V i . The limits in law of ϕ (0) i respectively ϕ (u) i are ϕ (0) respectively ϕ (u) .

We consider the process ( Xi,t , (ň i,e (t)) e∈E * i ) 0≤t≤ Ťi be the inverse process on G * i , with initial field ϕ (u) i . (X i,t ) t≤τ x 0 i,u , conditional on τ x 0 i,u , has the same law as ( Xi, Ťi -t ) t≤ Ťi . Taking the limit in law as i tends to infinity, we conclude that (X t ) t≤τ x 0 u , conditional on τ x 0 u < +∞, has the same law as ( X Ť -t ) t≤ Ť on the infinite graph G. The same for the clusters. In particular, P( Ť ≤ t, X[0, Ť ] stays in V j ) ≥ lim i→+∞ P( Ťi ≤ t, Xi,[0, Ťi ] stays in V j ) = lim i→+∞ P(τ x 0 i,u ≤ t, X i,[0,τ x 0 i,u ] stays in V j |τ x 0 i,u < ζ i ) = P(τ x 0 u ≤ t, X [0,τ x 0 u ] stays in

V j |τ x 0 u < ζ),
where in the first two probabilities we also average by the values of the free fields. Hence P( Ť = +∞ or X Ť = x 0 ) = 1 -lim t→+∞ j→+∞ P(τ x 0 u ≤ t, X [0,τ x 0 u ] stays in V j |τ x 0 u < ζ) = 0.

Remark 4.8. Consider G = (V, E) an infinite transient electrical network (with κ ≡ 0). Proposition 4.7 tells that if the inversions algorithm of Section 3 is applied to a Gaussian free field ϕ (u) with condition √ 2u at x 0 , and implicitly 0 at infinity, the algorithm terminates a.s., that is to say the inverting process X does not escape to infinity. However, one could consider a Gaussian free field with positive condition a > 0 at infinity, ϕ (u,a) . Such a GFF is related by isomorphism not only to a loop-soup L 1/2 but also to a Sznitman's random interlacement, which is a Poisson point process of paths from and to infinity, infinite in both directions of time [START_REF] Sznitman | An isomorphism theorem for random interlacements[END_REF][START_REF] Sznitman | Topics in occupation times and Gaussian free field[END_REF][START_REF] Lupu | From loop clusters and random interlacements to the free field[END_REF]. If applied to ϕ (u,a) , the algorithm would create a path which has a positive probability to escape to infinity, which would correspond to the event of having an interlacement visiting x 0 .
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 258 ): Theorem 6 (Loop-soup and random current). Assume V is finite and consider the loopsoup L 1/2 . Conditional on the occupation field (L x (L 1/2 )) x∈V , (N e (L 1/2 )) e∈E is distributed as a random current with weights 2W e L e -(L 1/2 )L e + (L 1/2 ) e∈E . If ϕ is the GFF on G given by Le Jan's or Lupu's isomorphism, then these weights are (J e (|ϕ|)) e∈E . Conditional on the occupation field (L x (L 1/2 )) x∈V , O(L 1/2 ) are the edges occupied by a random current and O + (L 1/2 ) the edges occupied by FK-Ising. Lemma 2.1 and Theorem 5 imply the following coupling, as noted by Lupu and Werner in [18]. Theorem 7 (Random current and FK-Ising coupling). Assume V is finite. Let n be a random current on G with weights (J e ) e∈E . Let (ω e ) e∈E ∈ {0, 1} E be an independent percolation, each edge being opened (value 1) independently with probability 1 -e -Je . Then O(n) ∪ {e ∈ E|ω e = 1} is distributed like the open edges in an FK-Ising with weights (1 -e -2Je ) e∈E . Generalized second Ray-Knight "version" of Lupu's isomorphism. We are now in a position to state the coupled version of the second Ray-Knight theorem. Let x 0 ∈ V . Let be (ϕ (0) x ) x∈V with distribution P {x 0 },0 ϕ, and define O(ϕ (0) ) as in Definition 2.1. Let X be an independent Markov jump process started from x 0 .Fix u > 0. If τ x 0 u < ζ, we let O u be the random subset of E which contains O(ϕ (0) ), the edges used by the path (X t ) 0≤t≤τ x 0 u , and additional edges e opened conditionally independently with probability

Figure 1 .

