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Abstract

Let u : S1 → S
1. When u is continuous, it has a winding number degu, which satis-

fies degu = degv if u,v ∈ C0(S1;S1) and ‖u− v‖L∞<2. In particular, u 7→ degu is uniformly

continuous for the sup norm.

The winding number degu can be naturally defined, by density, when u is merely VMO.

For such u’s, the winding number deg is continuous with respect to the BMO norm.

Let 1 < p <∞. In view of the above and of the embedding W1/p,p(S1) ,→VMO, maps in

W1/p,p(S1;S1) have a well-defined winding number, continuous with respect to the W1/p,p

norm. However, an example due to Brezis and Nirenberg yields sequences (un), (vn) ⊂

W1/p,p(S1;S1) such that ‖un − vn‖W1/p,p → 0 as n → ∞ and degun 6= degvn, ∀n. Thus deg

is not uniformly continuous with respect to the W1/p,p norm (and, a fortiori, with respect to

the BMO norm).

The above sequences satisfy ‖un‖W1/p,p → ∞, ‖vn‖W1/p,p → ∞. We prove that a similar

phenomenon cannot occur for bounded sequences. More specifically, we prove the following

uniform continuity result. Given 1< p <∞ and M > 0, there exists some δ= δ(p, M)> 0 such

that

[‖u‖W1/p,p ≤ M, ‖u−v‖W1/p,p ≤ δ] =⇒ degu =degv.

1 Introduction

If u ∈ C0(S1;S1), then u has a winding number deg u, which is continuous with respect to the

uniform convergence, and in particular is a homotopic invariant. In fact, deg is “better than just

continuous”: it is uniformly continuous, since

[u,v ∈C0(S1;S1), ‖u−v‖L∞ < 2] =⇒ deg u = degv. (1.1)

The winding number can still be “naturally” defined (i.e., by density, starting from smooth

maps) when u is slightly less than continuous, more specifically when u ∈VMO (S1;S1). This has

been first noticed by Boutet de Monvel and Gabber [1, Appendix] for the space H1/2(S1;S1), and

then extended and investigated in depth by Brezis and Nirenberg for maps u ∈ VMO (S1;S1)

[3]. While, in this setting, the winding number is still continuous with respect to the norm
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convergence, and thus provides a homotopic invariant, there is no global analogue of (1.1), even

if we replace the BMO norm by one of the stronger norms W1/p,p, 1< p <∞. More specifically, a

construction from [3] yields two sequences of smooth maps un, vn :S1 →S
1 such that

‖un −vn‖W1/p,p → 0 as n →∞, ∀1< p <∞, and deg un 6= degvn, ∀n (1.2)

(see [2, Lemma 6.4]). Here, ‖ ‖W1/p,p = ‖ ‖Lp + | |W1/p,p , where | |W s,p stands for the Gagliardo

seminorm, given for 0< s< 1, 1≤ p <∞ and Ω, an N-dimensional Lipschitz bounded domain or

compact embedded manifold, by

|u|
p

W s,p =

ˆ

Ω

ˆ

Ω

|u(x)−u(y)|p

|x− y|N+sp
dxd y.

(The fact that the W1/p,p norm is stronger than the BMO one on S
1 follows from the embedding

W1/p,p
,→BMO , valid in 1D.)

We prove that the above phenomenon can occur only when un, vn “escape to infinity”, that

is, we have uniform continuity of the degree on bounded sets:

Theorem 1. Let 1< p <∞ and M > 0. Then there exists some δ= δ(p, M)> 0 such that

[u,v ∈W1/p,p(S1;S1), |u|W1/p,p ≤ M, |u−v|W1/p,p ≤ δ] =⇒ deg u = degv. (1.3)

This provides a partial (positive) answer to [2, Open Problem 3].
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2 Proof

We first recall some basic properties of the winding number. Given p ∈ (1,∞), deg u for u ∈

W1/p,p(S1;S1) is defined as follows. To start with, C∞(S1;S1) is dense in W1/p,p(S1;S1) [3, Lem-

mas A.11 and A.12], and the map u 7→ deg u, initially defined for smooth maps u ∈C∞(S1;S1), is

continuous with respect to the BMO norm [3, Theorem 1]. In view of the embedding W1/p,p
,→

VMO in 1D, we find that deg has a unique continuous extension to W1/p,p(S1;S1). In particular,

it suffices to work in (1.3) with smooth maps.

