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Let u : S 1 → S 1 . When u is continuous, it has a winding number deg u, which satisfies deg u = deg v if u, v ∈ C 0 (S 1 ; S 1 ) and uv L ∞ <2. In particular, u → deg u is uniformly continuous for the sup norm.

The winding number deg u can be naturally defined, by density, when u is merely VMO. For such u's, the winding number deg is continuous with respect to the BMO norm.

Let 1 < p < ∞. In view of the above and of the embedding W 1/p,p (S 1 ) → VMO, maps in W 1/p,p (S 1 ; S 1 ) have a well-defined winding number, continuous with respect to the W 1/p,p norm. However, an example due to Brezis and Nirenberg yields sequences (u n ), (v n ) ⊂ W 1/p,p (S 1 ; S 1 ) such that u n -v n W 1/p,p → 0 as n → ∞ and deg u n = deg v n , ∀ n. Thus deg is not uniformly continuous with respect to the W 1/p,p norm (and, a fortiori, with respect to the BMO norm).

The above sequences satisfy u n W 1/p,p → ∞, v n W 1/p,p → ∞. We prove that a similar phenomenon cannot occur for bounded sequences. More specifically, we prove the following uniform continuity result. Given 1 < p < ∞ and M > 0, there exists some δ = δ(p, M) > 0 such that [ u W 1/p,p ≤ M, uv W 1/p,p ≤ δ] =⇒ deg u = deg v.

Introduction

If u ∈ C 0 (S 1 ; S 1 ), then u has a winding number deg u, which is continuous with respect to the uniform convergence, and in particular is a homotopic invariant. In fact, deg is "better than just continuous": it is uniformly continuous, since

[u, v ∈ C 0 (S 1 ; S 1 ), u -v L ∞ < 2] =⇒ deg u = deg v. (1.1)
The winding number can still be "naturally" defined (i.e., by density, starting from smooth maps) when u is slightly less than continuous, more specifically when u ∈ VMO (S 1 ; S 1 ). This has been first noticed by Boutet de Monvel and Gabber [3, Appendix] for the space H 1/2 (S 1 ; S 1 ), and then extended and investigated in depth by Brezis and Nirenberg for maps u ∈ VMO (S 1 ; S 1 ) [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF]. While, in this setting, the winding number is still continuous with respect to norm convergence, and thus provides a homotopic invariant, there is no global analogue of (1.1), even if we replace the BMO norm by one of the stronger norms W 1/p,p , 1 < p < ∞. More specifically, a construction from [START_REF] Brezis | Degree theory and BMO. I. Compact manifolds without boundaries[END_REF] yields two sequences of smooth maps u n , v n : S 1 → S 1 such that

u n -v n W 1/p,p → 0 as n → ∞, ∀ 1 < p < ∞, and deg u n = deg v n , ∀ n (1.2)
(see [START_REF] Brezis | Distances between homotopy classes of W s[END_REF]Lemma 6.4]). Here,

W 1/p,p = L p + | | W 1/p,p
, where | | W s,p stands for the Gagliardo seminorm, given for 0 < s < 1, 1 ≤ p < ∞ and Ω, an N-dimensional Lipschitz bounded domain or compact embedded manifold, by (The fact that the W 1/p,p norm is stronger than the BMO one on S 1 follows from the embedding W 1/p,p → BMO , valid in 1D.)

We prove that the above phenomenon can occur only when u n , v n "escape to infinity", that is, we have uniform continuity of the degree on bounded sets:

Theorem 1. Let 1 < p < ∞ and M > 0. Then there exists some δ = δ(p, M) > 0 such that [u, v ∈ W 1/p,p (S 1 ; S 1 ), |u| W 1/p,p ≤ M, |u -v| W 1/p,p ≤ δ] =⇒ deg u = deg v. (1.3)
This provides a partial (positive) answer to [START_REF] Brezis | Distances between homotopy classes of W s[END_REF]Open Problem 3].

Remark 1. The new contribution of this note concerns the case where p > 2. When 1 < p ≤ 2, Theorem 1 is a special case of [START_REF] Brezis | Distances between homotopy classes of W s[END_REF]Proposition 7.9]. This result asserts that, when N ≥ 1 and 1 < p ≤ N + 1, the degree of maps in u ∈ W N/p,p (S N ; S N ) is uniformly continuous on bounded sets. Theorem 1 settles thus completely the case of the dimension one. We point out that its analogue for W N/p,p (S N ; S N ) maps, with N ≥ 2 and p > N + 1, is widely open.

Remark 2. When 1 < p ≤ 2, the proof of [4, Proposition 7.9] yields an explicit δ (in terms of M and p) in (1.3). A similar explicit estimate eludes us when p > 2.