 1 Figure 1. Couplings between discrete and metric graph GFFs, loop-soups, and their relations to the spin Ising, the FK-Ising and the Ising random current. The first column corresponds to metric graph GFF, the second to discrete GFF and the third to Ising. Straightforward links are not labeled.

3. 1 .

 1 A description via an extra Poisson point process. Let ( φx ) x∈V be a real function on V such that φx 0 = + √ 2u for some u > 0. Set Φx = | φx |, σ x = sign( φx ).

t 0 ½

 0 { Xs=x} ds is the local time of the process X up to time t. Let (N e (v)) v≥0 be an independent Poisson Point Processes on R + with intensity 1, for each edge e ∈ E. We set ňe (t) = N e (2J e ( Φ(t))), if σ e -σ e + = +1, 0, if σ e -σ e + = -1.

h

  with conditions 0 respectively √ 2u at x 0 . The Theorem 9 holds for the graph G with conductances (W h e ) e∈E and with zero killing measure. Denoteℓ h x (t) = t 0 ½ {X h s =x} ds, τ x,h u = inf{t ≥ 0|ℓ h x 0 (t) ≥ √ 2u}.

x∈V κ x h(x) 2 f

 2 (x) 2 + e∈E W e (h(e + )f (e + ) -h(e -)f (e -)) 2 = x∈V [κ x h(x) 2 f (x) 2 + y∈V y∼x W x,y h(y)f (y)(h(y)f (y) -h(x)f (x))] = x∈V [κ x h(x) 2 f (x) 2 -y∼x W x,y (h(y) -h(x))h(x)f (x) 2 ] -x∈V y∼x W x,y h(x)h(y)(f (y) -f (x))f (x) = [κ x 0 -y∈V y∼x 0 W x 0 ,y (h(y) -1)]f (x 0 ) 2 + e∈E W he (h(e + )f (e + ) -h(e -)f (e -)) 2

  Conditional on |ϕ|, (sign(ϕ x )) x∈V follows an Ising distribution with interaction constants (J e (|ϕ|)) e∈E : indeed, the Dirichlet form (1.1) can be written as

	(2.1)

Given an FK-Ising model, sample on each cluster an independent uniformly distributed spin. The spins are then distributed according to the Ising model. Conversely, given a spin configuration σ following the Ising distribution, consider each edge e, such that σe -σe + < 0, closed, and each edge e, such that σe -σe + > 0 open with probability 1 -e -2Je . Then the open edges are distributed according to the FK-Ising model. The two couplings between FK-Ising and spin Ising are the same. Consider the GFF ϕ on G distributed according to P ϕ . Let J e (|ϕ|) be the random interaction constants J e (|ϕ|) = W e |ϕ e -ϕ e + |.

  s.t. Φx (t) = 0}. Remark 3.6. One can also retrieve the process in Section 3.1 from the representation in Proposition 3.4 as follows. Consider the representation of Proposition 3.4 on the graph where each edge e is replaced by a large number N of parallel edges with conductance W e /N .

		Consider
	now	ň(N)

  y) if the numbers of connected clusters induced by n -δ {x,y} is the same as that of ň; • A 2 (x, y) if a new cluster is created in n -δ {x,y} compared with ň and if y is in the connected component of x 0 in the cluster induced by n -δ {x,y} ; • A 3 (x, y) if a new cluster is created in n -δ {x,y} compared with n and if x is in the connected component of x 0 in the cluster induced by n -δ {x,y} .

	is of order	
	-ň e (t)	1 J e ( Φ(t))