For further use, let us note the property

deg(uv)= deg u+degv, ∀u,v ∈W1/p,p(S1;S1). (2.1)

As a consequence of (2.1), we have

deg u =−deg u, ∀u ∈W1/p,p(S1;S1). (2.2)

These properties are well-known if u and v are smooth. The general case is obtained by

density, using the continuity of the degree with respect to the W1/p,p norm and the following

easy and standard fact (“W s,p ∩L∞ is an algebra”).
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Lemma 1. Let 0 < s < 1 and 1 ≤ p <∞. Let Ω be an N-dimensional Lipschitz bounded domain

or compact embedded manifold. If (un), (vn)⊂W s,p(Ω;C) and u,v ∈W s,p(Ω;C) satisfy

|un −u|W s,p → 0, |vn −v|W s,p → 0 as n →∞, (2.3)

un → u and vn → v a.e. as n →∞, (2.4)

‖un‖L∞ ≤ C, ‖vn‖L∞ ≤ C, ∀n, (2.5)

then

|unvn −uv|W s,p → 0 as n →∞. (2.6)

Proof. We have

|[(un −u)v](x)− [(un −u)v](y)|p .|(un −u)(x)|p|v(x)−v(y)|p

+|(un −u)(x)− (un −u)(y)|p|v(y)|p,
(2.7)

so that

|unv−uv|
p

W s,p .

ˆ

Ω

ˆ

Ω

|(un −u)(x)|p|v(x)−v(y)|p

|x− y|N+sp
dxd y

+

ˆ

Ω

ˆ

Ω

|(un −u)(x)− (un −u)(y)|p|v(y)|p

|x− y|N+sp
dxd y→ 0 as n →∞;

here, we use dominated convergence for the first integral, and the facts that v is bounded and

|un −u|W s,p → 0 as n →∞ for the second integral. Thus |unv−uv|W s,p → 0 as n →∞. Similarly,

|uvn −uv|W s,p → 0 as n →∞. In view of the identity

unvn −uv = (unv−uv)+ (uvn −uv)+ (un −u)(vn −v),

it remains to prove that |(un −u)(vn − v)|W s,p → 0 as n →∞. This follows, by dominated conver-

gence, from

|(un −u)(vn −v)|
p

W s,p .

ˆ

Ω

ˆ

Ω

|(un −u)(x)|p|(vn −v)(x)− (vn −v)(y)|p

|x− y|N+sp
dxd y

+

ˆ

Ω

ˆ

Ω

|(un −u)(x)− (un −u)(y)|p|(vn −v)(y)|p

|x− y|N+sp
dxd y.

Proof of Theorem 1. Given u : S1 → C measurable and bounded, we let Tu : D → C denote its

harmonic extension to the unit disc D. We set

c′p := inf{|u|
p

W1/p,p
; u ∈W1/p,p(S1;S1), Tu(0)= 0}. (2.8)

(Clearly, the inf is achieved in (2.8), but we will need this fact.) We have [4, Section 2, item 5]

c′p > 0. (2.9)

We will prove (1.3) by complete (strong) induction on the integer part L of
Mp

c′p
.

Step 1. Proof of (1.3) when L = 0

Let δ> 0 be such that (M+δ)p := c < c′p. If u,v are smooth and as in (1.3), then |u|
p

W1/p,p ≤ c and

|v|
p

W1/p,p
≤ c, and therefore there exists some ε > 0 such that |Tu(x)| ≥ ε, |Tv(x)| ≥ ε, ∀ x ∈ D [4,

Section 2, items 8 and 9]. Thus u,v : S1 →S
1 are smooth functions with smooth non vanishing

extensions to D. It follows that deg u = degv = 0.
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Step 2. Proof of (1.3) for L ≥ 1 (assuming that (1.3) holds for 0, . . .,L−1)

Argue by contradiction. Then there exist c < (L+1) c′p and sequences (un), (vn)⊂ C∞(S1;S1) such

that |un|
p

W1/p,p
≤ c, |vn|

p

W1/p,p
≤ c, deg un 6= degvn, ∀n, and |un −vn|W1/p,p → 0 as n →∞.

Since at least one the the integers deg un, degvn is non zero, we may assume that deg un 6= 0,

∀n. Therefore, Tun
has to vanish at some point an ∈D.