Proof

We first recall some basic properties of the winding number. Given p ∈ (1, ∞), deg u for u ∈ W 1/p,p (S 1 ; S 1 ) is defined as follows. To start with, C ∞ (S 1 ; S 1 ) is dense in W 1/p,p (S 1 ; S 1 ) [5, Lem- mas A.11 and A.12], and the map u → deg u, initially defined for smooth maps u ∈ C ∞ (S 1 ; S 1 ), is continuous with respect to the BMO norm [5, Theorem 1]. In view of the embedding W 1/p,p → VMO in 1D, we find that deg has a unique continuous extension to W 1/p,p (S 1 ; S 1 ). In particular, it suffices to work in (1.3) with smooth maps.

For further use, let us note the property deg(uv

) = deg u + deg v, ∀ u, v ∈ W 1/p,p (S 1 ; S 1 ). (2.1)
As a consequence of (2.1), we have

deg u = -deg u, ∀ u ∈ W 1/p,p (S 1 ; S 1 ). (2.2)
These properties are well known if u and v are smooth. The general case is obtained by density, using the continuity of the degree with respect to the W 1/p,p norm and the following easy and standard fact ("W s,p ∩ L ∞ is an algebra").

Lemma 1. Let 0 < s < 1 and 1 ≤ p < ∞. Let Ω be an N-dimensional Lipschitz bounded domain or compact embedded manifold. If (u n ), (v n ) ⊂ W s,p (Ω; C) and u, v ∈ W s,p (Ω; C) satisfy |u n -u| W s,p → 0, |v n -v| W s,p → 0 as n → ∞, (2.3) 
u n → u and v n → v a.e. as n → ∞, (2.4)

u n L ∞ ≤ C, v n L ∞ ≤ C, ∀ n, (2.5) 
then

|u n v n -uv| W s,p → 0 as n → ∞.
(2.6)

Proof. We have

|[(u n -u)v](x) -[(u n -u)v](y)| p |(u n -u)(x)| p |v(x) -v(y)| p + |(u n -u)(x) -(u n -u)(y)| p |v(y)| p , (2.7) so that |u n v -uv| p W s,p ˆΩ ˆΩ |(u n -u)(x)| p |v(x) -v(y)| p |x -y| N+s p dxd y + ˆΩ ˆΩ |(u n -u)(x) -(u n -u)(y)| p |v(y)| p |x -y| N+s p dxd y → 0 as n → ∞;
here, we use dominated convergence for the first integral, and the facts that v is bounded and |u n -u| W s,p → 0 as n → ∞ for the second integral. Thus |u n v -uv| W s,p → 0 as n → ∞. Similarly, |uv n -uv| W s,p → 0 as n → ∞. In view of the identity

u n v n -uv = (u n v -uv) + (uv n -uv) + (u n -u)(v n -v), it remains to prove that |(u n -u)(v n -v)| W s,p → 0 as n → ∞.
This follows, by dominated convergence, from

|(u n -u)(v n -v)| p W s,p ˆΩ ˆΩ |(u n -u)(x)| p |(v n -v)(x) -(v n -v)(y)| p |x -y| N+s p dxd y + ˆΩ ˆΩ |(u n -u)(x) -(u n -u)(y)| p |(v n -v)(y)| p
|x -y| N+s p dxd y.

Proof of Theorem 1. Given u : S 1 → C measurable and bounded, we let T u : D → C denote its harmonic extension to the unit disc D. We set

c ′ p := inf{|u| p W 1/p,p ; u ∈ W 1/p,p (S 1 ; S 1 ), T u (0) = 0}.
(2.8) (Clearly, the inf is achieved in (2.8), but we will not need this fact.) We have [6, Section 2, item 5]

c ′ p > 0.
(2.9)

We will prove (1.3) by complete (strong) induction on the integer part L of M p c ′ p .

Step 1. Proof of (1.3) when L = 0 Let δ > 0 be such that (M + δ) p := c < c ′ p . If u, v are smooth and as in (1.3), then |u| p W 1/p,p ≤ c and |v| p W 1/p,p ≤ c, and therefore there exists some ε > 0 such that

|T u (x)| ≥ ε, |T v (x)| ≥ ε, ∀ x ∈ D [6,
Section 2, items 8 and 9]. Thus u, v : S 1 → S 1 are smooth functions with smooth non vanishing extensions to D. It follows that deg

u = deg v = 0.
Step 2. Proof of (1.3) for L ≥ 1 (assuming that (1.3) holds for 0, . . ., L -1) Argue by contradiction. Then there exist c < (L+1) c ′ p and sequences

(u n ), (v n ) ⊂ C ∞ (S 1 ; S 1 ) such that |u n | p W 1/p,p ≤ c, |v n | p W 1/p,p ≤ c, deg u n = deg v n , ∀ n, and |u n -v n | W 1/p,p → 0 as n → ∞.
Since at least one of the integers deg u n , deg v n is non zero, we may assume that deg u n = 0, ∀ n. Therefore, T u n has to vanish at some point a n ∈ D.