Indeed, conditional on the value of ňe (t) = N e (2J e ( Φ(t))) at time t, the point process N e on the interval [0, 2J e ( Φ(t))] has the law of n e (t) independent points with uniform distribution on [0, 2J e ( Φ(t))]. Hence, the probability that a point lies in the interval [2J e ( Φ(t + dt)), 2J e ( Φ(t))]
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Lemma 4.2. The random family (ϕ (0) , C(n(0)), ϕ (u) , C(n(τ x 0 u ))) thus defined has the same distribution as (ϕ (0) , O(ϕ (0) ), ϕ (u) , O u ) defined in Theorem 8. Proof. It is clear from construction, that C(n(0)) has the same law as O(ϕ (0) ) (cf Definition 2.1), the FK-Ising configuration coupled with the signs of ϕ (0) as in Theorem 4. Indeed, for each edge e ∈ E such that ϕ (0) eϕ (0) e + > 0, the probability that n e (0) > 0 is 1 -e -2Je(Φ) . Moreover, conditional on C(n(0)) = O(ϕ (0) ), C(n(τ x 0 u )) has the same law as O u defined in Theorem 8. Indeed, C(n(τ x 0 u )) is the union of the set C(n(0)), the set of edges crossed by the process (X u ) u≤τ x 0 u , and the additional edges such that N e (J e (τ x 0 u )) -N e (J e (Φ)) > 0. Clearly N e (J e (τ x 0 u )) -N (J e (Φ)) > 0 independently with probability 1 -e -(Je(Φ(τ x 0 u ))-Je(Φ)) which coincides with the probability given in Theorem 8.

We will prove the following theorem that, together with Lemma 4.2, contains the statements of both Theorem 8 and 9.

Theorem 12. The random field ϕ (u) is a GFF distributed according to

. Moreover, conditional on ϕ (u) = φ, the process

Proof. Before proceeding to the proof of the theorem, we will briefly outline our method. We have a Markov process (X t , Φ(t), n(t)), and would like to find another Markov process ( Xt , Φ(t), ň(t)) such that the latter has the law of (X τ x 0 u -t , Φ(τ x 0 u -t), n(τ x 0 u -t)) in the particular case when the entrance (initial) distribution of (X 0 , Φ(0), n(0)) is given by (x 0 , |ϕ (0) |, n(0)), n(0) given by (4.2). To this end, we will first introduce an intermediate Markov process ( Xt , Φ(t), n(t)) which will correspond to (X τ x 0 u -t , Φ(τ x 0 u -t), n(τ x 0 u -t)) in case when the entrance distribution of (X 0 , Φ(0), n(0)) is not the one we are interested in, but given by X 0 = x 0 and (Φ(0), n(0)) following the product measure (with infinite total mass)

We do that because ( Xt , Φ(t), n(t)) is simpler, and in particular Xt is a Markov jump process with jump rates (W e ) e∈E (just as X t ) which does not interact with ( Φ(t), n(t)). In this way ( Xt , Φ(t), n(t)) and ( Xt ,

for two different entrance distributions of (X 0 , Φ(0), n(0)), and we show that ( Xt , Φ(t), ň(t)) is absolutely continuous with respect to ( Xt , Φ(t), n(t)) and identify the corresponding Radon-Nikodym derivative Mt∧ T / M0 . Out of this we further identify ( Xt , Φ(t), ň(t)) as a Doob's h-transform (see [START_REF] Chung | Markov Processes, Brownian Motion, and Time Symmetry[END_REF], Chapter 11) of ( Xt , Φ(t), n(t)). Then we obtain the infinitesimal generator of ( Xt , Φ(t), ň(t)) as a conjugate of the infinitesimal generator of ( Xt , Φ(t), n(t)).