Let Ma(z) =
a− z

1−a z
, ∀a ∈D, ∀ z ∈D, denote the (normalized) Möbius transform vanishing at

a. Let Na : S1 → S
1 be the restriction of Ma to S

1. We note the following properties, valid for

each a ∈D and each u ∈C0(S1;S1) [4, Section 2, item 1].

deg(u ◦Na)= deg u, (2.10)

Tu◦Na
= (Tu)◦Ma, (2.11)

Tu◦Na
(0)= Tu(a). (2.12)

In addition, we have [4, Section 2, item 2]

| f ◦Na|W1/p,p = | f |W1/p,p , ∀1< p <∞, ∀ f ∈W1/p,p(S1;C). (2.13)

We consider Un := un ◦Nan
and Vn := vn ◦Nan

. By properties (2.10)–(2.13) above and by the

assumptions on un and vn, we have

|Un|
p

W1/p,p
≤ c and |Vn|

p

W1/p,p
≤ c, (2.14)

TUn
(0)= 0, ∀n, (2.15)

degUn 6= degVn, ∀n, (2.16)

|Un −Vn|W1/p,p → 0 (2.17)

and, possibly up to subsequences still denoted (Un) and (Vn),

Un →U ∈W1/p,p(S1;S1) a.e. and weakly in W1/p,p as n →∞, (2.18)

Vn →V ∈W1/p,p(S1;S1) a.e. and weakly in W1/p,p as n →∞, (2.19)

U −V = C ∈C, (2.20)

TU (0)= 0. (2.21)

The last property follows, by dominated convergence, from (2.15), (2.18) and the fact that

Tv(0)=
ffl

S1 v(x) dx, ∀v ∈ L1(S1;C).

Claim 1. We have C = 0, and thus

Vn →U a.e. as n →∞. (2.22)

Granted Claim 1, we continue as follows. Since Un →U and Vn →U a.e. as n →∞, we have

[4, Section 2, item 10]

|Un|
p

W1/p,p
= |U |

p

W1/p,p
+|Un U|

p

W1/p,p
+ o(1) as n →∞, (2.23)

|Vn|
p

W1/p,p
= |U |

p

W1/p,p
+|Vn U |

p

W1/p,p
+ o(1) as n →∞. (2.24)

Combining (2.21), the fact that U ∈W1/p,p(S1;S1) and the definition (2.8) of c′p, we obtain

|U |
p

W1/p,p
≥ c′p. (2.25)

4



From (2.23)–(2.25), (2.1) and (2.2), we find that Ũn :=Un U and Ṽn :=Vn U satisfy

|Ũn|
p

W1/p,p
≤ c− c′p + o(1) as n →∞, (2.26)

|Ṽn|
p

W1/p,p
≤ c− c′p + o(1), (2.27)

degŨn = degUn −degU 6= degVn −degU = deg Ṽn, ∀n. (2.28)

Claim 2. We have

|Ũn − Ṽn|W1/p,p → 0 as n →∞. (2.29)

Granted Claim 2 and using (2.26)–(2.28) together with the fact that c− c′p < L c′p, we find

that the sequences (Ũn), (Ṽn) contradict, for large n, the induction hypothesis.

In order to complete the proof of the theorem, it thus remains to justify Claims 1 and 2.

Proof of Claim 1. Since |U | = 1 and |V | = 1 a.e., (2.20) implies that U takes values, a.e., into the

set S1∩(C+S
1). When C 6= 0, this set contains at most two points. Since the essential range of U

is connected [3, Section I.5, Comment 2], we find that U is constant a.e. Thus TU is a constant

of modulus 1, which is impossible, by (2.21).

Proof of Claim 2. Let us note that U ∈W1/p,p ∩L∞. Claim 2 is then a consequence of (2.22) and

Lemma 1, applied with un =Un −Vn,vn =U, u = 0 and v =U.

Remark 1. When p ≤ 2, it is possible to produce an explicit δ (in terms of M and p) in (1.3) [2,

Proposition 7.9]. A similar explicit estimate eludes us when p > 2.

Remark 2. The analogue of Theorem 1 for maps u ∈ WN/p,p(SN ;SN), N ≥ 2, p > N + 1, is

widely open. By contrast, we know that the corresponding result holds (with an explicit δ)

when p ≤ N +1 [2, Proposition 7.9].
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