Let M a (z) = a -z 1 -a z , ∀ a ∈ D, ∀ z ∈ D,
denote the (normalized) Möbius transformation vanish- ing at a. Let N a : S 1 → S 1 be the restriction of M a to S 1 . We note the following properties, valid for each a ∈ D and each u ∈ C 0 (S 1 ; S 1 ) [6, Section 2, item 1].

deg(u • N a ) = deg u, (2.10) 
T u•N a = (T u ) • M a , (2.11) 
T u•N a (0) = T u (a).
(2.12)

In addition, we have [6, Section 2, item 2]

| f • N a | W 1/p,p = | f | W 1/p,p , ∀ 1 < p < ∞, ∀ f ∈ W 1/p,p (S 1 ; C). (2.13) 
We consider U n := u n • N a n and V n := v n • N a n . By properties (2.10)-(2.13) above and by the assumptions on u n and v n , we have

|U n | p W 1/p,p ≤ c and |V n | p W 1/p,p ≤ c, (2.14) 
T U n (0) = 0, ∀ n, (2.15) 
degU n = deg V n , ∀ n, (2.16 
)

|U n -V n | W 1/p,p → 0 (2.17)
and, possibly up to subsequences still denoted (U n ) and (V n ),

U n → U ∈ W 1/p,p (S 1 ; S 1 ) a.e. and weakly in W 1/p,p as n → ∞, (2.18)

V n → V ∈ W 1/p,p (S 1 ; S 1 ) a.e. and weakly in W 1/p,p as n → ∞, (2.19)

U -V = C ∈ C, (2.20) 
T U (0) = 0.

(2.21)

The last property follows, by dominated convergence, from (2.15), (2.18) and the fact that

T v (0) = ffl S 1 v(x) dx, ∀ v ∈ L 1 (S 1 ; C).
Claim 1. We have C = 0, and thus V n → U a.e. as n → ∞.

( 

:= V n U satisfy | U n | p W 1/p,p ≤ c -c ′ p + o(1) as n → ∞, (2.26) | V n | p W 1/p,p ≤ c -c ′ p + o(1), (2.27) deg U n = degU n -degU = deg V n -degU = deg V n , ∀ n.
(2.28)

Claim 2. We have

| U n -V n | W 1/p,p → 0 as n → ∞.
(2.29)

Granted Claim 2 and using (2.26)-(2.28) together with the fact that cc ′ p < L c ′ p , we find that the sequences ( U n ), ( V n ) contradict, for large n, the induction hypothesis.

In order to complete the proof of the theorem, it thus remains to justify Claims 1 and 2.

Proof of Claim 1. Since |U| = 1 and |V | = 1 a.e., (2.20) implies that U takes values, a.e., in the set S 1 ∩(C +S 1 ). When C = 0, this set contains at most two points. Since the essential range of U is connected [5, Section I.5, Comment 2], we find that U is constant a.e. Thus T U is a constant of modulus 1, which is impossible, by (2.21).

Proof of Claim 2. Let us note that U ∈ W 1/p,p ∩ L ∞ . Claim 2 is then a consequence of (2.22) and Lemma 1, applied with u n = U n -V n , v n = U, u = 0 and v = U. Remark 3. The idea of "extracting" information concerning a map u : S 1 → S 1 from the behavior of an appropriate extension of u to D (which is at the heart of the asymptotic analysis in Step 2) originates in [START_REF] Bourgain | Lifting, degree, and distributional Jacobian revisited[END_REF], where the harmonic extension is considered; see also [START_REF] Bourgain | A new estimate for the topological degree[END_REF] for an extension by averages.

  p = ˆΩ ˆΩ |u(x) -u(y)| p |x -y| N+s p dxd y.

  .22)Granted Claim 1, we continue as follows. Since U n → U and V n → U a.e. as n → ∞, we have [6, Section 2, item 10] Combining (2.21), the fact that U ∈ W 1/p,p (S 1 ; S 1 ) and the definition (2.8) of c ′ p , we obtain

	|U| W 1/p,p ≥ c ′ p p .	(2.25)
	From (2.23)-(2.25), (2.1) and (2.2), we find that U	
	|U n | W 1/p,p = |U| p W 1/p,p + |U n U| p W 1/p,p + o(1) as n → ∞, p	(2.23)
	|V n |	

p W 1/p,p = |U| p W 1/p,p + |V n U| p W 1/p,p + o(1) as n → ∞.

(2.24) n := U n U and V n
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