Our proof is cut in four steps. In step 1 we simply give an explicit formula for the law of (|ϕ (0) |, n(0)), n(0) given by (4.2). In step 2 we introduce ( Xt , Φ(t), n(t)) and prove the time reversal for the product entrance distribution of (X 0 , Φ(0), n(0)). In step 3 we identify the Radon-Nikodym derivative of ( Xt , Φ(t), ň(t)) with respect to ( Xt , Φ(t), n(t)). In step 4 we describe ( Xt , Φ(t), n(t)) as a Doob's h-transform of ( Xt , Φ(t), n(t)) and give its the infinitesimal generator, which is that of the process introduced in Section 3.1.

Step 1 : We start by a simple lemma.

Step 2 : We denote by Z t = (X t , Φ(t), n(t)) the process defined previously and by E x 0 ,Φ,n 0 its law with initial condition (x 0 , Φ, n).

We now introduce a process Zt , which is a "time reversal" of the process Z t . This process will be related to the process defined in Section 3.1 in Step 4, Lemma 4.5.

For (n e ) e∈E ∈ N E and ( Φx ) x∈V such that

we define the process Zt = ( Xt , Φ(t), n(t)) with values in V × R V + × Z E as follows. The process Xt is a Markov jump process with jump rates (W e ) e∈E (so that X law = X), and Φ(t), n(t) are defined by

Φx (t) = Φ2

x -2 lx (t), ∀x ∈ V, (4.4) where lx (t) is the local time of the process X up to time t, ne (t) = ne -N e (J e ( Φ)) -N e (J e ( Φ(t))) -Ke (t), (4.5) where ((N e (v)) v≥0 ) e∈E are independent Poisson point process on R + with intensity 1 for each edge e, and Ke (t) is the number of crossings of the edge e by the process X before time t. We set Zt = ( Xt , ( Φx (t)), (n e (t))). (4.6) This process is well-defined up to time

We denote by Ēx 0 , Φ,n its law. Clearly Zt = ( Xt , Φ(t), ne (t)) is a Markov process, we will later on make explicit its generator.

We have the following change of variable lemma.

Lemma 4.4. For all bounded measurable test functions F, G, H

,

where the integral on the l.h.s. is on the set

and the integral on the r.h.s. is on the set

Proof. We start from the left-hand side, i.e. the process (X t , n e (t)) 0≤t≤τ x 0 u . We define Xt = X τ x 0 u -t , ne (t) = n e (τ x 0 u -t), and Φx = Φ x (τ x 0 u ), Φx (t) = Φ x (τ x 0 u -t), The law of the processes such defined will later be identified with the law of the processes ( Xt , Φ(t), n(t)) defined at the beginning of step 2, see (4.4) and (4.5). We also set

where σ ≪ n means that the signs σ x are constant on clusters of C(n). Hence, setting 

with notations of Lemma 4.4.

Let Ft = σ(( Xs ) s≤t ) be the filtration generated by X. We define the F-adapted process Mt , defined up to time T by (4.10)

where C(x 0 , n(t)) denotes the cluster of the origin x 0 induced by the configuration C(n(t)). Note that at time t = T , we also have

since M T vanishes on the event where { X T = x}, with x = x 0 . Indeed, if X T = x = x 0 , then Φx ( T ) = 0 and J e ( Φ( T )) = 0 for e ∈ E such that e adjacent to x. It means that M T is equal to 0 if ne ( T ) > 0 for some edge e neighboring x. Thus, M T is null unless {x} is a cluster in C(n( T )). Hence, M T = 0 if x = x 0 since M T contains the indicator of the event that X T and x 0 are in the same cluster. Hence, using identities (4.9) and (4.11) we deduce that (4.7) is equal to Step 4 : We denote by Žt = ( Xt , Φt , ň(t)) the process defined in Section 3.1, which is well defined up to stopping time Ť , and ŽT t = Žt∧ Ť . We denote by Ěx 0 , Φ,ň the law of the process Ž conditional on the initial value ň(0), i.e. conditional on (N e (2J( Φ))) = (ň e ). The last step of the proof goes through the following lemma. Lemma 4.5. i) Under Ěx 0 , Φ,ň , X ends at X Ť = x 0 a.s. and ňe ( Ť ) ≥ 0 for all e ∈ E.